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THE FLOW OF A COMPRESSIBLE FLUID PAST A CURVED SURFACE
By CarL Karraw

SUMMARY

An iteration method i3 employed to obtain the flow of a com-
pressible fluid past a curved surface. The first approzimation,
which leads to the Prandil-Glavert rule, is based on the assump-
tion that the flow differs but little from a pure translation. The
iteration process then consists in improving this first approxi-
mation in order that it will apply to a flow differing from pure
translatory motion to a greater degree. The method fails when
the Mach number of the undisturbed stream reaches unity but
permils a transition from subsonic to supersonic condilions
without the appearance of @ compression shock. The limiting
value of the undisturbed stream Mach number, defined as that
value at which potential flow no longer exists, is indicated by
the apparent divergence of the power series representing the
velocity of the fluid at the surface of the solid boundary.

For small Mach numbers and for thin shapes, the results
obtained by the ieration process agree with those obtained by
the Poggi method. For higher values of the stream Mach
number less than the critical value, numerical calculations are
in agreement with the results obtained by von Kdrmdn by means
of the hodograph method. For values of the stream Mach
number higher than the critical value, the iteration process
yields some information about the region of flow comprised
between the critical stream Mach number and the limiting
stream Mach number.

INTRODUCTION

When a body is held fixed in & compressible fluid moving
at o uniform speed less than, but comparable with, that of
sound, there may be a region near the surface where the
velocity of the fluid relative to the body exceeds the local
velocity of sound. The flow in such cases may be perfectly
regular with no indication of shock waves. Several such
types of flow have been described by Taylor (reference 1)
and, more recently, by Gértler (reference 2). In connec-
tion with this type of flow it is important to know when the
irrotational motion ceases to be possible. It is certain that
irrotational motion is no longer possible as soon as the
Mach number of the undisturbed stream reaches a definite
value, always less than unity, which depends on the shape
of the body. In the past, compressibility shock has often
been assumed to occur when the maximum velocity of the
fluid at the surface of the body equals the local velocity of
sound; however, the papers of Taylor and Gortler (refer-
ences 1 and 2) question whether this is correct for the first
appearance of a shock wave. In addition, a recent paper by

von Kérmén (reference 3) suggests that the envelope of the
Mach lines in the supersonic region of flow probably intro-
duces the first shock wave in the flow. The stream Mach
number at which the envelope of the Mach lines first ap-
pears may thus be identified with a limiting value of the
Mach number.

The present paper treats the flow of a compressible fluid
past a curved surface by means of an iteration process based
on that of Ackeret (reference 4). The boundary was so
chosen as to conform with the requirements of the method;
namely, no stagnation points and small variation of the local
velocity from that in the stream. The process, further-
more, permits values of the stream Mach number ranging
from zero to the mneighborhood of unity. The method
proves to be quite laborious when more than two stages in
the iteration are demanded; but, because of the importance
of the problem, it has been thought worth while to perform
the third step. Most of the details of the calculations have
been relegated to appendixes in order not to disturb the
continuity of the main ideas. (The.equations in the appen-
dixes have been assigned numbers prefixed by letters
denoting the appendix; for example, equation (A-3) is the
third equation in appendix A.)

THE ITERATION PROCESS

The fundamental differential equation governing the flow
of a compressible fluid is
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X, Y rectangular Cartesian coordinates in plane of profile
u, » fluid velocity components along X- and Y-axes
c local velocity of sound

The condition for irrotational motion 1s that
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If the body is held fixed in a uniform stream of velocity U,

the relation between the local velocity of sound ¢ and the

velocity of the fluid/u*-}-v* is given for adiabatic processes by
— 2

where

¢ velocity of sound in undisturbed stream

v ratio of specific heats at constant pressure and constant

volume

M Mach number of undisturbed stream (T/cy)

With the introduction of a characteristic length 8 as unit
of length and the stream velocity U as unit of velocity, the
various quantities thus far defined can be rendered non-
dimensional. Thus X, ¥, u, v, and ¢ denote, respectively,
the nondimensional quantities X/s, Y/s, u/U o/U, and ¢/Us
while ¢ and ¢, retain their original meanings. By use of
equation (2), equations (1) and (3) then become, respectively,
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Let ¢ denote a characteristic parameter of the shape, such
ag the thickness coefficient; then, the following expansions
are assumed:
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When these expressions for # and v are introduced into
equation (4), together with the expression for ¢*/c given by
equation (5), and when the coefficients of the various powers
of ¢ are equated to zero, the following differential equations

for ¢1, ¢2, ¢, . . . result:
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These differential equations may be put into more familiar
forms by introducing a new set of independent variables z
and y, where

| @0
—I=IF

Thus, for M<1, equation (7) is transformed into a Laplace
equation and equations (8) and (9) are transformed into
Poisson equations. The solution of equation (7) yields the
well-known Prandtl-Glauert rule, whereas the solutions of
equations (8) and (9) provide higher approximations to the
flow of a compressible fluid and thus will apply for larger
departures from an undisturbed uniform flow.

The procedure to be followed in solving equations (7),
(8), and (9) is very simple in principle. The first step is to
obtain an expression for the velocity potential of the incom-
pressible flow past the chosen boundery and to express it
as a power series in the thickness coefficient ¢. Then the
solution for the first approximation ¢, to the compressible
flow is easily obtained by analogy from the coefficient of
the first power of . The second and third approximations
#: and ¢; are obtained by solving equations (8) and (9).
The boundary conditions—that the flow is tangential to the
solid boundary and that the disturbance to the main flow
vanishes at infinity—are satisfied to the same power of the
thickness coefficient ¢ which is involved in the expression for
the velocity potential ¢.

FLOW PAST A CURVED SURFACE

The solid boundary chosen for use in this paper is & sym-
metrical shape with cusps at both the leading and the trailing
edges, thus insuring no stagnation points in & uniform flow
parallel to the axis of symmetry. Appendix A contains the
derivation of this shape and also the solution for the flow
of an incompressible fluid past it. Appendixes B, C, and D
contain the detailed calculations for ¢;, ¢., and ¢s, respec-
tively. The final expression for the velocity potential ¢
takes the following form:

¢=cosh ¢ cos n+—4% (8¢~ cos n—e% cos 37)
+#8(F; cos 7+ F; cos 39+ Fi cos 57)
4 [Gl cos 5+ @G; cos 39+ G5 cos 59+ G; cos Ty

+ Go ngssﬂon*e—f cos 77—8_35 CcOs 31]—6"55 cos 5”
—e " cos 717)]-!— - (1)
where

£, n elliptic coordinates related to the Cartesian coordinates
z and y by the equations

z=cosh £ cos

y=sinh £ sin 9

(12)



THE FLOW OF A COMPRESSIBLE FLUID PAST A CURVED SURFACE

p=1—M?
I\, Fy, Fy functions of £ and of M given by equations (C-18)
G, G, Gy, @, Gy functions of ¢ and M given by equations

(D-186), (D-17), (D-18), (D-19), and (D-22), respectively
Equation (11) represents the solution of the fundamental
differential equation (1) that satisfies the boundary condi-
tions at the surface of the body and at infinity, insofar as
the terms inclusive of the third power of the thickmess
coefficient ¢ are concerned. The coefficients of the various
powers of ¢ ate exact and are valid for all values of the Mach
number M from zero up to but not including unity. On
the other hand, the method of Poggi yields the components
of the fluid velocity in the form of power series in M?, the
coefficients of which are exact and valid for the entire range
of values of the thickness coefficient . Appendix E con-
tains the solution of the problem of this paper by the method
of Poggi as far as the M? terms are concerned.

Because the iteration process and the Poggi method yield
solutions of the same equation (1) in the form of power
series in ¢ and in M? respectively, the two methods must
agree in the range common to them; that is, the iteration
expression for the fluid velocity at the solid boundary,
expanded according to powers of M and with all terms con-
taining powers of 3/ higher than the second neglected, must
agree with the corresponding Poggi result, expanded accord-
ing to powers of ¢ and with all terms containing powers of
¢ higher than the third neglected. This calculation is shown
in detail in appendix F.

NUMERICAL APPLICATIONS

Calculations are now made for the velocity distribution
at the surface of & bump—that is, & member of the family of
shapes derived in appendix A—for several -values of the
Mach number. Because terms involving powers of the
thickness coefficient ¢ higher than the third have been
neglected throughout the present paper, the fluid velocity ¢
should be expressed in the following form:

g=1+at+at+af+ . . . 13)
From equations (F-6) it follows easily that
o= —% cos 2«
Gy (y+1) (%"F%rl—gg"‘% c0s 2a
+[32 (1) (1 ’> +3 3 6+10ﬁ 367 o 4
as-——— (1—8)+(Gi+3Gs+5G+7Gr)o (14)

+[é15ﬂ g; (1—B)+2(BGs+5G+7G) | cos 2a

+[ 33+82,3+14;5:314(@)0

cos ba

The expressions for (Gi)s, (Gs)s, (G50, and (G;), are
given at the end of appendix F, and table IV shows the
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calculated values for M=0.50, 0.75, 0.83, and 0.90. Table V
gives the calculated values of a;, a,, and @; at various
positions along the profile for AM=0.50, 0.75, 0.83, and
0.90. With ¢=0.10, the expressions for the maximum fluid
velocity gmq. at the surface can be written as follows:

R £

Imez=1-0.173214-0.022744-0.00344 for M=0.50
Imaz=1--0.23026--0.05435-}-0.02188 for M=0.75
Imaz=1-40.268934-0.110144-0.07240 for M=0.83 (49)
(mar=1-10.344124-0.192681-0.43784 for M=0.90

An examination of the foregoing series shows that ¢n,, will
probably diverge for some value of M in the neighborhood
of 0.83. This value of M marks the limit of irrotational
potential flow and probably indicates the first appearance of
a compression shock at the solid boundary. Farther on
in this section a rule will be formulated for estimating this
limiting value of the stream Mach number.

