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CRITICAL COMPRESSIVE STRESS FOR OUTSTANDING FLANGES

By Evcexe E. LuRpquisT and Exgrinee Z. StowsLL

SUMMARY

A chart i presented for the-values of the coefficient in
the formula for the eritical compressive siress at which
buckling may be expected to occur in outstanding flanges.
These flanges are flat rectangular plates supported along
the loaded edges, supported and elastically resirained along
one unloaded edge, and free along the other unloaded edge.

Tte mathematical derivations of the formulas required
Jor the construction of the chart are given.

INTRODUCTION

In the design of stressed-skin structures for aircraft
as well as in the design of compression members, it is
desirable to know the compressive siress at which
buckling occurs. In practice the structure is usually
so imperfect or so eccentrically loaded that lateral
deflection starfs with the beginning ‘of loading. When
lateral deflection starts with the beginning of loading,
however, there is usually a very pronounced increase in
deflection at the critical compressive stress for which
buckling would have occurred had the structure been
perfectly straight and centrally loaded. The evalua-
tion of this eritical compressive stress for a flat plate,
with certain conditions of edge support, is discussed
in this paper. ,

When a flat plate is loaded in compression, the two
loaded edges are either simply supported or restrained in
some manner. If the two unloaded edgesare not sup-
ported, the plate is considered to be a column. When
one, or both, unloaded edges are also supported or
restrained in some manner, the critical compressive
stress is greatly increased over that for the plate as a
column. That the compressive stress is increased when
one, or both, edges are supported or restrained in some
manner has been recognized for years. Because of the
importance of the edge conditions, formulas based on
the assumption that each edge of the plate is free,
simply supported, or fixed have been employed in
design. (See the summary of these formulas given in
reference 1.) .

A study of the theory and the more reliable test
dats on the buckling of plate elements in stressed-skin
structures and compression members revealed the neces-

sity for a more careful consideration of the edge condi-
tions of plates than has been previously attempted.
Accordingly studies were made of the critical compres-
sive stress for I-, Z-, channel, and rectangular-tube
sections in which proper consideration was given to the
interaction between the individual parts of the cross
section. (See references 2, 3, and 4.) In order to
make the results of the work more generally applicable,
studies were also made of the basic plate elements that
comprise these sections. All the design charis resulting
from this investigation were made available in 1938.
The combinsation of the present paper with references
2, 3, 4, and 5 is a more complete presentation of all this
material.

The basic element treated in this peper is a plate -
simply supported along the Ioaded edges, supported and
elastically restrained against rotation alongoneunloaded
edge and free along the remaining unloaded edge. This
basic element, is representative of the outstanding flange
on the I-, Z-, and channel-section columns. In reference
G is treated the basic element representative of the webs
of these sections wifth elastic restraint along both
unloaded edges.

The mathematical derivations required for the investi-
gation of the present paper are given in appendixes A
and B. The results of practical use are given in the
body of the paper.

EVALUATION OF CRITICAL STRESS

Within the elastic range.—Within the elastic range
in which the effective modulus of elasficity is Young's
modulus, the critical compressive stress f.. for a thin
flat rectangular plate is expressed as (reference 6, p. 331,
equation (214)) .

__ kx'El
Te=Ba—HF
where

k nondimensional coeflicient that depends upon condi-
tions of edge restraint and shape of plate
E Young’s modulus
t thickness of plate
r Poisson’s ratio
b width of plate

eY)
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Beyond the elastic range.—When the plate is
stressed in compression beyond the elastic range, the
effective modulus of elasticity for the plate is less than
Young’s modulus. If a single, over-all effective plate
modulus nE is substituted for Young’s modulus E, the
critical stress, when the material of the plate is loaded
beyond the elastic range, can be obtained from equa-
‘tion (1). The nondimensional coefficient 4 has & value
that lies between zero and unity and is determined by
the stress. For stresses within the elastic range, 7=1.
For a more complete discussion and definition of », see
reference 2.

