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A METHOD FOR THE CALCULATION OF EXTERNAL LIFT, MOMENT, AND PRESSURE DRAG
OF SLENDER OPEN-NOSE BODIES OF REVOLUTION AT SUPERSONIC SPEEDS

By Crinton E. Brownx and Hermon M. Parrer

SUMMARY

An approximate method is presented for the calculation of
the external lift, moment, and pressure drag of slender open-noge
bodies of rerolution at supersonic speeds. The liff, moment,
and pressure drag of a typical ram-jet body shape are calculated
at Mach numbers of 1.45, 1.60, 1.76, and 3.00; and the lift
and moment results are compared with available experimental
data. The agreement of the calculated liff and moment data
with the exrperimental data is excellent. The pressure-drag
comparison was not presented because of the uncertainly of
the amount of skin-friction drag present in the experimental
results. It was found that the lift coefficient definitely in-
creased with increasing Afach number, whereas the moment
cvefficient taken about the midpoint of the body and the drag
coefficient decreased with increasing Mach number. The
manner in which the method may be applied to slender bodies
of revolution with annular air inlets is shown. The excellent
agreement of the calculated lift and moment results with experi-
mental data indicates that the approzimate method may be
reliably used for obtaining the aerodynamic characteristics of
slender bodies that are required for efficient supersonic flight.

INTRODUCTION

Current proposals for the design of aireraft capable of
sustained flight at supersonic speeds and utilizing the ram jet
as a method of propulsion have established the importance
of knowing the aerodynamic characteristics of slender open-
nose bodies of revolution at speeds greater than the speed of
sound. The lack of theoreticel treatments and experimental
data emphasizes the need for theoretical investigation of this
problem to serve as a guide for future work dnd as a check on
the reasonableness of current and future experimental results.

The small-perturbation approximation was used in refer-
ence 1 to deduce the wave drag and in reference 2 to obtein
the lift and moment of slender pointed-nose bodies of revolu-
tion. No fundamental analysis is known to have been made,
however, of the characteristics of a slender open-nose body
shape, such as that required by ram-jet propelled craft. The
peculiarity of the problem, from general considerations of
similarity, is that the flow pattern is two dimensional at the
lip of the nose and approaches the three-dimensional pattern
farther along the body. The present work extends the

method of references 1 and 2 to apply to these slender open-
nose bodies of revolution with supersonic flow into the nose.
The result is a fairly simple method of numericel integration
of the differential equation of the flow. As an illustration,
the pressure distribution, wave drag, lift, and moment are
calculated at Mach numbers of 1.45, 1.60, 1.75, and 3.00 for
a typical ram-jet airplane body shape; and the lift and
moment results are compared with the experimental data.
It should be pointed out that the accuracy of the method,
which assumes potential supersonic flow throughout the field
and also assumes small disturbances, depends on the surface
angles of the body and the Mach number. The error in-
creases with either increasing Mach number or increesing
surface angles.

SYMBOLS

z,r0 cylindrical coordinates .

X distance along z-axis measured from nose of
body

[ length of body

R radius of body

8 Mach angle (sin‘1 JLI)

B= 1,/'3.-[’——1

¢ (x,r, 6) perturbation potential

o (z, 1) perturbation potential for axial flow

¢ (x, 7, 60) perturbation potential for eross flow

: axial veloeity increment <g—%)

e radial velocity increment (g—‘f_)

I velocity in undisturbed stream

a velocity of sound in undisturbed stream

Af Mach number in undisturbed stream (17/a)

p density in undisturbed stream

Ap incremental surface pressure due to angle of
attack

D local pressure

p pressure in undisturbed stream

Y ratio of specific heats of air (1.4)

a angle of ettack, radians (except where other-
wise noted)

s angle between surface of body and z-axis
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C lift coefficient ((Lift /% VerR,?)

C» drag coefficient (Drag /92- V&Rg)

Cn moment coefficient (Moment / %V’TRN’l)

% ' variable of integration

§=x—Br cosh

.7.£=I¢'_-Bl?i

n_.x"._Fl_" ¢ . . . _

T{ - B "

A1=f '(5)1
SUBSCRIPTS AND SUPERSCRIPTS .

