

REPORT No. 417

PRESSURE DISTRIBUTION TESTS ON A SERIES OF CLARK Y BIPLANE CELLULES WITH SPECIAL REFERENCE TO STABILITY

By RICHARD W. NOYES

SUMMARY

The pressure distribution data discussed in this report represent the results of part of an investigation conducted by the National Advisory Committee for Aeronautics on the factors affecting the aerodynamic safety of airplanes. The present tests were made on semispan, circular-tipped Clark Y airfoil models mounted in the conventional manner on a separation plane. Pressure readings were made simultaneously at all test orifices at each of 20 angles of attack between -8° and $+90^{\circ}$.

The results of the tests on each wing arrangement are compared on the bases of maximum normal force coefficient, lateral stability at a low rate of roll, and relative longitudinal stability. Tabular data are also presented giving the center of pressure location of each wing.

The principal conclusions drawn from the results of these tests may be summarized as follows:

- 1. No biplane arrangement investigated has as high a value of maximum normal force coefficient as the monoplane, although the value for the cellule having 50 per cent positive stagger and 3° positive decalage (the lower wing at a higher angle of attack than the upper) is only 3 per cent less.
- 2. Unstable rolling moments due to a low rate of roll are generally decreased by the use of a gap/chord ratio of less than 1.0, positive stagger alone, or positive stagger and negative decalage.
- 3. Combined positive stagger and negative decalage show the greatest relative longitudinal stability below the stall.

INTRODUCTION

A review of the general problem of the aerodynamic safety of airplanes shows that the combination of flight characteristics peculiar to the conventional airplane at high angles of attack is one of the most prolific sources of danger—a situation that is directly traceable to the fact that the greatest and most sudden changes in lift and stability occur at these attitudes.

To increase the rather meager general information on airfoils operating in this angular range the National Advisory Committee for Aeronautics has conducted a comprehensive investigation of the aerodynamic characteristics of a large series of Clark Y monoplane and biplane combinations up to 90° angle of attack. This research consisted of force tests, autorotation tests, and pressure distribution tests, all made in the 5-foot atmospheric wind tunnel of the N. A. C. A. (reference 1), at a Reynolds Number of about 150,000.

The results of the force tests have been reported in references 2 and 3, the autorotation tests in reference 4, and the preliminary results of the pressure distribution tests in references 5, 6, and 7. The present report is a compilation and analysis of all the pressure distribution data given in the last three references.

Analysis of the data presented in this report covers (1) the effect of wing arrangement on maximum normal force; (2) the effect of wing arrangement on lateral stability at high angles of attack; and (3) the effect of wing arrangement on longitudinal stability.

APPARATUS AND METHODS

Apparatus.—Conventional pressure distribution test apparatus (the validity of the use of which is discussed in references 5 and 8) was used in the closed-throat atmospheric wind tunnel. Ageneral view of the apparatus is shown in Figure 1, and a photograph of the wing models mounted vertically through a midspan "separation plane" is shown in Figure 2. The horizontal plane extended several feet upstream and downstream from the models and completely across the tunnel. Its leading edge was adjustable through a small vertical angle in order to compensate for the frictional reduction in air velocity adjacent to the plane's surface. The disk in its center was free to rotate with the wing models when their angle of attack was changed. This adjustment was possible from outside the test section while the tunnel was in operation. A clamp beneath the separation plane, protected from the air stream by a fairing, held the wing models. It was adjustable while the tunnel was shut down to allow the wings to be set in any desired biplane arrangement.

The semispan models were 5-inch chord, Clark Y airfoils with circular tips and an aspect ratio of 6. The same profile shape was maintained throughout the span and the chords of all sections lay in the



FIGURE 1.—General view of test apparatus

same plane. Figure 3 shows the plan form of the wings with test sections and orifice locations indicated. Each orifice was the end of a 0.015-inch inside diameter brass tube inlaid between the mahogany laminations of the model. The other end of each tube extended

ing to test sections on the models, and within each group they were so spaced that the heights of the alcohol columns formed ordinates of the section-load diagrams. Shadowgraph records of these heights were obtained on a long strip of sensitized paper stretched behind the

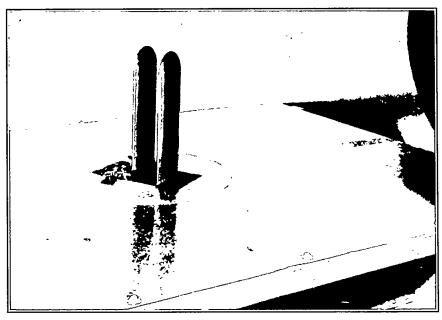


FIGURE 2.—Semispan wing models mounted on separation plane

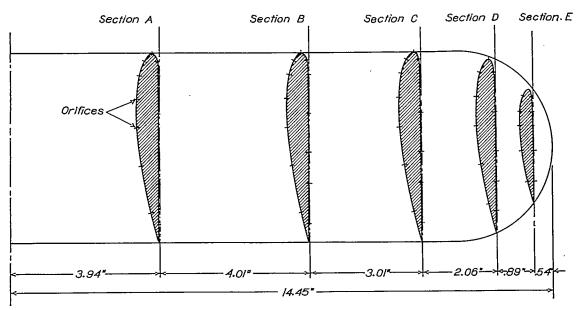


FIGURE 3.—Plan view of wing models showing profiles and orifice locations

several inches beyond the butt of the wing to facilitate its connection to the manometer.

The multiple-column alcohol manometer and rubber tubing connecting it to the inlaid brass tubes in the models are seen in Figure 1 mounted below the tunnel test section. The manometer tubes were arranged approximately on the arc of a circle at the center of which was an electric light used to expose the photostatic records. The tubes were grouped accord-

tubes. As each record was taken it was wound on a reel in a lightproof box at one end of the manometer and a fresh length of paper unwound from a similar box at the other end.

Dynamic pressure in the test section of the wind tunnel was indicated on a separate micromanometer. This instrument was connected to a calibrated Pitotstatic tube located several feet upstream where it was not affected by the presence of the models. REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Tests.—A velocity survey of the air stream was made along the vertical diameter of the tunnel test section about 1 foot ahead of the models. Figure 4 shows the distribution of dynamic pressure as obtained with the models set at zero lift and reference 8 indicates that this distribution will not be changed appreciably by increasing the angle of attack. The integrated mean dynamic pressure between the limits shown was used to calibrate the "service" Pitot-static tube employed throughout the investigation to indicate the air speed in the test section.

Table I gives a complete list of the monoplane and biplane arrangements investigated. Each wing setup was tested at angles of attack from -8° to $+90^{\circ}$ at 2° intervals in the vicinity of the stall and at larger angular steps over the remainder of the range.

The detailed test procedure followed in each case was, in general, similar to that employed in previous wind-tunnel pressure-distribution work in which all orifice pressures were recorded simultaneously. Before each run the pressure lines from the wing orifices to the manometer tubes were checked for leaks or blocking. The air was then brought up to speed, the desired angle of attack set, and the record obtained.

TABLE I

PRESSURE DISTRIBUTION TEST PROGRAM

Wing profile—Clark Y. Tip shape—Circular.

Aspect ratio—6 (except for shorter wing of overhung combinations.)

Variable	Gap chord	Stagger chord	Deca-	Dihedral	Sweepback	Over- hang
Monoplane	alon			0	0	
Gap	Lower alon 0.50 .75 1.00		ested 0 0	0 0 0	0 0	0 0 0
Stagger	1.25 1.50 1	0 0 -0.25 +.25	0	0	0 0 0 0	0 0 0
Decalage	1 1 1	+.50 +.75 0	0 0 -8° -3°	0	0 0 0	0 0 0
Dihedral	1 1 1 1	0 0 0	-3° +6° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 3° upper 3° lower 0	0 0 0 0 10° upper	0 0 0 0
Overhang	1 1 1 1 1	0	0000	. 0	5° upper 5° lower 10° lower 0 0	0 0 1 20% 140%
Gap and stagger	1 .75 .75 1.25	0 +. 25 +. 50 +. 25	0 0 0	0 0 0	0 0 0	-20% 0
Stagger and decalage	1.25 1 1	+.50 +.25 +.50 +.25	0 +3° +3° -3°	0 0	0 0 0	Ŏ 0 0
Gap and decalage	1 1.25 .75 1.25	+.50 0 0	-3° +3° -3°	000	0 0 0	. 0 0
Stagger and sweepback_	.75 1 1 1	0 +. 25 +. 50 50	-3° -000	0 0 0	5° upper 10° upper 10° lower	0 0 0 0

Decalage is considered positive when the lower wing is at a larger angle of attack than the upper wing.

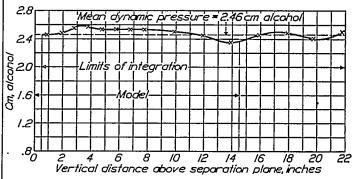


FIGURE 4.—Vertical dynamic pressure distribution 1 foot ahead of model position

RESULTS

Reduction of test data.—The results of this investigation were obtained from the recorded orifice pressures by three steps of graphical integration. First, the section normal force diagrams, which were drawn directly on the manometer records, were integrated for area and moment about the leading edge of the straight portion of the wing. The resulting section loads and section pitching moments were then plotted against span. Integration of the wing-load diagrams gave total wing normal force and bending moment about the root, and integration of the wing pitching moment curves gave total wing pitching moments. Finally, these dimensional loads and moments were reduced to coefficient form by means of the following equations.

Section normal force:

$$C_{N}' = \frac{N'}{qc} (1)$$

where

N' = the normal load on a section of unit span q = dynamic pressure

c =chord of the section.

Total wing normal force:

$$C_N = \frac{N}{qS} \tag{2}$$

where

N=the normal load on the whole wing

S = wing area

Cellule normal force:

$$C_{N \ cellule} = \frac{C_{N \ upper} \ S_{\ upper} + C_{N \ lower} \ S_{\ lower}}{S_{\ cellule}}$$
(3)

Wing loading ratio:

$$e = \frac{C_{N \text{ upper}}}{C_{N \text{ lower}}} \tag{4}$$

TECHNICAL LIBRARY
ABBOTTAEROSPACE.COM

Cellule pitching moment about the quarter-chord point of the mean cellule chord:

$$C_{mcl4} = \frac{[C_N \times S \times (C_{px}' - C_{px})]_{upper} + [C_N \times S \times (C_{px}' - C_{px})]_{lower}}{S_{cellule}}$$
(5)

where

 C_{pz}' = longitudinal distance in terms of the wing chord from its leading edge to the 25 per cent point of the chord of an imaginary airfoil lying between the upper and lower wings of the cellule at a distance from each inversely proportional to its area and bounded by planes passing through their leading and trailing edges

 G_{px} =longitudinal center of pressure of the wing in terms of the chord

Longitudinal center of pressure:

$$C_{px} = \frac{M}{N} \tag{6}$$

where

M=total pitching moment about the leading edge of the normal force over the wing

Lateral center of pressure:

$$C_{py} = \frac{L}{N} \tag{7}$$

where

L=total bending moment about the wing root due to the normal force over the wing

Rolling moment due to roll was calculated by the strip method (reference 9) from curves of C_N plotted against α , and reduced to coefficient form by the equation,

$$C_{\lambda} = \frac{\lambda}{abS} \cos \alpha \tag{8}$$

where

 α = the angle of attack and λ is the total rolling moment due to the asymmetric distribution of normal load along the span when the assumed rate of roll is such that

$$\frac{pb}{2V} = 0.05 \tag{9}$$

In this expression

p=rate of rotation in roll in radians per second

b = span of wing in feet

V=air velocity in feet per second at center section of the wing

and the numerical measure of the rate of roll, 0.05, corresponds to the results obtained in flight tests in extremely gusty air when the airplane is held as level as possible.

Tables and figures.—The coefficients as derived from the foregoing equations are presented in graphical and tabular form. Curves of cellule, upper wing, and lower wing normal force coefficient (all plotted against angle of attack) are presented in families according to

the principal cellule variables in Figures 5 to 35. The monoplane C_N curve included in each of these figures showing biplane cellule normal force is the mean curve of the two wings making up the cellule tested separately as monoplanes. The monoplane curve shown on the remaining figures is drawn through the experimental points of the particular wing (upper or lower) to which it is being compared.

Lateral stability characteristics of each wing arrangement are indicated by curves of C_{λ} plotted against angle of attack in Figures 36 to 46. In this series of figures, the monoplane comparison curve is, again, the mean of the two wings tested separately as monoplanes.

Curves of pitching moment about the 25 per cent point of the mean chord are given for all cellules in Figures 47 to 57.

Table II is a collection of the maxima and other important features of the foregoing curves. Tables III to XL contain all the data obtained in this research on the following characteristics of each cellule tested: (1) Normal force coefficient of the complete cellule; (2) pitching-moment coefficient of the complete cellule; (3) wing-loading ratio; (4) normal force coefficient of the individual wings of each cellule; (5) longitudinal and lateral center of pressure of each wing. (For the benefit of persons interested in the study of the effect of cellule arrangement and angle of attack on the span load distribution of the individual wings of a biplane, tables of section normal force coefficients for all the arrangements discussed in this report are available upon request. This material is not included in the present report, because of its relatively limited general interest and because it is irrelevant to the present discussion.)

Accuracy.—A comparison of the results of repeat runs showed that a deviation of about ± 2 per cent of the mean observed value of the variable may be expected in any plotted or tabulated reading presented. This error is due to factors which are typical of pressure distribution test procedure, and which are discussed in detail in reference 8.

An additional error in the biplane cellule results is due to the slight dissimilarity between the two wing models. Figure 5 shows the normal force coefficient as determined experimentally on each wing plotted against angle of attack and a curve drawn through the mean of each pair of points. The average difference between any two corresponding readings is less than 3 per cent of the mean observed value. Consequently, the probable error of each wing from an "average" wing is less than 2 per cent and therefore within the above-mentioned experimental error.

Quantitatively the pitching moments as presented can be considered only approximate. The error is due to the fact that pressure distribution measurements as usually made neglect skin friction and the compo-

nent of the pressure forces parallel to the chord. The neglect of these forces results in an error in the center of pressure location up to a maximum of about 3 per cent of the chord near the stall and in an error in the pitching moment of a magnitude depending on the location of the center of gravity. When the center of gravity is on the mean geometric chord, as assumed in the present report, the error in the shape of the moment curves is small enough to warrant a qualitative analysis. Quantitatively, however, the moments may be sufficiently in error to prohibit their use in stability calculations.

The Reynolds Number of the present tests was about 150,000 or 1/20 full scale. Care should therefore be exercised in applying the results to full-scale conditions, since, as indicated in reference 10, there would be appreciable changes in some of the aerodynamic characteristics if the wings had been tested at full scale. Principal among these characteristics are maximum normal force coefficient and the angle of attack at which it occurs. At full scale the maximum normal force coefficient would probably be raised somewhat and the angle of attack increased several degrees. Center of pressure and pitching moments are known to show but little change with scale and, judging from the negative slope of the full-scale Clark Y lift curve in reference 10, it is not likely that the magnitude of rolling moment due to roll would be seriously altered. There is no information covering scale effect on wing-loading ratios, but at normal angles of attack this characteristic is not likely to vary greatly with Reynolds Number.

The blocking effect or constriction of the free area of a wind tunnel by the wing model has been described in reference 3 and a method of correction developed for full-span wings supported by wires. However, owing to the very different blocking conditions existing during pressure distribution tests from those in force tests, it was not considered advisable to apply this correction to the present results.

No correction for tunnel-wall effect has been applied.

DISCUSSION

The following analysis is divided into three divisions. The first part is a detailed discussion of the effect of each cellule variable on: (a) Maximum normal force coefficient; (b) lateral stability at a low rate of roll; and (c) longitudinal stability. The basic wing arrangements used for comparison are the monoplane and the orthogonal biplane, the latter being defined as a biplane having wings of equal chord, a gap/chord ratio of 1.0. and no stagger, decalage, dihedral, sweepback or overhang. In the second part the data are taken as a whole and the general tendencies of the various methods of changing the orthogonal biplane arrangement are discussed relative to the three factors mentioned above. In the last section these general tendencies are collected and summarized with a view toward indicating favorable lines for future research.