If nE is substituted for Ein equation (1), the resulting
equation cannot be directly solved for f.. If the
equation is divided by 5, however, f,./¢ is given directly

by the geometrical dimensions of the plate, Young’s

modulus E, and Poisson’s ratio . Thus
7 12(1— @)

For a given material, the relationship between f., and
Jorfn tends to be fixed by the compressive stress-strain
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curve. This relationship is discussed in reference 2,
where it is shown how probable relationships between
fer 804 forfy are obtained from the column eurve of the
material because column curves are more readily avail-
able than compressive stress-strain curves. The ques-
tion is, therefore, what column formule should be used?
Equatlons (8) and (9) of reference 7 define column curves
that apply when the material just satisfies the mini-
mum requirements of Navy Department Specification
46A%a for 24S-T aluminum alloy. The relationships
between. f,, and f../q for this case are given in references
2, 8, and 4 and in figure 1 of this paper.

The 24S-T material delivered under specification
46A9a almost always has properties that are better
than the minimum required properties. The relation-
ships between f.. and f../n for the average 24S-T
material delivered are given in figure 2. This figure
has been prepared in the manner described in reference
2, the column curves for average 24S-T material as
given in reference 8 being used.
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Figures similar to 1 and 2 of this paper may be pre-
pared for any material. The engineer using this paper
must therefore decide whether the computation should
be based on minimum required material properties or
average material properties,

Regardless of whether figure 1 or 2 is used, if the
restraint against the rotation of the flange at its base is
near zero and A/b is greater than approximately 2.5,

it is redommended that the cm;ve ,,___'!_‘_E be used.

For a.ll other values of Lhe restraint, the curve

1= t+3‘/f should be satlsfact.ory In figures 1 and 2 the

dlﬁ‘erent. equations involving r merely identify different,
curves that result from the relationships indicateq.
The value of 7 is E/E, the ratio of the effective column
modulus for bending failure at the stress f,, to Young's
modulus.

When the restraint against the rotation approaches

++r

zero, the 4= 5 —curve is recommended in recognition
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of the fact that the resistance of the plate elements to
buckling arises largely from their torsional rigidity.
The two curves recommended to show the relationship
between f., and f../n should be used until future experi-
mentel data indicate that different curves should be
used,

EYALUATION OF k

+ The value of f../y at which buckling occurs is given
by equation (2), in which all of the quantities are known
except the value of the coefficient k. The values of
k can be obtained from figure 3; figure 3(b) is & portion
of figure 3(a) plotted to a larger scale. In this chart,
k is plotted against the ratio of the half wave length to
the width M\b for different values of a parameter e,
termed the ‘‘restraint” coefficient. (In reference 9
Trayer and March refer to ¢ as the “fixity" coefficient.
In this paper ¢ is called the restraint coefficient to avoid
confusion with the fixity coefficient ¢ for columns.)
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The restraint coefficient e depends upon the relative

stiffness of the plate and the restraining element along | .

the side edge of the plate. The simplest conception
of ¢ is obtained when the restraining element, or stiff-
ness, is assumed to be replaced by an elastic medium
in which rotation at one point does not influence rota-
tion at another point. For this type of restraining
medium along the edge of the plate,

within the elastic range, e=4%°b - 3)

beyond the elastic range, e;-%b : N )

where -

=
S, stiffness per unit length of elastic restraining medium

elastic medium through one-fourth radian
D flexural rigidity of plate, per unit length [12 = p,)]

y coefficient to allow for a decrease in D due to the
-application of stresses beyond the elastic range
Inasmuch as 5 is a function of stress, its value for
24S-T material can be obtained from figure 4 or 5,
depending upon whether minimum required properties

1, 75, and 75 elso given in figures 4 and 5§ occur in
appendix A,

or moment required to rotate a umit length of

or average properties are being used. The values of e e
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If S, is zero, ¢ is also zero and the condition of simple
support, or zero restraint, is obtained. If S, is infinite,
¢ is also infinite and the condition of & fixed edge or of
infinite restraint is obtained. Therefore a variation of
¢ from zero to infinity will cover all possible conditions
of restraint atthe side edge of the plate.

Figure 3 shows that for each value of ¢ there is a
velue of A/b for which ¥ is a minimum. Strictly, a
whole number m of half wave lengths A must exist in the
length of the platew. Hence

R._a'.__.:_. . Lo e
b mb . (5)

Thus, to read a value of & from figure 3, it is necessary
to substitute m=1, 2, 3, eétc. in equation (5) until a
value for M\b is obtained that gives the smallest value

of k in figure 3. This amallest value of k is the one.

to be used in equations (1) or (2). This general pro-
cedure will always give the correct value of & for use in
equations (1) or (2) regardless of whether or. not S,
and hence ¢, is a function of the half wave length A.

