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FOREWORD

During the early part of World War II, some of the helicopters designed for military use were
observed during ground tests to exhibit a violent oscillatory rotor instability which endangered the
safety of the aircraft. This instability was at first attributed to rotor-blade flutter, but a careful
analysis indicated it to be caused by a hitherto unknown phenomenon in which the rotational
energy of the rotor was converted into oscillatory energy of the blades. This phenomenon was
usually critical when the helicopter was operating on or near the ground and, hence, was called
ground resonance. An oscillatory instability of such magnitude as resulted from this phenomenon
would generate forces that could quickly destroy a helicopter. The research efforts of the National
Advisory Committee for Aeronautics were therefore enlisted to investigate the difficulties introduced
by this phenomenon. During the interval between 1942 and 1947, a theory of the self-excited
instability of hinged rotor blades was worked out by Robert P. Coleman and Arnold M. Feingold
at the Langley Aeronautical Laboratory. This theory defined the important parameters and pro-
vided design information which made it possible to eliminate this type of instability. These results
were originally released by the NACA in three separate papers, as follows:

(1) NACA Advance Restricted Report 3G29, 1943 (Wartime Report 1—-308) entitled “Theory

of Self-Excited Mechanical Oscillations of Hinged Rotor Blades,” by Robert P. Coleman.

(2) NACA Advance Restricted Report 3113, 1943 (Wartime Report 1.-312) entitled “Theory
of Mechanical Oscillations of Rotors With Two Hinged Blades,” by Arnold M.
Feingold. .

(3) NACA Technical Note 1184, 1947, entitled “Theory of Ground Vibrations of a Two-
Blade Helicopter Rotor on Anisotropic Flexible Supports,” by Robert P. Coleman
and Arnold M. Feingold.

These three reports have been recognized to contain the fundamental reference material on the
subject of rotor mechanical instability but were for some time out of print. As a result of demands
for this type of information, they were combined into & single volume and reissued with appropriate
corrections as NACA Technical Note 3844. The combined volume (reissued here as an NACA
Report) consists of three chapters representing the three aforementioned papers in consecutive
order.

Inasmuch as the authors of these papers are no longer with the NACA, the task of checking
these papers and incorporating such corrections as seemed proper was undertaken by George W.
Brooks, Vibration and Flutter Branch, Dynamic Loads Division, of the Langley Aeronautical
Laboratory. Mr. Brooks also prepared an appendix to chapter I1I, which deals with the general
equations of motion for a two-blade rotor and includes the effects of damping.
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THEORY OF SELF-EXCITED MECHANICAL OSCILLATIONS OF HELICOPTER ROTORS WITH .
HINGED BLADES !

By RoBerT P. CoLmamaN and Arnorp M. FringoLp

' CHAPTER I /
THEORY OF SELF-EXCITED MECHANICAL OSCILLATIONS OF HINGED ROTOR BLADES

By RoBeRT P. COLEMAN

SUMMARY

Vibrations of rotary-wing aircraft may derive their energy
Jrom the rotation of the rotor rather than from the air forces.
Atheoretical analysis of these vibrations is described and methods
Jor its application are explained herein.

The theory includes the effects of unequal st@ﬁ'ness of the
pylon for deflections in different directions and the effect of
damping in the hinges and in the pylon. Both the derivation
of the characteristics equation and the methods of application
of the theory are given. In particular, the theory predicts the
so-called “odd frequency” self-excited speed range as well as
the shaft critical speed. Charts are presented from which
the shaft critical and the self-excited instabilities can be pre-
dicted for a great variety of cases. The influence of each
physical parameter upon the instabilities has been obtained.
The comprehensive treatment applies to a rotor that has any
number of blades greater than two. Only a brief discussion
and the formula for shaft critical speed are given for the one-
or two-blade rotor.

The use of complex variables in conjunction with Lagrange’s
equations has been found very convenient for the treatment of
vibrations of rotating systems.

INTRODUCTION

A rotary-wing aircraft that has hinged blades will, under
certain conditions, be subject to vibrations which derive
their energy from the rotation of the rotor instead of from
the air forces. The term “ground resonance’” usually refers
Lo vibrations of this type. Although such vibrations have
apparently caused accidents in some rotery-wing aircraft
and have impaired the flying qualities of others, very little
attention has been given this problem in the literature. A
theoretical analysis has therefore been undertaken, and
the purpose of the present chapter is to present the theory
and to describe the application of the theory to rotary-
wing aircraft.

\

General vibration theory and its application to allied
problems as well as to the particular problem of rotor
vibration are discussed in references 1 to 4. A good general
background for the present problem is provided in the chap-
ters on rotating machinery and on self-excited vibrations
in reference 1. References 2 and 3 treat in more abstract
faghion the topics of rotation and damping. A discussion
of the variety of modes of vibration that exist in rotors
and & number of frequency formulas obtained by considering
separately each degree of freedom are given in reference 4.
This discussion does not, however, lead to a prediction of
self-excited modes of vibration.

Experience has shown that two types of mechanical
vibration may occur in rotors. The vibration frequency of
the pylon is equal to the rotational speed in one type and
is unequal in the other. The first type is sometimes called
the even-frequency vibration or the one-to-one frequency,
and the second type, the odd frequency. The one-to-one
frequency vibration resembles the phenomenon occurring
at a critical speed of the shaft of rotating machinery and
will consequently be referred to in this chapter as a shaft
critical vibration. The odd-frequency vibration is properly
called a self-excited vibration.

A derivation of the characteristic equation for the whirling
speeds of a three-blade rotor has been given by Wagner of
the Kellett Autogiro Corporation. By considering only the
case of a pylon having equal stiffness in all directions of
deflection, Wagner has shortened the analysis by considering
directly the equilibrium of forces and moments under condi-
tions of steady circuler whirling. Some examples of the
dependence of whirling speed upon rotational speed are
given, and the formula for the shaft critical speed is obtained.

In the present chapter, the theory also includes the effects
of damping in the hinges and in the hub and the effects of
different stiffnesses of pylon deflection in different directions.
The method of analysis, particularly the use of complex

! Bupersedes NACA Technical Note 3844 by Robert i’ Coleman and Arnold BL. Felngold, 1957.
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variables in the equations of motion, is explained in some
detail and all the previous results are shown to be a special
case of the more general problem treated here.