DETAILED DISCUSSION

(a) Maximum normal force—Monoplane (fig. 5).— The two wings (used to make all the following biplane set-ups) tested separately as monoplanes, give the normal force coefficients shown. The maximum coefficient is greater than that of any biplane arrangement by about 3 to 18 per cent, these values indicating the approximate, practical limits to the effect of biplane interference.

Gap (figs. 6-8).—Increasing the gap/chord ratio above 1.0 increases the maximum normal force coefficient of the cellule. This is because both wings operate under progressively more favorable conditions as their distance apart is increased.

Decreasing the ratio below 1.0 tends to delay the burble of the lower wing up to about 35° angle of attack. However, it also decreases the maximum of the upper wing (owing to the greater interference from the lower wing) so that the cellule maximum normal force coefficient falls much below that of the orthogonal biplane.

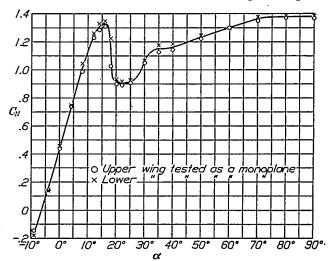


FIGURE 5.—Normal force coefficient. Clark Y monoplane. Circular tip.

Aspect ratio=6

Stagger (figs. 9-11).—Positive stagger increases and negative stagger decreases the cellule maximum normal force coefficient. Increasing the positive stagger has an effect similar to increasing the gap, for it increases the distance between the wings and makes each of them behave more like a monoplane. In the extreme case of 75 per cent positive stagger, both upper and lower maximum C_N are greater than that for the monoplane. However, even in this case, the cellule maximum is less than the monoplane owing to the slot effect of the upper wing on the lower, which delays the lower wing maximum C_N until well after the upper wing has burbled.

Gap and stagger (figs. 12-14).—Increasing above 1.0 the gap of a biplane having positive stagger increases the cellule maximum normal force coefficient only when the stagger is greater than 25 per cent. Decreasing below 1.0 the gap of a biplane having positive stagger decreases the maximum normal force coefficient.

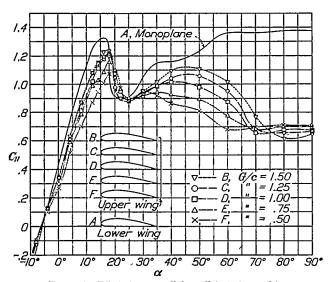


FIGURE 6.—Effect of gap on cellule coefficient of normal force

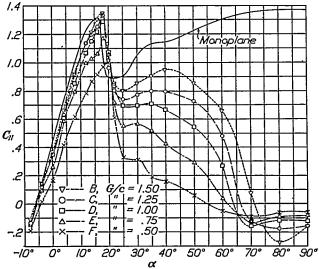


FIGURE 7.—Effect of gap on upper wing coefficient of normal force

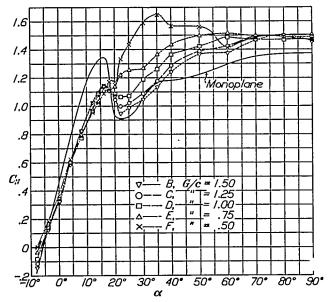


FIGURE 8.—Effect of gap on lower wing coefficient of normal force

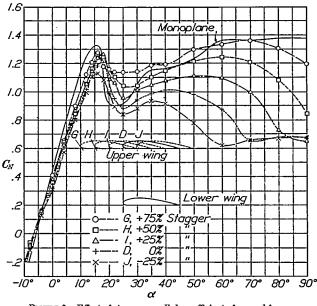


FIGURE 9.—Effect of stagger on cellule coefficient of normal force

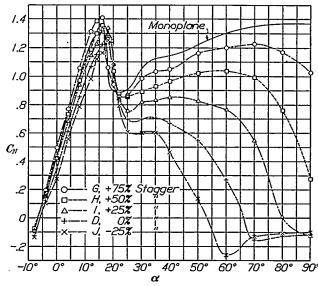


FIGURE 10.-Effect of stagger on upper wing coefficient of normal force

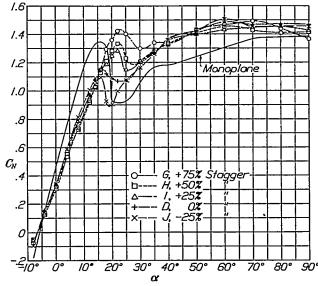


FIGURE 11.—Effect of stagger on lower wing coefficient of normal force

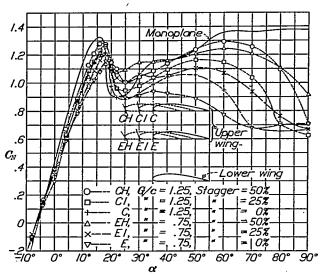


FIGURE 12.—Effect of stagger and gap on cellule coefficient of normal force

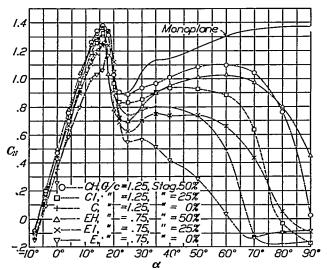


FIGURE 13.—Effect of stagger and gap on upper wing coefficient of normal force

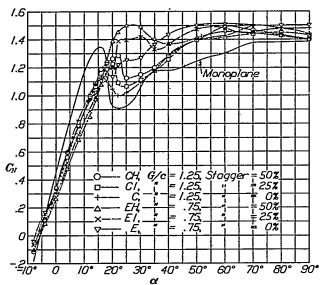


FIGURE 14.—Effect of stagger and gap on lower wing coefficient of normal force

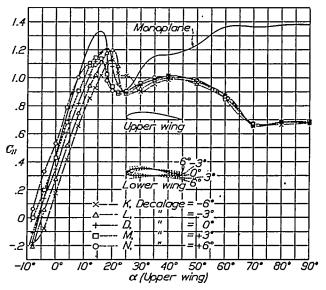


FIGURE 15.—Effect of decalage on cellule coefficient of normal force

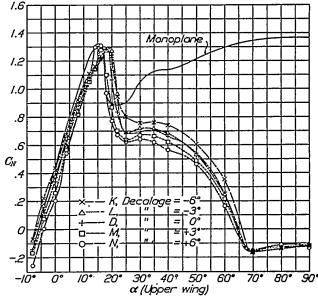


FIGURE 16.—Effect of decalage on upper wing coefficient of normal force

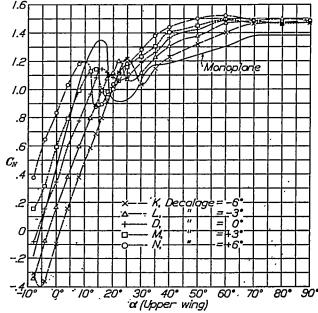


FIGURE 17.—Effect of decalage on lower wing coefficient of normal force

TECHNICAL LIBRARY ABBOTTAEROSPACE.COM

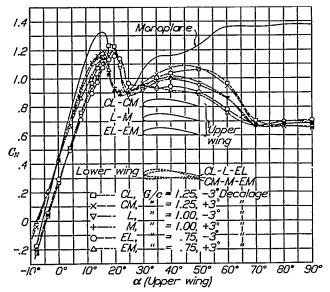


FIGURE 18.—Effect of gap and decalage on cellule coefficient of normal force

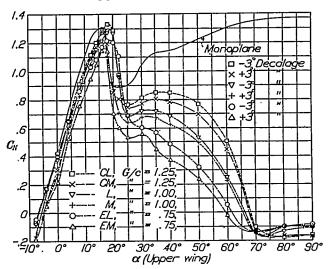


FIGURE 19.—Effect of gap and decalage on upper wing coefficient of normal force

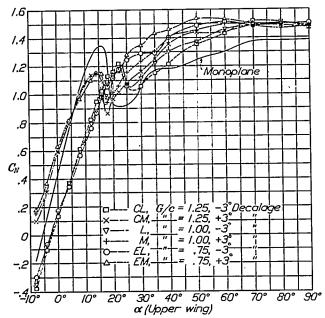


FIGURE 20.—Effect of gap and decalage on lower wing coefficient of normal force

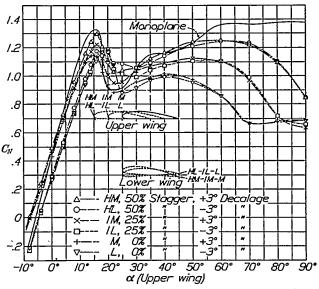


FIGURE 21.—Effect of stagger and decalage on cellule coefficient of normal force

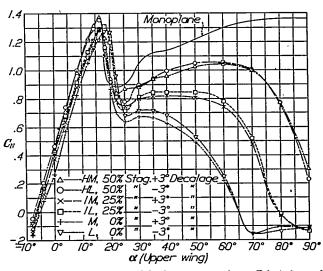


FIGURE 22.—Effect of stagger and decalage on upper wing coefficient of normal force

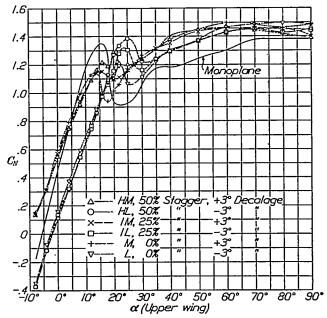


FIGURE 23.—Effect of stagger and decalage on lower wing coefficient of normal force

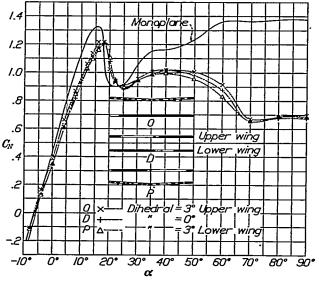


FIGURE 24.—Effect of dihedral on cellule coefficient of normal force

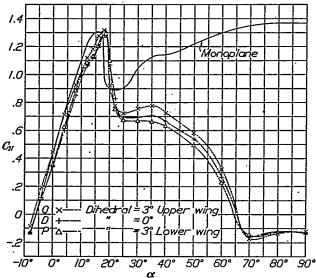


FIGURE 25.—Effect of dihedral on upper wing coefficient of normal force

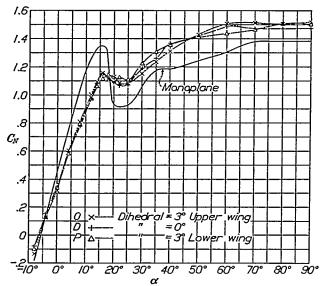


FIGURE 26.—Effect of dihedral on lower wing coefficient of normal force

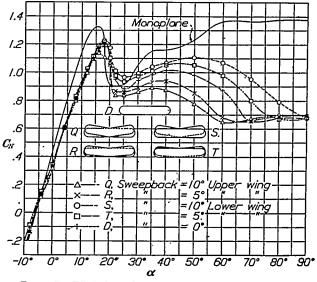


FIGURE 27.—Effect of sweepback on cellule coefficient of normal force

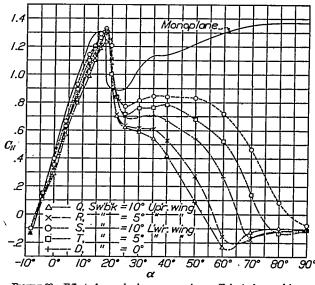


FIGURE 28.—Effect of sweepback on upper wing coefficient of normal force

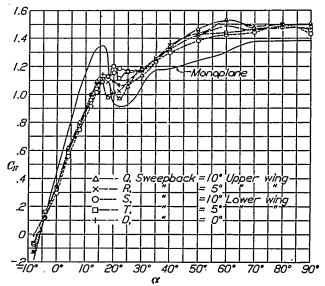


FIGURE 29.—Effect of sweepback on lower wing coefficient of normal force

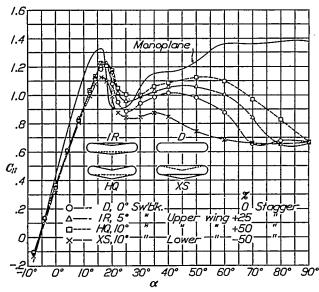


FIGURE 30,—Effect of stagger and sweepback on cellule coefficient of normal force

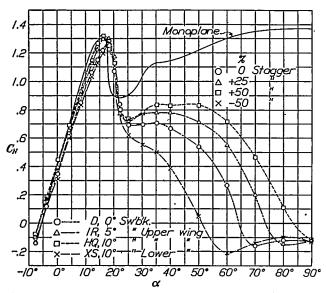


FIGURE 31.—Effect of stagger and sweepback on upper wing coefficient of normal force

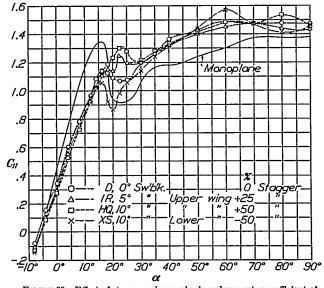


FIGURE 32.—Effect of stagger and sweepback on lower wing coefficient of normal force

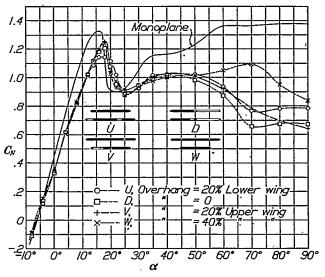


FIGURE 33.—Effect of overhang on cellule coefficient of normal force

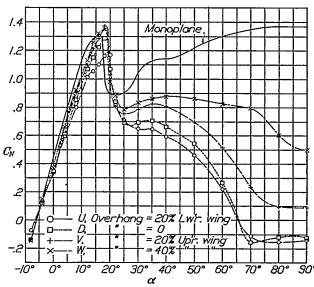


FIGURE 34.—Effect of overhang on upper wing coefficient of normal force

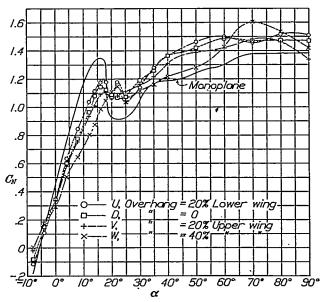


FIGURE 35.—Effect of overhang on lower wing coefficient of normal force

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS*

ECHNICAL LIBRARY

Decalage (figs. 15-17).—The angles of zero and maximum normal force of the lower wing of a biplane cellule having decalage are displaced from those of the orthogonal biplane approximately the amount of the decalage. The upper wing shows a small angular displacement in the opposite direction at low angles of attack and a shift similar to the lower wing at high angles. This latter displacement is not sufficient, however, to cause the maxima of both wings to occur simultaneously, with the result that the cellule maximum normal force is decreased (as compared to the orthogonal arrangement) for all values of decalage tested.

Decalage and gap (figs. 18-20).—Changing the gap of a biplane having $\pm 3^{\circ}$ decalage increases the maximum normal force coefficient of the cellule when the gap is increased above 1.0 and decreases it when reduced below 1.0.

Decalage and stagger (figs. 21-23).—Positive decalage alone causes a reduction in the angle of maximum normal force on the lower wing, but positive stagger tends to increase it. These effects practically cancel each other, within the range of these tests, causing the lower wing to burble at approximately the same angle that it does in an orthogonal biplane. The separate effect of the two variables on the angle of attack of the upper wing maximum is to reduce it slightly in both cases. Inasmuch as the latter point occurs just after the burble of the lower wing in the orthogonal combination, the net result on a cellule having positive decalage and positive stagger is to increase its maximum normal force coefficient. This increase is great enough so that at +3° decalage and +50 per cent stagger, the cellule maximum C_N is only 3 per cent less than that of the monoplane.

Negative decalage and positive stagger both tend to delay the burble of the lower wing and cause the stalling angle of the upper wing to occur progressively sooner. Consequently, the lower wing reaches its maximum from 3° to 9° later than the upper, causing a low maximum normal force for the cellule and poor division of load between the wings.

Dihedral (figs. 24-26).—Dihedral has practically no effect on the coefficient of normal force.

Sweepback (figs. 27-29).—The effect of sweepback on either the upper or the lower wing is, in general, similar to the effect of stagger. The magnitude of the changes in maximum normal force are equivalent to those that would be produced by an amount of stagger corresponding to the mean stagger of the sweptback wing relative to the straight wing.