N refers to nose

n refers to nth integration station, summation
variable

3 refers to ith integration station, summation
variable

deg in degrees

MATHEMATICAL ANALYSIS
POINTED BODIES OF REVOLUTION
The linerarized equation of motion of a nonviscous com-

pressible fluid may be written for a cylindrical coordinate
gystem: :

0% 10 192 02
OIS CHAI

where ¢ is the potential function assumed to represent the

effect of a small disturbance set up by the slender bodies

being considered. The problem is to find & solution of
equation (1) that will satisfy the known boundary condi-
tions at the surface of the body. A general solution of the
differential equation (1), when M >1, for diverging waves
has been found by Lamb (reference 3) to be, with & slight
change in notation,

¢=> @.* cos s6+ Fr* sin sf

where
a $
Q'=<1'—57)-Q°
. (2)
P=(3:) Po
and
Qo=J; f(x—Br cosh u)du
Py= j; " g(e—Br cosh w)du
where

B=yIF=1 _.

The part of Lamb’s general solution corresponding to con-
verging waves does not apply to the present problem because
all disturbances originate on the body and diverge into the

flow field investigated. Von Kérmén and Moore have
investigated the problem of the resistance of projectiles and
cones (reference 1) and have found a solution for the case
of axial symmetry

d=— J; i S(z—Br cosh u)du 3)

that can be seen to be a special case of the general solution
with §=0. In their analysis the body, in this case a sharp-
nose projectile, was represented by a distribution of sources
along the z-axis starting at =0, the noso of the body. By
a numerical method of integration, it became possible to
write the equations for the velocity increments r, and 2;,

1’r,=—B§_,‘. AL AP T 7 —1] )

v,n=ﬁ2 Afcosh™(T*) —cosh~(T,_,*}] (5)
where .
_ T ¢"=—Ezrz'_'z‘
and
7.|=Ii_'BRi
At=f ! (E)t
with the boundary conditions
v, __dr
Vo, dx ' (6)

These three equations in three unknowns (A4,, @, ) were
solved at each station on the body for #, aud #,. The pres-
sures were then found from the Bernoulli equation in the
form:

Ferrari (reference 4) and Tsien (reference 2) have inde-
pendently found solutions for the case of pointed bodies of
revolution at small angles of atlack. Their solutions showed
that the potential could be expressed in two terms: the first,
from equation (3),

(1’1.= - J;” Jfi(z—Br cosh u}du

is the solution for the pure axial flow already described; and
the second

¢3=—Bcos @ J; wf,(x—Br cosh u) cosh u du (8)

represents the cross-flow potential of an -arbitrary distribu-
tion of doublets along the axis of the body starting at the
nose of_the cone or projectile. The form of equation (8) is
that the cross flow is from the direction 4=0, as shown in
figure 1.
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By neglecting the small effect of the axial flow on the lifting pressures, Tsien obtained for the pointed projectile

of arbitrary shape the equations:

Tny1—Tn Rn+I+R

B’I&,

OL_F Rbua -Rbcu

ey [N 1= T ©

1—JTPE—1] (10

C __.‘Za Tat1 225 I (Tu-;-:—ln Rn-[—l )] Tat1— T
m Fl- 3 v . 3 R“+1+R,, Rm,

1 =Z 227% [‘205}1—1 (To™ —cosh (T + (L™ V(Lo —1-T'3 N (TE)— 1]
=1

B +RN\N BE
=
=

»

(11

The values K, in these equations are sssumed to be constants for each interval of the step-by-step process. The moment
coefficient of equation (10) is assumed positive for nosing-up moments, these moments being taken about the nose.

OPEN-NOSE BODIES

The flow conditions over an open-nose body differ from
those of pointed bodies in that, for finite angles of the nose
lip, the flow is two dimensional at the lip. This problem
was not considered in references 1, 2, and 4 and the general
solution should therefore be examined to determine its
applicability to this special case. Lamb has shown (refer-
ence 3) that a sufficient requirement for the existence of the
general solution to the differential equation of motion
(reference 1) is that f(z— Br cosh u) be zero for all values of
the argument less than some arbitrary limiting value. The
determination of f{z—Br cosh %) such that the boundary
conditions et the open-nose body are satisfied assures the
fulfillment of this general requirement. For the usual case
of supersonic flow into the nose, the boundary condition re-
quires the surface of the body to be 2 continuation of a
eylindrical stream surface of radius By in the undisturbed
flow ahead of the body as shown in figure 2. The perturba-
tion potentials, equations (8) and (8), therefore must be zero
at the cylindrical stream surface ahead of the body. Sub-
stituting £=z—Br cosh # in equations (3) and (8) gives
SiB)d

'z—Br

; =) Jep-F7 (2
an

__cosb (B filf)(z—fdE

BT ) Ve-p-Br =

It is obvious that the boundary conditions are satisfied by
letting £,(§)=£2(¢)=0 for all values of £¢<xy,—BR,, where

n

MV«

V cos a =V

Fi6uRE 1.—Coordinate system.