Au R
An
A1411=Azu
A12=Zl2
A21=221

A B f=B‘—:—BV

B,

0,01,...04

~NREOQ

. Rs

SYMBOLS
radial position of vertical hinge

elements of the characteristic determinant
(see eq. (31))

distance from vertical hinge to center of mass
of blade
damping force per unit velocity of pylon

displacement (BI=—B’;:—B”>

coefficient defined in equation (35)

coefficient defined in equation (34)

arbitrary constants

coefficient defined in equation (35)

coefficient defined in equation (34)
time-derivative operator, d/dt

dissipation function

moment of inertia of blade about hinge,

myb? <1+2—j>

coefficients defined in expressions (37)
indices and subscripts used with hinge co-
ordinates (eq. (14))

spring constant (KFZ—Z’——;—K—')

effective mass of pylon (m,= ﬁ%—"—‘—”)

blade mass

total effective mass of blades and pylon,
MMy

mass added at hub for vibration test

total number of blades

radius of gyration of blade about its center of
mass

coefficients defined in expressions (37)

stiffness ratio, K,/K,

time

kinetic energy

kinetic energy of rotation of blade about its
center of mass

kinetic energy of translational motion of
kth blade

~

T,

Vv
LY
Toy Yo
2

z

@
ﬁo; Bl:
Br,

S8, - -« &n

O, 0y . . . 6s

kinetic energy of pylon
potential energy
displacements :
values of ¢ and y when =0
complex displacement, z-1y
complex conjugate of z, z—iy
angle between blades, 27/n

. . . By angular displacements of blades

value of 8 when =0

variables representing hinge deflections when
equations are expressed in fixed coordinate
system

variables representing hinge deflections when
equations are expressed in rotating coordi-
nate system

)\,=% (E%—)r in app]icatioxis)
)\,=%’: (IV% in applications)

=£I‘3 (I—%’; in applica.tions)

-’

A2=% ('11{_:35 in applications)

A=—r=FE

I3
2(145)

b1, V2
Wq
@r

wr
Subseripts:
f

@

B
5 Y

nmy

my+nmy

expressions defined in equation (3)

angular veloeity of rotor (the dimensionless
ratio wfw;, is called w in applications)

angular whirling velocity measured in rotating
coordinate system (used in nondimensional
form in applications)

angular whirling velocity measured in fixed
coordinate system (used in nondimensional
form in applications)

reference frequency, VK /M,

mass ratio,

fixed coordinate system

rotating coordinate system

hinge deflection

component directions in fixed coordinate
system
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APPROACH TO THE VIBRATION PROBLEM
STABILITY AND INSTABILITY

If a vibrator were attached to a rotorcraft, several modes
of vibration could be excited at any rotor speed. Only the
modes that are likely to be excited during operatlon of the
aircraft, however, are 1mporta.nt

In the present discussion, it is convenient to classify the
modes of vibration according to the circumstances required
for their excitation. The different types of vibration are
identified analytically by the nature of the roots of the
characteristic equation. A hinged rotor may encounter
three types of vibration which, for convenience, are herein
designated ordinary, self excited, and shaft critical. At zero
_or slow rotational speeds, an external force is required to
“excite vibration. The friction always present in such systems
causes the vibration to be damped out when the force is
removed. Modes of vibration requiring an external applied
force to maintain them will be called ordinary vibrations.
The mathematically idealized case of zero damping will also
be considered an ordinary vibration when it is understood to
be an approximation to a system actually damped. Self-
excited modes of vibration are those with negative damping
and are recognized analytically by the fact that a root of the
characteristic equation is a complex number which has a
negative imaginary part. A slight disturbance will tend to
increase with time instead of damping out.

When & rotating system is not perfectly balanced, the
centrifugal force of the unbalanced mass meay excite vibrations
that have peak amplitudes at certain rotational speeds.
Vibration excited by unbalance and in resonance with the
rotation will be called shaft critical vibration. This type
occurs at the rotational speed at which the spring stiffness
of the pylon is neutralized by the centrifugal force. In the
analysis, the shaft critical vibration isrecognized in rotating
coordinates as a zero frequency and in fixed coordinates as a
frequency equal to the rotational speed. The critical speeds
of a rotating shaft are & common example of this class.

The purpose of a theory of rotor vibration is mainly to
predict the occurrence of and, if possible, to show how to
avoid self-excited and shaft critical vibrations.

CHOICE OF DEGREES OF FREEDOM

Of the large number of degrees of freedom of a hinged
rotor, the important ones for the present problem have
been found to be hinge deflection of the blades in the plane
of rotation and horizontal deflections of the pylon. Other
degrees of freedom, such as the flapping hinge motion of the
blades, the bending or torsion of the blades, and the torsion
of the drive shaft, are considered unimportant in the problem
of self-excited oscillations. Some motions, such as landing-
gear deflection, that produce lateral deflection at the top
of the pylon may, however, be important.

PHYSICAL PARAMETERS

The theoretical results given later provide a means of
predicting the natural frequencies and, in particular, the
critical speeds and unstable speed ranges in terms of certain
physical parameters, such as mass, stiffness, and length.

LIBRARY
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The successful application of the theory depends upon the
determination of the proper values of these physical pa-
rameters for the aircraft or model being studied.

The important parameters to be determined are:

a radial position of vertical hinge

b distance from vertical hinge to center of mass of
blade

My mass of blade (Flexibility of the blade structure

may have to be taken into account by the use of
an effective value of m, different from the actual
blade mass. The effective blade mass cen be
taken as the value required to make the theory
predict the correct pylon natural frequency when
the rotor has a zero or very slow rotational

speed.)
I° moment of inertia of blade about hinge,
7774;172 <1+'b—7:>
Kp spring constant of self-centering springs, which can

be determined by & force test or from the hinge
frequency with the hub rigidly supported
effective mass of pylon for deflections in z- and
y-directions
effective stiffness of pylon

Mz, My

K., K,

The effective mass of the pylon is the value of a concen-
trated mass that would have the same kinetic energy expressed
in terms of the deflections at the hub as the actual pylon
and hub if it were placed at the rotor hub in the plane of
rotation. The effective stiffness of the pylon is the stiffness
of a spring that, if placed at the hub in the plane of rotation,
would have the same potential energy in terms of deflections
at the hub as the actual pylon. Equivalent definitions are
that, if a simple spring and mass were imagined to be sub-
stituted at the hub in the plane of rotation for the pylon
and hub, the natural frequency and the change of natural
frequency with added mass would be the same as for the
actual pylon.

An experimental method of measuring the effective mass
m, and stiffness K, of the pylon is to replace the rotor by
an approximately equal, rigid, concentrated mass AM at the
hub and to measure the natural frequency for two or more
values of this added mass. The quantities are then related

by the equation
K
=N\m+aM

1

z

or

1
=% (m,+AM)

If measured values of 1/w,? are plotted against added mass
AM and a straight line is drawn through the points, the
intercept and the slope of the line will determine the effective
values of K, and m,. )

For the parameters a and b, the actual geometric lengths
should be used unless the flexibility of the hinge offset arm a
is comparable in magnitude with the hinge spring stiffness.
In this case, it is recommended that an effective value of @
be guessed and that b be determined by subtraction from the
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correct geometric value of a-+b.
The damping parameters may be defined by the form of a
dissipation function F. The function

n—1 .
2F: =.B;-:i:ja+ Bﬂ?‘/fa'l's?&:Bﬁﬁkz

is equal to the rate of dissipation of energy by damping.
The parameters B, and B, thus measure the damping force
per unit velocity referred to linear displacements of the top
of the pylon and B; is the damping torque per unit angular
velocity at a blade hinge. If the damping force per unit
velocity is not a constant, effective values should be used
that will represent the same dissipation of energy per cycle
as actually occurs with a reasonable amplitude of vibration.
The amplitude of free vibration in a single degree of freedom
is given in terms of B,, B,, and B; by

B,

Tyr=1,C 2M

Elﬂw

Yr=1Yet

Ko

Br=Pre X'

The damping parameters are probably the most difficult

ones to measure accurately. In practice, it is advisable to

make calculations for a given case, first on the basis of no

damping and then with the use of the estimated values of the
damping parameters.