The velocity distribution for & profile of thickness coeffi-
cient ¢=0.10 is calculated by means of table V and equa-
tion (13). Table VI lists the values of ¢ for M=0.50, 0.75,
and 0.83 and figure 1 shows the corresponding graphs.
The broken curve represents the velocity distribution for
t=0.10 and AM=0.50 calculated according to the Poggi
method. (See table IIT.) The curves of figcure.l show the
agreement between the values of ¢ calculated by means
of the Poggi and the iteration methods for A/=0.50 and
also the gradual change in cuivature of the velocity-
distribution curves in the neighborhood of the leading and
the trailing edges as the stream Mach number is increased.

The critical Mach number, defined as that value of the
stream Mach number at which the local fluid velocity
first attains the local speed of sound, is calculated as follows:

In equation (5), (u*-+1?) is put equal to Tc%, or

1 2
=7 (mtr—1)
Table VII lists values of g, for various values of the Mach
number M. From equations (14) with a=% and the expres-

sions for (Gy)o, (Ga)o, (Gs)o, and (Gy)e, it follows that the
maximum velocity at the boundary is given by

Gre=1435 4+ 3 1) (B +3 2636
AL s (2]
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F1GURE L—Velocity distribution at the surface of a bump, ¢=0.10, for several values of the Mach number,

Table II gives the values of 4, B, 0, and D obtained from
equation (D-3) for various values of the Mach number.
Table VII lists the values of gnm.. for ¢=0.10 calculated by
means of equation (17). Values of @ma. calculated by the
Poggi method are also given in table VII. For low Mach
numbers the approximate values for ¢u.. obtained by the
two methods agree, but for high Mach numbers the Poggi
method yields values that are too low. Figure 2 shows the
graphs of ¢., and of gm.: 8s functions of the Mach number.
The intersection of the two curves gives the critical Mach
number. The iteration method (solid line) yields the value
M, =0.742, whereas the Poggi method (broken line) yields
the value A/.,=0.788.

The value of ¢., for A/=0.83 obtained from equation (16)
is 1.1731. The last column in table VIII shows the values

of g/g., for the shape {=0.10 with A/=0.83. Values of —qq->1

designate & region in which the flow is supersonic, whereas

values of _q£_<1 characterize the subsonic region. The

supersonic region of flow is symmetrical with regard to the
Y-axis and corresponds to a calculation given in reference 1
for the flow through a nozzle, in which a similar supersonic
region of flow was found at the wall at the narrowest cross
section of the tube.

In order to find the extent to which the supersonic region
penetrates the flow, it is sufficient to utilize for the calcula-~
tion only the terms inclusive of #, since the series for ¢
converge rapidly away from the solid boundary. Thus,
along the Y-axis, the following expression for ¢ is obtained
from equations (F—3) and (F—4):

¢=1 +g—f8 e"5+{ 12A4¢~%—80Be~%

+gfn [Cde~t—36~%4-6-5%)

—D(86‘5—5e‘35+3e*‘f)]}t’+ L (18)
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FIGURE 2.—Maximum velocity at the surface of a bump, 1=0.10.

Then for t=0.10 and A/=0.83,

¢=1--0.40316¢"%-0.02753¢ 4

1
—_(— —§ =3¢ —6
+coshE (—0.02762¢ +0.01242¢7%—0.01520e%)

The value of ¢ for which ¢=¢.,=1.1731 is 0.38. The corre-
sponding value of Y obtained from equation (B-16) is

1
B

=0.720

Y=<sinh ¢

‘The supersonic region of flow thus extends into the fluid a
distance equal to almost seven times the maximum height
of the bump. By use of several chosen values of 5, the
constant velocity profile ¢=¢.,=1.1731 can be plotted by
means of equations (F-3) and (F—4). In figure 1 the lower
broken curve represents this profile. The region inside the
- profile is completely supersonic and therefore contains real
Mach lines. The region outside the profile is everywhere
subsonic and therefore the Mach lines are imaginary.
The pressure coefficient Cpa is obtained from the
expression

[14+3 @—vara— [ =1
Op,y= 1
5 7M

(19)
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where .
Op.u =717—po
3 al?

and ¢ is the velocity of the compressible fluid, referred to
the velocity U of the undisturbed stream.

Since, throughout this paper, terms involving powers of ¢
higher than the third have been neglected, C,a should be
expressed as a power series in ¢. Thus, if ¢ from equation
(13) is substituted into equation (19), it follows easily that

Gy, se=—2a,t+[— (ar*+2a5) + 0, M7

+|:—2(a1aa+ae) + (al"+2tla)alllzl"--2g7 a®

Ol 5 S 11|

With the help of table V, values for C,, along the profile
can be easily calculated for the case t=0.10 and 3/=0.83.
Table IX shows these values of 0, i together with correspond-
ing values calculated according to the Prandtl-Glauert
rule and the von Kérmén method. The Prandtl-Glauert
rule is

Op.ll= Co-o

_‘/1_ E|Z§
and the relation obtained by von Kérmén (reference 3) is
0 — 017.0 .
PMT A2 Ci:i-‘

Figure 3 shows the graphs of the various calculated results.
It is observed that the results of the Prandtl-Glauert and
the von Kérmén methods differ considerably from the
results of the iteration method. The reasons for these differ-
ences are that the Prandtl-Glauert approximation, though
valid for Mach numbers in the neighborhood of unity, should
be utilized only for very thin shapes; whereas the von Kfrmén
method, though applicable to any reasonable shape, is no

longer valid for Mach numbers beyond the critical value. '

As final numerical applications of the results of this paper,
the maximum values of the negative pressure coefficient
— (Cy.xt)maz, the critical pressure coefficient — (G} ar)er, and
the limiting pressure coefficient — (Cjp.0)1m are calculated
for various values of the thickness coefficient and of the
stream Mach number.

The maximum values of the negative pressure coefficient
for various values of ¢ and of £ are obtained by means of
equations (17) and (20). Table X shows values of a;, aj,
and a3 defined, respectively, as the coefficients of £, *, and #
in equation (17). The corresponding values of Cjar, ob-
tained by means of equation 120), are listed in table XTI,
together with values of C, i calculated by the von Kdrmén
method. Figure 4 shows the variation of (Cpar)mer With
Mach number for several values of ¢.

The critical pressure coefficient (Cpar)., i8 calculated by
means of the following expression obtained by substituting
for ¢* in equation (19) the expression for ¢.? from equation
(16):
2+(—1)

fr—1
v+1 o } @1

(G se=5ap| =1+
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FIGURE 3.—Pressure distribution at the surface of a bump, ¢=0.10, for M=0.83.

Table XII gives the values of (C; ). calculated by means
of this equation, and figure 4 shows the corresponding graph.
The intersections of the (Cpar)me: curves with the (Cpac)er
curve yield the critical values of the stream Mach number
which are listed in table XII.

As noted once before, for a given value of ¢, the series for
g (equation (13)) apparently diverges for a definite value of
the stream Mach number. It is reasonable to assume that
this value of the Mach number marks the limit of irrotational
potential flow and also probably indicates the first appearance
of a compression shock at the solid boundary. Equation (17)
for gme: can be used to estimate the limiting values of M
according to the following rough criterion. By means of
table X, expressions for uer, in the form of power series in ¢,
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(Cyp,11)er critical pressure coefficient at which local fluld speed equals local speed of gound,
(Cpoa)ti= limiting value of pressure coefficlent beyond which flow without shook
cannot exist.

(Ch, ) e 8bsolute 1imiting pressure coeflicient; that Is, corresponding to a vacuum.

can be obtained for any value of the stream Mach number in
the range 0SM<1. For a given valuc of the thickness
coefficient ¢, a series for gmq- can then be found so that a term-

. . . - S
for-term comparison with the harmonic series 21— yields a
N

decreasing sequence for the ratio of corresponding terms.

The value of the Mach number thus obtained is chosen as the

limiting value of the Mach number. Table XTI lists both the

values of (C,.a)unm and the corresponding values of M for

different values of t. Figure 4 shows the curve connecting the -
limiting values of C,,2. Theregion between this curve and

the (C,.)e curve represents the supersonic range without

compression shocks. It is emphasized that the mathematical

procedure outlined in this paragraph is a highly speculative

one.
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The maximum speed that can be attained by an adiabatic
fluid is equal to the speed when p=p=c=0 and is given by
Bernoulli’s equation

2
Qam2=1+m

Values of the pressure coefficient

(Op.) = —375 (22).

are listed in table XTIT for various values of the undisturbed
stream Mach number M, and figure 4 shows the correspond-
ing curve. The region between this curve and the(C; i) 1um
curve represents the supersonic range with compression
shock. On and beyond the (C,, a)aps curve the adiabatic Auid
ceases to exist; that is, absolute vacuum prevails.

In conclusion, it may be remarked that the results of
von Kfrmdn, shown by the small circles in figure 4, are
obtained independently of any assumption concerning the
shape of the solid boundary; whereas the results of this
paper were obtained for a specific family of shapes. As
shown by the curves of figure 4, nevertheless, the results of
this paper agree with those obtained by von Kérmén’s
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method. This agreement has some justification, for the
values of (Cp,ar)maz 80d M, depend mainly on the dimensions
of a body—that is, thickness coefficient—and not on its
shape. The hodograph method as employed by von Kérmén,
however, yields results that cease to be valid when the
local Mach number equals or exceeds unity; whereas the
iteration method utilized in the present paper is valid for
local Mach numbers greater than unity and, for the family
of shapes chosen, yields some information with regard to a
supersonic region of flow without shock. The limiting
value of M for a given shape, beyond which supersonic
flow without shock does not exist, appears to depend on
the convergence of the power series in ¢ for the velocity.
Although only a few terms of the series have been obtained
and therefore the limiting value of M cannot be given
precisely, nevertheless it is believed that a reasonable esti-
mate of the value for My, can be made by the comparison
test with the harmonic series.

