REPORT No. 447

ECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

STATIC THRUST OF AIRPLANE PROPELLERS

By WALTER S. DIEHL

SUMMARY

Static thrust data from more than 100 airplane propeller tests are collected from various sources and combined in working charts, from which the static thrust coefficient K_{T_0} in the equation

$$T_0 = \frac{K_{T_0} \times b. hp}{r. p. m. \times diam.}$$

may be readily determined. The available data cover practically all types of propellers and are in good agreement. For extreme pitch ratios, or for very low and for very high blade settings, the values of K_{r_0} are shown to deviate considerably from the generally used linear relations based on data at moderate pitch ratios.

INTRODUCTION

The static thrust of a propeller was formerly of interest only in connection with proposed helicopter designs, but the advent of very high powers and corresponding high performance in recent airplane designs have made in necessary to consider the static thrust as a design factor. At present the chief applications of accurate static thrust data are in the calculation of nosing-over moments and the estimation of take-off runs.

The available methods of calculating static thrust are based on constants derived from Durand and Lesley's tests on wooden propellers. (Reference 4.) It is the purpose of this report to revise the constants and to extend the methods to include recent data on adjustable metal propellers.

Warner shows in reference 1 that the thrust per horsepower is obtained by division, from the coefficients

$$C_T = \frac{T}{\rho n^2 D^4} \tag{1}$$

(2)

giving

or

and

$$\frac{T}{P} = \frac{C_T}{C_P} \frac{1}{nD}$$

 $C_{P} = \frac{P}{\rho n^{3} D^{5}}$

$$T = \frac{C_T}{C_P} \frac{P}{nD} \tag{3}$$

In Chapter XIV of reference 2, Mr. Warner states: "It can be shown from propeller theory that the static thrust per horsepower for a propeller is equal to a constant divided by the product of the r. p. m. of the propeller and its diameter, and experiments by Durand have shown that the average value of the constant ranges from 49,000 for propellers designed to work normally at a value of V/nD of 1.1 up to 79,000 when V/nD for maximum efficiency is 0.5 - - -. The variation of the coefficient is approximately linear between the points given."

In reference 3 the author gives the static thrust formula

$$T_0 = 6,000 \left(18.7 - 9.5 \frac{p}{D} \right) \frac{\text{b. hp}}{(\text{r. p. m.}) \times D}$$
 (4)

Where T_0 is the static thrust in pounds, p/D is the nominal pitch/diameter ratio and D is the diameter in feet. The value of the constant in equation (4) was based on Durand and Lesley's data and is substantially identical with Warner's values as quoted above.

It will be shown that the static thrust coefficient K_{T_0} in the equation

$$T_0 = \frac{K_{\tau_0} \times b. hp}{(r. p. m.) \times D}$$
(5)

can be determined with fair accuracy for any propeller from data usually available or readily obtained.

DURAND AND LESLEY'S TESTS

In Table V of reference 4, Durand and Lesley give the "standing thrust and power" for 67 propellers. these include a number of variations in blade section and blade form that are of academic interest only, since practically all propellers now in use are in the S_1 F_2 class. Table I lists the essential data including the static thrust coefficient K_{T_0} for all of the S_1 F_2 propellers. K_{T_0} is found from the relation

$$K_{T_o} = 33,000 \frac{C_T'}{C_P'}$$

the conversion factor 33,000 being required for the units of b. hp and r. p. m. in equation (5).

ABBOTTAEROSPACE.COM

The values of K_{r_o} are plotted against p/D on Figure 1. The dashed line on this figure corresponds to equation (4) and may be represented by

$$K_{T_0} = 112,400 - 57,000 \frac{p}{D} \tag{6}$$

or

$$K_{T_o} = 57,000 \left(1.97 - \frac{p}{D} \right)$$
 (6a)

both of which are identical with equation (4).