MATHEMATICAL DEVELOPMENTS
METHOD OF ANALYSIS

The derivation of the characteristic equation that is used
as the basis for predicting the unstable oscillations of a rotor
is presented in this section. Readers interested solely in
applications can omit this section and proceed immediately
to the section entitled ‘Method of Applying Theory.”

The method of analysis treats the equations of motion for
small displacements from the equilibrium condition with
steady rotation. A proper choice of coordinates leads to
equations with constant coefficients. The solutions are
exponential or trigonometric functions.

The mathematical manipulations involved in treating the
motions of & mass in a plane of rotation are facilitated by the
use of a complex variable. The typical disturbed motion
obtained by solving the equations of motion is an elliptic
whirling motion, which is represented in terms of a complex
variable z=2-+4y. At any instant, z represénts the dis-
placement of the pylon from its equilibrium position. An
expression such as

z=ce’s
represents whirling of the pylon in a circle of radius ¢ with
angular velocity o, The sign of w, determines the sense of
the rotation. Two rotations in opposite sense with the same

radius are equivalent to a vibratory motion in a straight line
and are given as follows:

z=c(e*st--e s

=2¢ cos w,t

Two opposite rotations of different radii are equivalent to
whirling in an ellipse. A complex value of w, represents
whirling in a spiral, which may be either a damped or a self-
excited motion depending upon the sign of the imaginary
part. A seli-excited motion exists when the imaginary part
of w,i8 negative, and the magnitude of z increnses with time.

The displacements may be referred to a fixed or to a rotat-
ing coordinate system. If z, and z, are the displacements
with respect to a fixed and to a rotating reference system,
respectively,

=2,

Z=ce*!

then
zp= cetlwatw)t

A whirling speed w, with respect to the rotating coordinates
thus corresponds to a whirling speed w/=w,-}-w with respect
to the fixed coordinates. A shaft crifical vibration corre-
sponds t0 w,=0 in the rotating coordinate system or to
w/=w in the fixed coordinate system.

EXAMPLE OF ROTOR WITH LOCKED HINGES

An example that involves a partial use of complex variables
is given on page 253 of reference 2. The problem given
there of & mass particle moving on the inner surface of a
rotating spherical bowl is mathematically equivalent to the
disturbed motion of a flywheel and shaft or of & rotor with
locked hinges. The equations of motion obtained in real
form in rotating coordinates

rtomitnie s K
B K M
Fat &oia""wzya= '—T{%—M Ya

are combined in the single equation

ot (2t ) det (35—t ) 2=0 @
where !
2=, 'iya

is the complex position vector in the rotating coordinate sys-
tem. The complete solution, if small damping is assumed, is

zaeiut_: Ole—nt+ia,t+ O2e~rgt—fa,l (3)
where
1B (1_2
"SI M ,

35(42)

The path of the motion is represented by rotations of & com-
plex vector in & plane.

The use of & complex variable has thus cut in half the num-
ber of equations to be handled and has yielded a solution
from which the geometric path of the motion may easily be

-reconstructed. The advantage of the z-notation is not fully
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realized, however, unless it is used from the very beginning
of the problem. The close similarity of this problem to the
rotor-vibration problem makes it worthwhile to show the
full application of the z-notation to the preceding example.
The complex variable z, at any instant determines the posi-
tion of the mass particle relative to the rotating coordinate
system. If the position in a fixed coordinate system is
denoted by z,

2r=2z,%" 4@

and 2z, can be treated as a generalized coordinate in the
Lagrangian equations of motion. The kinetic- and potential-
energy expressions can be immediately written as

=% M 2;» ,-2.‘1
=% MGtz Ga—inz,)
1., —
V—§ Kz,.z2,

A dissipation function for damping that depends upon motion
relative to the rotating system can be written

1., .~
F—":"é‘ .BGZ¢Za

The equations of motion are now obtained by considering
2, and Z, as generalized coordinates in the Lagrangian equa-
tions. Substitution in the equation

dt A

= - 0
0z

aza ' bEa

thus yields the equation previously given

§a+<2iw+%> éa+<§—wﬂ> 2,=0

The same method can be used to obtain the equations of
motion in the fixed coordinate system. In this case,

-

T=% Ms 3,

V=% K 2 /Ef T (5)

F "—"% B, (2,—wzy) (E.f‘l-’l.lﬂzf) )
The equation of motion in terms of 2, becomes
5/4‘% (2,—wzy) +Z% 2,=0 (6)

and the solution for small values of damping is

Ba (1o N\t ymr B, 0\,
2J=OleTM<1 VW)H-I KlMt_,_O e 21\[(1"' w,—m)t 1/EJA L )

This solution shows that the motion consists of two ‘circular
vibrations in opposite directions and, moreover, that for
w>+/K[/M the first term represents unstable motion; that is,
the vibration has negative demping.

LIBRARY
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This example illustrates a shaft critical speed for w=+/K/M
and a self-excited instability for o>/ K/M. A discussion of
the physical picture of this instability due to damping is given
on page 293 of reference 1.

The effect of damping in & nonrotating part of the system
can be included in the analysis merely by adding to the
previous dissipation function the term

1

b Brézz,

The equation of motion then becomes

Mé+Byi b Bo(3—iwz)) + Ke;=0 (8)

The éolution for small values of damping becomes

Z,=Che ['7§§—£%§ ]_:ﬁ%i%)*4‘6ﬁ151‘4_

)
The motion is now unstable above the speed
—VE(14+Z) |
o=/ B (14 (10)

HINGED ROTOR

Inclusion of the effect of hinge motion in the plane of
rotation increases the number of degrees of freedom and the
number of equations of motion. For example, three hinged
blades and two directions of pylon deflection give five
degrees of freedom to be considered. If special linear com-
binations of the hinge deflections 8 are used as generalized
coordinates, no more than four degrees of freedom need be
considered simultaneously. The use of complex variables
reduces these four equations to two equations.

Appropriate variables in the rotating system for a three-
blade rotor are

o= (80+6:-+6)
bi oM
01=73' (ﬁo‘l‘ﬁle 8 B¢ :>

bi i 8t
03=§ Bot+-Bie ® +p:e® )

Y

(11)

These variables and their complex conjugates satisfy the
relations
!
§1=—"92

§2= —0,
and also

8680+ 68 +0:0:= — 862 +26,8,
2
=2 (a+aa+8s)

The variables B;, by virtue of their meaning, are referred to
& rotating coordinate system. The special linear combina-
tions of the B8: denoted by 6 are also referred to a rotating
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coordinate system. The appropriate variables to represent
the hinge deflections when fixed coordinates are used are
defined by

Sr=0e™* ‘ 12)

and T; is the complex conjugate of {:.

