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REPORT No. 287

THEORIES OF FLOW SIMILITUDE
By A. F. Zasx

SUMMARY

The laws of comparison of dynamically similar fuid motions are derived by three different
methods based on the same principle and yielding the same or equivalent formulas.. In this
report prepared for publication by the National Advisory Committee for Aeronautics, in
June, 1927, are outlined the three current methods of comparing dynamically similar motions,
more especially of fluids, initiated respectively by Newton, Stokes (or Helmholtz), and Rayleigh.
These three methods, viz., the integral, the differential, and the dimensional, are enough alike
to be studied profitably together. They will presently be treated in succession then compared.

INTRODUCTION

Geometrically similar figures.—If two figures are geometrically similar, they have a constant
seale ratio

where 7, I, are any two homologous lengths. If x, a; etc., are homologous point coordinates
for the figures, ¢fx; =yfin=2z/z,=a.

Geometrically similar motions—Two similar configurations perform geometrically similar
motions when their homologous points trace similar paths in proportional times; that is, in
times ¢, {; having any arbitrary ratio b, the same for all homologous path segments. Thus 2, o
being corresponding path speeds,

t/tl = b ?)/'L‘l = Zil/z}_f = (Z/b 'l.)[él = Ztlzletz = sziﬂvlz = a/52 ____________ (2)

where [/l; is the scale ratio of homologous moving parts, path segments, radii of curvature, ete.
Since by (2) the ratio [;»*/l»;® of accelerations normal to the path elements equals #/#; along
them, the resultant accelerations, 7, 7; bear the same ratioc and are alike directed. The con-
stant ratios I/l,, t/t,, v/, 5/%; all may be different; only two can be independent, as (2) shows.!

Dynamically similar systems.—Let the homologous elements of two similar configurations
in similar motion be masses m, m; having the constant ratio

m/Tﬂ1=C=p13/91Z13 _______________________________ (3)

p, p1 being their densities; then, to keep their motions similar, all corresponding impressed -

forces must be in constant ratio and like direction.? For since these elements have resultant
accelerations 7, 7; &< 9/, »,2/1;, their resultant impressed forces R, R; have the ratio

R|By=mjimyj= ol {p:di®0y® L ____ 4)

which is constant throughout, since pfp:, /L, »/v; are so. Further, the accelerations 7, j, are
alike directed; so then must be B, R;. So, too, the corresponding forces on large homologous

! Were the paths similar irrespective of deseribing time, the motions still wonld be geometrically similar, but not as defined here and in usual
writings on similitude. The geometrically similar motions here treated are kinematically similar because they frace similar paths in proportional

times.
¢ That iz, their magnitudes are in constant ratio and their iines of action similerly located ip the iwo systems, though the systems themselves

may be neither simultaneous nor alike oriented in space.
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parts must be in constant ratio and like direction, as appears on compounding those on their
constituent elements.® Also by the argument for (4) the constituents P, @, P, ¢, etec., of
R, Ry, such as weight, pressure, friction, etc., must be in constant ratio and like direction, viz,
P to Py, Q to @, etc. In fact for homologous elements they are concurrent and have similar

. force polygons. Hence )
BIR; = pl**pdPv* =P|P1=Qi@1=eteo oo ___ (41)

Such systems are dynamically similar and have (1), (2), (4) as their conditions or criteria of
similarity.
By (4) when p/o;, Ifl;, v/e; are assumed constant B/R, is found constant. So, too, if p/p,
/1, R/R, are constant, »/v, is constant, and the motions are similar. Fixing either three of these
ratios determines the fourth. Thus, premised initial similarity, similar mass systems in similar
motion are similarly forced; conversely similar mobile mass systems similarly forced similarly
move. .In either case the systems are dynamically similar.
Summation of impressed forces.—The resultant forces B, R, at homologous elements have
the components
rfzj,< =P; + @ +ete. }
mI?Ix P1x+ le+ etc

with like values for the ¥, z directions. These equations may be compared with (17), where
the magnitudes of P, @, etc., not merely their ratios, have definite expression; also with (13),
where the magnitudes have only proportionate expression.