Sweepback and stagger (figs. 30-32).—Comparison of the results of combined sweepback and stagger with those of sweepback and stagger tested separately (figs. 27 to 29 and 9 to 11, respectively) shows that the mean stagger is again the principal factor governing the normal force characteristics of the cellule. Within the range of these tests a mean positive stagger of only

25 per cent was obtained, an amount that does not materially raise the maximum normal force coefficient.

Overhang (figs. 33-35).—Slight improvement in the cellule maximum normal force coefficient results from positive overhang. This increase is due to the combined effect of the reduction in area of the lower wing, which is adversely affected by biplane interference, and to an improvement in the upper wing maximum C_N .

(b) Lateral stability.—If the condition be assumed that an airplane is taking off or landing at a high angle of attack over an obstacle of sufficient size to cause considerable turbulence, in the air blowing over it, the inherent lateral stability of the machine becomes an important factor from the standpoint of safety. These conditions can be approximated for the purpose of stability calculations by assuming an angle of attack giving C_{Nmax} and an instantaneous disturbance causing a rate of roll such that $\frac{pb}{2V}$ =0.05.

The influence of the different biplane variables on the first of these two conditions is of importance only in its relation to the angle at which lateral instability begins. (See General Discussion.) In the present case, the conditions affecting the range and magnitude of the unstable rolling moments due to the rate of roll specified will be discussed.

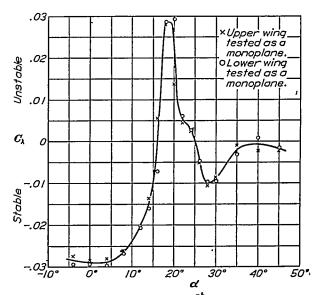


FIGURE 38.—Rolling moment due to roll at $\frac{pb}{2V}$ =0.05. Clark Y monoplane. Circular tip. Aspect ratio=8

Monoplanes (fig. 36).—Comparison of the critical points of the curve shown with corresponding force test data given in reference 3 (Table III) shows an agreement within 2° of the angles of attack for $C_{\lambda}=0$ as determined by the two methods of test. The lack of complete agreement is probably due to the difference in results obtained by application of the strip method of calculation of lateral stability to force test data and

pressure distribution data. Assumption of uniform span loading was made in the force tests, but pressure distribution data allow a more accurate determination of the true span loading. Consequently, results from the pressure distribution tests take into account the delay in burble of the tips beyond the angle of maximum normal force on the wing as a whole and, therefore, consistently give slightly larger angles of initial neutral stability than calculations based on force tests. The upper limit of the range of instability is likewise raised above force test calculations owing to the normal load increasing again at the center of the wing before it does so at the tips.

A comparison of Figure 36 with corresponding autorotation results (from reference 4, figs. 31 and 32) shows relatively close agreement of the angles of attack of stable autorotation at $\frac{p}{2V} = 0.05$ as determined by these two methods of test. The pressure distribution results are considered more reliable, however, because the lowest value of $\frac{p}{2V}$ obtained in the autorotation tests was about 0.20 and interpolation of the curve of rotation against angle of attack from this point to $\frac{p}{2V} = 0$ is, at best, very uncertain.

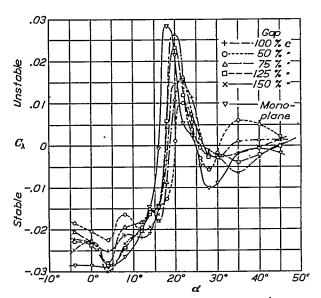


FIGURE 37.—Effect of gap on rolling moment due to roll at $\frac{pb}{2V}$ =0.05

Gap (fig. 37).—The most important feature to note is that progressive reduction in gap causes a general decrease in the range and magnitude of the unstable rolling moments. This effect is due to the increasing tendency of the upper wing to maintain the flow over the lower as the gap is lessened. At the same time, however, the burble of the upper wing becomes more rapid so that in the region from gap/chord=1.00 to gap/chord=0.75 the improvement due to the lower

wing is just offset by the greater instability of the upper.

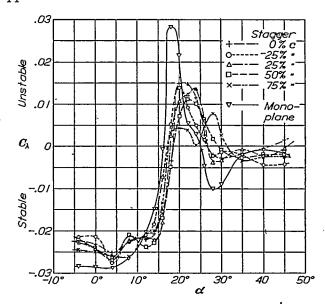


FIGURE 38.—Effect of stagger on rolling moment due to roll at $\frac{pb}{2V}$ =0.05

Stagger (fig. 38).—Separation of the burble points of the two wings by either positive or a small amount of negative stagger reduces maximum instability. However, above 25 per cent positive stagger this separation causes a distinct prolongation of the range of instability. At +75 per cent the separation is so marked that there are two peaks of unstable moment, one at the burble of the upper wing and a second, greater one, when the flow over the lower wing breaks down.

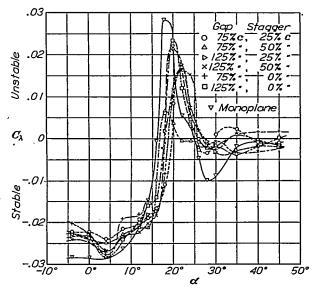


Figure 39.—Effect of combined gap and stagger on rolling moment due to roll at $\frac{pb}{2V}$ =0.05

Gap and stagger (fig. 39).—As compared with the orthogonal biplane, the high degree of instability associated with a gap/chord ratio of 1.25 is partially

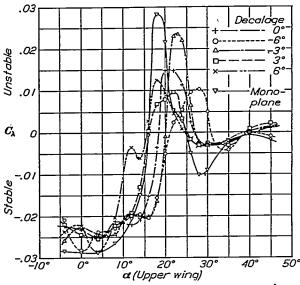


FIGURE 40.—Effect of decalage on rolling moment due to roll at $\frac{pb}{2V}$ =0.05

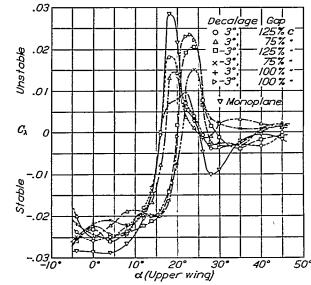


Figure 41.—Effect of combined decalage and gap on rolling moment due to roll at $\frac{pb}{2V}$ =0.05

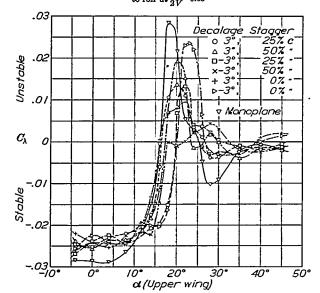


FIGURE 42.—Effect of combined decalage and stagger on rolling moment due to roll at $\frac{pb}{2V}$ 0.05

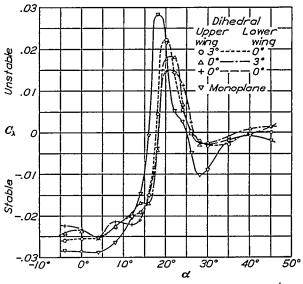


FIGURE 43.—Effect of dihedral on rolling moment due to roll at $\frac{pb}{2V}$ =0.05

FIGURE 44.—Effect of sweepback on rolling moment due to roll at $\frac{pb}{2V}$ =0.08

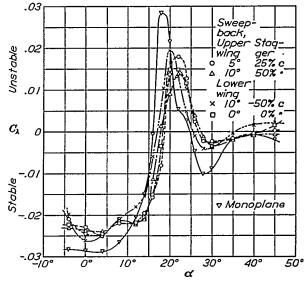


Figure 45.—Effect of combined sweepback and stagger on rolling moment due to roll at $\frac{pb}{2V}$ =0.05

mitigated by 25 per cent positive stagger and wholly so by 50 per cent stagger. Reducing the gap to 75 per cent of the chord and staggering the wings +25 per cent has practically no influence on the characteristics of the orthogonal biplane. However, increasing the stagger to 50 per cent reduces maximum instability by more than one-half. The range of instability is small for this biplane arrangement but occurs at a slightly lower angle than for the previous cases.

Decalage (fig. 40).—The principal effect of this variable is displacement of the range of instability owing to the displacement of the normal force curve of the lower wing. Except for the -3° setting of the lower wing, all the cases of decalage show a decrease in maximum instability. The one case in which an increase is shown can be explained by the fact that the burble of both wings occurs at practically the same angle. This concentration of the factors leading to instability has the advantage, however, of noticeably reducing the unstable range.

Decalage and gap (fig. 41).—Gap apparently is the governing factor in regard to magnitude of instability. Decalage in the cellule causes its characteristic angular displacement of the unstable range.

Decalage and stagger (fig. 42).—As pointed out in the discussion of the normal force characteristics of this combination of cellule variables (figs. 21 to 23), $+3^{\circ}$ decalage and +50 per cent stagger cause C_N maximum of both wings to occur at virtually the same angle. This condition was excellent from the standpoint of small biplane interference, but coincidence of maximum normal force entails coincidence of the burble of the two wings. The result is that this combination is quite unstable over a small angular range. Wide separation of the points of maximum normal force, as obtained with -3° decalage and +50 per cent stagger, has the opposite effect, giving this biplane arrangement the smallest maximum instability of any cellule investigated.

Dihedral (fig. 43).—This variation on the orthogonal biplane increases the maximum unstable rolling moment slightly.

Sweepback (fig. 44).—The simple analogy that the effect of sweepback is equivalent to the effect of the mean stagger of the sweptback wing is not so apparent when stability is considered as when only normal force characteristics are compared. In the case of 5° sweepback on the upper wing, the effective negative stagger is about 10 per cent, which is just sufficient to put the burble of each wing at the same angle of attack. Hence, strong instability occurs over a relatively short range. (Compare with fig. 38 and its discussion.) At 10° sweepback the burble of the lower wing is distinctly prior to that of the upper. This condition produces instability over a wide range, but the maximum degree of instability is only slightly greater in magnitude than that of the orthogonal arrangement.

Sweepback and stagger (fig. 45).—As with sweepback alone, the general characteristics are very similar to those of a biplane cellule having stagger equivalent to the mean stagger of the sweptback wing. There appears to be little choice between combinations having one wing sweptback a certain amount alone or having the same degree of sweepback and having sufficient stagger to make the wing tips come approximately vertically over each other.

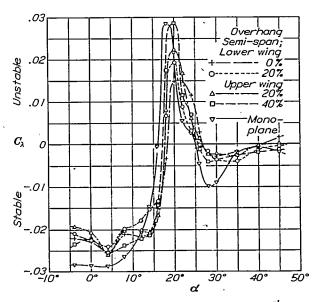


FIGURE 46.—Effect of overhang on rolling moment due to roll at $\frac{pb}{2V}$ =0.05

Overhang (fig. 46).—From this figure it is apparent that any form of overhung biplane is less desirable than the orthogonal biplane. The reason for this condition apparently is due to the intermediate nature of overhung combinations between the very unstable monoplane (see fig. 36) and the biplane. Negative 20 per cent overhang is slightly preferable to the same amount of positive overhang because the upper wing, whose burble is much more rapid than the lower, exerts a smaller influence on the cellule in this case than in positively overhung combinations.

(c) Longitudinal stability.—The scope of the present investigation is insufficient to attempt a quantitative discussion of the effects of the various wing combinations on the longitudinal stability of a complete airplane because of the great effect upon pitching moment of such factors as the center of gravity location, chord components of force, and the pitching moments of the tail surfaces. If, however, we assume a constant geometric location of the center of gravity relative to each wing system (as defined by equation (5) in the present case) and tail surfaces adequate to maintain balance at normal angles of attack, the pitching moment curve of each cellule about an axis through the assumed center of gravity affords a basis for a discussion of certain qualitative relations between the characteristics of the various wing systems. Such a comparison is made ECHNICAL LIBRARY

below, the axis chosen being the 25 per cent point of the mean cellule chord, although any other axis would give the same relative results.

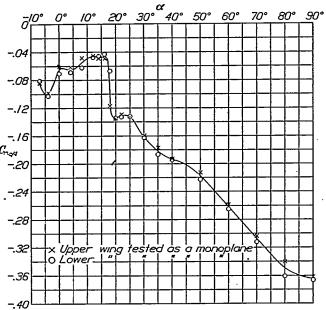
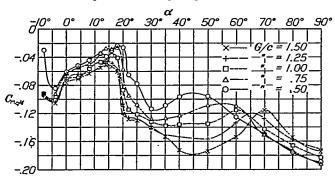



FIGURE 47.-Pitching moment about the quarter-chord point. plane. Circular tip. Aspect ratio=6

-Effect of gap on pitching moment about the quarter-chord point

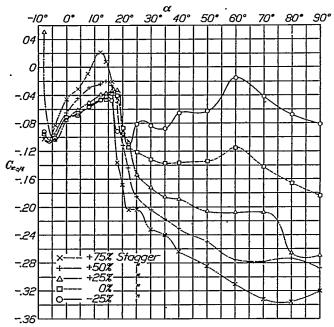


FIGURE 49.—Effect of stagger on pitching moment about the quarter-chord point

Monoplane (fig. 47).—Comparison of this curve with those for the unstaggered biplane combinations in the subsequent figures shows the monoplane to have a steeper negative slope to its pitching-moment curve at high angles of attack, and therefore a stronger tendency toward longitudinal stability in this region than any of the biplanes.

Gap (fig. 48).—Below the stall, the slopes of the curves for all ratios are essentially the same as the monoplane. Above the stall, increasing the gap increases both the range and steepness of the stable slope to the curve.

Stagger (fig. 49).—A small amount of either positive or negative stagger has little effect on the slope of the pitching-moment curve below the stall. Increasing the stagger above +25 per cent very rapidly increases the unstable slope to the curve in this region, owing to the strong stalling moment of the upper wing.

Above the stall a negatively staggered biplane shows very poor stability characteristics. In fact it is highly probable that neutral stability or possibly unstable pitching moments would exist above 22° angle of attack in a complete airplane having this wing arrangement. Positive stagger, on the other hand, produces

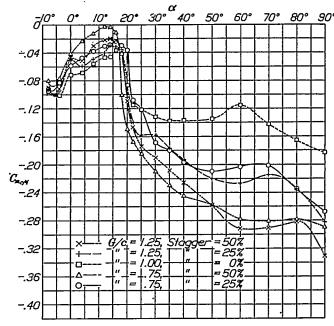


FIGURE 50 .- Effect of combined gap and stagger on pitching moment about the quarter-chord point

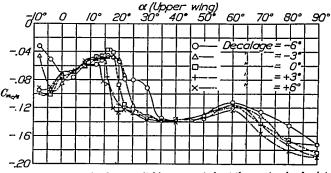


FIGURE 51.—Effect of decalage on pitching moment about the quarter-chord point

in this range positive stability equal to or greater than that of the monoplane.

Gap and stagger (fig. 50).—The characteristics of these combinations follow very closely those for similar amounts of stagger at a gap/chord ratio of 1.0.

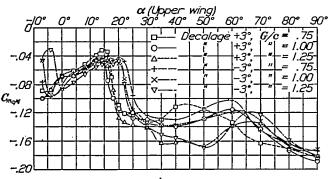


FIGURE 52.—Effect of combined decalage and gap on pitching moment about the quarter-chord point

Decalage (fig. 51).—This variable has no effect on longitudinal stability below the stall. Above the stall, $+6^{\circ}$ or -6° decalage has a tendency to reduce the abruptness of the familiar nosing-down action accompanying burbling of the wings. This characteristic is due to the marked separation of the stalling points of the two wings and the resulting prolongation of the range during which the center of pressure of the cellule is moving back. Beyond this range the pitching-moment curve for biplanes having any amount of decalage between $+6^{\circ}$ and -6° does not differ appreciably from that of the orthogonal arrangement.