Geometrically, 8; or {; is the complex vector representing
the displacement due to hinge deflection of the center of
mass of all the blades, just as z represents the position of the
shaft due to pylon deflection. It will be shown later that in
equations of motion, 6, is coupled with z and 6, is an inde-
pendent principal coordinate. Equations (11) when solved
for By, B1, and B; become

o6+ 6,=biBy
Op+ 61—+ Giete=bip,
001—013‘“+02e"“=biﬂ2
Then, in a mode involving 6,
6,=0
61=g eteat
f,=—0,
Bo=5In w,t
Br=sin (wst—a) o (13)
Bx=sin (w,t+e)

Equations (13) show that in the 6-mode, the blades are
undergoing sinusoidal vibrations 120° out of phase with one
another in a manner analogous to three-phase electrical
currents.

General formulas for any number of blades are

-

> n—1
65 b > Bret?er
=0 -
o0
a=— _
n
8,=—0._, - (149
0,=00
a—-1 _ bz\ n—1
Eeka):=—= Zﬁt’
k=0 k=0 J

DERIVATION OF EQUATIONS OF MOTION

The equations of motion and the characteristic equation
of whirling speeds are herein derived for the general case of
three or more equal blades on a pylon that may have dif-
ferent stiffness properties in different directions of deflection.
The effects of damping in the blade hinges and in the pylon

are included. The equations are first formulated in & non-_

rotating reference system. The required modifications
are then given for the case of isotropic support stiffness.

ABBOTTAEROSPACE.COM

JR AERONAUTICS

The corresponding equations referred to the rotating co-
ordinates are then obtained.

Let the position of the center of mass of the kth blade be
represented by the complex quantity z; in the plane of
rotation. (See fig. I-1.) Let the bending deflection of
the pylon be represented by z, in a nonrotating coordinate
system and let 8 be the hinge deflection of the kth blade.

Then
2x=2,+ (a-+bel¥)etlartod (15)

The complex velocity is
2y= 75, [HiBie®ttiw(a+t by |gilatten (16)

Because only small displacements are being considered, the
exponential factors containing 8: can be expanded and only
the terms that lead to quadratic terms for the kinetic-
energy expression need be considered.

Some terms can be ignored either because they cancol
after summation for all the blades or because the corres-
ponding derivative expressions in the Lagrangian equations
vanish. The substitution

2
efr=1 +iﬁz—ﬁ—£'

leads to the following expression for the kinetic energy of
translational motion of the kth blade:

Ty=gmise (17)
where
erzv=25,+ 201 (Bt Ty et @O+
2,(—b3) (Be—iep)e=t @t an 4 BE3—otabpy?

Fraurs I-1.—Simplified mechanical system representing rotor.
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The kinetic energy of rotation about the center of mass of
the blade is

T, =gmay? as)

The effective mass of the pylon may be different in the z,- and
in the y,directions. Allowance for this possibility is made
by writing the kinetic energy of the pylon as

Ty=3(mat A+
. 5,21 5 2
= %[mféfEJ‘F Am, <’z—f"—2lﬁ>]

m+my
m =g

(19)

where

Am,=—-mz ) My
The total kinetic energy is the sum of the expressions for
the separate kinetic energies.

The pylon spring constant may differ in the z,- and in the
yr-directions and, consequently, the potential energy can
be expressed as

2152 n—1
-1 <K,z,§,+ AK, 2R, S Kbt (20)

The effect of damping will be expressed with the aid of a

dissipation function. If damping exists in the pylon, in the
rotating shaft, and in the hinges, this function becomes

1(p .= EAYES o e B,
F=§ B/ijf‘l"ABf_Lz—L'l'Bazaza’l'hgo BB (21)

The sum of the various energy expressions for all the
blades, expressed in terms of the variables z, and ¢, in the
nonrotating coordinates, becomes

T=%{ Am, E%‘_EL2+ (mtnmy) Z',fgf+7ltmb I:(Efg-l"l“

180 +(14 ) 5 (friog) (Brbis) —

st}

- (22)
=3 AK, +zf 'Krzfzfl

Bt S fki‘k)

F=% [ABf & ‘+'Z -l—_BfoZf"l"Ba(zf—Wf) (zf_l_'z‘wzf)_l—

'nt 2 (!‘k—wh}(fx+1w§'t):|

LIBRARY

ABEOTAERISPACERENCOPTER ROTORS WITH HINGED BLADES 275
The Lagrangian equations of motion are
( _OT ,0F 2V __
dt azf bzI be be
(23)

o7\ oT oF 2V

=l = 1= 0
dt\ 2% b§1+a§1 F

and similar expressions for the other variables. The equa-
tions of motion in fixed coordinates then become

(ntnmg) 8,4 Bz 4 By(s,—iwz) + Kzt Ams - ABS A

AK§f+nmb§‘1=0
nmys,+2nm, l:(l-l-;) (h—2iwfi—w?t)+

o (fiat) ot ot 1 |=0 @)

nmy [(14—%; (Fr—2tw fr—0ils) —l—ﬁi"' (fe—twi)+

b g’k+7n‘ng g‘k

-

where { refers to the {-variables other than {; and ¢,_.
The complex conjugates of these equations are also obtained
but give no additional information. Each complex equation
is, of course, equivalent to two real equations. It is noticed
that the ﬁrst two equations contain only the variables z,
zs, and {; and that the third equation represents n-2 equa-
tions, each containing one independent principal coordinate
Cr. The physical meaning of this partial separation of
variables is that a blade motion represented by {; involves
a motion of the common center of mass of the blades and,
thus, a coupling effect with the pylon. Blade motions in
which the common center of mass does not move are repre-
sented by &, . . . {». For three blades, the only such
mode is the one corresponding to §. In this mode, all the
blades move in phase; the motion is always damped and
does not lead to instability.

The equations of motion of a one- or two-blade rotor are
somewhat different from equations (24). The difference is
connected with the circumstance that a rotor of three or
more equal blades has no preferred direction in its plane;
whereas, a one- or two-blade rotor has different dynamic
properties in directions along and normal to the blades.
Only & brief statement and the final equation for shaft
critical speed will be given for the one- or two-blade rotor.