LancrLey MEMORIAL AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS,
Laxceuey Fiewp, VA., September 13, 1943.



APPENDIX A
THE INCOMPRESSIBLE FLOW PAST A CURVED SURFACE

In the search for a shape which satisfies the conditions that
it be thin and that it possess no stagnation points, the first
thought is of a straight-line segment. It is well known that
o straight-line segment of length 4¢ is obtained from a circle
of radius ¢ by means of a Joukowski transformation. If Z
denotes the plane of the segment and Z’ the plane of the
circle, then

Z=z'+§ (A-1)

The singular points of this transformation are determined by

the equation
dZ ¢ ¢
az’ (1 l Z’) (1 Z’)

which shows zeros at Z’=x¢. In order to raise the top
surface and lower the bottom surface of the line segment, it

is necessary only to place two additional zeros at Z’'=tid
where d<c. Analogous to equation (A-2),
Z-(+2)(-H)HE) o
Then, on integration of equation (A-3), it follows that
, , E—a& | A
Z=Z'"4——7r +37m (A-4)

The parametric equations of the shape in the Z-plane corre-
sponding to the circle of radius ¢ in the Z’-plane are obtained
by substituting Z’=ce¥ in equation (A—4); thus,

X=2¢ cos § — :;iz (8 cos # — cos 36)
(A-5)

=§—‘;(3sina—sin3a)

The family of shapes given by equations (A-5) includes, on
one hand, the straight-line segment with d=0 and, on the
other hand, a shape having four cusps symmetrically. placed
with respect to the coordinate axes with d=¢. For 0<d<e,
the slope dY/dX is zero for §=0, =/2, and =. The shape thus

has cusps at X=:I:2c<1— W—); ¥Y=0, and the maximum
and minimum points are at X=0, Y=§ >’ and X=0,

=— % ?: respectively.

The complex potential for a circular ¢ylinder of radius ¢,
fixed in a stream of uniform velocity U in the positive
direction of the real axis, is given by

F_U(z'+ 2) (A-6)
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(4-2) -

The complex velocity past the corresponding shape in the
Z-plane is
u—z‘v—dF=dF az’
~dZ dZ dZ

or

dF dF dZ' dZ'
=N T i

By means of equations (A—4) and (A-6), it follows that

(1= zw)(l 7).

=& ¢
:ZIZ 14 A,z 2,4

and at the surface of the profile, where Z’=ce®,

i %
1+2§cos 26'+<%:>z

It will be convenient to consider F, Z, and Z’ as non-
dimensional quantities. Thus, in the plane Z’ the unit of
length is the radius ¢ of the circle; whereas, in the plane Z,
the unit of length is the semichord s of the shape. Then
Z', Z, and F denote Z’fc, Z/[s, and F/Us, respectively. Also,
the ratio d¥/¢? is designated by e.

According to equations (A-5), the semichord s is given by

1
8=2¢ (1 —§€ )

and the thickness coefficient ¢ by

(A7)

2¢
3—e

=

With the introduction of these new designations, equations
(A—4), (A-5), (A-6), and (A-T7) become, respectively,

241 —
L
X=-cos8 — - (cos 6 — cos 36)

(A-9)
Y= (3 sin 0 — sin 30)
241 1
=2t (z+3) (A-10)
= L __ A-11
q’_1+2e cos 20+-& (4-11)
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As a numerical example of the use of equations (A-9),
(A-10), and (A-11), table I gives the coordinates for the
shape t=0.10 together with the velocity and pressure dis-
tributions along the profile. The pressure coefficient C, is
calculated by means of Bernoulli’s equation:

=P—Po__
_I__E_l_qz

5P
where

p local static pressure

Po static pressure in undisturbed stream

" p density of fluid

Figure 1 shows the curves of the shape and the velocity
distribution, and figure 3 shows the graph of the pressure
distribution. Because the body is placed symmetrically
with respect to the undisturbed stream, the flow is identical
with that over a solid boundary composed of the X-axis
from X= o to X=1, the upper surface of the shape with
0=60=w, and the X-axis from X=—1 to X=— .  This
boundary is called & bump.

APPENDIX B
THE COMPRESSIBLE FLOW PAST A BUMP

Before proceeding with the iteration process, developments
for ¢ and Y in positive, integral powers of the thickmess
parameter ¢ must be obtained. From equation (A-8),

s (z'+ 7)

(1— Z‘*)

(B-1)

and from equation (A-10),

e el G

By means of a Taylor expansion in the neighborhood of
t=0, it is possible to express F as a power series in £ in which
the coefficients are functions of Z. Thus, according to equa-
tion (B-1), t=0 when

z=5(7+%)

=Z++Z:—1

where the positive sign is taken with the radical be¢ause the
points at infinity of the Z- and Z’-planes must correspond.

Now
P=@) ot () + ..

If, on the right-hand sides of equations (B-1) and (B-2), Z is
considered constant and Z’ is considered the parameter, it
follows that

F=z+[,1, Z—(Z*—l)(Z—J—Z’——l)] oL
Since F'=¢-1y, where ¢ is the stream function,

or

¢=X+%[X—(Z’—1)(Z—JZ_’:_1)—(Z"— Z— «J?—D]H
B-3)

In a similar menner, equations (A-9) can be written as

follows:
X—cos ¥

b= " 8in? 6 cos 8

(B—4)
Y=—(X~cos6) tan 8

If X is considered constant and 6 is considered the parameter,
a Taylor expansion yields

Y= (1—X?n I:t—3X2t’+g BX'—3X)F— . . :| (B-5)

DETERMINATION OF ¢,

By means of the transformation z=X, y=gY, where
B8=+1—AZL% equation (7) for ¢, becomes

¢, _

o (B-5)

By analogy with the coefficient of ¢ in equation (B-3) for ¢,
it is suggested that

d=klz— (F—1)(e—Z—1)— E-1)(z—+yZ—1)] B-7)

where the coefficient & is determined by means of the bound-
ary condition

0¢ dY ¢

3XdX oY

O dy_ P

oz dx by
and where the boundary, obtained from equation (B-5), is
given by

y=B(1—zn [t—3rzt2—|-% (St — 329 F+. . ] B-9)

or

(B-8)

It is clear that the boundary condition need be satisfied only
to the same degree in ¢ as is involved in the development of
the velocity potential ¢. Thus,

p=z4k[r— (22—1) (z— 1/?_——1)—(?—1)(2—1/?—1)]t$ )

~10)
= + 311 —2e(e— V)~ 23— yF=T)
+ V22— 1e— V=D +VZ—1E—VZ-Dlt+ . . . B-11)
g‘; 1 %—g—% =—1k[22(z— 22—1)—2Z(z— /Z—1)
—VE—1(e—Z2—D)+Z—1GE—Z—D)|t+ . (B-12)
B 3T t+ . (B-13)



314

Suppose that 2=cos a. Then, insofar as the terms of the
first power in ¢ are concerned, it follows that, on the boundary,

z=co0s a}1pt sin’x
z=cos a—18t sin*x
+/Z2—1=1 sin a(1—ipt sin’a)
VZE—1=—1sin a(l+ipt sinda)
Then, on the boundary,

g—i= —3kt cos 2a
g—;’;———'—%kt sin 2a
%=—% Bt sin 2«

The boundary coundition, equation (B-8), then yields
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Then from equation (B—14) it follows that
¢o=cosh £cos 5°
(B-17)

¢1—— (33“5 cos n—e~% cos 37)

INVERSION OF EQUATIONS (B-16)

The relationship between the rectangular Cartesian
coordinates X, Y and the elliptic coordinates £, 4 is obtained
as follows:

Invert equations (B-16) and solve for £ and »; thus

(soiie) +(aie) =1
(eoire) ()=

Solve for sinh? £,
2 Si.Dh2E= —b-l— '\/bz_-l"]-—y‘z

znd

p=l and solve for sin? 5
28 .
Therefore 2 sin? p=b-+ +/b*}+41?
1 L where
¢»=r+§§[x— (22— (z—+2—1)—@F—1)E—Z—1)]t+... b=1— (2249
L-14)
( ‘| By means of the transformation
This expression for ¢ can be put into a simple form by means =X
of the transformation -
y=8Y
z=cosh { (B-15)
where ) it follows that
=ttt 2 sinh? E=_b+ /E§+4ﬁ2? (B )
-18
Also, 2 sin? n=b-+ I 4PT?
z=cosh £cos g ,
- ' l (B-16) where
y=sinh £sin 5 b=1—(X*4 877
APPENDIX C
DETERMINATION OF ¢,
The differential equation (8) for ¢; in terms of the o _ ; (3 _2
coordinates z and y becomes oy 0z 0%
O’y O’ 1—f° 0¢; ¢y i’____ o? o?
“a—+aya——[< T3 o o o2 2207 oF

+Or—=D8 5 o +‘)Ba?y—bx_by

2 2,
%oz s

o,
2 07 29205 T oF

9 (_ _o
oy \oF %

and the transformation
z=cosh ¢

equation (C-1) can be expressed in terms of the complex
variables ¢ and ¢ as follows:
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4 0%p, _ I e o1 O, O’p;__cosh ; ¢ 1  0%; cosh T ¢
Sinh ¢ sih T 0707 ,32 [ +1)— (=167 (smh tor TEmhT o )(smh’;‘ 3 skt or TsmbIE o smh"'f—?>
Ogy 1 0¢, 0%, cosh { 3¢, %, 003h-f5¢

—2F (smh t ¢ SOhT ar) (smh‘-’g‘ Snh’ o7 snbTT oy | smber oF ] C-2)