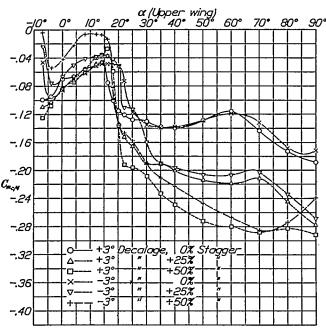


FIGURE 53.—Effect of combined decalage and stagger on pitching moment about the quarter-chord point

Decalage and gap (fig. 52).—Throughout the range of angle of attack tested the only marked influence of

decalage is to shift the stalling angle in a manner similar to the shift when the gap equals the chord. Otherwise, the curves fall in groups whose characteristics follow, in general, the corresponding cellules having no decalage.

Decalage and stagger (fig. 53).—Negative decalage has a distinct tendency to reduce the unstable slope of the cellule pitching-moment curves below the stall for all degrees of stagger. It also reduces the magnitudes of the cellule diving moments in this range to such on extent that at -3° decalage and +50 per cent stagger both the slope and the magnitude are the smallest of

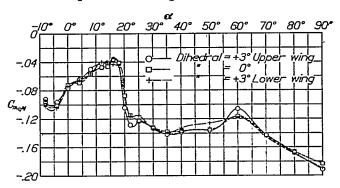


FIGURE 54.—Effect of dihedral on pitching moment about the quarter-chord point

any cellule investigated. Positive decalage increases the slope of the pitching-moment curve as the stagger is increased, but its effect is less than in the preceding case. Above the stall all the cases investigated have characteristics very similar to those of cellules having corresponding amounts of stagger alone.

Dihedral (fig. 54).—Dihedral up to 3° on either wing has practically no influence on the pitching-moment characteristics of an orthogonal biplane.

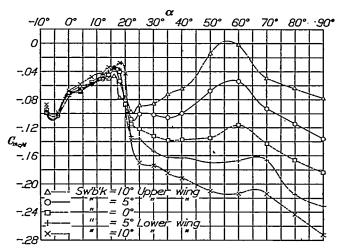


FIGURE 55.—Effect of sweepback on pitching moment about the quarter-chord point

Sweepback (fig. 55).—Below the stall the slope of the curves for all the arrangements tested differ only slightly from that of the orthogonal biplane. This feature of the curves agrees closely with the curves of

TECHNICAL LIBRARY
ABBOTTAEROSPACE.COM

pure stagger (fig. 49) of an amount equal to the mean effective stagger of the sweptback wing.

Above the stall, sweepback on the upper wing shows a greater divergence of the pitching-moment curve from that of the orthogonal biplane than a corresponding amount of negative stagger. Consequently, even a small degree of sweepback on the upper wing alone would be likely to be distinctly harmful to longitudinal stability at high angles of attack.

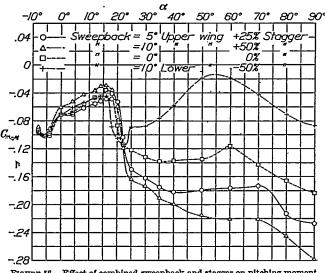


FIGURE 55.—Effect of combined sweepback and stagger on pitching moment about the quarter-chord point

Sweepback and stagger (fig. 56).—The pitching moment of a biplane cellule having sweepback of either the upper or lower wing and also having stagger is essentially the same as that of a cellule having an equivalent amount of mean stagger obtained by sweepback alone.

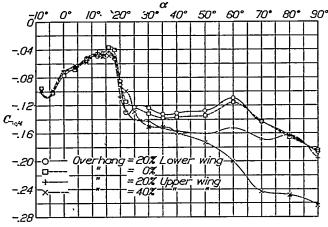


FIGURE 57.—Effect of overhang on pitching moment about the quarter-chord point

Overhang (fig. 57).—At low angles of attack positive or negative overhang has no influence on the pitching-moment curve of the orthogonal biplane. Above the stall the characteristics of positively overhung combinations approach those of the monoplane as the overhang increases. Negative overhang up to 20 per cent has practically no effect in this region.

GENERAL DISCUSSION

(a) Maximum normal force.—Table II gives a collection of certain of the aerodynamic characteristics of all the wing systems investigated. A study of these data in view of the foregoing detailed discussion of each cellule variable reveals certain general tendencies in the variation of the tabulated characteristics. For instance, increasing (1) the gap/chord ratio above 1.0, (2) the effective positive stagger, or (3) positive overhang of a biplane decreases the mutual interference between the wings and tends to make the maximum normal force coefficient of the cellule approach that of the monoplane. With a gap/chord ratio of 1.0, change in stagger is the most effective single factor influencing this characteristic. However, if +50 per cent stagger is used with a gap/chord ratio of 1.25 (cellule CH) the interference is still less. Finally, if +3° decalage is used with +50 per cent stagger (cellule HM) the normal force curve of the lower wing is shifted so that it nearly coincides with that of the upper wing, producing a cellule maximum normal force that is only 3 per cent less than the monoplane and is the highest value obtained on all the biplane arrangements tested. Gap/chord ratios below 1.0, negative effective stagger, or use of decalage without stagger, definitely increases mutual wing interference and reduces maximum normal force.

From an inspection of Columns 2 and 3, the conclusion may be drawn that the interference of the circulation of air about the lower wing on the circulation about the upper wing is sufficient to reduce the maximum normal force coefficient of the latter (as compared to the monoplane) for all unstaggered biplane combinations having a gap/chord ratio of 1.0. Closer proximity of the wings, negative stagger, or negative overhang increases this interference. Conversely moving the wings farther apart or using positive overhang improves the operating conditions of the upper wing to the extent that it attains a greater maximum normal force coefficient than the monoplane. The optimum point of separation beyond which the characteristics of the upper wing begin to reapproach those of the monoplane, apparently has not been reached in the scope of the present tests except in the case of overhang.

The interference effect of the upper wing on the lower may be compared to that of a leading-edge slot on an ordinary airfoil. Thus, in all cases, decreasing the gap/chord ratio to less than 1.0, or using positive stagger, tends to maintain the flow over the lower wing to very high angles and large values of normal force coefficient.

The angle of attack for maximum normal force (column 4) is seen to be virtually coincident with the angle for initial lateral instability (column 5) except for the biplane cellules having 6° positive decalage (N) or +50 per cent stagger with 3° negative decalage (HL). In each of these cases the angular interval of safety between maximum lift and the beginning of

lateral instability is due to wide separation of the stalling points of the component wings in the cellules. However, it should be noted from Figures 40 and 42 that, although these cellules do not reach true neutral equilibrium until the angle of attack specified in Column 5, they have only a very slight degree of stability for 3° or 4° below this point.

(b) Lateral stability.—Columns 7 and 8 give the initial range of lateral instability and the maximum value of unstable rolling moment due to roll. Close correlation of these characteristics with each other or the other criteria given in the table is not possible, but a few very general relationships can be noted.

The average range of lateral instability is a little less than 9°. In nearly all cases of cellules having a very much larger range, initial instability is due to the upper wing burbling first while the lower wing continues to maintain lift and a stabilizing influence on the combination. For this reason such wing arrangements usually have relatively small values of maximum instability, but, owing to the fact that the instability which does exist depends primarily on the sharpness

and extent of the burble of the upper wing, all cellules do not follow this rule.

The geometric relation between the wings best suited to obtain the combination of a short range of instability and a small maximum instability, is a gap/chord ratio less than 1. An apparently outstanding exception to this rule is the combination having a gap/chord ratio of 0.75 and -3° decalage (EL). It will be noticed from Figure 41, however, that this cellule is only very slightly unstable over the last 15° of the curve.

A second method for obtaining a short range of instability is the use of +50 per cent stagger and +3° decalage. This cellule (HM) shows the closest coincidence of the normal force curves of its component wings and consequently the minimum dispersion in angle of attack of the negative slope to these curves. However, this very condition produces a magnitude of maximum lateral instability that is greater than the average.

If the range of instability is of secondary importance and only the maximum value of unstable rolling moment is considered, separation of the normal force curve of the

TABLE II
SUMMARY OF AERODYNAMIC CHARACTERISTICS

			Cellul	e variable			1	2	3	4	5	6	7	8
Key letter	Gap/chord	Stagger/chord	Decalago	Dihedral	Sweepback	Overhang	. Change cellule	Симея пррег	Chees lower	Angle of attack at CNmes, degrees	Angle of attack at initial Ch. = 0, degrees	Anglo of attack at final Ch = 0, degrees	Range of initial instability, degrees	Maximum unstable C_{λ} at $\frac{2b}{2V}$ =0.05
ABODEFGHI12HCHEKLMNLMLMHMLOFQESTRQGUVW	Mono 1.50 1.250 1.250 1.50 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	oplane (a ve	စ္က ၀၀၀၀၀၀၀၀၀၀၀ မိုကိုမိုမိုကိမိုကိုမိုကိ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	1. 329 1. 240 1. 215 1. 197 1. 1090 1. 226 1. 128 1. 128 1. 128 1. 128 1. 129 1. 149 1. 149 1. 149 1. 149 1. 149 1. 149 1. 149 1. 129 1. 129 1	1 349 1 333 1 127 1 107 1 414 1 1348 1 1259 1 345 1 1300 1 1200 1	1.150 1.138 1.142 (*) 1.430 1.333 1.230 1.104 1.288 1.227 1.51 1.500 1.148 1.195 1.148 1.195 1.138 1.151	16 17 18 18 18 10 16 17 18 18 20 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	16 18 18 19 20 17 18 18 17 18 18 17 19 21 20 16 16 16 17 17 22 21 17 22 17 21 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	25 26 27 77 25 27 71 25 25 25 26 27 71 26 26 27 72 26 27 72 26 27	9 8 8 14 10 9 10 7 9 10 10 10 10 10 10 10 10 10 10 10 10 10	0. 0288

[·] Maximum normal force coefficient occurs at a very high angle and is not well defined.

No well-defined maximum. The normal force coefficient continues to increase above the values given after only a slight loss in lift

Only very slightly unstable above 30° angle of attack.

⁴ Only very slightly stable above 18° angle of attack.

TECHNICAL LIBRARY
ABBOTTAEROSPACE.COM

upper and lower wings is desirable. This condition can best be obtained by use of +50 to +75 per cent stagger at a gap/chord ratio of 1.00 (cellules H and G), +50 per cent stagger at a gap/chord ratio of 0.75 (cellule EH), or +50 per cent stagger combined with -3° decalage (cellule HL), the last-mentioned arrangement being the most favorable.

(c) Longitudinal stability.—Quantitative comparison of the various wing arrangements on the score of longitudinal stability is impossible from the present data. However, a general review of all the pitching-moment curves reveals normal slopes below the stall except for combinations having a large amount of stagger or positive stagger combined with negative decalage. In the former case, abnormally large tail surfaces would probably be required to maintain longitudinal balance. In the latter case the opposite condition exists, these cellules showing the smallest unstable pitching moments below the stall of any wing system tested.

Above the stall, the monoplane or a biplane having 40 per cent positive overhang or at least +25 per cent effective stagger, with or without small variations in gap/chord ratio or decalage, gives better than average stability. A very small gap/chord ratio or negative effective stagger has the opposite effect.

SUGGESTIONS FOR FUTURE RESEARCH

From the preceding outline of the general effects of wing arrangement on the efficiency and stability of the lifting system of an airplane, certain lines for future investigation suggest themselves. Table I shows a considerable field to have been covered in the present research, but the intervals between test points have necessarily been so large that more detailed investigation of limited portions of the field would be likely to reveal wing combinations that are better than any tested thus far. Omitting, for practical reasons, consideration of the improved characteristics of such abnormal biplanes as those having gap/chord ratios greater than 1.50, more than 75 per cent stagger, or a combination of these features, the arrangements that indicate the least loss in maximum lift due to biplane interference are those having combined positive stagger and positive decalage. Slight increases in either stagger or decalage or both, with or without an increase in gap, might produce a biplane equal to the monoplane in maximum lift.

Of perhaps greater interest are cellules showing a tendency toward improved lateral stability. Along this line positive stagger combined with negative decalage shows the greatest promise. Reduction of the gap of such cellules or the introduction of sweepback on both wings should continue to improve conditions sufficiently to warrant a much more detailed investigation of the combined effects of these variables.

Good longitudinal stability usually exists in laterally stable combinations, but it is apparent that high maximum normal force does not go with the other favorable characteristics. Consequently, it would be of considerable interest to determine the best cellule from the standpoint of stability and then attempt to compensate for the loss of lift on the upper wing by use of flaps or slots.

CONCLUSIONS

1. Within the range of this investigation the changes given in the following table from the orthogonal, circular-tipped, Clark Y biplane tend appreciably to reduce mutual wing interference and raise the maximum normal force coefficient of the cellule. The particular cellule cited in each class is the best wing arrangement tested.

Wing arrangement (orthogonal except as specified)	Chmas	Percent- age in- crease over or- thogonal
Orth-gonal biplane Overhang = +20% Stagger = +76% Gap/chord = 1.25 } Stagger = +50% Decalage= +3° \ Stagger = +50% Monoplane	1. 205 1. 254 1. 276 1. 285 1. 292 1. 329	0.0 4.1 5.9 6.6 7.2

- 2. Reduction in the range of initial lateral instability is best accomplished by use of gap/chord ratios distinctly less than 1.0.
- 3. Reduction in the magnitude of maximum lateral instability is best accomplished by use of positive stagger at a gap/chord ratio of not more than 1.0, or positive stagger in combination with negative decalage.
- 4. For the same location of the center of gravity with respect to the mean chord combined positive stagger and negative decalage shows the greatest relative longitudinal stability below the stall.
- 5. Strong longitudinal stability above the stall is best obtained by use of positive stagger in combination with any other variable.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, LANGLEY FIELD, VA., October 15, 1931.

REFERENCES

- Reid, Elliott G.: Standardization Tests of N. A. C. A. No. 1 Wind Tunnel. T. R. No. 195, N. A. C. A., 1924.
- Wenzinger, C. J., and Harris, T. A.: Wind-Tunnel Force Tests on Wing Systems through Large Angles of Attack. T. N. No. 294, N. A. C. A., 1928.
- Knight, Montgomery, and Wenzinger, C. J.: Wind-Tunnel Tests on a Series of Wing Models through a Large Angleof-Attack Range. Part I—Force Tests. T. R. No. 317, N. A. C. A., 1929.
- Knight, Montgomery, and Wenzinger, C. J.: Rolling Moments Due to Rolling and Yaw for Four Wing Models in Rotation. T. R. No. 379, N. A. C. A., 1931.
- Knight, Montgomery, and Noyes, Richard W.: Wind-Tunnel Pressure Distribution Tests on a Series of Biplane Wing Models. Part I—Effects of Changes in Stagger and Gap. T. N. No. 310, N. A. C. A., 1929.
- Knight, Montgomery, and Noyes, Richard W.: Wind-Tunnel Pressure Distribution Tests on a Series of Biplane Wing Models. Part II—Effects of Changes in Decalage, Dihedral, Sweepback, and Overhang. T. N. No. 325, N. A. C. A., 1929.
- Knight, Montgomery, and Noyes, Richard W.: Wind-Tunnel Pressure Distribution Tests on a Series of Biplane Wing Models. Part III—Effects of Changes in Various Combinations of Stagger, Gap, Sweepback, and Decalage. T. N. No. 330, N. A. C. A., 1929.
- Reid, Elliott G.: Pressure Distribution over Thick Tapered Airfoils, N. A. C. A. 81, U. S. A. 27-C Modified, and U. S. A. 35. T. R. No. 229, N. A. C. A., 1926.
- Knight, Montgomery: Wind-Tunnel Tests on Autorotation and the "Flat Spin." T. R. No. 273, N. A. C. A., 1927.
- Stack, John: Tests in the Variable-Density Wind Tunnel to Investigate the Effects of Scale and Turbulence on Airfoil Characteristics. T. N. No. 364, N. A. C. A., 1931.