The equations of motion involving z, and {; can be written
more compactly by use of the nobation

2
p=% D=L
and the substitutions
_z%fz)‘f By 2
m,b? (1+%
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B, a
H=)\a —=4
b(1+%
AB
Tl‘r= A)\f —E-I—JT=A2
mJ)’(l-I—F) B
nmy,
mytnm, B
Then
[ D0 D0 @—io)+5E o H( S D+ 0D+ 5 ot uDa=0
1  ais g (25)
———w D2 (D—10)* +h(D—tw) +oArt45] =0
2(1+b—,’)
or, briefly,
Au(D)Zf+AA11(D)Ef+A12(D) f1=0
26)
Ay D)z, +Ax(D)H=0 l (
THE CHARACTERISTIC EQUATION
The general form of solution of equations (26) is an elliptic whirling motion that can be represented by
2,=C,*r3-Cye =+
2 =C,¢ PGy (27)

1= 038{“"‘ + 048_[;"

Special cases of this motion include whirling in a circle (Gs=0C;=0) and linear vibration (C;=GC,, C;=0C,). Substi-

tution of equations (27) in equation (26) gives

[Ay, (fw7) Crt-A Ay (dy) Cat-Ara (i) Coleio s+ [Ary (— iy CotAdyy (— "lc_v-’f)a—l-Au(—’lTof) Cle—Ft=0
. - 28
[z (’wf) Ci+4a (wf) Ciletort-[Ag (—%f) Cs+Ay (-ﬁf) Clle—#r=0 ( )

In order for equations (27) to be a solution of equations
(26), equations (28) must be satisfied for each value of ¢.
The coefficient of each time factor ¢*s* or ¢~'%s must there-
fore separately vanish. Because each bracketed expression
represents a complex quantity that vanishes, its complex
conjugate also must vanish. The condition for a solution
can therefore be expressed by the vanishing of the first
bracketed terms and the complex conjugates of the second
bracketed terms. Hence,

Ao G+ Aduio) Got-Anliog) Cs =0
An(io)C + Az (io) Gy =0 (29)
A_Zu ('iw,)Ol—l-Zu ('iw,)ag +Zl2(’z.’wf)54=0

;Tm ('iw,) 53 -l"‘Zgg (’L'wf) a= 0

where Ay (iw,) is the complex conjugate of Ay (—ia,) and is
obtained from Aj(iw,) by changing 4w to —iw without
changing iw, The characteristic equation giving the rota-

tional speeds is the determinant of the coeflicients of Ci, Cs,
C;, and C, equated to zero. With the second and third

columns interchanged for symmetry, the determinant

becomes
An A Ady 0
. An Agn 0 0 0 (30
A—le O le Zl? o )
0 0 Ay An

The expanded form of this determinant is
(AuAm—AmAn) (Zuzm—'zuzn) —AAuAZuAmZn=0 (3 1)

where

An=—w/+ N+ N(wr—0w) +%f'
A — 2 K,
Ap=—0op+iwN 1\ (0rFw) +H

AAu=AZu= _%{ w/’ -i—'iw,Ah,—l—%{
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—E o of=A
2 (1-[-'2;:)

Agy=— (0y—w)?+iMs(wy—w) +w?A+As
A= () *+ () +?A+Ag

The roots w, of this equation are the characteristic whirling
speeds of the rotor.
Tor the case of isotropic supports,

AA11=-’0

A12A21=Zmzn=

and the equations of motion are satisfied by equations (27)
With 02= 04=0
The characteristic equation is then simply

ApAn—Apdy=0 (32)

In a rotating coordinate system, the complex coordinates are
2, and 6;, where
2, =2,6%"
fi=0e"!
Then
Dz=(Dz,+10z,)e**

D= (Db +1wby)e™?

If the whirling speed in rotating coordinates is represented
by Way
2,=C\e%d

b= Coe*a’

The characteristic equation is then obtained by substituting
wetw for wy

A (0t w) Az(we+ ) — App(wet ) An(w.+w) =0 (33)

The characteristic equation can thus be stated in terms of a
whirling speed in either the fixed or the rotating coordinate
system, )
METHOD OF APPLYING THEORY
APPLICATION NEGLECTING DAMPING

In plotting curves for use in applications of the theory, it
is convenient to consider one of the pylon bending fre-
quencies w,=+K,/M, as a reference frequency and to refer
all other frequencies as well as the rotational speed w to the
reference frequency as unit. The number of independent
parameters is thus reduced by 1. All quantities in equa-
tions (31) to (33) are then expressed nondimensionally.

The natural whirling speeds and the three types of vibra-
tion—ordinary, self excited, and shaft critical—can now be
predicted from a study of the roots of equation (31) in
which w, is considered a function of « for fixed values of the
other parameters. ‘

The case of no damping will be considered first. Because
equation (31) with damping terms omitted is of the fourth
degree in w? and of only the second degree in «%, it may be
solved conveniently by first choosing values of w; and then
solving the equation for w® Similar indirect methods can
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be used with equations (32) and (33). Special methods to
be used when damping is included will be discussed later.

The meaning of equations (31) to (33) will be illustrated
by examples. The real part of o, will be plotted against w
for selected values of the parameters A;, Aq, Ay, 2nd 8. The
simplest case is that in which the mass of the blades is so
small that any force on the pylon due to blade motions is
negligible. The pylon motions are then independent of the
blade motions. This case is obtained by putting A;=0.
The characteristic equation (31), (32), or (33) then factors
into expressions yielding straight lines and hyperbolas.

An example of a rotor with particular values of the param-
eters is plotted as long-dash lines in figure I-2. The hori-
zontal straight lines correspond to pylon bending and the
glanting hyperbolas correspond to hinge deflection. Each
curve represents the trend of one of the real roots w, As
A; increases slightly from zero, the greatest changes in the
curves occur in the vicinity of the intersections of the
straight lines with the hyperbolas. Here each branch
breaks away from the intersection and rejoins the other
branch. At a gap, such as C in figure I-2, the number of
real roots of the frequency equation is reduced by I-2.
The missing roots are complex conjugate numbers, and one
of them must have & negative imaginary part, which implies
a self-excited vibration.

Consider the interpretation of figure I-2 as w is gradually
increased from zero. At zero rotational speed, the values
of w, are the natural frequencies that could be excited as
ordinary vibration by applied vibrating force. Positive and
negative values occur in pairs of equal magnitude and cor-
respond to linear vibration modes represented in complex
notation as

'TER ROTORS WITH HINGED BLADES

sy=cletr+-eter)

As o increases from zero, the positive and negative values
of w, no longer are equal in magnitude. The normal modes
are therefore whirling motions with angular velocities equal
to the plotted values of w;.

The shaft critical speed is the rotational speed at which
w;=w and hence is given by the point A where a 45° line

3 7
/ e

» 7 /7 ) d

—
/ L7
/ Ve
A /
, L
4
s

@ 0 ' —— ﬁ-f/E

7
// 4

- //(‘-//,/
// /,
2// ////
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-3 -4
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w

Freure I-2.—The effect of coupling between pylon and hinge motions.
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through the origin intersects the w~curve. This speed cor-
responds to the peak for vibrations excited by unbalance in
the rotating system. As w Increases gbove the shaft critical
speed, the modes of whirling are stable until, for the case of
no damping, the value of w, becomes complex at the value of
w at which a vertical line is tangent to the plotted curve.
This point B is the beginning of the self-excited range. At
the point D, the motion again becomes stable. The real
part of w, is plotted in the region C as a short-dash line.
The complex roots in the region C have been calculated and
plotted in figure I-3.