the point (x,, R,) is at the lip of the open-nose body. It
then remains to determine £(¢) and fa(£) for £>x,—BR, so
that the body surface is & continuation of this stream surface.
From physical considerations, f;(¢) and f;(§) may be re-
garded as an axial distribution of sources and doublets,
respectively, where £ is measured along the r-axis. Because
the effect of a source or doublet can be felt only along or
behind its Mach cone, the source distribution musé begin a
distance BR, shead of the nose. This point is chosen for
the origin of the coordinate system. (See fig. 1.) It must
be emphasized that the source and doublet distribution
determined by satisfying the boundary conditions at the
stream and body surfaces shown in figure 2 does not represent
correctly the flow inside that stream surface. This result
corresponds to the physical fact that the actual supersonic
flow into the nose does not affect the flow external to the
body. The basic assumptions of potential flow and small
disturbances are valid provided the slope of the body surface
18 small. Aectually, for finite angles of the nose lip, & non-
conical shock wave is formed that causes a loss in total
pressure and produces rotation in the field.

Numerical integration of equation (12), with constant
values of fi'(¢) assumed over the integration intervals,
results in the same expressions for z, and #,, as those ob-
tained by Von Kérmén and Moore (equations (4) and (5))
These constant velues of f,’(£) are determined by satisfying
the boundary condition:

V—:‘LE= tan 5, (14)

where tan §, is the slope of surface of the body at the nth
interval of integration.

|
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¥raurs 2.—Location of Integration stations and Intervals on a typlcal ram-Jet body.
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By following the method of reference 2,
the nose may be written

the lift and moment coefficients for small angles of attack based on the area of

Z+BRN
f f —cos 6d9 R dr

I+BRx
_Wf f (m —§“BRN —g% cos 0d6Rdx

(15)
(16}

where [ is the length of the body, R, is the nose rad1us, and the moments are taken about the midpoint of the body.
By substituting the expression for bqﬁzlbx in equations (15) a,nd (16), C, and C become

=——;vr f cos?f dﬂf

z—BR
E d‘”ﬁ. BR :Z—z 2 o

ot vt o) [l

(18)

The distribution function f;(¢) must be determined by the boundary condition; thus,

7o €OS 0=(g—f’)
r=R

for which the radial velocity is assumed to be normal to the surface.
account the slope of the body was given by Ferrari (reference 4).
The expression

within the accuracy of the small-perturbation assumptions.

(19)

-A more rigorous boundary condition taking into
For small surface angles, however, equation (19) is

), - [ e o
is integrated numerically for constant values of fi/(§)=K, over the ith interval of integration to obtain the sum
n
.g.‘;’)r-R:Bz cos § ZKi[cosh‘l(T,_l") —cosh™ (T + (Tes™) y T P—1—Ti* (T —1 | 1)
Substituting this equation in equa.tio?mx (19) gives
1=2%{§‘ [ cosh(Tos®) —cosh (T )+ (T )V T =T~ T T7P—1] (22)

i=1

With the values of B;K

determined, equamons (17) and (18) become

O D eamru ) Bt B ot S BB [ TP

im]

1 VTP 1]+ BEK'[V‘T ST =TT g

l BRN n—1 BiKI n\2 n
Cn —m (+2 Bt ) ) Bat Ba) 3 2 [4<“T:'>'— —VIF=T]

BQK‘[\’(Ti Y —1— TP — 1]

In equations (23) a:nd (24) the pressure used for a given
integration interval is the average of the pressures at the
beginning and at the end of the interval. This scheme of
using average lifting pressure is particularly necessary in
regions where the pressure is rapidly changing. The method
does not give the pressure at the beginning of the first
integration interval, that is, at the point n=0. It can be
shown that, as the first interval approaches zero, the pressure
at the lip (n=0) is obtained by lettmg the expression in
equations (23) and (24) '

ZBIQ[ Ty =1 TFY=1]

have the value 0.5 when n=1.

METHOD OF CALCULATION

If calculations are to be made for an open-nose body, the
total number of integration stations chosen is a compromise
between the amount of labor involved and the accuracy
desired, due consideration being given to the limitation on
the accuracy imposed by tbe basic assumptions of small

(24}
disturbances and potential flow. In general, where tho

pressures are changing most rapidly the integration statlions
should be the most dense.