DYNAMICALLY SIMILAR FLOWS
A) NEWTONIAN OR INTEGRAL METHOD

Definition.—Fluld streams that everywhere satisfy (1), (2), (4) are dynamically similar
systems, with similar flow fields and boundaries; hence are comparable in their corresponding
characteristics.

Classification of chief force ratios.—As before, the ratlo of the acceleration forces on homol-
ogous parts of such systems must be the same throughout and must equal severally the ratios
of the corresponding impressed forces. The following table exhibits the chief ratios of present
interest. Their proof follows the table. For all homologous elements the ratios g/g:, o/oi,
piw are assumed constant, u denoting viscosity.

TABLE T
RATIO OF CORRESPONDING FORCES ON HOMOLOGOUS FLUID ELE\IENTS

{ i ~ Ratio of impressed forces
Ratio of acceleration ! -

forees mj/mij1 . 5 /,.0 B
. Gravitational ops Viscous
| mgimugs Pressural, B 37 /13 St D0/l = 0, /Ol
! - -
! 252 24,2 H y T i
PR oo LTk ef?a‘;éicE‘é‘éﬁeffibf‘ff‘f‘_d_‘:::::::: ol
{ o 7 _ L

Proof of force ratios—The ratio in column 1 has been proved; that in column 2 is obviously
true.

To prove column 3, the pressure force on any small volume of frictionless fluid, being pro-
portional to volume times along-stream pressure gradient, varies as .0p/0l, as is well known,
where 0p/Olecd(pp*)/0l. Hence for p constant the resultant pressure force varies as pl*»?; and
for p variable 0p/0l=«/0.0p/dl, by hydrostatics; that is, the pressure force varies as «l*, where
k is the bulk modulus. One recalls that r/k; = pc?/pi¢;* where ¢, ¢, are the speeds of sound in the
fluids under the actual working condxtlons '

3 Newton, reference 1, proves this theorem verbally without using symbols. A different symbolic treatment is given by Slr Richard
Glazebrook in reference 2.
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If 0u/0l is the rate of distortion in any fluid element, the entailed force on it varies as
[2.100/OT < ulv; hence the ratio in column 4.

Examples of similar flow conditions.—Granted kinematic similarity, when the impressed
forces are as in Table I the general conditions (4,) for dynamic similarity are

ol gplt _ uly ={ ol o[ %02, for incompressible ﬂuids} ®)
oo gipd? wliwr | P/l for elastic luids 0 [T
where only the ratios of predominant forces are to be retained. A few examples will illustrate.
(e) Thus, if weight is the only dominant impressed force, the motions are dynamicslly
similar when the first ratio in (6) equals the second, viz, when

gt =gl L (7)

which is the well-known Reech and Froude “law of corresponding speeds
(8) If weight and elasticity are negligible, the ﬁrst ratio in (6) is equated to the third,
giving

which is the familiar Reynolds’s condition for similarity of motion of fluids. It applies to the
motion of airships, submarines, skin friction planes, fluids in pipes, ete.

{(v) If there is considerable compression, while gravity and friction are negligible, the
first term is equated to the lower fourth, giving

which is Booth and Bairstow’s condition for similarity.

8) If g, , ¢ all are important, conditions (7), (8), (9) must coexist; if all are negligible,
(6) gives pl*v?/p:d %0 = pl*v?/pd 202, that is, all flows with similar boundaries are similar, whatever
the densities and velocities.*

Reactions in similar flows.—If P, P, are corresponding reactions of a craft and its model
under conditions (7), P/P,=gpl®/gipl:*, whence

P=Ny ol . (10)

where N;=Pi/g;p® is a dimensionless coefficient, say, given by model tests.
If g, x are negligible, conditions (8) obtain, and P/P,= plv/umlivy, or P/P,= pl*s*[p,l,%,%, whence

P=Noulv, ot P=Cpl®*_ _ ____ . (11)

where No=Pyfulivy, O=Py/p:d,*0%, both dimensionless coefficients.
If g, p are negilgible, and compression important, P/P; = «l*/x!;*; hence

where N;=P./«l}% and conditions (9) prevail.
Let the Ps be all lifts or all drags or other like directed forces. Then,if g, i, x all are impor-
tant together, the total of such reactions on the craft is

R = Ngpl} + Noulv+ Nypc®l* = ol2o*f (glfv*, vflo, efv)=Npl**_ _____________ 5(13)

got by summing (10}, (11), (12), using x= pc?, then factoring off pl*%?. One notes that (13) can
be written: Total reaction=gravitational -+ frictional + pressural.