The point E, at which w,=0, is_of some interest. At this
speed, a vibration of the blades could be excited by a steady
force (w,=0, v, = —w), such as the force of gravity if the
plane of the rotor is not horizontal.

Because the most important information to be obtained
from the frequency equation is the critical value of o for the
shaft critical and self-excited vibrations, a set of charts that
gives this information for a large variety of values of the
physical parameters has been prepared. These charts are
given in figures I4 to I-6, which correspond to values of
stiffness ratio K,/K,=sof 1, =, and 0, respectively. The use
of the charts is illustrated by a numerical example. Suppose
the values of the parameters for a certain rotor are A,=0.07,
A;=0.22, A;=0.1, 8=1, and w,~=155 cycles per minute. A
straight line, such as AB in figure 14, is first drawn to repre-
sent the function w?A;+A.. This line intersects contours
A3=0.1 at «*=0.77 for the shaft critical point and «*=1.6
and 4.85 for the beginning and for the end of the self-excited
range, respectively. With a reference frequency of 155
cycles per minute, these values correspond to actual rota-
tional speeds of 136, 196, and 342 rpm.

All possible values of A;, A;, and A, are thus covered by
suitably changing the straight line AB. The general effect
of the stiffness ratio s is not large; any case can therefore be
estimated with a fair degree of accuracy by use of figures T4
to I-6. i} )

POSSIBILITY OF AVOIDING OCCURRENCE OF VIBRATION

Figures I4 to I-6 can also be used for the inverse problem
of finding the values of the parameters that are required to
obtain given values of critical rotational speed. These
figures show that to eliminate entirely the self-excited in-
stability requires that A; be equal to or greater than 1.

4
- Complex w, plone I.6'-7 "92.0
2 15 22
w=]3 P I 23

§~ | «r - A — 2.4
g 0 _4—-—""‘-/— B\\ D

-2 Y

-4

0 2 4 6 8 1.0 ~ 12 14

Reol

T1aurE I-3.—The complex frequency in the unstable range for
A;=0.07, A,=0.22, A;3=0.1, and s=1.
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Ficure I-4.—Stability chart for s=1.

The shaft critical instability can be entirely eliminated only
with a value of A, in a small range near 4 and with s=w or
§=0. These values of A; differ radically from present
designs in which a typical value is 0.07.

The satisfactory requirement of keeping the instabilities
outside the operating range of rotational speed is found by
first picking & reasonable value of the pylon frequency
VE.JM, to fix the scale unit for w and by then observing the
combinations of A, and A; that can be used to avoid the
critical Ag-contours.

EFFECT OF DAMPING

The effect of damping has been included in equation (31)
through the parameters A, A\, A;, and As. A method of
computation similar to that used in flutter theory appears
preferable to attempting to solve the equation directly for w,.
The beginning and the end of an unstable range can be found
by the following method: At a limit point between a stable
and an unstable speed range, the value of w,is real. Equa-
tion (31) is first separated into real and imaginary parts with
wy considered real. Each part is considered a functional
relation between w, and » and is plotted for a given set of
values of the parameters. The intersections of the real and
the imaginary equations give the rotor speeds and frequencies
corresponding to the beginning and the end of the unstable
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Freure I-5.—8tability chart for s=c.

ranges. In the computations, it is preferable to choose
values of w, and to solve the equations for the corresponding
values of .

The explicit form for computation in the simplest case of
isotropic supports, with damping in the pylon and in the
hinges but not in the rotating shaft (A\,=0), is obtained from
equation (32) rearranged as follows:

For the real equation

ABBOTTAEROSPACE.COM

*—2B -+ Ca=0 (34)
w=BR:|:'VBRa—0)§
where
__ Yy Ads
Bﬂ l—Al [1+2 (_ 2+£f
Cdf M)
and
18] @y 14 As_ Aot HA N
T4 tod 2+§
w, M
For the imaginary equation -
' —2Bw+ =0 (35)

526607—00——19
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Firaure I-6—Stability chart for s=0.
where
1 P N[ K,
B"‘1—A1 [“” 2)\,0.),( s 'H)]
and

==z (-

The real and imaginary equations for the most general case
of equation (31) can be written, respectively, as follows:

o3 (o) |

A (1—44)%0 -+ [Br(1 — 44)*+-A2Ry] oo+ (R Rs— L I;+- A 2R —

By)o* 4B\ Ry— I [,— R+ AP0 f=0 (36)
(L (A—A)* A2 Lot (Bl + By [ A 2L — I+ Ry I+
where
M K
6 (el (1)

o t0) (W RN
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. : M,
s ) (R

M, A
w(—or+w) o (37 07)

Ry=(—af+ A2 — o\

Li=2(—wi+Ag)ws

R3= "—2(1—‘A1) (_wf2+A2) '—40’12‘1‘)\.82

a=—2(1*A1)wf)\ﬂ+4f°f)\ﬁ

R4=2OJI4A3 L(-(.dfz'l‘ﬂ-z-—ff{ (—w,’—l—Az) _wjg()\f—'_)‘d)xﬂ]

I‘= 20)]4.113 ("Coj"l'%r) wj)ﬂ'l"'-’f(}‘f'l-)‘a) (—wfz_l_AZ)]

R5=&0f‘A3 t'—' (1—‘A1) ("‘@fa“l'ﬁKZL)—kaxﬁ]
Ii=20 Ag[— (1—ADwr (A +00) —220/]

Examples of calculated cases with damping are shown in
figures I-7 to I-9. The presence of small amounts of damp-
ing in both the pylon and the hinge degrees of freedom does
not greatly change the predictions that would be made from

20

/ 4 1pd /’(
R vl /'{ yd
/ // / // yd ’ L
/// //// d /7 L] 1
1.0 ,//'/ Z b —
o // e L
PZurEs)
2z JZ
a4
d
0 1.0 20 30

w

Figure I-7—Plot of real and imaginary equations for a typical case.
8=1; A,=0.07; A;=0.22; and A;=0.198.
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Figure I-8.—Plot of real and imaginary equations for case of s=w,
A1=0.07, A3=0.22, and A =0.198.
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Figurns I-9.—Effect of damping for case of s=1, A;=0.07, A3=0.22,
and A;=0.198.

the equations with no damping. The plot of the real equa-
tion is practically the same as the plot obtained when damp-
ing is neglected. The intersections of the curves of the
imaginary and the real equations with any reasonable value
of A\;/As are near the points that would be considered the
limits of the unstable range if damping were neglected.
Increasing the amount of damping decreases the gap between
the limits of stability until the unstable range is finally
eliminated. An approximate solution for the amount of
damping required to eliminate the self-excited instability is
obtained by requiring that the damping be at least large
enough to make the curve of the real equation pass through
the point where w,=1 and w is the value given by the equa-
tion ’

l=w—efA;+A;

The values required in the case of 8 = = have been computed
and plotted in figure I-10. The elimination of self-excited
vibration by damping thus looks promising and merits
further study with reference to specific application.
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N — I
- — \\g
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Frgure I-10.—Damping required to eliminate self-excited oscillation

for s=o,
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Figurp I-11.—8haft critical speeds for s=1.