For the special case in which S;, and hence ¢, is inde-
pendent of the half wave length X, the general procedure
described for obtaining a value for & can be used to
construct a new chart, with the abscissa \/b replaced
bya/b. This new chart is given in figure 6. _

When S,, and hence ¢, varies with A or A\/b, figure 6
should not be used, but the general procedure as
applied to figure 3 should be used to obtain the correct
value of k for equations (1) and (2).

EVALUATION OF S; AND ¢

Before it is possible to determine k from figure
3 or 6, it is necessary first to evaluate the restraint
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coefficient e. The value of S, to be substituted in
equation (3) or (4) will depend upon the characteristics
of the structural member or members that provide the
restraint. In this paper it is assumed that the restraint
is provided by a specially defined elastic restraining
medium. As a result of this assumption, it has been
possible to derive the general chart of figure 3, which
is independent of the structure thai provides the
restraint.

The basic property of the elastic-restraining medium
is that rotation at one point of the medium docs not
affect rotation at another point of the medium. In
many practical problems the elastic restraint is pro-
vided by a stiffener, a plate, or some other structure for
which rotation at one point affects rotation at another
point. Consequently, the evaluation of S, in any
given problem must take into account the effect of this
intersection within the elastic restraining structure. _

The formula for S; to be used in any given problem
will depend upon the type of structural member that
provides the restraint. Because this entire subject of
restraint supplied to the side edge of a plate has been
rather superficially treated in the literature, it is being
made the subject of a series of papers by the NACA,
the first of which is reference 10.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
NATIONAL ADvisorRY COMMITTEE FOR AERONAUTICS,
LancrEY F1ELD, Va., March 14, 1841.
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APPENDIX A
SOLUTION BY DIFFERENTIAL EQUATION

The procedure for obtaining the critical stress of a
plate uniformly compressed along two opposite, simply
supported edges is given in reference 6 (p. 337). In
this method, which was also used by Dunn in reference
11, the critical stress is found by solving the differential
equation expressing the equilibrium of the buckled
plate. The same method is applied in this paper to the
case in which an elastic restraint sgainst rotation is
present along one unloaded edge of the plate while the
other unloaded edge remasins free to deflect and to
rotate. For generality, the elastic restraint is assumed
to arise from an elastic medium distributed along the
unloaded edge; this medium has the basic property that
rotation at one point within it does not influence the
rotation at any othér point.

Figure 7 shows the coordinate system and the plate
dimensions. The differential -equation for the equilib-
rium of & pIa.te element is

ff'—ri=‘ D(T‘aa:""zf’w-!_“by’- . (A-1)

where
f uniformly distributed compressive stress
t thickness of plate
w deflection normal to plate
z longitudinal coordinate in direction of applied stress
D flexural rigidity of plate, per unit length
¢ transverse coordinate across width of plate
71, Tz, and s coefficients equal to or less than unity
In equation (A-1) the term ft(9*w/dz?) is concerned
with the externel forces on the plate that cause buck-
ling; whereas the term

fxaa—'ﬁ;‘[‘zfza—:;;iyrl"ﬂ%v

is concerned with the internal resistance of the plate to
buckling. The terms involving r; and =; in equation
(A-1) are concerned with the longitudinal and the
transverse bending, respectively; whereas the term
involving r; is concerned principally with the torsional
stiffness. The coefficients 7, 7, and m; allow for the
change in the magnitude of the various terms as the
plate is stressed beyond the elastic range. In the
elastic range, ry=ry=r=1.

The loaded edges are simply supported and are not
displaced in the direction w. Of the several forms

—Free edge

/////////
o

Fi6URE 7.—Qutstanding flange under edge compression.

.
£ 4 4 4 4 ¢
i

of the general solution of equation (A-1) the following
form was selected as appropriate for this problem:

w-(C‘; cosh T+ 0',smh —[—Oa cos 52 —[—04 sm—b—)co
(A—2)

where
RO o
oW EEEDED oo

and
P 12(1’3")55' (A-5)

Equation (A-2) satisfies the boundary conditions at
the loaded edges and gives real values for both « and 8
near the buckling stress f=f#,,.