Now, equation (B-17) for ¢; can be rewritten as follows: and the velocity potential ¢ has the form
¢1=%3 (3¢t —e 3} 3¢~F—¢3) (C-3) ¢é¢=cosh £ cos "+4%6 (3¢ cos p—e% cos 3y)
The substitution of this expression for ¢, into the right-hand +#(F; cos n+-F; cos 3n+Fycos 5p)+ . . . (C-13)
side of equation (C-2) then yields the following differential
equation for ¢;: With z=cos «, the boundary is given by
0%, , O? 9 1—
S SR S 16+ )+ 6— e cos y=Bt sin® a—3p sin®  cos? a
—1)(1— -5 —e % cos 5 C-4
TO—DU—F) (" cosg—e* cos 5n)} (C-4). +3 B8 in’ « cost a—3 sin a cost a)— . . .
The right-hand side of this equation suggests a solution of d
the form an P
Y
$r=Fy(®) cos 1+ Fa(§) cos 3n+Fup) cos 51 (C-5) G 3 B sin 20+ BA( sin 2ac+5 sin 40)

If this expression for ¢, is inserted into equation (C—4) and 3 . . ,
the coefficients of cos #, cos 3y, and cos 5y are equated on both 16 BE(9 sin 4x+14 sin 6a)+ . (C-14)

sides of the equation, the following differential equations for
Fy(£), Fu(t), and Fy(t) are obtained:

T2 —P=21"F 10 1)+ B Fl ) (C-6)

2
T8 —on=3 o+ (L) e @-7)
L8 —a5k=— 5 (1) (15E) e (©-9)

The solutions for 7, F;, and Fj are easily obtained and are
as follows:

A= 58 (4t G+ )+ G Flet—3e9) (C-9)

Ri=135 SE 1t D (19070 (C-10)

Po=rge S e (1) 1~ e (C-11)
where A,, A,;, and 4, are arbitrary constants. It is noted
that, in general, the expressions for ), F3, and F; should
each contain two arbitrary constants; however, the condition
that 7y, F, and Fy vanish at infinity requires that the
omitted arbitrary constants be taken equal to zero.

The arbitrary constants 4,, 4,, and 4; are determined by
means of the boundary equation (B-8). In terms of the
variables £ and 5 equation (B-8) takes the form

(s'.inhffcosnE;,—‘g_—cossh.{fsinn%;7'é %=

gt (cosh £sin 9 %"f;ﬂinh £cosn %j) (C-12)

At the boundary, inclusive of terms containing the third
power of ¢,

p=1—(@*+y") =sin’ «(1 — f**sin a+ 6 82 sin* a cos? )

gin £=pBt ¢in? a(1—3¢ cos? «)

cosh =141 #* sint a—36°F sint a cos® a

e t=1— Bt gin? a-l-% B¢ sin* a--3 8¢ sin? « cos? «

1(C-15)
sin n=sin & (1—3 £ sin' atd g int
36 sin* @ cos® a—3 6% sin? « cos? a>

cos 1=cos & (1—3 F°¢ sin a-+34°8 sint  cos' )
At the boundary then,

= A+ -5

e S a5 | (C-10

s S 1—54,3(r+1) - )

Hence, with all terms involving powers of ¢ higher than the
second excluded, the boundary condition (equation (C-12))
yields the following expressions for the arbitrary constants
Al, Aa, and A5:
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A4l D+G—y) -8 ELZE
A=— 2 (r+D) B

A== D U—+ 15

The expressions for Fy, Fs, and Fy then become

Fi(®) =é;_4 1%32[(74_ 1)+ B—7) Y (4e t—3e %) -3
B(®) =lg_8 (r+ 1)<1—;zi()2(3e‘55_56—35) _1_36—5 1+ !313'2"2192 s

RO =g (S et SIS
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_ gﬁ’(l-ll-_ﬁ-l-?B’) (C-17)
8 B*(3+58+26)
1—8
3 1_526 ot
(C-18)

Equation (C-13), together with equations (C-18), represents a solution of the fundamental differential equation (1) and
satisfies the boundary conditions at the surface of the solid boundary and at infinity, insofar as the terms inclusive of
the second power in ¢ are concerned. The present process can be extended to the higher terms in the development of
the velocity potentisl ¢, but it can readily be seen from the complexity of the right-hand side of equation (9) that the
labor involved would increase rapidly with the degree of approximation. In view of the importance of the problem,
it has nevertheless been thought worth while to extend the calculation to the third approximation ¢s.

APPENDIX D
DETERMINATION OF ¢;

The differential equation (9) for ¢; in terms of the complex
variables z and z can be written as follows:

1005= 25 SO D) (= 9+ 451 b2 (862
+ (v+1) (11— B (Preetb135) 113
FI(v+1) 10— ) +26 (D12t d13) (P2t i3
+ (B1t 1) (P2utPo:)]
+2[(v+1) 1+ ) =211+ dr7) oz
— 28 (12— 1) (Brze—b1zw) + (Por— 33) (12— $15)

+ (o) (s )] |

where, for example,

(D-1)

_ 0%
b7 =503

Again, complex variables ¢ and ¥ are introduced in place
of z and z by means of the transformation

z=cosh ¢
According to equation (C-3),
¢1=8—13 (Bet—e %+ 3¢~ F—e~%) (C-3)
Consider the term
Ty= L1+ 1) (L= )+ 451 et 62 (12 652)
+ (y+ 1) (1— 89 (Prest 1) d1:617— 28 (10— b15) (b1 — ¢1s”)

Now
1= _4_3B ey
_3 %
$1 =58 Sinh ¢
and
¢u’+¢1;’=8%, 6% cos 49
2 PR R
b1 — 1z =—gg¢ € sin 4y
brd=Tom O
1:P1s lﬁ_ﬂi
_3 et cos 3p—e~% cos 9
¢lu+¢ln 28 Eillh g_ sinh ;T
S bz 3% et sin 3n—e ¥ sin 9
wPET 28 ginh ¢ sinh §
It follows then that
T, sinh ¢ sinh =

s (1-+1) (1— B+ 8572 (r+1) (1= e ¢ cosn
{20y 1) (L— BYet—[(y+1) (1— §7) 4867 "¢ }cos B
—r+ D) A— B cos B+ v+ 1) (1— B~k cosTn) (D-2)

In the handling of the terms on the right-hand side of
equation (D-1) that contain the derivatives of ¢, it is con-
venient to separate ¢ into {wo parts: namely, ¢’, which is
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a function of ¢ plus a function of £, and ¢,”, which is a function
of { and . Thus, if the variables ¢ and ¥ are introduced into
the oxpression for ¢, it follows easily that

¢y’ =A(Be T —e -3¢ —e5)
+B(5e~% —36 5 -5~ —3¢~T)

" =Cldet —3e s~ H e~ % | 4o~T— 3¢~ H-T | ¢~3-1)
+D(—8et4et—4t —I—gf"“?—Sg‘?—!—g“f“?-’-g"‘f""?.)

(D-3)

where

3 1—p7\' 1—28
A'_"3—2 ('Y+1)( B ,) - 168

9 1—fN? 3458428
B=1520 ('Y"‘l)( ﬁ*ﬁa)f T606"
3 1—\1 3 1—g

- D=5 w+(}5E)

Table IT gives values of 4, B, 0, and D for values of the
Mach number M ranging from zero to nearly unity. The
value of v taken is 1.405.
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Consider the term

Ta=[(v+1) 01— )+ 26N (b1t b1 (63" s+84'5)
+ (15t 613) (5 es+82m3)] )
—~ 28 ($res— b1z) (b s—2'7) + (bre—b13) (B3 e—be'53)]
F2(y+ 1)1+ — 261 (b1t d1) s

Now
¢’ e =—6Ae X —30Bec%
- 12Ae‘2f. +120Be—¥
= . gnhg
and

¢2' s+ ¢'s=—12A467% cos 29— 60Be* cos 47
¢’ e —ds'3=121.Ae™% sin 29 60iBe % sin 47

&y st 5= m [12A4(e7¢ cos 3n—e% cos 1)

+120B(e~3* cos 59—~ cos 31)]

¢2,a_¢2,’5=—m [12A(e7¢ sin 3y—e~% sin 7)
+120B(e~% sin 57—¢5% sin 39)]

It follows that

T, ik ¢ sink T=( — 22 [(+D -89 +467 Ao+ {3 (r+1) (=8 +4F1CA—SB) + T L+ D A+ 261 0
+{F o+ 5)-+451 B3 [(r-+1) (1489 —268C+2D)) 7 ) cos

18

({7 o+Da-mA-R10+Da—p-+4s18+5 1+ 48926960+ 2D) -5
HF L0+ 0—89+481 B~ 1+ (1+69 261 a7 cos 39

135

H(~5 04D =) 4+ 4 D 1= B2 (1) (1459 267 D] 77 cos 5.