LIMITATIONS AND FURTHER DEVELOPMENTS OF THE
THEORY

POLAR SYMMETRY

An important idea in the rotor vibration theory is the
concept of polar symmetry. This concept implies the ab-
sence of a preferred direction in the plane of the rotor. A
rotor of three or more equal blades has polar symmetry. A
rotor of two blades or one with unequal centering springs
does not have polar symmetry. A pylon for which K,=K,,
B.=B,, and m.=m, has polar symmetry. The possibility
of solving the rotor vibration problem in terms of exponential
or trigonometric functions depends upon the existence of
polar symmetry in the rotating parts or in the nonrotating
parts or in both. The general case of no polar symmetry
would lead to Mathieu functions or something similar.

TWO BLADES

A brief comparison between the two-blade and the general
case is presented herein. Polar symmetry of the pylon is as-
sumed. The shaft critical speed is obtained by substituting
w,=0 in the characteristic equation as expressed in a rotating
coordinate system. For one or two blades, the equation
obtained is

l.('_“”"l'ﬁgfq (w’g‘l‘—}gfaw—-pw‘_l ( —w’—l—-{z—,’\)= 0

(3R)
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Fiaurs I—-12.—Experiméntal critical speeds on small models.

The first bracketed factor gives the beginning of a self-ex-
cited range and the second factor gives the end of the range.

Equation (38) can be compared with the following equation
for the shaft critical speed of & rotor with three or more equal
blades and polar symmetry:

(—o+37) (50— 5e=

A useful chart based on equation (39) is given in figure I-11;
some experimental results of tests of a simple model are
given in figure I-12. These tests demonstrate the essential
difference between the two-blade and the general case.

(39)

LANGLEY ABRONAUTICAL LLABORATORY,
NarioNaL Apvisory COMMITTEE FOR AERONAUTICS,
Lawerey Frewp, Va., August 24, 1956.
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CHAPTER II
THEORY OF MECHANICAL OSCILLATIONS OF ROTORS WITH TWO HINGED BLADES

By ArnoLp M. FEINGOLD

SUMMARY

The mechanical stability of a rotor having two vertically
hinged blades mounted wpon symmetrical supports, that is,
of equal stiffness and mass in all horizontal directions, is
tnvestigated and reported herein. The frequency equation s
derived and shows the existence, in general, of two ranges of
rotational speeds at which instability occurs. The lower region
of instability is bounded by two shaft critical speeds. At rotor
speeds within this region, self-excited divergence of the rotor
takes place analogous to the instability exhibited by a rotating
shaft that is elliptical in cross section. Within the second
instadility range, the rotor system undergoes self-excited oscilla-
tions. Charts are presented giving the boundary points of
both instability regions for a large variety of values of the physical
parameters. The effect of damping is also included in the
analysis.

INTRODUCTION

In chapter I, Coleman gives an analytical study of the
mechanical stability of a rotor having three or more verti-
cally hinged blades, mounted on flexible supports. It was
shown that, in addition to the usual shaft critical speeds,
self-excited vibrations occurred over a range of rotational
speeds. Experiments with rotary-wing aircraft have con-
firmed the soundness of the analysis.

The present chapter is an investigation of the stability
of the two-blade rotor mounted on symmetrical supports.
As will be shown later, the results differ from those for a
three-blade rotor. The reason for the different behavior
lies in the inherent asymmetry of a rotor with only two
blades. Motion of the center of mass of the blades of a
two-blade rotor with respect to the rotor hub, due to small
hinge deflections of the blades, must be normal to the line
of the blades. This restraint, which does not appear in a
rotor of three or more blades, results in the rotor system
having different dynamic properties along and normal to
the line of the blades. Therefore, with supports that have
equal stiffness and mass in all directions attached to a two-
blade rotor, two principal vibration axes of the rotor hub
can still be distinguished. No preferred vibration axes can
be distinguished for a three-blade rotor mounted on sym-
metrical supports. This distinction shows up physically in
the shape of the vibration modes. Whereas & three-blade
rotor whirls in & circle, a two blade rotor whirls in an
ellipse, of which the principal axes are along and normal to
the line of the rotor blades.

A two-blade rotor can be expected to show, in addition
to some features of a three-blade rotor, some of the charac-
teristics of a rotating shaft that is elliptical in cross section.
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Such a shaft, mounted on symmetrical bearings, is known
to have two critical speeds, which correspond to each of the
two principal stiffnesses. (See, for example, ref. 1.) For
all rotational speeds between the critical speeds, the shaft is

. unstable and diverges. It will be shown that an exactly

similar phenomenon exists for a two-blade rotor. The
existence of this region of instability for a two-blade rotor is
predicted in chapter I, in which the formula for the shaft
critical speeds boundmg this instability range is given. In
addition to this region of instability, a second range of
msta,blhty analogous to that exhibited by a three-blade
rotor is also present.

Only the case of symmetnc&l supports is analyzed in the
present report. In the case of asymmetric supports, the
equations of motion are linear differential equations that
are difficult to solve because the coefficients vary periodi-
cally with the time (Mathieu type). Similar equations are
obtained in the problem of a rotating elliptical shaft mounted
on asymmetric bearings. (See ref. 1.)

SYMBOLS

a radial position of vertical hinge

b distance from vertical hinge to center of mass of
blade

B . damping force per unit velocity of rotor-hub
displacement .

Bg damping force per unit angular velocity of blade

displacement about hinge

time-derivative operator, d/dt

dissipation function

moment of inertia of blade about hinge,

N

myb? (H—b—r:)

spring constant of rotor-hub displacement
spring constant of blade self-centering spring
effective mass of pylon
effective mass of rotor blade
total effective mass of blades and pylon, m+2m,
radius of gyration of blade about its center of mass
arbitrary parameter
time
kinetic energy
T, kinetic energies of rotor blades
kinetic energy of rotor hub
potential energy
displacements of rotor hub in rotating coordinate
system

8
<2
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X, Y. rotating coordinate axes
X, Y, fixed coordinate axes
Zoy Yo values of z and ¥ when =0
2, M displacement of first rotor blade in fixed coordinate
gystem
22, Ya displacement of second rotor blade in fixed co-
ordinate system
By, B2 angular displacements of blades about their hinges
0 b(B:1+82)
0=———_
2
] _____b(ﬂl—_'ﬁ'.’)
2
6, value of 6, when ¢=0
_B
T Mo,
B
)\p=Tfr‘
Ai=m———
b (1+ ba)
K
Ag=m
My
Ay=—r—c
7\2
M (1 +5

w angular velocity of rotor (the dimensionless ratio w/w; is
called w in applications)

w, natural frequency of rotor system observed in rotating
coordinate system (used in nondimensional form in
applications)

w, natural frequency of rotor system in fixed coordinate
system (nondimensional in applications)

w, reference frequency, v/ K/M

MATHEMATICAL ANALYSIS

Four degrees of freedom of the system are considered—
horizontal deflection of the rotor hub in the z- and y-direc-
tions, and hinge deflections B, and B of the blades in the
horizontal plane of the rotor hub. The rotor is assumed
to rotate at a constant velocity w.