The validity of (13) was premised on dynamic similarity of motion of the craft and its
model, as defined by the simultaneous conditions (7), (8), (9). That is,

Niglfv?+ Nov[lo+ Ny o =1 (glfe?, »flv, ¢fo) =Ff(g:d\fo?, nfloy, efory=N_________ (14)

¢ (7) has the alternative form g/i=giffi; (8) the alternative ffp=A/p:, where , fi, ¥, p1 are corresponding frictions and pressures per unit erea of
homologous surface elements &S, §Si. Witk f, f1 L to p, p: the resultant stresses have slopes //p, fi/p: to the normals at 38, 3S;. The “laws” (7}, (8)
(9) are but corollaries of (6) or (41).

§ More conventionally one writes R=pl%?; (#¥gl, »/lo, 5/c).
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Alternatively (13) can be written -
R=yulv ' {glp?, vflv, efoy=N'plo. o o (18y)

found by factoring off ulv and rearranging the result:

Writers sometimes say (13) shows that R varies as pl?? they can as well say Roculy by (13,).
The first statement is true for conditions making f constant; the second for f/ constant. (Fig.1.)

Dynamic scale and scale effect.—If Ni(= Pi/gip:ls*), found from a model test; is plotted against
gili/v? (=glfs?) the graph is directly applicable to computing the full-scale reaction (10); simi-
larly for the graph of N, against »/Iv and N; against c/v.

In such plots the dimensionless argument, say, »/lv, is treated as a single independent
variable. The graph is the same whether » varies alone or 7 alone or v alone, or if two or three
vary together. If N, varies as (fo/v)?, it varies as [%, v% v The effect, for instance, of varying
I can be learned by varying » or » in the model test, and so for Ny, N;.

One calls the independent dimensionless argument gl/v* the dynamic scale for the motion
(), and the variation of N; with scale the scale effect. Similarly »/lv is the dynamic scale for
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F1q. 1.—Drag coefficients Cp=DjpV2d2, Cp’=D{p V4, plotted against Vd/» for a sphere in uniform {ranslation
through a viscous fluid. Data given in N. A, C. A. Report No. 253, Either graph can be plotted from the
other, since Cp’/Cp=Vi/»

motion (8), and /¢ for (v). No doubt the term “scale effect’” originally meant the effect of
changing the linear scale ratio I/l;, then was extended to mean the effect of changing some more
complex argument, such as gl/e, vflv, ¢/v, ete., now called the dynamic scale. The simpler
scale ratios I/l t/t:, p/p1, ete., are called scales of length, time, pressure, ete.

The more complex reaction (13) is a function of three dynamic scales, shown in parentheses.
The scale effect here is the variation of N or R with one or more of the dynamic scales, or inde-
pendent arguments gl/e?, »/lv, ¢fv. But for the particular case g, », c=0, as for a perfect liquid
unaffected by gravity, Ni, Ny, N; are constant and have straight-line graphs when plotted
against their scales. Then (13) gives R =const. times pl?v?.

Generally, therefore, for dynamically similar fluid motions a dynamic scale is any one of the
independent dimensionless arguments in the formula for the fluid reaction; the scale effect is
the variation of such reaction due to variation of the arguments.

Arbitrary and derived scale ratios.—As seen in the introduction, geometric similarity requires
one constant scale ratio, say, I/l, for length; kinematic similarity two scales, say, l/l;, t/t), for
length and time; dynamic similarity three, say, I/, t/t, p/p;. From these many others may be
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derived, say, vfoy, #/6, p/p1, v/vy, ete., in case of fluids. - Any three can be taken as determinative,
then combined to form derived ratios, as exemplified in (2). For dynamic similarity we arbi-
trarily chose, at the outset, Ifl,, ¢/f,, m/m., because length, time, and mass usually appear as
basic. For the same service with fluid systems Helmholtz (reference 3) takes pfp;, »/ri. v/ve,
while other writers choose still other scales as fundamental.