FIGURE 1.—Static thrust coefficients for 2-blade wooden propellers. Durand and Lesley's tests. N. A. C. A. Technical Report No. 30

N. A. C. A. TESTS

Three series of systematic tests on adjustable blade metal propellers have been made by the National Advisory Committee for Aeronautics in the propeller research tunnel at Langley Field. (References 5, 6, and 7.) Static thrust data from these reports are given in Tables II to V, inclusive, and the values of K_{T_0} are plotted against blade setting at 0.75 R in Figure 2. There is a considerable scattering of the points probably due to fuselage interference effects and to the method of obtaining the static values of C_{τ} and C_P by extrapolation but the trend of the variation is well defined. It is of considerable interest to note the reduction in static thrust at high pitch angles for propellers with the Clark Y section. This characteristic, which may be due to an early stalling of the blade sections, has been observed in flight tests to such an extent that a separate curve is apparently required

for these propellers. As shown by the data from Technical Report No. 351 (reference 6), given in Table III, cutting off the tips to reduce the diameter does not appreciably affect the static thrust coefficient.

BRITISH TESTS

A very complete investigation of propeller characteristics is covered by Reports and Memoranda No. 829 of the British Aeronautical Research Committee. (Reference 8.) Static thrust data from this report are given in Tables VI and VII. The former covers propellers having constant pitch along the blade, while the latter have the variable pitch distribution obtained with the usual blade adjustment. Values of K_{To} are plotted against blade angle at 0.75 Ron Figure 3. The data are usually consistent due to care exercised in eliminating interference and fall very close to the three curves, the one for two blades being identical with that given on Figure 2.

FIGURE 2.-Static thrust coefficients for adjustable blade metal propellers

THE CALCULATION OF STATIC THRUST

For any given set of design conditions the static thrust may be calculated from equation (5):

$$T_{0} = \frac{K_{r_{0}} \times (b.hp)}{(r.p.m.) \times (diam.)}$$
(5)

the proper value of K_r being obtained from Figures 1, 2, or 3. In the case of adjustable blade metal propellers it is common practice to specify the blade setting in terms of the blade angle at the 42-inch radius. Figure 4 has been prepared for obtaining blade angles at 0.75 R from the values at the 42-inch radius, for conventional pitch distributions. This curve gives the correction $\Delta\theta$ to be added to or subtracted from the

126

STATIC THRUST OF AIRPLANE PROPELLERS

blade angle at the 42-inch radius to obtain the blade angle at the 0.75 R.

In design studies it is more convenient to work with the V/nD for maximum efficiency than with the blade angle. Figure 5 is a plot of K_{r_0} against V/nD for maximum efficiency, using the data from Tables I to VII. The points appear to fall nearer to regular curves than when p/D or θ is used as the base.

In using equation (5), the full rated b.hp and r.p.m. may be used without appreciable error since the ratio b.hp/r.p.m. is substantially constant for full-throttle operation.

CONCLUSIONS

No. 829

A study of the collected data leads to the following conclusions:

- 1. In general, narrow blades give a higher static thrust coefficient than wide blades.
- 2. Thin blades appear to give a higher static thrust coefficient for low pitch setting and less static thrust at high pitch settings than thick blades.
- 3. Blade section may be very important in determining the static thrust coefficient at high pitch settings.
- 4. There is a decrease in the static thrust coefficient due to the use of 3 or 4 blades at low pitch settings but the curves converge into one curve at and above a blade setting of 23° at 0.75 R.
- 5. The effect of gearing an engine is to reduce the propeller r. p. m., to increase the diameter, and to increase the pitch or blade angle required. With large reduction ratios the effect of the increased diameter and the reduction in $K_{\tau \tau}$ corresponding to the increased pitch may more than offset the effect of the change in r. p. m., and thus reduce the static thrust.

FIGURE 4.-Correction for obtaining blade angle at 0.75 radius from blade setting at 42" station. Positive (+) values of $\Delta \theta$ to be added to setting at 42" station. negative (-) values to be subtracted to get blade angle at 0.75 radius. Example:

6. The variable pitch propeller will give a large increase in static thrust coefficient when the available blade setting change is sufficient to attain blade angles of 12° or less.