117
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The values of the coefficients C;, O, C;, and O, are
to be found from the boundary conditions along the side
edges of the plate. The value of ), the half wave length
of the buckle pattern, is found from the condition that
there must be an integral number of half wave lengths in
the length @ of the plate; thus ) .

a
)\—;ﬁ (A—ﬁ)
where m=1, 2, 3, etc.

In the elastlc range, where n=n=n=1, the values

of « and 8 are

ﬁ=,ﬁ\/m

The solution given by equation (A-2) was selected to
satisfy the boundary conditions of no deflection and
simple support (no moment) along the loaded edges.
The boundary conditions along the unloaded side edges
have also to be satisfied. The boundary conditions
along the unloaded side edges are:

(A7)

(A-8)

(30) yao=0 (A—Q)

ow, dw\ aw ~
D —yi-l—p.—? ’-0—480<0_y " (A 10)
D(a’“’ 'Y (A-11)
[by,+(2 ) 2L my -0 (A-12)

where Sp is the stiffness per unit Iengt,h of the elastic
restraining medium or the moment required to rotate a
unit length of the medium through one-fourth radian.

From equations (A-9) and (A-10) ere obtained

01=?:$(a02+1304) (A'13)
08='—dT_eF‘B—a(aOS+ BCY) (A~14)

where
=4Sb (A-15)

From equations (A-11) and (A-12) are obtained

C’g[p sinh a+;,%(p cosh a-+¢ cos ﬂ)]
—0,[9_' sin ﬁ—az—_ﬁlf?(p cosh a¢g cos B):|=0 (A-16)

C{qé cosh a+af—ﬁ,(qa sinh a—pg sin 5)]
—-0.[19;3 cos ﬂ—;,%(q:z sinh ¢—pg sin ﬁ)]=0 (A-17)

where ot p( TTb)g (A-18)
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2
=6+() (A-19)
The buckled form of equilibrium of the plate is
obtained when the determinant formed by the coeffi-
cients of C; and C,in equations(A-16) and (A-17) equals
zero,

Thus,
(a4 8% (p*8 sinh @ cos B—g¢*x cosh a sin 8)

+e[(@*+¢*) aB cosh a cos B+2pgap
+(p*f'—¢'a’) sinh a sin Sj=0 (A-20)

This equation establishes the critical compressive stress
for an outstanding flange elastically restrained against
rotation at one unloaded side edge. Thus equation
(A—20) was used to establish the exact values of &
given in table I.

The candition of simple support (no restraint) along
the supported edge is described by ¢=0. For this
gpecial case, the problem is to find the smallest value of
k>0 that will satisfy equation (A-20) when e=0. A
convenient method for determining this value of & is
first to solve for e

(a?+ B") (p*B sinh « cos B—g’x cosh asin B)
=~ (p*F¢)aBcoshacos B+2pgaf+ (P FP—Qd)sinh asing

(A-21)
When e=0, either

o' fi= (A-22)

or
p*Bsinh a cos f—¢a cosh asin f=0  (A-23)

or

(7*+¢%ap cosh a cos f12pgap

+ (p*8—¢*o®) sinh a sin f=0  (A-24)

Equation (A-22) is true only if #=0, which can be
true only if the compressive stress f is zero. Equation
(A—24) applies only if k= o, which ean be true only if
the compressive stress f is infinite. Consequently if a
finite valueof k70 for which e=0 exists, equation (A-23)
must be satisfied.

The special case of a fixed side edge (infinite restraint
along the supported edge) is described by e=w.
Equation (A-21) shows that, if e= =, either

At oo (A-25)
or

pp sinh a cos f—¢*a cosh asin f=  (A-26)
or

(#*+ &%) a8 cosh a cos f-+2pgap
+ (p*f*—¢'a’) sinh a sin 8=0 (A-27)
Equation (A-25) is true only for k= =, which can be
true only if the compressive stress f is infinite. Equa-
tion (A-26) cannot be true for a finite value of k.

Hence if a finite value of k for which ¢= = exists,
equation (A-27) must be satisfied.
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APPENDIX B
SOLUTION BY ENERGY METHOD

Because the exact solution of the differential equation
given in appendix A does not lend itself to a direct
calculation of % as in the case of the energy method of
solution, an energy solution was made to aid in the
construction of the chart of figure 3. The energy

method gives approximate values for %, the accuracy of |

which depends upon how closely the assumed deflection
surface deseribes the true deflection surface.