Thus for geometrically similar fluid motions Helmholtz, assuming

ofp=r Confr=q wfu=efo=unfw=n__________________ (15)
as given constants, thence derives the further ratios
wfe=yly=2alz=g/n Lft=gq/n? pifp=n*rp+const___________ (16)

for use in comparing the differential equations of motion of the two fluids.
(B} DIFFERENTIAL METHOD

The conditions (8) for dynamically similar motion of two fluids can also be derived from the
standard differential equations of motion of such fluids, viz, from
. Op 1 o8
— _ 20 2y LT, O
pU= pgx Caﬁ““‘s”m :
5 | o [T -7
1l = pi§ix— Clza?pi—{-mAzuI + 3 a?i
with like expressions for the y, z and ¥, 2z directions.® For if the motions are dynamically
similar corresponding terms, all being forces, must have the same ratio,

PU _ pgs _ ¢ Opfoxr  pA'w _ pob/dw
oty pifix CiF Opi/Ory A%y 1406,/
Expressing these ratios in finite dimensions gives
pTU? _ pgx _ pCT _ piu
ot pifie pie’  pdtUu
which multiplied by «*/x;® become the relations (6) for the ¢ direction, viz,

o goz? B ot s

piu? gipxd prite mn

Thus the differential method yields the same result as the Newtonian. It is Newton’s
method in Stokes’s shorthand, except that Stokes would first write the forces, then their ratio;
Newton would write their ratio directly. But to write their ratio one must know approximately
their nature and analytic expression.

Helmholtz reverses the above argument. Assuming the relations (15), (16), he says they
transform the first of (17) into the second, omitting the g terms. Hence he infers that model
data serve to predict the hydrodynamie behavior of full-sezle craft when the relations (15),
(16) are maintained.

Diverse and sundry treatments of this topic are found in references 8, 9, 10.

(C} DIMENSIONAL METHOD

Mechanical units—In mechanics three measuring units, say, of length, mass, time=L,
M, T, arbitrarily taken as fundamental, are combined in various powers to form other kinds
called derived units, such as U=AL*M*T* A being constant, and x, y, z > 1. Table IT
illustrates. These two classes of units, viz, fundamentfal and derived, serve to measure
mechanical quantities of every kind, such as length, speed, torque, etc. Thus any mechanical
quantity B, if a function of n others, all differing in kind, can be written

R=S 10" Qs Qu™ oo (18)

where 1, a, b.__.m are pure numbers, and € may involve either fundamental or derived units.
Table II gives examples.

@y Py, Fu. du  dr  Sw.
¢ Here Afusa?-{-@ taa §= E"i’a‘y‘-"a_‘z’ ete., for Ay, 6.

I
i
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Basic formula.—To be Valid for all unit syStems (18) must be dimensionally homogeneous.’
Then it can be written, if [R]=[Q;*@:"---_@.,=]=[P],

where N is a pure number. This is the basic formula of dimensional theory, and is most general
when the Ps are all the sepa1ate independent @ products that can be formed having the dimen-
sions of B.8

Homogeneous products.—To find these P products, we first multiply any @ triad, say @*Q*Q%,
by each remaining @ successively, and equate to [R] the dimensions of each resulting product.
The ensuing n—3 equations, with tentative exponents a, b, c, are

[Py] =[@:*Q:"Qs°Q] = R] [Py] = [@:9Q:°Q5'Qs] =[R], ete_ oo (20)
Now replacing [R] and [Q] by their values in L, M, T and solving (20) for @, b, c-- .., gives P,
Po, . The following example illustrates. For a rigorous analysis special works on dimen-

sional theory may be consulted (references 4, 5).