BUREAU OF AERONAUTICS,

NAVY DEPARTMENT,

WASHINGTON, D. C. Sept., 1932.

REFERENCES

- 1. Warner, Edward P.: The Problem of the Helicopter. T. N.
- Warner, Edward P.: The Problem of the Helicopter. T. N. No. 4, N. A. C. A., 1920.
 Warner, Edward P.: Airplane Design-Aerodynamics. (Chapter XIV.) McGraw-Hill Book Co., Inc., New York City, 1927.
 Diehl, W. S.: Engineering Aerodynamics. The Ronald Press Co., 1928.
 Durand, W. F., and Lesley, E. P.: Experimental Research on Air Propellers-II. T. R. No. 30, N. A. C. A., 1920.
 Weick, Fred E.: Full-Scale Wind-Tunnel Tests of a Series of Metal Propellers on a VE-7 Airplane. T. R. No. 306, N. A. C. A., 1929.

- of Metal Propellers on a VE-7 Airplane. T. R. No. 305, N. A. C. A., 1929.
 Wood, Donald H.: Fuil-Scale Wind-Tunnel Tests of a Propeller with the Diameter Changed by Cutting Off the Blade Tips. T. R. No. 351, N. A. C. A., 1930.
 Freeman, Hugh B.: Comparison of Full-Scale Propellers Having R. A. F.-6 and Clark Y Airfoil Sections. T. R. No. 378, N. A. C. A., 1931.
 Fage, A., Lock, C. N. H., Howard, R. G., and Bateman, H.: Experiments with a Family of Airscrews Including the Effect of Tractor and Pusher Bodies. Part I. Experi-ments with the Family of Airscrews Mounted in Front of ments with the Family of Airscrews Mounted in Front of a Small Body. R. & M. No. 829, British A. R. C., 1922.

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ABBOTTAEROSPACE.COM

TECHNICAL LIBRARY

.

128

STATIC THRUST OF AIRPLANE PROPELLERS

TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

TABLE I

STATIC THRUST COEFFICIENTS FOR WOODEN PRO-PELLERS-DATA FROM DURAND AND LESLEY'S TESTS, TABLE V, N. A. C. A. TECHNICAL REPORT NO. 30

No.	ь Б	р D	Maximum efficiency		Thrust co- efficient	Power co- efficient	Static thrust coefficient
Prop. 1	D	D	$\eta_m = \frac{V/nD}{\text{for }\eta_m}$		$C_{\mathbf{T}'} = \frac{T_{0}}{g_{\rho}n^2 D^4}$	$C_P' = \frac{P_0}{g_\rho n^3 D^3}$	$K_{T_0} = 33000 \frac{C_T'}{C_T'}$
3 4 7 8 11 12 15 16 19 20 23 24 82 83	0.075 .100 .075 .100 .075 .100 .075 .100 .075 .100 .075 .100 .075 .100 .075 .100 .075 .100	0.99 .97 .55 .99 .77 .57 .57 .57 .55 .11 1.1	0.810 -793 -778 -703 -670 -804 -804 -804 -804 -804 -804 -804 -80	0.83 785 839 497 825 805 447 805 848 447 1.006	0.0160 .0195 .0149 .0164 .0120 .0122 .0163 .0183 .0187 .0164 .0121 .0121 .0123 .0183 .0183	0.00340 0.01035 006622 00769 00429 00429 00548 01000 00601 00435 00435 00451 01021 01248	62500 62200 74300 70400 84300 83100 65400 64500 67700 84800 81400 81400 51000 50000

TABLE II

STATIC THRUST COEFFICIENTS FOR METAL PRO-PELLERS N. A. C. A. TESTS, TECHNICAL REPORT NO. 306

Blade setting at 0.75R0	Static thrust coefficient Cr _e	Static torque coefficient CP0	V nD for 7=	Static thrust coefficient Kr ₀
11°	0.079	0.026	0.48	100300
15°	.094	.038	.65	81400
19°	.101	.050	.77	66200
23°	.096	.067	.91	47200
27°	.099	.098	1.13	33000