TABLE III

CLARK Y CIRCULAR-TIPPED MONOPLANES,
5-INCH CHORD, ASPECT RATIO=6

α	Wi	ng No. 2 Siplane C	(Upper Cellules)	of	Wing No. 1 (Lower of Biplane Cellules)					
	C_N	Cm oft	Cys	Cpy	C_N	Cm e/s	Сэз	Cps		
Degrees -8 -4 0 4 8 112 114 116 118 20 22 22 25 440 60 70 80 90	-0.118 1436 1437 1438 1438 1439 1230 1.282 1.309 1.027 889 8905 1.127 1.121 1.300 1.300 1.372 1.369	-0,084 -080 -060 -061 -048 -048 -048 -0117 -139 -132 -159 -132 -159 -133 -258 -340 -362	0, 314 . 944 . 384 . 332 . 299 . 287 . 287 . 364 . 399 . 394 . 407 . 418 . 425 . 448 . 478 . 514	0. 450 - 428 - 434 - 438 - 449 - 451 - 472 - 514 - 513 - 492 - 478 - 478 - 478 - 479 - 475	-0.181 -136 -1456 -1456 -1456 -1456 -1250 -1.330 -1.349 -1.222 -931 -926 -926 -1.024 -1.184 -1.184 -1.301 -1.331 -1.301 -1.332 -1.383	-0.081 -103 -0.069 -0.069 -0.048 -0.048 -0.134 -1.132 -1.187 -1.195 -2.265 -3.112 -3.67	-0. 197 1. 010 408 .841 .329 .284 .284 .284 .335 .396 .393 .410 .408 .414 .429 .454 .475 .516	0.460 .432 .432 .449 .443 .458 .470 .506 .511 .510 .493 .485 .477 .481 .481 .482 .483		

TABLE IV
CLARK Y CIRCULAR-TIPPED BIPLANE, G/c=1.50
ALL OTHER DIMENSIONS ORTHOGONAL

α	υ	pper win	g	L	ower win	g	Cellule			
α	CN	C _{2.3}	C,,	C_N	Сря	C,,	CN	Cm e/i	e	
Degrees -8 -4 0 0 4 8 12 114 115 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-0. 108 -145 -368 -368 -921 -1. 218 -1. 303 -1. 319 -1. 016 -851 -862 -903 -907 -907 -717 -717	-0.571 -963 -442 -352 -318 -227 -223 -223 -223 -234 -333 -334 -333 -334 -333 -334 -333 -334 -333 -334 -333 -334 -333 -334 -333 -334 -333 -334 -335 -335	0.473 .451 .451 .449 .448 .480 .491 .488 .507 .531 .506 .492 .492 .492 .511 1.055 .384	-0.142 .122 .322 .606 .827 1.095 1.1150 1.1150 1.1150 1.1150 1.1241 1.365 1.463 1.463 1.463 1.463	-0.424 1.105 .497 .337 .336 .286 .342 .493 .493 .493 .493 .493 .493 .493 .493	0.470 .414 .411 .450 .453 .463 .473 .491 .508 .508 .476 .476 .476 .478 .478 .478	-0.125 .345 .345 .346 .876 1.053 1.157 1.220 1.233 1.046 .900 .888 .950 1.028 1.110 1.018 .771 .616	-0.092 105 076 076 083 085 085 189 129 140 187 172 174 186 172 174 186	0.760 1.162 1.190 1.1142 1.1090 1.114 1.108 1.139 1.20	

TABLE V
CLARK Y CIRCULAR-TIPPED BIPLANE, G/c=1.25
ALL OTHER DIMENSIONS ORTHOGONAL

		Upper w	ing	Lo	wer win	g	Cellule			
α	CN	Cps	C,,	C _N	Срх	C,,	CN	Çm e/i	e	
Degrees -8 -4 0 4 8 12 14 16 18 20 22 25 30 35 50 60 60 70 80 90	-0.138 .136 .350 .631 .912 1.135 1.200 1.250 1.353 .741 .7772 .795 .725 .477121180	-0.409 .987 .444 .347 .317 .293 .288 .374 .377 .3866 .362 .350 .320 .190 .934 .495 .543	0. 438 .484 .484 .462 .452 .452 .465 .476 .530 .504 .504 .505 .495 .495 .495 .495 .495 .495 .495 .49	-0.117 .140 .340 .589 .823 1.012 1.088 1.136 1.103 1.045 1.000 1.021 1.090 1.179 1.287 1.383 1.424 1.495 1.490	-0.611 1.024 .480 .381 .325 .303 .297 .407 .430 .430 .438 .439 .459 .474 .492 .493	0.545 .413 .443 .450 .464 .461 .487 .481 .497 .497 .497 .477 .471 .471 .474 .474 .474 .474	-0.127 -138 -340 -340 -340 -340 -340 -340 -340 -340	-0.096104072094083083099122128141157128141157128	1, 180 . 972 1, 1061 1, 053 1, 110 1, 121 1, 103 1, 100 1, 208 . 867 . 887 . 728 . 708 . 678 . 618 . 522 . 618 	

TABLE VI
CLARK Y CIRCULAR-TIPPED BIPLANE, G/c=1.00
ALL OTHER DIMENSIONS ORTHOGONAL

	σ;	pper win	g	L	ower win	g	Cellule			
α .	· C _N	Cys	Cp,	CN	C _{ps}	C,,	C_N	Cm e/s	e	
Degrees -8 -4 8 8 12 14 16 18 20 22 25 50 55 50	-0. 139 . 120 . 844 . 610 . 853 1. 067 1. 150 1. 220 1. 2840 . 604 . 708 . 684 . 684	-0.329 1.019 .489 .347 .314 .283 .275 .2715 .339 .350 .327 .283	0. 422 - 445 - 446 - 448 - 469 - 468 - 514 - 559 - 508 - 508 - 508 - 501 - 501	-0.080 .153 .343 .600 .778 .966 1.080 1.142 1.120 1.087 1.071 1.191 1.260 1.260 1.421	-1.113 .964 .470 .376 .308 .298 .298 .288 .350 .413 .423 .423 .424 .425	0. 554 - 410 - 432 - 442 - 454 - 460 - 467 - 476 - 491 - 498 - 478 - 472 - 474 - 478	-0.110 .138 .344 .605 .815 1.020 1.113 1.181 1.205 1.079 .951 .884 .943 .988 1.015	-0.095101072069046047046087041087115123138	1. 738 . 784 1. 004 1. 017 1. 003 1. 102 1. 064 1. 069 1. 147 . 982 . 788 . 646 . 582 . 562 . 489 . 381	
60 70 80 90	268 - 158 - 120 - 123	- 633 - 540 - 556 - 551	.568 .316 .264 .257	1.488 1.470 1.472 1.470	.456 .476 .499 .520	.470 .467 .464 .467	.877 .656 .677 .674	116 143 166 184	180 108 081 084	

TABLE VII

CLARK Y CIRCULAR-TIPPED BIPLANE, G/c=0.75 ALL OTHER DIMENSIONS OBTHOGONAL

	υ,	pper win	g	L	ower win	ıg	Cellule			
α	CN	Cps	Cpy	CN	Срз	C,,	C_N	Cm eH	e	
Degrees -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8	-0.151 .092 .283 .795 .283 .795 .1028 1.059 1.167 1.051 .714 .549 .683 .285 .205 .137 .137 .088	-0. 202 1. 140 -4322 -308 -263 -263 -263 -263 -373 -354 -354 -195 -240 -240 -513	0. 419 - 494 - 493 - 449 - 455 - 468 - 475 - 475 - 591 - 581 - 581 - 582 - 584 - 583 - 584 - 583 - 584 - 583 - 583 - 583 - 584 - 583 - 583	-0.039 -163 -341 -593 -781 -976 -1.028 -1.103 -1.147 -1.138 -1.229 -1.269 -1.435 -1.493 -1.513 -1.493 -1.503	-2.72 .883 .476 .304 .317 .311 .292 .294 .331 .380 .429 .429 .438 .448 .448 .448 .448 .455	0. 725 -424 -429 -447 -461 -485 -485 -485 -485 -485 -475 -478 -476 -476 -476 -476 -486 -488 -488 -486 -488 -488 -488 -48	-0.095 -128 -300 -590 -783 -888 -888 -1.027 -1.096 -966 -961 -918 -942 -929 -891 -774 -680 -708	-0.093 -0.093 -0.093 -0.095 -0.055 -0.050 -0.028 -0.029 -0.027 -0.083 -0.099 -1.084 -1.109 -1.109 -1.109 -1.109 -1.109 -1.109 -1.109	3. 86 . 564 . 756 . 980 1. 018 1. 002 . 955 1. 016 1. 002 . 923 . 585 438 . 448 . 4375 . 293 . 1011 . 022 . 902 . 903 . 903	

TABLE VIII

CLARK Y CIRCULAR-TIPPED BIPLANE, G/c=0.50 ALL OTHER DIMENSIONS ORTHOGONAL

	ָס	pper win	g	Low	er wing		Cellule			
α	CN	Cps	C,,	C_N	C_{px}	C_{py}	C_N	Cm eft	e	
Degrees -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -9 -9 -8 -9 -8 -9 -8 -8 -9 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8	-0. 193 .012 .162 .413 .616 .787 .869 .918 .970 1. 004 .315 .324 .305 .156 .054054063	-0. 054 5. 915 432 -285 -286 -248 -248 -231 -230 -264 -163 -376 -522 -514 -400	0. 413 .913 .488 .481 .458 .473 .483 .483 .483 .556 .678 .646 .646 .645 .840 .162 .245 .179 .145	0.006 .190 .374 .624 .790 .955 1.052 1.090 1.176 1.338 1.438 1.453 1.553 1.563 1.563 1.414 1.487 1.487	20. 2 .772 .496 .389 .355 .326 .326 .328 .326 .318 .305 .310 .402 .422 .427 .456 .469 .458 .517	0. 730 -413 -430 -449 -449 -459 -459 -471 -483 -471 -483 -473 -475 -483 -476 -483 -477 -488	-0.094 .101 .268 .518 .704 .845 1.007 1.090 .945 1.072 1.090 .970 .983 .810 .681 .696 .711 .703	-0.030 -084 -0.061 -0.052 -0.044 -0.065 -0.039 -0.031 -0.024 -0.026 -0.077 -1.114 -1.109 -0.997 -1.26 -1.150 -1.150 -1.150	32. 2 .083 .483 .663 .780 .824 .825 .825 .446 .228 .111 .115 .099 .035 .038 .038 .043 .043 .043 .043 .044 .044 .044 .044	

TABLE IX

CLARK Y CIRCULAR-TIPPED BIPLANE, STAGGER/CHORD=0.75

ALL OTHER DIMENSIONS ORTHOGONAL

	ַ	Upper wing			ower win	g	Cellule			
α	CN	Сэл	Cyy	C_N	C _{2.3}	C,,	C _N	Cm aft	е.	
Degrees	-0.096 .196 .199 .494 .770 1.055 1.312 1.385 1.410 1.059 .941 1.051 1.162 1.199 1.162 1.169 1.169	-0.885 -771 -386 -346 -387 -387 -387 -387 -388 -388 -488 -488 -488 -448 -448 -448	0.437 -444 -448 -448 -583 -583 -445 -455 -455 -455 -455 -455 -455 -45	-0.076 .1301 .533 .738 .930 1.029 1.129 1.295 1.357 1.421 1.402 1.295 1.359 1.339 1.344 1.421 1.428 1.359	-0.996 -931 -509 -396 -331 -330 -314 -309 -317 -299 -313 -319 -411 -453 -441 -458 -471 -489 -508	0.542 -416 -4418 -458 -461 -461 -463 -475 -445 -445 -465 -465 -468	-0.086 .163 .408 .662 .897 1.121 1.207 1.140 1.140 1.185 1.191 1.296 1.332 1.304 1.193	-0. 102 083 081 091 003 003 003 136 136 204 -	1. 295 1. 508 1. 558 1. 446 1. 430 1. 441 1. 411 1. 346 1. 234 602 619 -755 -770 -785 813 -817 -822 -812 -761	

TABLE X

CLARK Y CIRCULAR-TIPPED BIPLANE, STAGGER/CHORD=0.50

ALL OTHER DIMENSIONS ORTHOGONAL

	ָט	pper win	g	Lov	er wing		Cellule		
α	C _H	Cps	C _p ,	C _N	C,,	Cyy	C _N	Cm e/i	•
Degrees -8 -4 0 0 4 8 12 114 18 22 25 33 49 50 78 90	-0.076 .176 .415 .732 .971 .1.183 .1.299 .1.388 .1.280 .1.033 .874 .887 .890 .908 .908 .908 .908 .908 .908 .908	-0. 985 -813 -420 -332 -307 -293 -283 -283 -283 -283 -281 -342 -364 -369 -374 -374 -380 -379 -305 -023	0. 413 . 429 . 441 . 443 . 447 . 457 . 486 . 490 . 526 . 530 . 501 . 485 . 481 . 479 . 475 . 487 . 482 . 489 . 511	-0. 051 .120 .307 .553 .723 .915 1. 022 1. 126 1. 230 1. 331 1. 228 1. 202 1. 327 1. 407 1. 450 1. 428 1. 409 1. 413	-1. 678 I. 115 . 532 . 386 . 343 . 321 . 316 . 303 . 303 . 303 . 303 . 443 . 443 . 459 . 474 . 494 . 510	0.595 424 441 450 456 453 459 463 459 467 476 483 481 474 472 468 468 468 468	-0.084 .148 .361 .643 .847 .1.052 1.161 1.242 1.157 1.157 1.163 1.043 1.144 1.1243 1.1243 1.243 1.244	-0. 100 095 095 095 095 020 020 020 112 185 201 231 231 276 278 238	1. 491 1. 491 1. 352 1. 343 1. 323 1. 323 1. 209 1. 270 1. 208 1. 001 1. 001 806 658 658 729 729 728 713 694 713

TABLE XI

CLARK Y CIRCULAR-TIPPED BIPLANE, STAGGER/CHORD=0.25

ALL OTHER DIMENSIONS ORTHOGONAL

	ָּט	pper win	g	L	ower win	g		Cellule	
ď	Cn	Срз	C,,	Cn	C ₉₋₃	C,,	C_N	C= e/4	e
Degrees -8 -8 -9 4 10 12 14 16 18 20 22 25 30 36 60 70 70 80 90	-0. 093 . 163 . 417 . 678 . 939 1. 142 1. 225 1. 328 . 973 . 839 . 755 . 816 . 830 . 849 . 826 . 765 . 544 . 001 - 127	-0. 654 -886 -428 -841 -808 -289 -282 -275 -275 -343 -358 -356 -351 -347 -336 -300 -199 -47, 500 -486	0. 440 - 449 - 443 - 446 - 445 - 455 - 488 - 475 - 526 - 540 - 497 - 496 - 490 - 491 - 506 - 1. 925 - 270	-0.068 .153 .379 .5786 .966 .1061 1.144 1.245 1.125 1.306 1.306 1.429 1.449 1.429	-1. 241 . 962 . 563 . 383 . 385 . 301 . 305 . 301 . 304 . 404 . 425 . 435 . 443 . 447 . 477 . 492 . 512	0.577 .430 .435 .445 .463 .463 .463 .472 .481 .477 .477 .477 .477 .471 .471	-0.080 .158 .378 .6225 .8622 1.054 1.143 1.236 1.201 1.109 1.060 .952 1.018 1.077 1.110 1.097 .997 .725 .648	-0.050104062061063033094103164173180200202206270	1. 410 1. 005 1. 230 1. 187 1. 195 1. 180 1. 184 1. 181 1. 181 1. 183 658 658 659 650 650 650 650 650 650 650 650 650 650

TABLE XII

CLARK Y CIRCULAR-TIPPED BIPLANE, STAGGER/CHORD=-0.25

	U;	pper win	g	L	ower win	g	Cellule		
α	CN	Срз	Cys	C_N	C ₉₂	Cyy	O _N	Cm a/t	6
Degraes -8 -4 0 4 8 8 12 14 16 18 20 22 25 30 85 40 50 60 60 60 80	-0.136 .103 .274 .574 .578 .980 1.162 1.250 .600 .602 .405 .135 -261 .131 -109	-0. 313 1. 211 1. 483 1. 376 1. 327 1. 284 1. 281 1. 269 1. 279 1. 333 1. 319 1. 319 1. 319 1. 516 1. 557 1. 5557 1. 5550	0.411 .449 .454 .453 .445 .468 .469 .468 .473 .501 .523 .523 .526 .526 .523 .526 .523 .524 .523 .524 .525 .525 .525 .526 .526 .527 .527 .528 .538	-0.094 .153 .342 .596 .816 1.095 1.095 .903 .995 1.072 1.161 1.260 1.357 1.453 1.453 1.453	-0.911 .968 .488 .320 .320 .229 .229 .400 .415 .410 .420 .427 .427 .427 .427 .427 .427 .427 .427	0. 518 -404 -436 -445 -453 -483 -492 -495 -495 -476 -477 -473 -488 -488 -488 -467	-0.116 .128 .308 .501 .993 .1.104 1.128 .998 .894 .840 .830 .931 .911 .779 .621 .660 .672	-0.092 101 071 057 048 048 095 110 084 093 063 063 015 042 083	1. 448 .672 .801 .930 .963 .975 1. 027 1. 061 1. 351 .796 .518 .478 .343 .095 .174 .090 076