Reactions in similar flows—I{ the reaction R of & body in a fluid stream depends solely
on p, 1, v, g, 4, ¢, or density, size, speed, weight, viscosity, elasticity, all the separate independent
products having the dimensions of R possible to make with them amount to 6-3, say, Py, Py, Ps.
To form these, we take any triad p*[¥»” of the six independent quantities and multiply it succes-
sively by the remaining ones g, y, ¢, giving

Py=p**.g Py=pt.p Py= pf'.c
and equate the dimensions of each product to [R]=[ML/T*] The first yields, by Table 1I,
(M/L¥*LP(L/T)°.L/T*= ML|T*

each unit having the same aggregate exponent in bo’ﬁh terms. On equating the indices of
L, M, T successively this gives

Ba+b+et+i=1 a=1_ —2=—2

Thus a=1,b=3, ¢c=0, whence P,,=pl’g. A like procedure gives d=0, e=1 —f, whence P;=1u.
Similarly g=1, k=2, i=1, whence P;= pl*ec.
By (19) the reaction now is

R= N plPg+ Noulv-+ N, pZ"’zc—pP (gl v/ZL ey e (13)

which is a general resistance equation for the specified dynamical condxtic;ns, viz, that R is a
function solely of p, I, v, ¢, 4, ¢. From this (13,) also is found as before.

By (13), if the arguments in parentheses are given any specific values the same for model
and full seale, f is the same for both; hence

R= Nol*?
where N=7F(g.l,/0?, n/livy, c1fv1), the same as by Newton’s method.
COMPARISON OF THE THREE METHODS

In the foregoing text the same criteria for dynamical similarity in two flow systems were
found by three different methods of analysis—the Newtonian, the differential, and the dimen-
sional. In each the physical quantities governing the flow were premised from experience.
Thence were found the ratios of corresponding impressed forces of each kind on homologous parts
of the fluid, viz, weight ratio, pressure ratio, etc. These ratios, by definition of dynamic simi-
larity, must each equal the ratio of the resultant acceleration forces on those parts; viz, the ratie
mg/myjs.

By Newton’s method we directly equated the ratio of these acceleration forces to the
several ratios of corresponding impressed forces, thus obtaining specific conditions for dynamieal

7 That is, all terms of (18) must comprise the same fundamental units, each having a constant aggregate exponent throughout the equation.
¢ Dividing (19) by R gives ¢ (r1, m3. . ..7i)=0, the =s being dimensionless produets. This is Buckingham’s = theorem (reference 4).
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similarity, and formulas for the reactions of any fluid system in terms of those of its model. By
the second method we first wrote the differential equations for the two fluid motions sssumed
dynamically similar, then equated the ratios of corresponding terms, thus obtaining the same
result as before. By the third method we first equated the unknown reaction R on one fluid
element to the sum of all the terms we could form from the flow-governing quantities arranged in
power products each having the dimensions of . Doing the same for the homologous element,
then taking the ratio of the R forces, gave the same reaction formula as found by the other methods.

At first sight the dimensional process seems to be a routine algebraic operation requiring
less knowledge than is needed for the two other methods. In reality all three demand adequate
judgment of the kind of physical quantities governing the motion, and their comparative
importance. In all three cases the assumed physical agencies are the same, the terms in the
dynamic equations are analogous, and the final working formulas are the same or equivalent.
In all, the derived working formula contains a dimensionless coefficient that is not deduced
theoretically, but is to be found from model tests, then applied to full-scale apparatus operating
under dynamically similar conditions. In all, the “laws of comparison” are merely expressions
of equality of like dynamic scales, viz, equality of the ratio of the acceleration forces to the
corresponding ratios of the dominant impressed forces.

TABLE II
QUANTITIES EXPRESSED IN BASIC UNITS OF LENGTH, TIME, AND MASS, L, T, A

The “dimensions” of a physical quantity are the degrees of the fundamental vnits in its formula. Thas the dimensions of an aceeleration,
which are symbolized by [L T2], are 1in length and —2 in time. Commonly the brackets are omitted from such simple L, T, M expressions
not containing other'symbols. The dimensions of & force are ML 72, viz, 1 in mass, 1 in length, —2in time; the dimension of an angle, a sine,
cosine, tangent, ete., is L. L1, that is zero. Logarithms in physical equations operate only on dimensionless quantities, such as pure numbers
or ratios of like physical quantities; hence are dimensionless.