TABLE III

STATIC THRUST COEFFICIENTS FOR ADJUSTABLE METAL PROPELLERS WITH CUT-OFF TIPS N. A. C. A. TESTS, TECHNICAL REPORT NO. 351

Diam-	Blade angle at	Static	values	Maximu en	un effici- oy	Static thrust co-	b D	
eter D feet	0.75R 0	C_{T_0}	C_{P_0}	η 	V/nD for y=	efficient Kr,	D	
10.0	° 12 17 23 28	0.066 .091 .080 .089	0.026 .041 .072 .101	0, 733 . 790 . 819 . 836	0.48 .05 .85 1.08	83700 73200 36700 29060	0. 0803	
9,5	12 17 23 28	.080 .096 .096 .108	.031 .046 .083 .118	. 714 . 771 . 808 . 822	.48 .63 .85 1.05	85200 68900 38200 30200	. 0845	
9,0	12 17 23 28	.093 .102 .110 .114	. 035 . 052 . 100 . 125	. 705 . 759 . 791 . 810	.48 .64 .87 1.05	87700 64600 36300 30100	. 0892	
8,5	12 17 23 28	. 098 . 116 . 126 . 134	. 637 . 063 . 090 . 153	. 6S9 . 756 . 785 . 800	.47 .66 .89 1.11	87400 60700 46100 28900	. 0945	
8.0	12 17 23 28	.099 .127 .149 .148	. 038 . 067 . 097 . 159	. 675 . 740 . 772 . 780	.47 .66 .92 1.10	86000 62500 50600 30700	. 1005	

TABLE IV

STATIC THRUST COEFFICIENTS FOR ADJUSTABLE PITCH PROPELLERS WITH NAVY STANDARD SEC-TION (MODIFIED R. A. F.-6) N. A. C. A. TESTS, TECHNICAL REPORT NO. 378

Camber	Blade setting at	C _T	Crq		ım effici- cy	Static thrust co-	
ratio	0.75R 0	01	⊂ Fq	7=	V/nD for $\eta =$	efficient K _{T0}	
	0						
0.06	11	0.081	0.028	0.700	0.42	95600	
	15	.083	.039	.753	.57	70400	
	19	.102	.067	.795	.70	50100	
	23	.113	.092	.810	.86	40500	
	27	.111	.112	.820	1.02	33300	
. 08	11	. 081	.029	. 680	.42	92000	
	15	. 080	.041	. 740	.56	64700	
	19	. 098	.050	. 780	.71	64700	
	23	. 102	.062	. 805	.85	54100	
	27	. 115	.120	. 820	.99	31600	
. 10	11	.075	.030	. 660	.43	82400	
	15	.088	.041	. 732	.59	70900	
	19	.101	.053	. 782	.73	63000	
	23	.106	.065	. 802	.88	53600	
	27	.116	.092	. 805	1.00	41500	

TABLE V

STATIC THRUST COEFFICIENTS FOR ADJUSTABLE PITCH PROPELLERS WITH CLARK Y SECTION N. A. C. A. TESTS, TECHNICAL REPORT NO. 378

Camber	Blade	C_{τ_0}	C _{Po}	Maxim clei		Static thrust coeffi-
ratio	at 0.75R 0	070	0 P0	η =	V]nD for y=	cient K_{T_0}
0.06	° 11 15 19 23 27	0.031 .031 .106 .114 .097	0.028 .039 .035 .108 .110	0.725 .777 .802 .815 .820	0.46 .60 .77 .90 1.03	95600 68200 41100 34800 28300
. 03	11 15 19 23 27	.078 .053 .074 .088 .105	. 029 . 039 . 056 . 085 . 120	.750 .795 .810 .820 .826	.48 .62 .76 .93 1.09	88800 70400 43500 34100 28800
. 10	11 15 19 23 27	. 075 . 085 . 091 . 098 . 088	.030 .040 .052 .079 .113	.746 .778 .802 .813 .828	.50 .62 .77 .93 1.12	82400 70400 57800 40900 25100