H-E2 1) 18 B+ [+ ) (1489261 D) 75 cos 7

(D-4)

The calculation of T} and T} has not been very involved. The calculations for the remaining terms on the right-hand
side of equation (D-1), however, are quite laborious and therefore only the final results will be presented. The terms to be

calculated are

2=[(r+1) (1= B +-261(Grert 6133) (6”5 + 6a3)
T=—26(bw—bm) (&"—8"D

Ti=[(r+1) (A=Y +26(b1s+$12) (31" s+ 2" _

To=—26"(b1:—13) (3" ss— 31"5) S

The expressions for these terms are as follows:

T ainh ¢ sinh ?=%[(fy+1) (I—F)+267{20[(2ef—3et—4e%}-Te~5%—3e~) cos g

+ (267¢—3e7%-}-367% —¢ ") cos 39] -+ D[(46%—8et+ 1663 —3e~t—4e~%) cos 5
+ (4ef—8e~t—4e % —b5e) cos 3n-|- (et —e™™) cos 5y (463 +-67%) cos 71]}

~ B0+ (1— 47 +26] sink £ cosh 0@e~"+649 +2D] 22

749023—48——21

co8 7 (D-5)
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T, sinh { sinh §{ =—68{2C[(2¢t—36~¢+¢7%) cos -11+.(2e‘5—3e'35+e‘75) cos 31] '
+D[(46%%—8ef—3e~5+-4677) cos 5} (def—8e~F}4e~5—5677) cos 39y
+ (de~tH-e7™) cos 5yt (de3t—e ) cos 74]}

+96p sinh! £ cosh £ [O(2e-+¢ ) +2D] 2 d e - (D-8)

T sinh ¢ sinh § =%[('y-|- 1) (1—p)+281{ Cl(—4et+3e -+ 116758 —15e 7} 5e~ 1) cos 9+ (—367% -6~ —3e~764-367%) cos 37)
+-2D[(—3e%+4et-}-e~t—5e~%) cos nt (—ef+3e7—8¢77) cos 3n-+-e7¢ cos 5y-+3¢% cos Ty]}
+21r-+1) (1~ 69 42671 sink? £ [O(8-+11675-+86~4-10674 16675+ 7¢71%)

+2D (5% 44267460567 ST ST

—220r+1) (1— )26 sin® £ cosh? £ cosh 2¢ [C(26%+64)+2D) opd Tt (D-7)
T, sinh ¢ sinh T=—6p8 { C[(—4ef+3e~t—3e~%4-9¢"6—561%) cos 74 (—3e2E+3e~5-+3675—367%) cos 37]

+-2D[(—86%-4et—et-}-36~%) cos p+ (—et-—36 % —3e)]cos 3n+e¢ cos 591373 cos 7q]}

—488 sinh* cosh £ [C(8e %-+116~%4-16¢~%-+Te %) 42D (5+-4e~%+5e4%)] aﬁifm

+88486~% sinh® cosh®t [C(2e~%+e~4) 2D mﬂﬁ‘;‘%? D-8)
Equation (D-1) can now be written as follows:

e+ Sh IR (et Ao Aot AJe 0 Ao Ae) 00

+ (Afe~5tt APe T Ae s Ay 18- Ay 2e™5) cos 37

F (Agfeot Afe - Ao~ ASe 5 AySeiief Ay Se8 - AySetT) cos By

(A5t Aa " Ao 5 Ao DE ArTe 384 Ayfem - AyTe1%) cos Tn]
+1z Bfa [ (v+1) (1— B[ O(~ 126755421 ¢~ — 9~ 116}- 206135 — 336158 13¢19%)

+-2D(—5e~3% 12675 —Tg~78-|-9e~11t—20s 13- 116 15¢) ]

+125[0’(—-—166”54—273‘“5—1—2be‘mf—ﬁe‘“i+ 13¢719%) +2D(—7e"’f—l—16e’°¥—206'“5+116’“5)]] Zo; 672" cos (2n+7)y
+1 + { (r+)(A—F) [0(_2"’—55""39_75"‘3"11‘+28'13‘—36‘“5+c‘1°5)+2D(-— 73275 — g7t g 11E— 27108 |- g7 100)]

+24 B[C(—26™% 31} 2613k — 4 g~ Bt -~ 19%) - 2D (— e‘7f+2a’95_—2e‘135-|—e‘“5)]] f__‘,] ne~ ¢ cos (2n-+7)y D-9)

where expressions for the constants A are given at the end of this appendix.
The right-hand side of equation (D-9) suggests a solution of the form

$:=G1(¢).cos 7-+Gs(%) cos 39+ G5(%) cos 59+ G;(¢) cos 7n+ﬂZjl)Ga..+7 cos (2n+7)n (D-10)
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When this expression for ¢, is inserted into equation (D-9) and the coefficients of cos 7, o8 3y, . . . on both sides of the

equation are equated, the following differential equations for @, Gs, Gs, Gy, and Gheys are obtained: -

Do @ =128 (Agestt Aie s Ade e Aottt Aot Ao

%g’ 9G, ———65— (Al 54 APe - Afe %+ A, 86~ nf-I—Am"e 155)

Tt —950=12F (A6 ¥k A6 AbeT Ao Al A Ao )

D —19G=12F (4060t Ale et Ao A A At Ay

d? 1— _ _ _ _ _ _emy
—fi??'tz—(2n+7)’G,,+7=Tﬁ2{% (v+1) (1 — H[O(—12¢~%+21¢ 75—95 ¢ 20g~13%— 336158 | 13- 19)
+2D(—5e~% 41265 —7¢ 764 9g~ 116201854 1 167155 |
+128[C(—1667%1-27¢~ 11206713 — 44156} 13671%)
+2D(—7e-7f+16e-°f-—203-135+11e—155)]]e-2~f
1—F [ (vF+1) 1 —BH[O(—2e~ 5 36Tt — g~ 116} Q13— 16t |- g—19%)
42D (—e %4265 — g TE |- g~ 11E_ 213k | o~ 16E)]
424 B[C(—2¢™% - 3611|2619 — 4o~ 166 | g~ 19%)
+2D(——e"’f—]-2¢‘°f—26“35+e“155)]}1w‘”‘5

The solutions of these equations are easily found and are as follows:

G

=8 (et kvt dy atent h apeind asens il Ao 1 agem)

1 1 1
Gu(O=25E (Gt Aot Afe et Aferstt Tk etk gl Age)

G 1;# (053—55_11—6 Agfe se_— o As’ke” +24 Afe Tt %5 A95¢—92_|_96 Au"e‘l“-l— Ao +__ A e-"E)

@® —1 —£ (073-76—- o A6t 10 AT AT Ayt oL Agettb ol A ety A1,7g—ms)
Gn+7<e)=1—;rﬁ'i{ Ot D) A=) (G5 —goetoa—Tomp L o)
+2D (got—g et btpet—genitis e-se)]
+128 [O’ (—-— e"f+— e“€+— -55—-—- e—sf—l— 6-125>+2D (2 5-1-2 e 2%— e—ee_|__ e >:| ] —Q84nE
The expression for the velocity potential ¢ can now be written as follows:

¢=cosh £ cos ’7+$ (367¢ cos n—e~% cos 3n) - *(F} cos n+F; cos 3+ Fy cos 5y) [G‘l cos 714G cos 37+ G5 cos 59

sinh £ cos g

+G; cos Tyt cosh 2£—cos 2y

e~%cos 7—e % cos 3p—e~% cos 5p—e~ cos 711)]

(D-11)
(D-12)
(D-13)

D-14)

(D-15)

(D-16)

D-17)

" (D-18)

(D-19)

(D-20)

(D-21)
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where Fy, Fs, and Fy are given b;r equations (C-18) and @, is the following function of &:
. ]
a®="5" Lot 3+ 00— o[ 0 (Ger—Fegoretgert—Fowt o) boD (G — et et geri— et |

4128 [0 ( —5e %4 86“54— 6e‘°5— -e‘sf—l— “25>+2D<2$+ 5¢ ¢ H— —e“f-l——e"sE):” (D-22)

In this expression for G, the result has been anticipated that the arbitrary constants Cin+; are independent of » and may be
taken to be 5. The constants Gy, G, Cs, Cs, and C; are determined by the boundary condition (equation (0—12))

(sinhécosn%i—coshfsinn% Ey==52<coshfsinn§+sinh£cosna> (C-12)

If the expression for ¢ given by equation (D-21) is substituted into the boundary condition and if equations (C-14) and
(C-15) are useil, it follows that

Cv=— a5 (r+1) (1—F) (190—34D) +5 H(C—19D)
L9 1[5y 4o o 11 1—fY 5L 1—p7Y:
C—p =g | 3 #—F—8—35 s o) (S5 e —5 o) ( )s]

8 10 5 a1 T ase® aag 1l 4 13,
—(§A4+2—4A5+4—8A7+-8—0A9+E5Au+1@Au)
C=E 2g| B -5 gt it 0D (58 o455 a0 ((5E) 6]

1/5 11 5 ’
~H(E Attt Aty Aty 4n) L (D-2)

e L e
3 ( 16 A"5+10 Aol A A se A +1 3 Ao A )

oirtal-ho- oo B (- (5]

7 ( 4 AG +14 A7 +32 A97+72 Au +120 A13 +176 A16 +312 A19>

The expressions for the constants 4,7 are as follows: Au‘=% [(y+1) (1— g9 +467 C

43=3 [(r+1) (1—F)+467(—34—4C+8D) 21
Alsl='— [(v+1) (l_ﬁﬂ)+452] c

Ad—gats [ +1) (1 B84
A0=gats (D) (1= 5945 (r-+1) (1—) R4~ 10B+50)

+3 (y+1)(1—85 (64—15B+28C—7D) +128 [v(3C+-2D)— 3OB 50+12D]
4128 [(8v+22)C+6A—15B—8D] Ap=— ﬁ3 [(y+1) 1 — B%)2+867
A== D=8 : +5 (+1) (1—F) (15B—160—D)

+% (v-+1) (1— B%) (30B—190—24D) +126 [(—37-+10)C+15B]

—12 [y(3C+2D)—30B+7C+20D)] ‘ 3=% [(y+1) (1— 9 +467 (5C—8D)

A°1=—1—ﬁ5(7+1)(1——,3“)(30—-2D)—12013(20—D) Ap=—% L (+1)(1—p?) (30—2D)—1688(20—D)
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A= [ +1) (1~ ) +487 ©
Afi= —% (v+1) (1— 9 (34+40—8D)

4= (D A—p)C=2 [+ (1~ p)+467 D

A= D 1=+ 2+ 1) - ) 0B—D)
—128 [120+ (2v—23)D)