The integration stations must first be chosen.  (Sce fig. 3.)
r
urface
v (INH; Body 2
(a7
B

e 2.5

€ Body oxis =
A, J

A i

FIauRE 3.—Djegrammatic sketeh to Hlustrate integration process for budy selected
for calculations.
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The caleculation for the lift and moment then proceeds as
follows:

The boundary condition, equation (22), is applied to the
point n=1, the summation reducing to & single term, where

,_Ix—jl
T¢="pp,
and
—0
Ti—1z=réRl—

Equation (22) then gives a value of B*K/2Ta. Next,
equation (22) is applied to point 2, n=2, containing now two
terms. Substitution of the expressions

fl"22=3:2_—j2

3

o__te—n
T'="gR,
,_:1:3—0
To ——B}?—2
and use of the value obtained for B2K;/2T17a permits the
calculation of the value of B*K,/21 .

By continuing the process, at each successive station one
more term occurs in equation (22} involving one new K,
which is then determined. With the values of B*A/2Va
determined, equations (23) and (24) are used to evaluate
the lift and moment coefficients. It will be noticed that,
when equations (23) and (24) are evaluated for n=1, the
expression occurring after the last summation symbol is
unobtainable. For reasons previously stated, the expression
must be given the value 0.5.

The procedure for calculating the drag pressures is similar
to but somewhat simpler than that for the lift and moment.
Equations (4) and (5) are evaluated at the point n=1, the
sums reducing to one term. By applying the boundary
conditions (equation (6)) and using the known slope of the
body dr/dx, the constant A4, occurring in equations (4) and (5)
is determined. Substitution of 4, back into equations (4)
and (5) gives the increment velocities at n=1. Bernoulli’s
expression (equation (7)) then gives the pressure ratio at
n=1. It is to be noted, since V'=2{q, that actually values
of d/a, v, /a, and . /a are determined. Proceeding to the
point =2, one new -4 Is involved in equations (4) and (5)
that is determined by the boundary condition in equation (6).
In the same way, the velocities and the pressure ratio
are calculated at n=2. The process is continued at success-
ive integration stations over the whole body. The calcu-
lated values of the pressure ratio allow & pressure-distribution
curve 10 be drawn and the drag coeflicient to be evaluated in
the usual manner.

DISCUSSION OF RESULTS
RESULTS OF CALCULATIONS

Calculations were made in order to obtain the pressure
drag, lift, and moment of a typicel open-nose body. A
sketch showing the dimensions, the integration stations,
and intervals is given in figure 2. Caleulated pressure dis-
tributions at zero angle of attack for the Mach numbers
1.45, 1.60, 1.75, and 3.00 are presented in figure 4. The
pressure rise at the nose lip is approximately that which

would be obtained over a two-dimensional wedge of the
same angle. Ackeret's theory for small disturbances (refer-

ence 5) gives for the pressure rise of & 3° wedge %’= 1.147 at

1

Af=1.45, whereas the pressure ratio on the lip of the open-
nose body is abouf 1.140. This agreement is considered a
reasonable check inasmueh as the pressure on the lip must
be an extrapolation of the pressure distribution from the
first point of the integration process, which must be a finite
distance back of the lip edge. It can be shown that, as the
size of the first interval approaches zero, the pressure at the
lip becomes that given by the two-dimensional theory. The
effect over the nose section of the size of integration inter-
vals is illustrated by figure 5. The 17-point method was
chosen because a greater number of points resulted in only
a small increase in accuracy and a large increase in the labor
involved. As would be expected, for the case of the straight
conical nose, the pressure falls off from the leading edge and
approaches the pressure of a cone of the same surface angle
(reference 1). At the corners of the body, the pressure falls
approximately in accordance with the Prandtl-Meyer
relation (reference 6) for supersonic flow around a two-
dimensional corner. On the center and tail sections there are
positive pressure gradients that for actual flight conditions
would tend to cause separation. The source-distribution
functions corresponding to the pressure distributions of
figure 4 have been plotted in figure 6. N

The incremental surface pressures giving rise to the Iift
and moment are shown in figure 7 for the Mach numbers
1.60 and 3.00. At the higher Mach numbers the pressures
decrease less rapidly over the nose section. The doublet-
distribution functions at the four Mach numbers are pre-
sented in figure 8. The curves of figure 9 show the theoretieal
variation of lift-curve slope, moment-curve slope, and drag
coefficient with Mach number. The rather interesting result
obtained is that the lift coefficient increases with Mach
number. Experimental results presented in reference 7
show an increasing lift-curve slope with Mach number for a
pointed projectile. The fact that the doublet distribution
for the open-nose body is similar to that of a typical projectile
(reference 2) leads to the expectation that the Mach numbe:
characteristics of the two shapes would be similar. The
center of pressure at the lower Mach numbers is ahead of
the nose and moves back with increasing Mach number.