The energy method as applied to the caleulation of
critical compressive stress is given in reference 6 (p. 327).
The plate is stable when (V4 V3)> T and unstable when
(V14 V)< T, where T is the work done by compresswe
forces on the plate, 17 is the strain energy in the plate,
and 1, is the strain energy in the elastic restraining
medium along one side edge of the plate. The eritical
stress is obtained from the condition of neutral stability:

=11+1% (B-1)

If w is the deflection normal to the plate at any
point r, ¢ in the plane of the plate shown in figure
7 and S, is the stiffness per unit length of the elastic
restraining medium or moment required to rotate a unit
length of elastic medium through one-fourth radian,
then T, 17, and 1, are given by the following equations
(see reference 6, equations(199)and(201) and reference,
equation (73)):

r=1 j; ' f_%_;_ fr(aa—‘: ‘hdy  (B-2)

_Qwdw
[(b.rby —38 o }‘My (B-3)
ST oo
'-
In order to evaluate 7, 17, and V7; it is necessary

to assume a deflected surface w consistent with the
boundary conditions. These boundary conditions at

705893 0 - 48 -9

theside edges of the plate are, in the coordinate system
of figure 7, _ .
(’w)r-o=0 (B-5)

o*w b’w

a2 ) (B-6)
tex I az
55 FEs), =0 ®B-7)

D[bastr(z maﬁ’g’ -] -0 B-8)

When buckling occurs, a restraining moment will be
applied to the plate along the edge y=0; the magnitude
of the moment will depend upon the stiffness of the
elastic restraining medium. If the elastic medium
offers no restraint against rotation, this moment will be
zero and the plate will swing about the edge y=0, as
about a hinge.
tially flat across its width. On the other hand, if the
elastic mediuth offers infinite restraint against rotation,
the plate will not rotate along the edge y=0 and the
plate will deflect across its width into a shape similar
to that for a cantilever beam. For any restraint of the
elastic medium between zero and infinity the deflection
curve across the width of the plate is taken as the sum
of the straight line and the cantilever-deflection curve.

In the direction of the length the usual sine curve ..

indicated by the solution of the differential equation is
used. Thus the deflection surface assumed for the
plate is, in the coordinate system of figure 7,

w={afr5] (§) +o(§) +o () +a( ) J oo T
(B—9)
where A and B are arbitrary deflection amplitudes and
a,=—4.963, a;=9.852, and q;=—9.778. These values
of a;, @2, and a; were selected by taking the proportion
of two deflection curves that gave the lowest critical
compressive stress for a fixed-edge flange for which
p=0.3. These two deflection curves were for a canti-
lever beam with lateral uniform load and for a lateral
load proportional to .
The condition B=0 represents the case of a simply
’ 119

In this case the plate will remain essen-
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supported or hinged edge at y=0. The case of A=0
represents the condition of a clamped edge at y=0.
The ratio .A/B is therefore & measure of edge restraint
and is related to the restraint coefficient e through the
boundary condition given in equation (B—6). Sub-
stitution of w as given by equation (B-9) in equation

(B-86) gives

B=A2ias (B-10)
where, by definition,
- (B-11)

Substitution of the value of B as given in expression
(B-10) in the deflection equation (B—9) gives "

] 4 3 2
a=alitse] (§) +a(§) +al B +a(f) J %
(B-12)
Equation (B—12) shows how the shape of the deflection
surface is affected by the restraint coefficient e. This
equation is used in the evaluation of V,, Vi, and T.
Thus,

(B-13)

- 7D 17720\, ef e/ xb\? :
Vi=Algl— u+'6'(—x') +_2-|:EI<T) +62—#cs:|

1r"'bt ese
T=a T3 (3t 5)f

Cs

A e/ . 2 _
+3 5‘(5{) +(_r_b§’+c°_”67 (B-14)
L A
Vi= A B-15)

2 [1—»+é<’—f)’+%[%<%b-)’+c=—w=] A1)
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where

o =%”<§+93+251’+12%)=0.23694
c,=£(1+a,+ag+aa) —0.79546
ca=a—18(6+5a1+4a,+ 3a;) =0.89305
c4=§ﬁ(ﬁ+‘%’+?%+“7"+2“'“‘+£