TABLE XIII

CLARK Y CIRCULAR-TIPPED BIPLANE, G/c=1.25; STAGGER/CHORD=0.50

ALL OTHER DIMENSIONS ORTHOGONAL

	U 1	pper win	g	L	wer win	g ·		Cellule	
α	C_N	Срз	C _p ,	C_N	C _{p3}	Cyr	CN	Cm e/t	e
Degrees -4 0 4 8 12 14 16 18 20 22 25 30 30 60 70 80	-0.087 -200 -470 -755 -992 1.260 1.340 1.371 1.028 -905 -888 -933 -906 1.082 1.092 1.092 1.753	-0.816 -750 -393 -339 -339 -281 -281 -281 -347 -383 -370 -383 -394 -403 -403 -402 -391 -303 -1.545	0.437 .428 .446 .447 .451 .465 .499 .528 .497 .478 .487 .478 .487 .475 .481 .481 .481 .481 .481 .481 .481 .481	-0. 183 .126 .294 .590 .777 .992 1.081 1.181 1.237 1.267 1.125 1.120 1.200 1.200 1.289 1.393 1.490 1.405	0. 526 1. 052 1. 489 374 325 310 308 291 1. 284 295 410 428 428 4446 4474 4477 511	0. 486 . 437 . 448 . 453 . 454 . 460 . 464 . 473 . 488 . 499 . 477 . 473 . 474 . 474 . 474 . 475 . 475	-0. 102 .163 .383 .673 .885 1. 126 1. 220 1. 274 1. 148 1. 097 1. 007 1. 042 1. 149 1. 283 1. 283 1. 283 1. 283 1. 283 1. 283 1. 283 1. 713	-0.0890920470500390220200231091741902082282292322331	0. 787 1. 589 1. 599 1. 281 1. 270 1. 240 1. 167 1. 162 812 812 813 789 811 804 783 776 776 776 776 776 776 776 776 776 77

TABLE XIV

CLARK Y CIRCULAR-TIPPED BIPLANE, G/c=1.25; STAGGER/CHORD=0.25

ALL OTHER DIMENSIONS ORTHOGONAL

	σ	pper win	g	Low	er wing		Cellule		
α	· CN	Cpz	C,,	C'n	Срэ	Cpy	CN	Cm eH	•
Degrees -8 -8 -8 -1 0 4 8 12 14 16 18 20 22 25 50 60 50 80 90	-0.100 .172 .429 .942 .1.189 1.252 1.324 1.340 .906 .832 .839 .903 .911 .927 .882 .033173	-0.639 -831 -412 -337 -310 -287 -281 -283 -362 -383 -389 -376 -352 -246 -432	0.413 .450 .445 .446 .445 .457 .468 .510 .510 .619 .497 .491 .487 .491 .491 .504 .504	-0.114 .115 .299 .561 .781 .988 1.061 1.137 1.187 1.187 1.092 1.092 1.112 1.175 1.398 1.411 1.439 1.450 1.430	-0. 591 1. 116 -488 -381 -329 -312 -291 -287 -300 -390 -416 -413 -423 -424 -460 -478 -496 -527	0. 487 . 398 . 429 . 429 . 434 . 434 . 431 . 445 . 451 . 480 . 478 . 478 . 478 . 479 . 479 . 470 . 473 . 474	-0.107 .144 .364 .627 .862 1.089 1.157 1.231 1.264 1.096 .962 .948 .981 1.039 1.163 1.143 1.1037 .703 .628	-0.092098050059049041030032035104140158177215234283	0. 876 1. 496 1. 436 1. 233 1. 206 1. 1. 201 1. 176 1. 130 - 782 - 762 - 779 - 763 - 763 - 764 - 663 - 624 - 441 023 121

TABLE XV

CLARK Y CIRCULAR-TIPPED BIPLANE, G/c=0.75; STAGGER/CHORD=0.50

ALL OTHER DIMENSIONS ORTHOGONAL

	ָס	pper win	g	L	ower win	g	Cellule		
α	CN	Срв	C_{py}	C_N	C _{ps}	C_{py}	C _N	Ст он	e
Degrees -8 -4 -0 4 8 8 12 14 16 18 20 22 25 30 35 40 60 70 80 90	-0.081 -213 -495 -775 1.038 1.239 1.319 1.300 -778 -778 -798 -998 -948 1.010 1.025 -970 -445	-0.772 -709 -376 -323 -293 -271 -267 -319 -339 -343 -328 -377 -357 -376 -377 -388 -383 -383 -383 -383 -383 -383	0. 455 . 439 . 444 . 445 . 445 . 457 . 469 . 521 . 536 . 517 . 510 . 490 . 480 . 481 . 481 . 491 . 491	-0. 106 -0.81 -262 -474 -683 -844 -971 1.073 1.242 1.383 1.495 1.495 1.496 1.364 1.456 1.446 1.422 1.393	-0. 550 L 341 - 554 - 392 - 384 - 332 - 320 - 310 - 312 - 308 - 342 - 342 - 444 - 446 - 447 - 479 - 517	0.494 -421 445 -463 -463 -462 -463 -463 -463 -463 -463 -463 -471 -472 -472	-0.093 -147 -379 -625 -861 -1.042 -1.145 -1.136 -1.081 -1.148 -1.156 -1.148 -1.156 -1.148 -1.168 -1.108	-0.080 -0.07 -0.042 -0.03 -0.03 -0.01 -1.01 -1.10 -1.10 -1.10 -1.20 -1.20 -1.21 -1.20 -1.21 -1.20 -1.21	0.764 2.628 1.890 1.635 1.463 1.367 1.267 1.829 1.569 1.460 1.57 1.400 1.500 1

TABLE XVI

CLARK Y CIRCULAR-TIPPED BIPLANE, G/c=0.75; STAGGER/CHORD=0.25

ALL OTHER DIMENSIONS ORTHOGONAL

α .	σ:	pper win	g	L	ower win	g		Cellule	
"	CN	Сэз	C,,	CN	Cps	C,,	C_N	C= e/l	
Degrees -8 -4 0 4 8 112 14 18 220 25 35 40 60 70 80 90	-0. 102 . 163 . 433 . 685 . 897 1. 180 1. 239 1. 237 1. 120 . 685 . 697 . 748 . 735 . 669 . 430 . 051 . 092	-0, 503 -772 -378 -320 -288 -267 -258 -257 -258 -339 -319 -313 -310 -313 -139 -908 -550	0. 438 . 455 . 449 . 452 . 453 . 453 . 470 . 483 . 551 . 556 . 509 . 501 . 497 . 497 . 497 . 497 . 497 . 497 . 493 . 493	-0.066 1207 .519 .721 .890 .996 1.086 1.170 1.198 1.387 1.397 1.418 1.329 1.365 1.454 1.454 1.449	-1. 242 . 964 . 484 . 373 . 336 . 310 . 303 . 300 . 288 . 303 . 303 . 322 . 394 . 432 . 441 . 448 . 473 . 489 . 512	0. 5555 .4277 .4400 .4634 .4604 .4604 .4604 .4755 .4833 .4833 .4834 .483	-0.084 .142 .385 .592 .809 .997 1.088 1.162 1.204 1.036 1.010 1.058 1.039 1.051 1.014 1.072 .839 .762 .669	-0.090083059049029024037108119180180204204204204204205	1. 545 1. 358 1. 458 1. 458 1. 282 1. 246 1. 239 1. 184 1. 1. 167 2. 33 494 446 492 496 497 635 6409 444 627 635 6-064

TABLE XVII

CLARK Y CIRCULAR-TIPPED BIPLANE, DECALAGE= -6°

ALL OTHER DIMENSIONS ORTHOGONAL

α	$\mathbf{v}_{\scriptscriptstyle{1}}$	pper win	g	Low	er wing		Cellule		
"	C _N	Сри	Cyy	C_N .	Cps	C_{pg}	CN	Cmeft	e
Degrees -8 -4 0 4 8 114 116 118 20 222 225 30 85 40 60 7 7 0 90	-0.064 -216 -438 -928 1.114 1.163 1.230 1.290 -761 -764 -744 -745 -610 -362 -1133 -117	-0.883 -681 -408 -339 -3137 -290 -279 -282 -3372 -354 -3372 -342 -3372 -103 -710 -612 -487	0. 453 . 432 . 439 . 450 . 451 . 459 . 465 . 475 . 489 . 558 . 581 . 590 . 591 . 503 . 503	-0.388 -1.388 -1.385 -1	0. 277 - 225 - 612 - 613 - 614 - 334 - 331 - 310 - 304 - 305 - 304 - 426 - 427 - 448 - 448	0.540 -4480 -458 -455 -457 -457 -457 -457 -457 -458 -454 -458 -458 -458 -458 -458 -458	-0. 1880761778349281011031012897894897897897897	-0.032 -0.074 -0.074 -0.075 -0.057 -0.057 -0.052 -0.049 -0.053 -0.091 -0.080 -0.091 -0.114 -0.114 -0.114 -0.114 -0.114 -0.1173	0. 203 587 -4. 769 4. 4445 2. 450 1. 700 1. 540 1. 414 1. 414 1. 218 1. 850 1. 667 1. 667 1. 67 1. 687 1. 691 091 080

TABLE XVIII

CLARK Y CIRCULAR-TIPPED BIPLANE, DECALAGE=-3°

α	ָּט	pper win	g	Lo	wer win	g	Cellule			
a	C_N	Сря	C,,	CN	Cps	C _p ,	CN	Cmefi	8	
Degrees -8 -4 8 8 12 14 15 8 8 9 9 9 9 9 9 9	-0.076 .170 .377 .657 .891 1.086 1.140 1.216 1.276 1.276 2.720 .686 .532 .251 -183111	-0.782 .831 .447 .348 .313 .292 .290 .282 .283 .341 .361 .314 .328 .306 .344 .004 .602 .591	0. 437 - 428 - 451 - 449 - 452 - 455 - 508 - 503 -	-0. 347 071 .163 .376 .595 .794 .884 .997 1. 114 1. 1070 1. 114 1. 124 1. 1302 1. 483 1. 483 1. 483 1. 483	0. 207 -1. 041 -858 -443 -862 -322 -3312 -395 -395 -489 -431 -434 -469 -496 -509	0. 499 476 427 431 452 455 460 471 493 493 474 473 477 477 477 487 487 486	-0. 211 .050 .270 .513 .743 .940 1. 014 1. 107 1. 176 1. 192 1. 079 .881 .917 .974 .994 .857 .668 .683	-0.046095069069061049048051071136117138129132119132	0. 219 -2. 395 2. 310 1. 729 1. 497 1. 368 1. 220 1. 188 1. 140 646 6586 527 104 104 075	

TABLE XIX

CLARK Y CIRCULAR-TIPPED BIPLANE, DECALAGE=+3°

ALL OTHER DIMENSIONS ORTHOGONAL

	U,	pper win	g	L	ower wh	ng	Cellule			
α	C _N	C23	Cyr	C_N	Сря	C24	C_N	Cm e/4	e	
Degrees —8 —8 —8 —8 —8 —8 —8 —8 —8 —8 —9 —9 —9 —9 —9 —9 —9 —9 —9 —9 —9 —9 —9	-0. 165 .077 .283 .571 .828 1. 142 1. 1282 1. 144 .8772 .640 .674 .699 .628 .493 .222 -1183 -107 -116	-0. 248 1. 478 478 473 389 285 275 302 333 344 336 321 290 297 -132 5516 566	0. 432 - 470 - 476 - 485 - 465 - 467 - 468 - 512 - 559 - 514 - 503 - 512 - 503 -	0. 156 .318 .593 .792 .990 1. 129 1. 141 1. 003 1. 153 1. 233 1. 433 1. 445 1.	0.991 .549 .387 .339 .300 .299 .407 .416 .423 .422 .429 .481 .461 .471 .507 .524	0. 403 -434 -437 -457 -463 -457 -463 -505 -506 -505 -488 -489 -470 -476 -476 -488 -488 -488 -488 -488 -488 -488 -48	-0.004 .197 .428 .681 .909 1.142 1.182 1.023 1.023 .937 .893 .964 .987 1.013 .972 .859 .668 .678	-0.099 -095 -075 -056 -056 -058 -058 -010 -111 -128 -130 -130 -140 -121 -144 -173 -189	-1. 059 -243 -443 -722 -835 -932 1. 026 1. 1286 -554 -546 -546 -340 -340 -103 -103 -1073 -1078	

TABLE XX

CLARK Y CIRCULAR-TIPPED BIPLANE, DECALAGE=+6°

ALL OTHER DIMENSIONS ORTHOGONAL

	τ	pper wi	ıg	Lo	wer wi	ng	Cellule			
α	CN	Cpe	C,,	CN	Срз	C,,	C_N	C= e/4	8	
Degrees -8 -4 0 4 812 116 118 212 21 21 21 21 21 21 21 21 21 21 21 21	-0. 255 .009 .208 .546 .820 1. 080 1. 301 1. 315 .974 .675 .628 .643 .623 .6570 .468 .168 .117	-0.070 10.380 -534 -373 -373 -289 -277 -277 -271 -291 -291 -291 -291 -291 -291 -291 -29	0.429 1.1818 -457 -4519 -4515 -558 -558 -558 -558 -558 -558 -558 -	.0376 .646 .851 1.033 1.181 1.123 .870 .896 1.035 1.118 1.279 1.181 1.279 1.499 1.499 1.549 1.549 1.547	0.515 .388 .345 .318 .293 .301 .415 .425 .415 .425 .431 .431 .431 .431 .431 .437 .513	.0419 .432 .446 .450 .465 .491 .501 .494 .486 .486 .481 .473 .473 .477 .477 .477 .467	0.061 .328 .530 .7789 1.001 1.106 .880 .905 .905 .901 1.006 .884 .844 .671 .630 .675	-0.091090090069083053050082128123123123123124134134134190	-0. 678 .014 .245 .528 .990 1. 486 .987 .750 .605 .531 .452 .395 .312 .111 .111 .117 .099074086	

TABLE XXI

CLARK Y CIRCULAR-TIPPED BIPLANE, G/c=1.25; DECALAGE= -3°

ALL OTHER DIMENSIONS ORTHOGONAL

	υ.	pper win	g	L	wer win	g	Cellule			
α	CN	Суз	C>7	C _N	C3.5	C,,	C_N	Cm oH	e	
Degrees -8 -4 0 4 8 12 12 12 12 12 12 12 12 12 12 12 12 12	-0.069 -179 -402 -655 -914 1.118 1.200 1.275 1.331 1.283 -766 -855 -850 -767 -504 -179 -162	-1.002 -818 -428 -317 -289 -283 -285 -285 -283 -387 -387 -387 -387 -387 -387 -387 -387 -387 -387 -387 -387 -387 -387 -387 -388 -387 -388 -387 -388	0.462 -423 -451 -451 -453 -453 -453 -453 -453 -453 -493 -496 -505 -505 -505 -505 -505 -505 -505 -50	-0.380 -1.05 -1.37 -1.389 -612 -823 -820 -820 -1.129 -1.1215 -1.053 -1.153 -1.1517 -1.355 -1.469 -1.469	0. 222 0. 615 992 472 387 381 287 287 287 287 288 483 483 483 483 483 483 483 4	0. 489 - 449 - 462 - 487 - 465 - 463 - 468 - 479 - 477 - 475 - 475 - 476 - 476 - 476 - 476 - 476 - 476 - 476	-0. 225 .037 .270 .512 .763 .1075 1. 120 1. 224 1. 094 1. 094 1. 094 1. 034 1. 064 1. 066 666 .654	-0.046081087066052048052048079125140151188123189181	0. 182 -1. 705 2. 935 2. 935 1. 775 1. 492 1. 283 1. 283 1. 180 1. 110 . 800 . 774 . 699 . 686 . 383 . 686 . 383 . 199 . 119 . 110	