The drag coefficient can be seen to decrease with Mach

number but to a lesser degree than the 1 law of two-
: VAE—1

dimensional wing profiles.
COMPARISON WITH EXPERIMENT

A comparison of the calculated liff and moment coefficients
with some experimental data obtained in the Langley 9-inch
supersonic tunnel is presented in figures 10(a), 10(b), and
10(c). The contribution to the lift of the internal air can
be shown to be:

A01',=20{

This increment will appear at the nose and will therefore
give rise to a moment:

AC,=
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These increments have been added to the calculated results
for comparison with the experimental data that include the
effect of the internal air. The experimental lift and moment
results did not go through the origin because of deviations in
the stream flow and perhaps small, unaccounted for, tare
forces. It is obvious that for bodies of revolution the data
should give symmetrical curves about the origin. The
experimental results were therefore made to go through the
origin by subtracting from each point the value of the lift
coefficient or moment coefficient at zero angle of attack.
All coefficients are based on the nose area.

For M=1.45 two calculated curves corresponding fo two
body shapes tested are shown. The two shapes, which are
designated for convenicnee regular tail and ferrule tail,
differ only in that a stabilizer-supporting ferrule was placed
over part of the tail section. The two configurations are
shown in figure 10(a). No difference can be observed in
the experimental results for the two shapes, whereas the
calculations show a small difference. A possible conclu-
sion is that thickening of the boundary layer ahead of the
shock at the trailing edge tends to make the effective shape
of the regular body more nearly like that of the body with
the tail ferrule. The better agreement of the ferrule-tail
calculation is further evidence that this thickening of the
boundary layer actually occurs. In any case, the calcu-
lated results are in excellent agreement with the experi-
mental data. At 3M=1.60 and Af=1.75, only the regular
shape was calculated, and, although the agreement with
the experimental datae is good, ferrule-tail calculations
would probably have given even better agreement. The
discrepancy at 3{==1.75 between the theoretical and experi-
mental points near -+3° is probably due io separation
phenomena. The agreement is good at small angles of
attack. Because of the uncertain value of the skin-friction
drag present in the experimental data, a drag comparison
is not presented. :

ANOTHER APPLICATION

The success of the method when it is applied to open-nuse
bodies suggests its use in the calculation of external lift,
moment, and pressure drag of bodies of revolution having
annular air inlets (fig. 11). The characteristics of a body
of this type would be calculated as follows: The source.and
doublet distribution from 0 to B_would be numerically

Vv ., .
pZ s l
] ——
j ~—_
g AB 4 = %
e ™" ) A
i

F16URE 11.—Sketch of & tyr feal body with annular Inlet to Mustrate the method of calculation.

determined by the methods of references 1 and 2, which
would allow the calculation of the lift, moment, and drag
contributions of the portion of the body from 0 to C. In
order to calculate the lifi, moment, and drag of the remain-
ing external shell, the source and doublet distribution from
0 to A ould be retained and a new source and doublet dis-
tribution beginning at .1 and satisfying the boundary con-
dition at the outer shell would be determined. In this way,
the influence of the forward portion of the body on the flow
along the outer shell would be fully taken into account.
The flow at the annular inlet could be fully determined
from the original source and doublet distribution from 0 {o
B, which would allow the determination of the lift due to
the internal flow. The moment would be closely approxi-
mated by assuming this incremental lift to act at the lip of
the inlet.
CONCLUSIONS

An approximate method was presented for the caleulation
of the external lift, moment, and pressure drag of slender
open-nose bodics of revolution at supersonic speeds. The
pressure-drag comparison was not presented becanse of the
uncertainty of the amount of skin-friction drag present in
experimental results. The caleulated lift and moment
results at Mach numbers of 1.45, 1.60, 1.75, and 3.00 showed
excellent agreement with the available experimental data,
The excellent agreement of the calculated lift and moment
results with experimental data indicated that the approxi-
mate method may be reliably used for oblaining the aero-
dynamic characteristics of slender bodies that are required
for efficient supersonic flight.

LANGLEY MEMORIAL AERONAUTICAL JLARORATORY,
NaTionaL Apvigory COMMITTEE FOR AERONAUTICS,
LaxcLEY FiELD, VA., December 29, 19/5.
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