458 +“‘“’ “’“')_o 04288

/

400 144

= —=a 5 1 48a;+ 12,2+ 164,054 4a;*

+80a1+20a.+36a1a,+12a,a,)=0.56712
_1(2%5_ 16 , 30 9
Co—a_sz( +7 1+ 5

+§a.’+5a1+1—3?a3+4a,a,+3aga;)=0.17564

c._
‘a

a¢’+15—6a1ai

er= a5+ 90,480+ Tay+4a+ Tanoat Gac
+8a,1+ 5a,a;+24,") =0.19736
cs=0a;6,=—2.3168
c,=ay"c,=—4.0982
It is permissible to substitute the values of T, 17,
and V; as given by equations (B-14) to (B-16) in

equation (B-1) only when the applied stress f has its
critical valuef,. After thissubstitution itis found that

kx*EE

L'=;,

where
g+c¢ RCy +_—B
) (B-17)
ce
7 +4a

Equation (B-17) was used to calculate the values
of I listed in the columns designated (a) of table I.
With these values of & as a guide, a number of correct
values of k& were obtained by satisfying equat1on (A-20)
of appendix A. In this meanner the errors in & as
given by equation (B-17) were established at isolated
points. From this knowledge of the errors, corrections
were made to all the values of £ given in columns (a)
of table I. These corrected_values of k, which are
recommended, are listed in the columns designated ()
of table I. The recommended values of ¥ were used
in the construction of figures 3 and 6.
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FOR OUTSTANDING FLANGES

TABLE I—VALUES OF ¥ IN THE BUCKLING FORMULA FOR OUTSTANDING FLAN GES ELASTICALLY
RESTRAINED AT THE BASE

\qa 0.8 0.9 10 125 1.3 175 20 2.25 2.5 2.0
¢ (a) @} (a) ® (e} ® {(a) @) (e} ()] (a) ) (s} ®
¢ 1085 0.870
1§ S N O SN DU N S A S W R
.1 1,071 .
I T S TR SRR SN SRR SN S S S WA I
.2 107
I T- TN PN P RN PO RSN SN NN SRS A
IS TN PRSI PRSI PRI SRR NOURUIY vy NN S S M
4 1067
[ TN (ORI (SRR (SPRPRIRNS PRIUIIURY (PRI (SRR SRR SR SR SUN
.6 1 . -
.8 L . -
1.0 L . .
- G JUVRRVRNNRY PSSRSO PRI RS VPR PRSI ORI PUUORTIUN JIURIT, PN TR, pan SA—
1.5 L .963 -
20 1151 985 .
3.0 I.I.S? :]l_. 067
8.0 1.22 7 .
19 1 L9 463] 1451
20 L L 209 1610
50 1.368 1268 T8} L 747
100 1984 1278 Lo67] 1267 1.260( :31a 1505 L309] 1387 L& L500.......|.. —
- L4 L300 <1845
M 35 49 80 6.0 7.0 1.5 14.0
€ @ | @ |[@] @ | @] @ |@ ]| @ @ | ® @ (a) ®
0 0. cee..| 0.431} «0.430
.05 52| . 0.660] .730] .78
.1 . : <903 1.023 1020
16 eer . 11| L 1.304
3 = ba IE i
. . .803 .
.? 84| .s711 Hm 213 2.117
-4 LO0BEc1.0q3] LI7TI| 1.168{ 1.861| 1.357) L8674 1.509| 1.810{ « .80 2. 2091 A 108 . ___ . |-woeo oo
.5 L0d Ly Y1 — ——
.6 L2564 L -
.8 1484 L
10 Lew L
12 1808 L
L& 2170 2
20 | 1052 LO44] 1194 1. 184] 1.550] 12.530} 2.019(« 1. 986[. ___|.
3.0 | Lzi9 L1.200f 1.409] 1398} Lssol Lsesf..__ | |22
8.0 | L8l L34 1708 L6ST|-.ooofovnonnfomon | )i
10 | L74s] L7o6| 2.088] 20604 | JooITyITTITTh|TTmTIITTT”
20
772 (O RO Ot MRS DU NS RO NN M N
100 SRR RO SRR A
L I %+ [ - 72 PR POORUON DRI Ipis: JENNIIIE PPIRPIN (PRGN ISR PSS (U RPN (ORI SO P [ S (RS R (N M P 1

s Valnes obtained from the energy method.
b Recommended valnes.
« Velnes ohtalnad from the exset solation of the differentisl equation.