Af= _2_;_ (v+1)(1— %) (O—2D)+2526C

A115'=“‘ —£)+4671(C—2D)

[((v+1)a—
A== (y+1) (1~ (80—2D)—2165(20—D)

A =32 [+ 1) (1~ ) +461 O

FLUID PAST A CURVED SURFACE 321
A =0 ‘33 (v+1)(1—p93
—-E(7+1)(1—B“’)(45B+120—29D)+12B(27+1)D
=5 oD —p0=Z [ +1) 1~ 451D
Aj=—1928(C—2D)

Au7=—%7[(v+1) (1—8)—1267 O+ (r+1)(1—$9D
4= [r+1) A~ $)+4§1(0—2D)

Ad == B+~ 4168 0
+2 1 +1) 1~ +48 D

Ad=2 [+ 1) (1~ ) +467 ©

APPENDIX E
THE FLOW PAST A CURVED SURFACE BY THE POGGI METHOD

Equation (D-21) represents a solution of the fundamental
differential equation (1) that satisfies the boundary con-
ditions at the surface of the solid body and at infinity,
insofar as the terms inclusive of the third power of the thick-
ness coefficient ¢ are concerned. The method used has been
called Ackeret’s iteration process and is valid for all values
of the Mach number M from zero to unity. On the other
hand, the method of Poggi yields the components of the
fluid velocity in the form of power series in A42. Since both
Ackeret’s. and Poggi’s methods provide solutions of equa-
tion (1), the two_solutions must agree in the region common
to both. The flow past the shape treated in the present
paper will be calculated by means of Poggi’s method and
compared with that obtained by Ackeret’s method.

Poggi’s method consists in regarding a compressible fluid
as an incompressible fluid with a continuous distribution of
sources in the region external to the solid boundary. In
order to express the intensity of the source distribution,
it is first necessary to determine the incompressible flow,
which serves as the zero approximation to the flow of the
compressible fluid. The first-order effect of compressibility
on the velocity of the fluid is then given by a set of double
integrals extended over the entire region of flow. In
reference 5 the surface integrals are replaced by line integrals,
which are evaluated by the methods of the calculus of
residues. For the example treated herein, the general re-
sults given in reference 5 are immediately applicable and
are as follows:

Let Z=Z(Z’) be the conformsal transformation of the
profile in the Z-plane into the circle of radius ¢ with center
at the origin of the Z’-plane. Then, if W, is the complex

velocity of an incompressible fluid past the circle, the follow-
ing expressions are formed:

—— iz,
/7 I_H72H7 ﬂ7 w
B, 2)=W, °dZdZ dZ( “dZ )f *dz

7z, 2)-Wewi Ly (W) [weZ

The complex velocity W of the compressible fluid past the
profile in the Z—plane is given by

W= (Wo+ WIME)%

az | D

(E-2)

where only the terms involving the square of the Mach
number M are shown. The expression for W; is as follows:

Wi= —zl'ﬁr [s2)-225(5)27 (5 2)]

—pF @ 2)+3U(1-4 (B-3)

where f’(zr Z’) is obtained from F’(Z’,Z;) by replacing
Z' by %§ S(Z’) denotes the sum of the residues of
Z%Z,p F (Z',§> at the poles within the circle €} of radius

¢, the subscript P being dropped after the evaluation; and
S (%) is obtained from the expression for S(Z’) by replac-

ing Z’ by Zi
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For the present gxample, according to equations (A-3),
(A-4), and (A-8),

F-(+) (-5 oo

c—d* | &id?

Z'—Z’+ VA +3713 . (A‘—4)

and
Wo— (1 77r) VAL
It follows that
_ e

FZ7)=T"

CECHDD
20— %4) ex 7y [z +ﬂ(cﬂ+d2)1<ig—, ’d](EA)

and

zZr—¢

* w-w@+io(z-5)(z+5)

a
, , —z
Y G| 7o e %Jr—z, ®-5)

F(Z:—,-) et

Consider now the contour integral

1
fc, Z,___—Z,PF<Z’, Z') dZ' =271S8(Z'p)

In the first term on the right-hand side of equation (E-5)
only the simple poles at Z’= +id are internal to the circle (.
The contributions of these simple poles to the residue are,
at Z'=1d,
UPct 1
2id(c*—d*) Z'p—1d

and, at Z’'=—id,

__ ¢ 1
5l —d) Zptid

If the two expressions are added and the subscript P is
dropped, the result is

U3t 1
P Y (E-6)

The second term on the right-hand side of equation (E-5)
can be rewritten as follows:

F(Z', 7= U3
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d’c?
2Uz(Z'—id)2(Z'+'id)2- .
i,
L. zZ
_ZUad(cg‘I‘d’) (ZI_,z‘d)2(Zl+id)2 ]-Og ics P
a7t

The contributions of the double poles at Z’=id and Z’=—id
to the residue are, respectively,

_U¢ Z'p—2id , 1ilPed 1
24 Zp—id? 2 o Z’P—z'd
+5 P+ log 574,
1 @ d)* SPRw
and
UPe* Z/pt-2id le”c’d 1
27.d (Z,p—l—’).d)’ d2 Z’p"l"id
A—d

+5 Us("""dz)(zf _|_2d)2 log ord

If the two expressions are added and the subscript P is
dropped, the result is

_2UFedE UEP 1
Z7F P =B 7
-

1 Z—
+§U3(02+d7)(Z/2+d2)2 log cz+d2

(E-7)

If the expressions (F—6) and (E-7) are added, it follows that

) s zZr—@
sen=0e (1455 1oe 575 g ©9

From equation (E—4),

(Z 2_02)212’212
/2(Z12_|_d~z)(zﬂ+d2) _
2033 ) c’+d" Z!+1d
+znray (ZZ toa 2! gZ'—ia?)

1f §(Z*) is formed from equation (E-8) and Z’ is replaced by

%, it follows that
E—P\(*—dZ2'%) 23
S (;) Eard) GF Tz

Finally, if F(Z’,7’) is formed from equation (E-9) and Z’ is
replaced by ¢2/Z’, it follows that

¢ LN\ )
(&2 )-veetagmain

ot
+2 mwm (z +

(E-9)

T

log (E-10)

L 10e ZE) @)
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By means of equations (E-8), (E-9), (E-10), and (E-11) and by replacing Z’ /c, Z'le, Wi/U, and &/c* by Z', Z', W,, and €
respectively, it follows that

_1 _lig 1+ ZB—e | Z/*— Zr—1
Wl (1 )I:( la_l_e)zT(eZ/a_l_l) ]+(€+Z/2)(EZ/2+1) .

Z' | Z'+iye ZZ—1) 150 Z'tie
@A 2 s g e S Y 27+ 005t S et

The complex velocity W of the compressible fluid past the profile in the Z-plane is given by equation (E-2) where

dZI ZI4
iZ == (2" F9 (from equation (A.—3)) (E-13)
Wo=1—71,§ (from equation (A-6)) (E~14)

and W, is given by equation (E-12).

The velocity at the surface of the profile is obtained by means of equations (B-2), (E-12), (E-13), and (E-14) with
Z'=¢" and Z'=¢"%, Thus

_ 1 1 M o (1+4¢)? 2(1—e¢)? 1-|—e
Gorertte= 1 T 5e cos 201 & <1+1+2e cos 26+ 4 {E(l e—2c08 20) "5 I:l T2 cos 207 & | 81—
(1+e 1 2¢+(1+¢) cos 20, 1+e42+/esin b _, 2+/€ cos 6
+21,/E TT9¢ o3 261 & € Y _log1+z_h2‘/§sin0—4(l—e’)cosﬂtan1——6CO :“) (E-15)
For §=0,
e(l—e 1—¢ 1+e 21— _; 24/€]
o= (5 (o L) 3 [ oe T2 v 1)) (16)
For 0=-gv
1
Qprosite™ 1 {1+M[( +e 1+0(1+€ lo iiz 1I/(—1-(1_05:)1 1+'://:} ®-17)

The velocity along the X-axis external to the profile is obtained from equations (E—2), (E-12), (E—13), and (E-14)
by taking Z’=Z7Z’=X’. 'Thus

X2 [ I, 14é) X (—tet DX X7 X X
qY-O X/2+ {1+ [(1+ ) (1_ g _E (X/Z_I_e)z(eX/ﬂ_l_l)a + X,2+6) (€X12+1) IT(XIZ_I_ )2
2e(1—AXA(X41) (x, Ite, 2/eX
ety (Xt e b )]l (B-18)

The velocity along the Y-axis external to the profile is obtained from equations (E-2), (B-12), (E-13), and (E-14)
by taking Z2’=iY”’ and Z’=—1iY”. Thus

Y3 1—|—e 1€ eY’°+(e’—4e+1)Y"-I—eY" Y32 Y+
Ixer™ ?—[““‘ —(+9 (1 °g1—> — T A—TDF =T a—r? T 7

7 7r—1t€ 1, Y6\ A+ (X 41)°—2(14-¢Y"
H2e¥ (Y e % ¥—e (Y'2+1)(1—5Y'2)(E—Y'2)2’:|} (E-19)

Table IIT gives values of the velocity corresponding to points along the profile for the numerical case e=% (or t=0.10)

at Mach numbers A/=0.50 and 0.75. Figure 1 shows a comparison of the velocity distribution for AM=0.50 with the
corresponding calculation according to the iteration method.

It is noted that by Poggi’s method the solution of the problem is given by the components of the fluid velocity,
whereas by Ackeret’s method the solution is obtained in the form of the velocity potential of the fluid motion. Before
8 comparison of the two methods can be made, therefore, it is necessary to obtain from the velocity potential (of Ack-
eret) the velocity components along the coordinate axes. This calculation is performed in appendix F.