TABLE XXII

CLARK Y CIRCULAR-TIPPED BIPLANE, G/c=1.25; DECALAGE= $+3^{\circ}$

ALL OTHER DIMENSIONS ORTHOGONAL

	U	pper wir	ng	· L	ower w	ing	Cellule			
α	C_N	Срз	Cyy	CN	C22	C,,	C _N	Cm e/4	•	
Degrees -4 0 4 8 8 112 114 18 220 225 35 450 650 770 780 90	-0. 175	-0.207 L 378 . 456 . 362 . 286 . 296 . 297 . 291 . 293 . 309 . 368 . 349 . 361 . 361 . 361	0.434 444 444 444 446 456 456 456 456 456 45	0. 100 . 810 . 5810 . 7935 1. 003 1. 185 1. 105 . 8968 1. 016 1. 251 1. 251 1. 240 1. 440 1. 448 1. 486 1. 486 1. 469	1.452 .523 .330 .337 .300 .237 .288 .309 .307 .412 .423 .423 .423 .423 .423 .423 .423 .42	0. 399 428 .441 .445 .465 .475 .491 .505 .505 .505 .497 .485 .477 .472 .483 .474 .469 .469	-0. 037 . 198 . 449 . 701 . 932 1. 116 1. 162 1. 195 1. 029 . 911 . 910 . 967 1. 027 1. 079 . 043 . 678 . 660	-0.100089070060053047055089128134134163167167164181	-1.750 -277 -513 -703 -857 -966 1.018 1.162 1.376 -882 -792 -693 -694 -578 -484 -310 -088 -112114	

TABLE XXIII

CLARK Y CIRCULAR-TIPPED BIPLANE, G/c=0.75; DECALAGE= -3°

ALL OTHER DIMENSIONS ORTHOGONAL

	, ע	pper win	g	L	wer win	g	Cellule			
α	C _N	Cys	Cyy	C _M	Cys	Cpy	CN	On e/s	•	
Degrees -8 -4 0 0 4 8 12 114 118 22 25 35 40 60 70 90	-0.046 .175 .421 .859 1.032 1.170 1.201 1.106 .689 .603 .547 .420 .033 -140 -102 -088	-1. 535 .763 .397 .334 .306 .272 .276 .271 .290 .349 .313 .275 .215 .215 .215 .215 .215 .215 .215 .21	0. 376 .444 .469 .451 .480 .460 .476 .489 .515 .538 .514 .522 .532 .581 .888 .292 .243 .197	-0. 299 -0.055 -173 -345 -570 -760 -989 -1.178 -1.178 -1.242 -1.293 -1.487 -1.513 -1.488 -1.496 -1.505	0. 012 -1. 897 -2. 826 -372 -372 -320 -314 -305 -305 -305 -305 -445 -445 -445 -446 -470 -489 -489 -500	0. 483 . 503 . 435 . 447 . 454 . 469 . 462 . 469 . 472 . 481 . 474 . 471 . 471 . 472 . 471 . 472 . 473	-0. 173 .055 .297 .497 .715 .895 .976 1. 135 1. 169 .942 .942 .941 .783 .677 .709	-0.077 -0.098 -0.094 -0.094 -0.094 -0.091 -0.013 -0.013 -0.013 -0.015 -0.013 -0.015 -0.013 -0.016 -0.017 -0.016 -0.017 -0	0.154 -2.693 2.4870 1.876 1.355 1.240 1.192 1.150 1.193 .5657 .438 .344 .345 .345 .345 .345 .345 .345 .345	

TABLE XXIV

CLARK Y CIRCULAR-TIPPED BIPLANE, G/c=0.75; DECALAGE=+3°

	σ	pper wir	ıg	L	ower wir	ıg	Cellule			
α	CN	Срз	C _p	CN	· C23	C,,	CN	Cm e/4	•	
Degrees -8 -4 0 0 4 8 12 144 168 22 25 3 35 40 5 80 7 80 90	-0. 197 .047 .251 .763 .100 1.009 1. 141 1. 139 .604 .554 .448 .311 .235022101104	-0. 137 2 015 483 341 394) 275 289 285 250 328 296 296 214 135 3 034 470 552 551	0. 410 . 533 . 472 . 456 . 451 . 455 . 460 . 483 . 531 . 544 . 525 . 528 . 539 . 581 . 682 . 219 . 219	0. 179 .385 .631 .812 .965 1. 160 1. 143 .977 1. 129 1. 439 1. 43	0. 822 -516 -583 -384 -311 -301 -394 -394 -394 -418 -418 -418 -443 -443 -453 -467 -485 -485 -485 -485 -485 -485 -485 -485	0.415 .430 .432 .452 .455 .462 .470 .482 .490 .503 .478 .479 .469 .469 .469 .485	-0.009 -208 -421 -667 -859 -1.019 -1.045 -1.142 -1.058 -914 -949 -939 -915 -754 -678 -687	-0.089 -069 -061 -062 -062 -063 -061 -070 -1101 -120 -134 -113 -112 -184	-1. 100	

TABLE XXV

CLARK Y CIRCULAR-TIPPED BIPLANE, STAGGER/CHORD=+0.50; DECALAGE=+3°

ALL OTHER DIMENSIONS ORTHOGONAL

	ס	pper win	g	Lo	wer win	g	Celiule			
α	C_N	Cps	C,,	C_N	Cps	Cpy	C _N	Cm e/L	8	
Degrees -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8	-0. 119	0. 425 820 409 338 338 3287 2285 278 3303 3377 370 377 381 392 375 375 375 377 377 377 377 377	0.418 .454 .454 .449 .457 .470 .510 .535 .486 .481 .478 .478 .488 .481 .478 .488 .481 .470 .510 .488	0. 128 .306 .544 .742 .916 1. 160 1. 180 1. 187 1. 230 1. 220 1. 220 1. 231 1. 233 1. 440 1. 442 1. 445 1. 445 1. 445 1. 388	1. 083 . 631 . 398 . 354 . 330 . 310 . 306 . 295 . 306 . 423 . 442 . 442 . 442 . 442 . 442 . 442 . 452 . 462 . 463 . 563 . 513	0.389 .420 .441 .449 .458 .458 .453 .453 .470 .470 .470 .470 .470 .470	0. 006 . 238 . 488 . 951 1. 156 1. 292 1. 208 1. 1025 1. 1035 1. 1237 1. 250 1. 250 1. 237 1. 250 1. 250	-0. 125 108 094 074 057 037 039 137 196 208 -	-0. 929 .552 .793 .960 1. 076 1. 120 1. 130 1. 130 1. 130 1. 130 1. 723 .713 .713 .713 .713 .713 .714 .715 .715 .712 .712 .712 .712 .712 .712 .712 .712	

TABLE XXVI

CLARK Y CIRCULAR-TIPPED BIPLANE, STAGGER/CHORD=+0.50; DECALAGE= -3°

ALL OTHER DIMENSIONS ORTHOGONAL

	יס ס	pper win	g	L	wer win	g	Cellule			
α	CN	C,,	C,,	C _N	C _p ,	C,,	C _N	Cm off	6	
Degrees	-0. 043 -207 -461 -741 -741 -741 -741 -741 -741 -741 -74	-1, 531 .741 .396 .338 .305 .291 .284 .330 .361 .372 .369 .374 .389 .390 .390 .307000	0. 515 .431 .449 .445 .455 .465 .471 .496 .525 .540 .500 .483 .477 .483 .485 .496 .525	-0.377 -118 -115 -1321 -547 -743 -861 -128 -1.128 -1.323 -1.323 -1.325 -1.240 -1.430 -1.449 -1.452	0. 214 498 1. 146 . 512 . 379 . 332 . 321 . 313 . 304 . 305 . 403 . 434 . 447 . 443 . 447 . 449 . 507	0. 481 - 470 - 443 - 443 - 455 - 459 - 463 - 463 - 479 - 478 - 483 - 463 - 663 -	-0. 210	-0.004054064062022006007013081158190211212247285274240	0. 114 -1, 755 4 010 2 310 1. 331 1. 635 1. 605 1. 365 1. 365 1. 365 1. 365 1. 365 1. 365 1. 788 1. 788 1. 788 1. 788 1. 785 1.	

TABLE XXVII

CLARK Y CIRCULAR-TIPPED BIPLANE, STAG-GER/ CHORD=+0.25; DECALAGE=+3° ALL OTHER DIMENSIONS ORTHOGONAL

	υ:	pper win	g	Lo	wer wi	ng	Cellule			
α	CN	C _{ps}	C,,	CN	Cys	C,,	C _N	Cm all	e	
Degrees -8 -8 -8 -9 -4 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	-0. 151 . 122 . 374 . 640 . 892 1. 112 1. 202 1. 200 1. 126 . 798 . 708 . 803 . 822 . 819 . 478 025 131	-0.243 1.013 418 333 3100 283 283 283 283 283 345 345 345 345 347 277 2 270	0.439 -4451 -451 -455 -555 -555 -555 -555 -55	0. 138 . 327 . 572 . 761 . 943 1. 091 1. 141 1. 161 1. 108 1. 107 1. 1259 1. 317 1. 437 1. 455 1. 458 1. 400	1. 027 .518 .388 .346 .318 .302 .296 .354 .420 .441 .434 .439 .448 .460 .448 .527	0.376 -421 -440 -451 -455 -463 -473 -483 -491 -494 -486 -477 -472 -473 -488 -466 -470 -473	-0.006 .225 .473 .701 .918 1.102 1.172 1.221 1.104 .983 .1031 1.083 1.083 1.103 1.103 1.103 1.103	-0. 110 103 083 083 093 046 097 098 184 183 190 191 214 219 245 278	-1. 094 -378 -654 -1. 094 -378 -654 -1. 105 -1. 010 -828 -645 -638 -631 -631 -632 -607 -633	

TABLE XXVIII

CLARK Y CIRCULAR-TIPPED BIPLANE, STAGGER/CHORD=+0.25; DECALAGE=-3°

ALL OTHER DIMENSIONS ORTHOGONAL

		Upper w	ing	Lo	wer win	g	Cellule			
α	CN	C _{ps}	C,,	CN	C _{ps}	Cyy	CN	Cm eft	e	
Degrees -8 -8 -4 0 0 4 8 122 114 115 20 222 25 35 40 60 70 80 90	-0.086 .181 .429 .681 1.130 1.202 1.279 1.313 1.199 .815 .720 .818 .845 .846 .785 .846 .785013	-0.715 -809 -412 -343 -316 -296 -289 -286 -362 -362 -362 -361 -308 -300 -341 -422 -462	0.436 .435 .450 .450 .458 .458 .476 .514 .533 .510 .493 .495 .495 .488 .495 .488 .495 .495 .495 .495 .495 .495 .495 .495	-0.3731131319546769854100 1.188 1.280 1.305 1.142 1.2370 1.425 1.450 1.445	0. 254 531 1. 010 . 503 . 375 . 328 . 328 . 328 . 328 . 307 . 306 . 441 . 443 . 445 . 445 . 445 . 446 . 448 . 508	0. 493 472 438 449 451 453 456 462 462 463 471 469 462 471 469 462 463 471 469	-0. 230	-0.0240780670670910880910380111111131160190190206207234237	0. 231 -1.603 8. 200 2. 132 1. 683 1. 470 1. 410 1. 305 1. 238 1. 037 - 552 - 703 - 681 - 618 - 618 - 618 - 618 - 637 - 609 - 094	

TABLE XXIX

CLARK Y CIRCULAR-TIPPED BIPLANE, DIHEDRAL $=+3^{\circ}$ ON UPPER WING

ALL OTHER DIMENSIONS ORTHOGONAL

	υ:	pper win	g	L	ower win	g	Cellule			
α	C _N	Cps	C _{>} ,	C_N	Cpz	C,,	C _N	Cm eH	e	
Degrees	-0.084 .192 .448 .712 .926 1.182 1.320 .778 .726 .736 .754 .776 .586 .324170132	-0.761 -7112 -433 -238 -238 -233 -281 -276 -277 -352 -338 -347 -342 -253 -342 -254 -483 -444	0. 430 -444 -457 -458 -464 -471 -478 -526 -530 -501 -503 -501 -503 -501 -503 -501 -503 -501 -503	-0. 132 . 123 . 318 . 608 . 804 1. 109 1. 156 1. 113 1. 1684 1. 1684 1. 1684 1. 1684 1. 1684 1. 1684 1. 1510 1. 234 1. 234 1. 504 1. 504 1. 504 1. 504 1. 504 1. 504 1. 504	-0. 503 1. 085 485 362 318 299 292 380 285 292 380 411 421 425 427 440 453 472 494	0. 501 - 411 - 447 - 454 - 453 - 483 - 485 - 488 - 475 - 473 - 473	-0. 103 . 160 . 383 . 660 . 865 1. 061 1. 136 1. 216 1. 216 1. 205 . 931 . 905 1. 005 1. 018 1. 005 . 914 . 670 . 688 . 694	-0.092 096 076 060 041 041 038 012 1123 123 134 142 139 136 168 168	0.637 1.500 1.410 1.172 1.162 1.118 1.084 1.102 1.108 1.188 813 718 651 628 554 411 216 213 213 213 213 213 213 213 213 213 213	

TABLE XXX

CLARK Y CIRCULAR-TIPPED BIPLANE, DIHEDRAL $=+3^{\circ}$ ON LOWER WING

	Upper wing				wer win	g	Cellule			
α	C _N	Срз	C ₇₇	C_R	Сэз	C,,	C _K	Cm eft	e	
Degrees -8 -4 0 4 8 8 114 116 122 225 30 60 70	-0. 131 -111 -313 -624 -887 -1. 887 -1. 132 -1. 277 -1. 099 -673 -663 -632 -493 -225 -1. 144 -1. 130	-0.398 1.107 438 3.345 3.306 2.277 2.78 2.278 3.307 3.356 3.333 3.316 2.236 2.208 -0.64 6.707 4.499 4.76	0. 455 -468 -466 -451 -448 -456 -460 -463 -492 -500	-0. 102 -128 -386 -389 -792 -972 -1.061 -1.11 -1.108 -1.108 -1.208 -1.406 -1.408 -1.408 -1.408 -1.408 -1.408 -1.408 -1.408 -1.408 -1.408 -1.408 -1.408 -1.408	-0.910 1.122 489 370 380 297 296 341 886 408 429 4429 4474 496 523	0. 531 - 429 - 4419 - 453 - 463 - 463 - 463 - 464 - 466 - 466 - 466 - 466 - 466 - 466	-0.117 -120 -346 -602 -840 1.027 1.097 1.157 1.209 1.101 -936 -891 -945 -943 -992 -653 -684	-0. 102 104 074 074 041 045 045 046 116 116 113 124 133 126 117 149 190	1. 284 .867 1. 030 1. 077 1. 120 1. 112 1. 1067 1. 081 1. 119 .669 .607 .689 .607 .548 .508 .468 .360 .157 100 .085	

TABLE XXXI

CLARK Y CIRCULAR-TIPPED BIPLANE, SWEEPBACK=10° ON UPPER WING

ALL OTHER DIMENSIONS ORTHOGONAL

	σ	pper win	g	L	wer win	g	Cellule			
α	CN	Cps	C ₂₇	CN	Сря	Cyy	C⋈	Cm c/4	e	
Degrees88 0 4 8 12 14 16 18 20 22 25 30 40 50 60 70 80	-0. 137	-0. 398 1. 162 481 350 321 300 289 282 282 289 358 319 287 241 -542 643 5526	0. 405 488 . 472 . 445 . 445 . 445 . 450 . 451 . 453 . 488 . 488	-0. 132 . 115 . 332 . 619 . 801 . 997 1. 083 . 975 1. 010 . 907 1. 129 1. 129 1. 129 1. 231 1. 469 1. 489 1. 489 1. 488	-0. 583 1. 193 488 3.383 3.294 2290 294 289 3861 370 416 422 419 434 434 435 473 491 5511	0. 495 - 405 - 430 - 451 - 455 - 458 - 473 - 473 - 473 - 473 - 488 - 476 - 475 - 465 - 466 - 466	-0. 135 -110 -311 -594 -798 -992 -1. 095 -1. 138 -1. 108 -1. 1	-0. 100 102 072 062 050 050 063 073 073 073 089 089 080 093 093 093 093 093 093 097	i. 038 . 903 . 873 . 917 . 991 1. 010 1. 083 1. 100 . 725 . 588 . 522 . 435 . 314 . 063 156 087 087 077	