-

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ABBOTTAEROSPACE.COM

TECHNICAL LIBRARY

TABLE VI

STATIC THRUST COEFFICIENTS FOR METAL PRO-PELLERS DATA FROM BRITISH A. R. C. R. & M. NO. 829

Dete		Blade	33	_	Pitch		imum dency	Stati	c data	Static	
Data from Table No.	No.	Width diam. D	Bla anı at 0.	gle 75R	dlam. P D	7 m	V/nD for y=	Thrast coeffi- cient K_{T_0}	Torque coeffi- cient Ko	thrust coeffi- cient K _{T0}	
$ \begin{array}{c} \mathfrak{S}(3) \\ \mathfrak{S}(4) \\ \mathfrak{S}(6) \\ \mathfrak{S}(4) \\ \mathfrak{S}(6) \\ \mathfrak{S}(6) \\ \mathfrak{S}(1) $	2424242424242322242340240242340	0.082 .084 .084	° 7712161633333233323333333333333323232321212121	, 155008800880000000000000000000000000000	0	0.545 448 734 830 725 85 847 887 887 887 887 887 887 887 887 887	$\begin{array}{c} 0.300\\ .2283\\ .456\\ .450\\ .623\\ .925\\ .945\\ .945\\ .945\\ .957\\ .970\\ .90$	0.0622 0.928 0.9210 11405 1145 1860 1200 1145 1860 1210 1420 1210 1210 1220 1220 1220 122	0.00341 .00533 .00514 .01003 .0159 .0159 .0257 .0259 .01835 .01210 .01305 .01210 .01305 .01490 .01490 .00415 .00561 .00563 .00573 .0057	95900 78400 93000 73300 74200 81500 41700 44500 80200 80000 80000 800000000	

TABLE VII

STATIC THRUST COEFFICIENTS FOR ADJUSTABLE PITCH METAL PROPELLERS — DATA FROM BRITISH A. R. C. R. & M. NO. 829

		Blade	3		Pitch	Maximum efficiency		Static data		Static
Data from Table No.	No.	Width dfam. D	an at 0	ade glo .75R 9	dlam. P D	7) -	V/nD for η=	Thrust coeffi- cient Kroʻ	Torquo coeffi- cient Keg	thrust coeffi- cient Kr ₀
7 (1) 7 (2) 8 (5) 7 7 (5) 7 7 (5) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	~~~~~~	මේ දේශය දේශය දේශය දේශය දේශය දේශය දේශය දේශ	° 7 12 16 23 28 32 5 32 7 12 16 23 28 27 12 16 23 28 23 5 32 7 12 16 23 28 32 5 32 5 32 5 32 5 32 5 32 5 32	, 15 0 % 0 % % % % % % % % % % % % % % % %	0.33 .100 1.255 1.454 1.52 .338 1.454 .351 .700 1.255 1.454 1.52 .500 1.255 1.454	0. 551 .715 .780 .853 .886 .896 .885 .835 .545 .445 .867 .445 .667 .480 .637 .725 .805 .847 .847 .855 .847 .855 .882	0.320 .460 .624 .896 1.127 1.424 1.583 1.320 .302 .312 .400 .312 .400 .623 .896 1.136 1.236 1.236 1.256	0.0659 .0950 .1125 .1225 .1332 .1333 .1445 .0526 .1330 .0556 .1330 .0556 .1330 .0557 .1330 .1860 .2395 .2395 .2170	0.00338 .00558 .00511 .01475 .02096 .0255 .0233 .02711 .00328 .02711 .00328 .02711 .00328 .00631 .01092 .00531 .01092 .0159 .0354	102500 89100 74200 28400 25900 25900 25900 95000 25900 95000 25900 95000 25900 95000 25900 9600 25900 2500000000

130