324

APPENDIX F
DETERMINATION OF THE VELOCITY COMPONENTS

In terms of the complex variables  and ¥ the velocity | Similarly, with reference to equations (D-3), it follows that
components in the direction of the coordinate axes are given

by Uy =4C(2—3¢"%H-3¢ 4 —¢~%) 8D (¢%¥—2}-¢7%)
_% 1 1 0¢ +-4(dD—3A¢~%+-4De*) cos 2y
U= + —-
3X smh ¢ bs‘ ot 1) +-4[4De %+ (D—15B)e~4] cos 41
p— '=1B< 1 2¢ —32 sinh® £ cosh §[2D4C(26~%J-¢7%)]
Y ginh ¢ bg‘ sinh ¢ of cosh 2&E—cos 27 \ (F—4)
where the velocu;y potential ¢ is obtained from equation v'=44 sin 27,[(4D—3Ae‘25+4_De“5)
(D-21). According to equations (6) +2[4De~%— (D-+15B)e~*] cos 27
_ 4 sinh? §2D+ 0 (2¢~%4-e~4)]
v=1+tut+futfut ... } @-2) | . cosh 2¢—cos 27 }
v=to,+0+ ot . . .

. The general expressions for the velocity components u; and
where, in general, vy are too cumbersome to be given here. Instead, only the

O, expressions for the velocity components along the profile will
W=3X be given. Thus, along the profile, if powers of ¢ higher than
2 ‘the third are neglected,
%=37

U= (G +3Gs+5G+7Gp)o+2(BGs+5G+-7G), cos 2a
In terms of the complex variables ¢ and ¥, +2(5G5+7Gr)o+14(G5), cos ba
ty=—2B[(Gs' +- G5’ + @), sin 2

4+ (G5’ + @) sin 4o+ (Gr')g 8in 6]

(F-5)
é1 =§1}§ (3¢t —e % 43¢ T—e )

herefor
T o where the primes denote differentiation with regard to the
U= — 2 ﬁ e~ % cos 211 independent variable ¢ and the zero subscripts denote evalua-
F-3) tion for £=0. Explicit expressions for (G)o, (Gy)e, (Gs)o, (G0,
(@), (@5, (G5)o, and (G;"), are given at the end of this
appendis.

3 .
p=—7 ¢ % gin 29

At the boundary then, if terms containing powers of ¢ higher than the third are neglected, equations (F—2) become

a=14] L a+1) (GEY+2 23 e[ & o)+ @+aatsatran ¢

2
Hos e+ o 2 fﬁ?—f‘ﬁ+z<3as+5as+7a7>o]ﬂ}cos2a

[ o0 ((FE ﬂa)+33+56:|t’+|: o SEOBEOF 256,760 | #] cos 4

+2 ﬁz‘;ﬁ—wﬁ«;(@)o- # cos Ba (F—6)

o—[ S oty a—2ptspr—g o0 S5 e op(6y+ 6+ 6/ |sin 20
33+58
+H3%5

e (4+6ﬁ—|—313’)f‘+i—6- (r+1) (1‘;;3’) P—3B(6 +G;)of | in 4

+ 25 (2426847695 (r+1) SZE 266, | # in 6o

In order to compare the velocity of the fluid given by equations (F—G)‘with that obtained by Poggi’s method given
by equation (E-15), explicit expressions for equations (F-6), with powers of the Mach number higher than the second
neglected, are obtained and may be expressed as follows:
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u—(1—§ prd t3>+(-—§ t+3 8432 ) cos 2a-+(38—10 £ ) cos da—2k £ cos 6
= i 16 1 32 CO8 4ax— 3 CcOS ba
+M“|:<3 ié(l) t3>+< 4t+8t’ ggg t3> cos 2« —I— — t’ t3> cos 4aTﬁ  cos Ga:l

”—( 5 t+4 t2+3,, t3) gin 2« -I—<3t"’ > "Ol £ sin 6a E1)

+ I:— 13 sin 2a+<ﬁ tz——z ﬁ) sin 4a—z £ sin 6a:|
The magnitude g of the velocity, to the same degree of approximation, is then given by
g=(1—%3 t’>+(—§ t+% t’—l—@ t"‘) cos 2a+ @ t”—g t") cos 4a—2ﬁ # cos b -

+ M3 [(% 2— ]ié(l) t")—l-( T t+8 P t“) cos 2 —|—( ) cos da— W 3 £ cos 6a:| . (¥-8)

which is to be compared with the corresponding expression obtained by Poggi’s method. Thus, if in equation (E-15) ¢ is
replaced by 3t/(2-+¢) and all terms are expanded in powers of ¢ up to and including #, the resulting equation is as follows:

q”'”’”‘—<1+16 ~18 t") (2 t—= t’+105 F) cos 20+ 6(t’ ) cos 40—-— # cos 64

2163
Y. [(Z -39 ‘3>+<‘Z i3 p 2188 t3> 05 20 -+ 25(6— ) cos 40— 178 5 # cos 60] @-9)
From the first of equations (A-9) with X=cos «, it follows that

cos a=(1—t¢ gin? §) cos 8
and therefore

c08 2a=cos 20—sin? 29<t—% 2 sin? 0)

cos 4a=cos 40—2¢ sin 46 sin 24
cos 6a=cos 66

If cos 2a, cos 4a, and cos Be: in equation (F-8) are replaced by these expressions, equation (F-9) is again obtained.
The expressions_ for (Gi)e, (Ch)o, (Go)oy (Gro, (C')o, (G )o, (Gs')o, and (Gy'), are as follows:

ity e (9o (B3]
MI: 25653 (D (A=) +35 (1) B,+165+3vﬁ(10—p)

+a+0 2 (=5 4+ 2 B-L 0+5 D) +8(—6a+158-F 0+14D) |

@o=g| ~L -t t7 +3(7+1)<M7>ﬁ+16(7+1)<M7> d |

Ml:zaw(”"‘l)(l #9550+ D 303+YB<100+D>+(7+1)—< A— B+Z(1)Z' 11D>+B< 9B+50+2D) |

(G‘)":l_ﬁﬁ [%’ B+31 +2—3+ﬁ3+y'—'§ (y+1) (M) B-I—— (r+1) (ﬁ") E]
Y] g 0220804 040 22 (— 5 a+9B+ 55 0)~LaD |

(07)0=%|:—— f’ g 8?93 4ﬁ2+3(7+1)<M’>ﬁ 32('7-1-1)(M’> ﬁ]

(01')o=3—2 [ —Spt1t St (D) (%’) B (r+D) (%;) 3]
(@)= [Se+5-S—sp—satn(%) s—3a+0(5) 3
(Gs')o=£ :_2_65 B— 331 gg ra —Erl'g (v+1) (%’)’ B—'g‘(‘v-l-l)(%;)z%

(@)= | 56+ 2+ it atam—3 D (3) s+ (B5) 3]
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TABLE I

VELOCITY AND PRESSURE DISTRIBUTIONS AT THE
SURFACE OF A BUMP, ¢t=0.10

den | @qan Equation | (Eqtation | (Easgty
n quation qua n q! on
w3 ) (aci0)) (A1)
0 1000 0 0.8750 0.2344
5 2954 . 0001 8764 . 2318
10 9818 . 0003 . 8808 <21
15 2395 0017 . 8881 L2113
20 . 9287 . .8083 . 1931
30 <8444 0125 9272 <1404
40 7344 0268 . 9687 . 0654
50 6051 0450 1.014 —. 022
60 4625 0850 1.088 —.1385
70 3118 0830 1.117 —. M76
80 1568 . 0955 1,163 —. 3209
90 [1] .1000 1167 —. 3611

TABLE IT

VALUES FOR A4, B, C, AND D OBTAINED FROM
EQUATION (D-3)

AM B8 A B C D
1 Q. 06250 —0.06250 0 0

.10 .904090 . 06221 —. 06285 00095

<20 . 97880 . 06160 —. 06390 00400 00015
.30 . 95384 . 06169 —. 06570 00083
40 . 91652 - 06409 —. 06830 01990 00307
.50 . 86603 . 07788 - 07171 . 03751 - 00939
.60 . 80000 L1182% ~—. 075561 . 07057 . 02675
.70 L71414 . H561 —. 07741 14211 . 07805
.75 . 66144 40177 —. 07384 . 21371 13977
.80 60000 . T343 ~. 06322 -34482 20122
.8 55776 L.11855 —. 04588 48400 41460
.85 . 153475 —. 02476 . 62619 . 57315
.80 .435689 4. 07040 . 12448 1.4241 L 5367
.02 30192 6.81182 . 20017 2. 2282 2.5674
O <4117 12,9343 . 70926 9598 4.8722
.98 - 25000 3L.0576 197342 8.8010 11. 683
.88 .19800 | 132428 9.30328 | 34.428 40.732

TABLE III

VELOCITY DISTRIBUTION AT THE SURFACE OF A BUMP,
1=0.10, ACCORDING TO THE POGGI METHOD

(comprnmible)
g Coeffi-
@p| T | ¥ | X | v |Bm centor LEDH
dble) | M
M= | M=
050 | 075
ofrow |o 1000 |o 0.8750 | —0.0340 | 0.8615 | 0.8u8
5| o062 [ .os72 | ‘o5t | .oo01 | .8765 | —.0535 | .83l | .8451
10| ‘es | 1177 | esis —.o521 | Ise78 | lss1s
15 0059 .2588 | .9505 0017 8381 —. 0497 8757 | .8601
20| -ez07 [ 3u20 | Toos7 | looso | ses3 | —ose2 | [sse7 | v
30 | Iso60 [ -5000 | -8444 | o125 | -ezra | —.omso | lemsz| leoho
40| 700 [ ‘eaz8 | i73aa | 0266 | -vee7 | —.o102 | [oe10 | oz
5 | .6428 . 7660 | L6031 M50 | 1.015 .003% | 1.018 1017
60 5000 | .8660 | .4625 | .0650 | 1.088 .0330 | 1.076 | 1.086
70| 3120 | ‘se9v | -3ns | lesso | 1117 0645 | 1133 |'1153
80| 11737 | lesis | (1568 | lo9ss | 1013 L173 | 118
200 1000 |0 1000 | 1167 002 | 1102 | 1223
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TABLE 1V
VALUES OF (G, (G, (Gs), AND (G, GIVEN AT END OF
APPENDIX F
a| s I @, | @, | @, @,
0.50 0. 86603 0. 16344 —~0. 79011 1.6714 ~0, 01449
7% . 65144 2.3075 —2.1109 2. 8076 -—1.9513
56776 9. 8911 —8.7071 b, 9329 —4, 0660
0 .43589 68. 849 —42.316 26. 227 —19. 649
TABLE V