TABLE XXXII

CLARK Y CIRCULAR-TIPPED BIPLANE, SWEEPBACK=5° ON UPPER WING

ALL OTHER DIMENSIONS ORTHOGONAL

	ס	pper win	Œ	L	ower win	g	Cellule			
α	C _N	Cpr	Cpy	CN	Сээ	Cyy	C _M	Cm e/4	e	
Degrees -8 -8 -8 -8 -8 -8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	-0. 137 .123 .322 .611 .838 1.040 1. 117 1. 215 1. 302 1. 110 .716 .635 .610 .528 .772 -158 -1173 -112 -109	-0.400 1.047 -445 -353 -318 -292 -287 -282 -388 -272 -388 -312 -388 -286 -314 -312 -386 -385 -479 -560 -521	0.384 .401 .463 .443 .453 .455 .455 .470 .519 .495 .495 .495 .495 .495 .201 .273	-0. 133 -122 -337 -604 -789 -901 1. 065 1. 112 1. 005 1. 005 1. 102 1. 170 1. 255 1. 350 1. 486 1. 495 1. 498	-0. 570 1. 145 477 366 324 304 292 272 303 380 405 411 421 429 439 459 470 469 459	0. 483 .396 .435 .445 .463 .463 .463 .473 .491 .488 .493 .471 .488 .493 .493 .493 .493 .493 .493 .493 .493	-0. 135 -122 -330 -608 -814 1.016 1.091 1.184 1.194 1.058 -865 -883 -865 -883 -933 -933 -6667 -692 -694	-0.099105070089051045054081101102102083103103103103103	1. 030 1. 008 . 955 1. 012 1. 062 1. 049 1. 049 1. 199 1. 104 . 700 . 580 . 528 . 488 . 391 . 190 . 103 103 103 103 103 107 075	

TABLE XXXIII

CLARK Y CIRCULAR-TIPPED BIPLANE, SWEEPBACK=10° ON LOWER WING

ALL OTHER DIMENSIONS ORTHOGONAL

	ַט	pper win	g	L	ower win	g	Cellule			
α	CN	Срх	C,,	C _N	Cps	C_{py}	CN	Cm aff	e	
Degrees -4 0 4 8 14 16 18 20 22 25 50 60 60 80 90	-0.102 -151 -388 -368 -3193 -1.200 -1.201 -1.207 -1.207 -1.207 -1.207 -2	-0.585 -888 -423 -339 -306 -278 -277 -280 -275 -280 -383 -363 -363 -363 -364 -368 -368	0. 453 . 466 . 455 . 452 . 459 . 461 . 479 . 506 . 518 . 524 . 515 . 515 . 515 . 515 . 515 . 524 . 565 . 889 . 890	-0.074 -1294 -557 -745 -916 -1.011 -1.093 -1.180 -1.181 -1.182 -1.185 -1.176 -1.178 -1.184	-0.875 1.120 -514 -372 -336 -316 -303 -300 -290 -396 -413 -424 -434 -4442 -455 -473 -491 -515	0.470 .427 .446 .447 .450 .456 .457 .456 .467 .447 .442 .446 .453 .460 .460 .468	-0.088 .136 .346 .612 .838 1.030 1.106 1.192 1.228 1.179 1.013 .968 .994 1.042 1.069 1.1071 .953 .792 .677	-0.087 -099 -088 -088 -048 -034 -034 -038 -192 -1185 -1192 -210 -214 -214 -273	1. 379 1, 248 1, 352 1, 196 1. 259 1. 1249 1. 187 1. 181 1. 173 1. 046 691 682 650 600 506 322 067 063	

TABLE XXXIV

CLARK Y CIRCULAR-TIPPED BIPLANE, SWEEPBACK=5° ON LOWER WING

ALL OTHER DIMENSIONS ORTHOGONAL

	σ	pper win	g	L	ower win	g	Cellule			
α	CN	Cps	C _P ,	C_N	C _{ps}	C,,	CN	C= */4	e	
Degrees -4 0 4 8 -14 8 112 114 118 20 22 22 25 30 60 70 80 90	-0.069 -146 -356 -630 -895 1.103 1.188 1.263 1.313 1.313 1.715 -784 -785 -680 -681 -1132 -1132 -108	-0.574 -915 -462 -343 -314 -287 -250 -276 -362 -361 -346 -338 -322 -361 -188 -309 -469	0. 446 454 460 458 449 462 460 470 470 470 470 514 510 508 518 518 548 919 9252 292	-0.085 -160 -328 -582 -772 -960 -1.039 -1.127 -1.197 -1.199 -1.190 -1.255 -1.321 -1.422 -1.439 -1.469	-1. 399 .634 .500 .376 .309 .300 .225 .305 .305 .392 .428 .430 .428 .430 .428 .431 .428 .431 .448 .452 .453 .453 .453	0. 520 - 439 - 440 - 448 - 455 - 461 - 463 - 476 - 459 - 459 - 459 - 459 - 465 - 465 - 468 - 468 - 466	-0. 082	-0.090104076065065040037090133136162163170167167252	1. 524 - 912 1. 092 1. 1082 1. 140 1. 142 1. 140 1. 165 - 837 - 755 - 617 - 638 - 594 - 478 - 908 - 908 - 907	

TABLE XXXV

CLARK Y CIRCULAR-TIPPED BIPLANE, STAG-GER/CHORD=+0.25; SWEEPBACK=5° ON UPPER WING

ALL OTHER DIMENSIONS ORTHOGONAL

	σ	pper win	g	L	ower win	g	Cellule		
α	CN	C _{ps}	Cyy	C _N	Cys	Cps	CN	Cm 0/4	e
Degrees -8 -4 0 4 8 12 14 16 18 20 22 25 50 60 60 70 80	-0.095 .170 .396 .653 .911 1.125 1.228 1.300 1.172 .773 .7782 .782 .782 .782 .783 .552 .0146 -1124	-0.676 .820 .433 .352 .311 .292 .287 .277 .379 .361 .349 .299 .291 -111 .513 .474	0. 421 . 450 . 451 . 451 . 444 . 452 . 453 . 458 . 474 . 509 . 503 . 500 . 495 . 484 . 474 . 322 . 342 . 256	-0. 108 .107 .295 .554 .751 .928 1.030 1.104 1.149 1.248 1.194 1.266 1.325 1.450 1.475 1.443	-0.687 1.202 .502 .383 .342 .319 .306 .301 .295 .304 .303 .428 .434 .439 .446 .461 .478 .502 .517	0.528 .413 .435 .452 .455 .466 .470 .477 .488 .494 .468 .458 .458 .458 .458 .458 .458 .458	-0. 102	-0.094 -099 -072 -071 -062 -052 -049 -049 -049 -160 -160 -183 -177 -182 -184 -213	0. 880 1. 588 1. 342 1. 180 1. 211 1. 211 1. 190 1. 175 1. 132 621 605 645 618 598 381 - 101 - 086

TABLE XXXVI

CLARK Y CIRCULAR-TIPPED BIPLANE, STAG-GER/CHORD=+0.50; SWEEPBACK=10° ON UPPER WING

α	σ	pper win	g	L	ower win	g			
	C_N	Cps	C,,	C _N	Cps	C,,	CN	Cm e/s	8
Degrees								,	
-8	-0.076	-0.864	0.411	-0.132	-0.491	0.513	-0.104	-0.089	0. 575
-4	. 185	.769	.453	.086	1.401	.427	.136	092	2, 150
9	.448	.402	. 451	. 276	. 525	.445	.362	061	1.623
8	. 691 . 928	.338 .302	.447 .451	.523	376	.451 .462	.607 .826	053 043	1.321 1.282
12	1, 148	.288	.450	.918	316	.465	1.033	037	1.250
14	1, 262	270	.451	1.010	308	.470	1.136	œi	1.260
16	1.318	272	454	1.129	300	.470	1.224	030	1.107
์ รัช I	1. 222	272	.468	1.189	295	.474	1. 205	037	1.029
18 20 22	1. 128	288	.461	1, 230	303	478	1.178	060	. 915
22	.800	.392	.485	1.800	.296	.487	1.050	 120	.015
25	. 737	.356	. 474	1.275	.392	.459	1.003	104	.578
30	.787	.354	.471	1.214	.423	.466	1.001	一. 174	.048
35	. 838	. 354	.462	1.281	. 435	.473	1.060	191	. 655
40	. 830	. 361	.462	1.336	. 432	.470	1.083	200	.621
50	. 832	.346	.444	1.415	.445	.473	1.124	 216	.588
60	. 718	. 204	. 421	1.485	.461	.466	1,099	-, 221	.480
70	.461	. 207	.340	1.480	.474	.462	.971	221	.311
80 90	. 109 —. 119	355 . 528	.027	1. 537 1. 450	. 494	.468	.823	246 279	082

DISTRIBUTION TESTS ON CLARK Y BIPLANE CELLULES WITH REFERENCE TO STABILITY

TABLE XXXVII

CLARK Y CIRCULAR-TIPPED BIPLANE, STAGGER/CHORD=-0.50; SWEEPBACK= 10° ON LOWER WING

ALL OTHER DIMENSIONS ORTHOGONAL

α	ָס	pper win	g	Lo	wer win	g	Cellule			
	CN	C _{ps}	Cyy	CN	Cpz	C,,	C _N	Cm sH	e	
Degrees -8 -8 -8 -8 -8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	-0. 125 . 114 . 310 . 605 . 834 1. 032 1. 129 1. 126 1. 269 1. 269 1. 384 . 614 - 211 - 149 - 105 - 138	-0.446 1.022 473 319 229 227 227 220 288 363 346 330 219 215 -1.380 650 5555 5555	0.441 .478 .470 .484 .461 .462 .471 .485 .490 .515 .522 .548 .572 .245 .245 .245 .221 .252	-0. 143 . 113 . 309 . 590 . 781 . 963 1. 028 1. 051 . 923 . 868 . 923 . 868 1. 140 1. 140 1. 147 1. 1468	-0. 449 1. 134 489 351 307 293 280 367 406 421 414 481 439 450 473 480 5510 531	0.455 .471 .439 .453 .457 .467 .466 .446 .450 .457 .467 .467 .467 .467 .467	-0. 134 . 114 . 310 . 508 . 808 . 995 1. 079 1. 123 1. 096 . 990 . 878 . 841 . 846 . 872 . 847 . 742 . 681 . 660	-0.0960950720610540450450480891051051089089089099099099	0.874 1.010 1.004 1.026 1.068 1.076 1.1377 1.1377 1.375 1.282 .792 .793 .485 .403 .293 .01141341074094	

TABLE XXXVIII

CLARK Y CIRCULAR-TIPPED BIPLANE, OVERHANG= -20%

ALL OTHER DIMENSIONS ORTHOGONAL

	σı	pper win	g	L	wer win	g	c		
α	CN	Cps	C,,	C_N	Cps	Cpy	CN	Cm e/4	е
Degrees -8 -8 -8 -8 -8 -8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	-0.072 .134 .348 .593 .799 1.010 1.051 1.160 .815 .708 .649 .640 .460 .210 .163 -1140	-0.907 -339 -450 -349 -314 -291 -293 -293 -373 -341 -322 -310 -277 -184 -122 -478 -481	0. 440 . 425 . 444 . 441 . 442 . 447 . 465 . 481 . 505 . 480 . 480 . 485 . 480 . 485 . 289 . 294 . 298	-0. 115 . 108 . 341 . 634 . 844 . 637 . 112 . 175 . 1 178 . 1 178 . 1 178 . 1 178 . 1 174 . 1 140 . 1 279 . 1 462 . 1 498 . 1 457 . 1 514 . 1 510	-0.680 1.290 493 362 318 306 297 292 300 419 425 411 437 445 451 477 489 519	0. 543 -409 -446 -451 -460 -467 -488 -471 -436 -464 -475 -466 -468 -468 -468 -468 -468	-0. 008	-0. 095 103 077 066 053 050 046 053 050 123 124 183 110 128 111 128 114 163 187	0. 626 1. 241 1. 021 936 948 944 937 983 1. 096 692 660 568 433 314 1.47 -078 -101 -093

TABLE XXXIX

CLARK Y CIRCULAR-TIPPED BIPLANE, OVERHANG= +20%

ALL OTHER DIMENSIONS ORTHOGONAL

	U J	pper win	e	L	ower win	g	Cellule		
α	CN	Cya	C2.	C_R	Cys	Cyy	C _N	Cm sH	c
Degrees -8 -4 0 4 8 12 14 16 18 20 22 25 30 35 40 00 90	-0. 136 . 128 . 327 . 655 . 902 1. 097 1. 211 1. 286 1. 373 1. 025 . 805 . 784 . 824 . 804 . 697 . 515 . 2094 . 089	-0. 413 1. 008 449 340 347 282 279 277 282 338 373 355 351 341 275 258	0. 432 481 . 485 . 488 . 488 . 489 . 477 . 480 . 550 . 552 . 522 . 522 . 523 . 655 . 685 . 685 . 685 . 683 . 1 409	-0.020 .185 .386 .580 .752 .937 1.010 1.090 1.100 1.160 1.160 1.160 1.310 1.390 1.480 1.483 1.433	-5. 321 .788 .471 .373 .322 .308 .309 .298 .303 .369 .393 .420 .425 .434 .447 .456 .477 .456 .477 .486 .522	0. 6277 .438 .431 .445 .445 .445 .465 .465 .467 .478 .478 .476 .476 .476 .476 .476 .476 .476 .476	-0.085 .154 .331 .622 .838 1.028 1.125 1.200 1.254 1.041 .928 .911 .951 .999 1.029 1.024 .917 .784	-0. 101 089 070 065 0652 0457 044 052 108 128 143 163 161 163 163 163 163 163	8. 800 - 6973 1. 130 1. 120 1. 170 1. 180 1. 180 1. 180 - 678 - 678 - 677 - 615 - 501 - 363 - 501 - 363 - 501 - 363 - 501 - 50

TABLE XL

CLARK Y CIRCULAR-TIPPED BIPLANE, OVERHANG=+40%

α	υ	pper win	g	I	ower wi	ng	Cellule		
	C_N	Cys	Cpy	C_N	Сря	C,,	CN	Cm eft	e
Degrees -8 -4 0 4 8 12 14 16 18 20 22 25 30 50 60 70 80	-0. 143 -139 -376 -687 -928 1. 131 1. 257 1. 321 1. 349 -980 -880 -8863 -875 -8603 -825 -793 -603 -498	-0.345 1.001 .441 .350 .313 .289 .283 .286 .287 .366 .385 .387 .365 .363 .380 .383 .384 .385 .385 .385 .385 .385 .385 .385 .385	0. 443 440 464 488 487 488 488 508 505 507 526 527 526 530 6618 767 847	0. 003 .167 .294 .505 .645 .875 .978 1. 049 1. 109 1. 147 1. 038 1. 111 1. 161 1. 220 1. 427 1. 603 1. 423 1. 420	38. 00 .813 .505 .369 .337 .310 .307 .300 .307 .318 .410 .425 .423 .425 .433 .458 .467 .485 .519	-1. 615 417 430 430 440 443 445 445 460 465 466 468 468 468 468 468 468 468 468 468	-0.089 -150 -346 -602 -823 -1011 -118 -1.198 -1.928 -936 -976 -1.002 -1.048 -1.048 -948 -948 -948 -948	-0.097 -099 -073 -083 -088 -046 -050 -059 -059 -150 -159 -159 -150 -159 -159 -248 -248 -263	-47.70 0.832 1.280 1.301 1.433 1.413 1.438 1.352 1.353 1.353 1.353 1.353 1.353