A derived unit, being formed of powers of fundamental units, has the form U= 4AL=M» 77, with dimensions L=MyT=. Thus g force F=ms/f?=
AMLT, where m, 8, { are mass, length, time in any converient units. Its dimensions are written [Fl=[ms/t]=[4 ML T-)=M L T-1

In homogeneous equations all terms have the same dimensions, that is, the same aggregate exponent for each basic unit. Thus in the last equa-
tion of Table II each terrn has the dimensions ML~ T2 for [ppl]= ML 3 IATt= ML T, and [po/a]=MI"1 TLLTL=ML-t T4, In the
familiar projeetile formula z==gi+cIge]=L T2 T=L T-1=[g]=[c], where ¢ (=z.) is a velocity.

i
Kind of quantity } Symbol. Formula . Dimensions of each term

Derived units, U=AL=}T=

Arvea, surface . ___________ S=l_ Iz
Volume_ . __ . =B~ I3,

Angle_ Lo _.__ e=sfr=are+radius. . __________ IS,
Linear velocity w=gfi=dzfdi=z__ __ . _ . _____.__ LT,
Linear acceleration________:____|. j=uft=dufdi=&%/d__________ LT,
Angular veloelby - oo oo __ w=@/t=de/dt=dufdy. . _________ Vi
Angular acceleration. . __ o a=wft=dw/di=0/t2_____________ T2
Density_ oo ___ p=mfr=m/B______ _ ________.__ MELs.
Foree, thrust o _ o _.__ F=mj=msft_ . __ . ____ MLT.
Torque, moment. . _____________ O=Fl__ o~ MIAT2,
Pressure, friction_ . _____________ p=F[S, f=FS_ o __ MITiT2,
Worl, energy, potential______.___ W=Fs e _ MLIPT2,
Power, activity - oo ___ P=Fu________ o _____ MIrT s,
Viscosity . o oo p=f+du/dy=Fflw___ . _______ MLV,
Kinematic viscosity . __..______ V=P o e 271
Flus of Auid. o . _ o= fgdS_ . ___ AT,

Velocity potential . ___ . ______ e=—fqds . 27,

Geometrical and mechanical equations, R=ZNP

Length of eatenary._. ____________ s=% (e=/lc— ¢ iy =csin h(g) e L =L.I8.
Area of ellipse_. . ... .. . ___. S=mab_ Iz,
Volume of frustum of cone.—____ o L G S N I8, =[LIA+LL+IM].
Period of simple pendulum____.___{ =2=lfg_ . ___________ T, =~/ LILT2.
Mutual attrac. of two particles_ __ F=e:mm1fg:@, where [x]=L3/MT2___| LMT™2 =13} 172 3212
Strength of line source__________ M=2FAG -~ = oo oo 27T =L.LT™.
; '¢ for source-sink in plane stream__| o=uzt¢ log :—i , Where [¢]=L3/7T_! [2T"1, =[LTLL4I12T!log LY.
i Acceleration of viscous particle___| #=—3p/p dz-twA2u____________ LT =[p/p.z+rufz.
|
1

Nose pressure on falling droplet___| po=p?f2-+15uefa _____________ ML 2=[pp2-L pvfal.

3
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SYMBOLS USED IN TEXT

by oo Homologous lengths in similar figures.
z, y ete. ... Homologous coordinates.
i, f- . Times of tracing homologous paths.
Uy Plomemmeemm Corresponding path velocities.
& vi------____ Corresponding path accelerations.
FyJreocooo oo Corresponding total accelerations.

My Mpee o Homologous masses. L _
a, b, e Arbitrary numerical ratios i/l;, t/t;, m/m;; also tentative exponents.
Py My ¥y Koo Density, viscosity, kinematic viscosity, bulk modulus; ditto for oy, py, vy, #;-
= AP e Speed of sound in elastie fluid; ditto for ci.
R, R _____ Resultant forces on mass elements m, m;.
P, Q, ete__..___ Components of R; Py, @, ete., components of R;.
Py S Pressure and friction, per unit area; ditto for py, fi.
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