VALUES OF ay, a5, AND a; OBTAINED FROM EQUATIONS (14)

N !
0.50 - 075 0.83 0.90
. |
a1
0 1.7331 2.3026 2.6893 3.4412
S 1.6974 2.2665 2, 3.3
.2 1. 5936 21184 2.47432 3.1059
.3 1.4203 1.8881 2 2052 2,8218
.4 1.1778 5658 1,8287 2.3400
.5 . 86603 1.1513 1,3447 1,7200
.6 45497 64473 75301 . 003565
9 03464 . 04605 . 05370 . 06882
.8 —. 48497 —. 04473 —. 75301 —, 00356
.9 —1.0739 —1.4278 —1.6674 -~2,1330
975 -1, 5610 —2.0752 —2.4237 —3.1014
L0 ~1.7321 —2.3026 —2. 6883 —3.4413
a2
[1] 2. 2743 5. 4350 10.138 19, 268
.1 2.0399 4,9802 9.3921 18,076
.2 1.3673 3.7088 ‘ 7.2438 14,648
.3 34809 1.7641 4,0016 9,4302
4 —. 88531 —. 56063 Bt 8.1062
.5 —2.0503 —2.8678 —3. 7000 -3.1036
.6 —2, 0504 —4.6459 —6.8342 0405
.7 —3.2325 -5, 27468 —8.0105 ~10.022
.8 —2.4744 —4. 0011 -6, 0811 —7.0773
.9 —_ 01270 .33212 2. 0801
lo75 27276 54013 9, 0381 16.723
10 4,0063 7.7376 12.825 22,708
. as
0 3.4370 21,877 72.397 437.84
1 2.5124 18. 507 63, 333 386. 4
-2 L7542 9.4933 88.871 261.03
.3 -2, 9313 -2.1171 6. 6216 72.788
.4 —5.1015 —12.039 —22 46 —02 533
.5 —5.8952 —15.037 —37.884 —~184.67
.6 —~2.7710 —~11, 097 —=31.791 —104. 69
.7 2 2311 1.44568 -5, 0844 —41, 556
.8 7.0016 14.256 22. 646 92, 680
.9 6. 25652 10.459 14. 500 23. 200
975 —. 82172 -20. —50.978 —385.70
1.0 —10.033 —39. 881 —101.38 —033.92
TABLE VI

VELOCITY DISTRIBUTION FOR A BUMP, (=0.10, CAL-
CULATED BY MEANS OF TABLE V AND EQUATION (13)

g
M
0.50 0.75 0.83
X

(1] L199 L307 1.443
.1 1103 L24 L4121
.2 1173 1258 1.369
.3 1,143 1.204 1.267
4 L1104 1.139 1.159
.5 104l 1071 Los9
.8 1.018 L0007 .0762
.7 L0784 . 9533 L9183
.8 . 9339 . 0098 . 8866
.9 . 8965 . 8676 8444
978 - 8704 . 8258 . 7810
Lo . 8568 8072 L7578
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TABLE VII

VALUES OF CRITICAL VELOCITY OBTAINED FROM EQUA-
TION (16) AND MAXIMUM VELOCITIES FOR A BUMP,
t=0.10, OBTAINED FROM EQUATIONS (17) AND (E-17)

q—ﬂ
M or
Iteration P
method method
0 1,167 1167 ©
.2 1171 1.171 4,578
.3 1,176 1176 3.067
.4 1.186 1.183 2.318
.5 1,199 1.102 1.869
.6 1,222 203 1574
.7 1. 285 1.216 1.368
.8 1371 1.231 1212
.85 1. 523 1.239 L 145
.80 1.093
.85 1.044
1.0 1. 000
TABLE VIII
VALUES OF ¢/¢.r FOR A BUMP, t=0.10, WITH M=0. 83
X q lger
0 1.443 1 230
.1 1.421 1.211
.2 L35 1.160
.3 1267 1080
.4 1159 . 8881
.5 1.059 L9028
.6 . 9762 L8314
.7 L9193 . 7837
.8 . 8885 . 7558
.8 8444 . 7200
L9758 7910 0744
L0 7579 . 6461
TABLE IX

COMPARISON OF THE PRESSURE DISTRIBUTION AT THE
SURFACE OF A BUMP, t=0.10, FOR M—0.83 OBTAINED
BY MEANS OF THE ITERATION, THE PRANDTL-GLAUERT,
AND THE VON KARMAN METHODS

Cyut
X - Cpo
Iteration Prandtl- »
method Glagert | von Kdrmén
(Equation (20)) method
[(] ~0. 9133 —0. 6343 —0.7376 —0. 35837
.1 -, 8677 —. 0142 —. 7107 —. 3428
.3 ~. 7389 —. 5568 —. 6337 —.3100
.8 —. 5488 —. 4685 —. 5202 —. 2602
.4 —.3204 —. 3514 —. 3810 —. 1960
.5 —., 1184 —~. 2150 —. 2257 —.1199
.6 . 05614 —~. 0847 —. 0858 —. 0361
.7 1817 . 0785 L0752 L0428
.8 231 . 2062 L1072 1150
.9 . 28068 . 3190 . 2085 L1783
075 L4048 . 3035 . 3620 . 2185
L0 .4708 L4163 . 3812 2322
TABLE X
VALUES OF a;, a3, AND a; CALCULATED FROM EQUATION (17)
M ap as a
0 1. 50000 1. 50000 1. 50000
.2 1. 53093 58728 1. 67024
.3 1. 5743 1.71149 1. 93357
4 1. 63863 L 92001 2. 43349
.5 1. 73205 2 27426 3. 49200
.8 1. 87500 2.91038 8. 75400
.7 2.10042 4.22402 12. 56811
.8 2. 50000 7. 76704 43. 7829
.85 2.84747 52860 112. 7760
.80 3.44124 25,7418 446. 847
.02 3.82733 722

TABLE XI

MAXIMUM VALUES OF THE PRESSURE COEFFICIENT
Cp,ar CALCULATED BY MEANS OF EQUATION (20)

—(Cp,ll ) masy

0.05 0.05 0.08 010 | o0az 0.12 0.15

0.16408 | 0.16406 | 0.27744 | 0.36000 | 0.44868 | 0.44856 | ¢. 59344

24055 | 23753 | 41994 | 55715 | .71014 | -68008 | L0736
~30600 | .28025 | .86134 | .77066 | 1.01685 | 87903 | 14634
-59091 | 42108 | 13551 | 21252

0.20 0.1 0.2 0.25

/o &

- Sggmqam.&wn -
- .
Bt
o

-~

£3

=

g

2
/

0 0.75384 | 0.75384 | 0.87000 | 0.93088 | 0.09306 | 1.1853 | 11953
.2 77275 | .77541 | (89228 | .05504 | 1.0199 | 1.2274 | 1.2352
.3 . .92326 | .08859 | 1.0581 | 1.2724 | 12003
.4 84179 85142 | .97408 | 1.0437 | 1.1158 | 1.3470 | 1.3703
b .91188 | . 1.0581 | 1.1863 | 1.2164 | 1.4732 | L5208
.8 1.0316 | 1.0403 | 1.2031 1.2043 | 1.3891 | 1.65684 |} 1.7568
7 1.2782 | 1.2431 | 15088 | 1.6326 | 1.7633 | 21889 | 2 1973
.8 20175 |1.6781 | 24539 [ 26938 | 2.0491 | 3.8118 | 3.3117
» Method of von Kérmén,

TABLE XII

CRITICAL AND LIMITING VALUES OF M AND CRITICAL
VALUES OF C,x CALCULATED BY MEANS OF
EQUATION (21)

M |{—=(Cpu)er t —Cpo Mo | Mun |[—(Cpadim
0.45 2. 76639 0.05 0.18406 0.832 Q. 880 0.50
.50 212953 .08 27744 7718 . 856 .77
.55 1. 85519 .10 . 36000 742 883 .02
.60 1.29190 .12 . 44856 .815 109
.65 1. 00661 .15 . 59344 670 . 760 1.33
.70 77768 .18 . 75384 634 . 760 1.58
.75 . 50008 .20 87000 .610 743 1.74
.80 . 48381 .21 93098 598 . 735 1.8
.85 . 30124 .2 99308 587 .725 1.90
.80 . 18605 .25 1.1953 558 .688 2,15
.85 . 08783
1.00 0

TABLE XIII

VALUES OF THE PRESSURE COEFFICIENT (Cp.a)ass
CALCULATED BY MEANS OF EQUATION (22)

A _(Cp,.ll)ah M _(Chll)lh
0.70 2, 90508 L25 0. 91103
.75 2, 53064 L3 . 84230
.80 2. 2420 135 . 78106
.85 L 97022 L40 . 72627
.90 1.75739 L45 . 67708
.05 57727 150 . 63268
L00 1. 42349 1.55 . 59250
L05 1L 20116 L 60 . 556056
L10 1. 17644 1.65 . 52286
1.15 107638 L7 . 49258
L20 . 68853 1.76 . 46481