Deflection of the rotor hub may be due either to the bend—r

ing of a flexible pylon or to a rocking of the rotor craft upon
its landing gear. Ground-resonance vibrations usually in-
volve landing-gear flexibility. The mathematical treatment
is the same in both cases, but the values of several of the
physical parameters will depend upon which mode is being
investigated. In this chapter, the terms “rotor supports”
and “pylon” will be used interchangeably to denote the
nonrotating structure coupled with the rotor blades.

The mathematical treatment herein differs from that in
chapter I, in which are used the complex notation and the
notion of “whirling speeds,” that is, directional frequencies
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resulting from the use of complex numbers. Although the
method of chapter I is valuable for systems, such as the
three-blade rotor on symmetrical supports, which have cir-
cular modes of vibration, it offers little advantage for the
present problem, in which the rotor performs elliptical mo-
tion. Rectangular coordinates accordingly are used in the
present report and frequencies are used instead of whirling
speeds. In comparing the results of the present report with
those of chapter I, care should be taken to distinguish be-
tween frequencies and whirling speeds. Whirling speeds
have directional significance; whereas frequencles are essen-
tially positive quantities and do not give any immediate
information concerning the direction of whirl of the vibration.

The equations of motion are set up in & coordinate system
rotating at the velocity w. Let the deflection of the rotor
hub be represented by z and y in rotating coordinates. (See
fig. II-1 in which the intersection of the coordinate axes
represents the undisturbed position of the rotor hub.) The
disturbed positions of the two blades in fixed coordinates are

2= (@+a+b cos B;) cos wt— (y+b sin §;) sin wt

y1=(y+b sin B;) cos wt+} (x+a-+b cos §) sin wt
and

2= (@—a—>b cos B;) cos wi— (y—>b sin F;) sin wt

ya=(y—0 8in B;) cos wt+(x—a—>b cos B,) sin wi

The kinetic energies of the two rotor blades are
Tymgma U9+ (o+607]
and
Ty=gmy [+ (o6
The kinetic energy of the pylon is

To=3m [t (@ ) —20(ty—a))]

My
Y,
v, f
b
By
. [~
m Xa
a .
] Y
/B/z x
0 wl X
74
m,

Fraure 1I-1.—Simplified mechanical system representing rotor.
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Because only small displacements from the equilibrium
position are considered, the trigonomeiric expressions con-
taining 8; and B; may be expanded as power series and only
the terms that lead to quadratic terms in the energy expres-
sions need be retained. Thus

REPORT 1351—

sin Br=F4

cos ﬁl—l—%lz
and

sin By=/_0,
2

cos ﬁg=1_%

New variables introduced to replace 8; and §; are

=L eted

b
=§ (ﬁl—ﬁa)

where 6, represents the shift, due to hinge motion, of the cen-
ter of mass of the two blades with respeet to the rotor hub.
The introduction of 6, and 6, results in a partial decoupling
of the equations of motion.

The total kinetic energy of the system is

I=T+T1s+T:

Only the quadratic terms will be retained in the kinetic-
energy expression, because the terms of lower degree vanish
in the Lagrange equations of motion. Then

T=% M3 w3 (@39 —2e(Ey—2z3) | +m, [22751+

2w’y01+2wxél—2w01+<l+g> ('5.7024'0.12)‘0’2 %(0024'312)]7

The potential energy of the systém ig
=LK (@) 2 (646
o (CANRE - JREWE)

Two types of damping of the rotor system are assumed to
exist: (1) damping in the rotor supports, which is propor-

INALRIGINAL AU VIOULL CULLIILL FOR ABRONAUTICS

tional to velocity displacements of the rotor hub in a fixed
coordinate system, and (2) damping in the blade hinges.
The dissipation function # then becomes
F= ——B[$’+y’+a”(x’+y’)—2w(wy zy)] + 26524617
where B is the damping force per unit velocity of rotor-hub
displacement and Bjg is the damping force per unit velocity

of a rotor-blade displacement about the blade hinge.
The Lagrange equation of motion for the variable x is

(b bT oV, or
dt

HEZAE TR
The use of similar expressions for y, 8, and 8, lead to the
following equations of motion:

(Da—wﬂ+%D+K> x—ﬁﬂ’%wpal—(zwp+%w>y=o o

D4— bg+b ]01+(Da_w2)1/—

2wa+[(1+5;) B
)

mb‘l

2m - B
(zwD+M ) r+ b(Dﬂ—wﬁ)o,+(Df—wf+ﬂD+ﬂ y=C()3)

[(5)ridporsgedlos o

where
d d?
@ Ut
Equation (4) can be solved independently of the others
because it is an equation in only one variable 6,, Equation
(4), which also was obtained in the study of the three-blade
rotor (chapter I), represents blade motion with the blades
moving in phase, uncoupled with pylon motion. Motion in
this mode is damped and-does not lead to instability.
Assuming solutions of the form

D=

r=z,eldt
Y=ot (5)
0,="0 106"'a‘

and substituting these solutions in equations (1) to (3) gives
the characteristic or frequency equation

—w— ’-I—'i)\w,,:l—l 4 A 00, 2ww—1Aw
20w, — ot iNswet Ag+ Ajwd —wli—w? =0 6)
20wa—1TAw —2A3(w.*+ %) — w4101
where the nondimensional parameters My
2 (1+53)
3 <1+ ) _ B

b? X—er
By
T T2 )\B::E
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have been introduced, and the rotational velocity » and the
frequency w, have also been made nondimensional by using
w,=+/K[M as reference frequency.

The frequency w, generally is a complex number, of which
the real part is the frequency of the vibration and the
imaginary part determines the rate of damping of the vibra-
tion. If the imaginary part of w, is negative, the vibration
increases in amplitude with time and the rotor is unstable.

DISCUSSION OF FREQUENCY EQUATION

CASE OF ZERO DAMPING

If the damping parameters A and As are neglected, the .

frequency equation (6) may be expanded to

2840+ w"—1) +[4otw— (o4
waz_ 1)2][_2A3(w2+wa2+ 1)+waa_A2_A1‘”2]=0 (7)

where o, i8 the natural frequency of the rotor system in s
coordinate system rotating with the rotor. (Although equa-
tion (7) is & cubic equation in both «? and w.?, rectangular
hyperbolas of the form w/=«?+s, where s is an arbitrary
parameter, intersect equation (7) at only two values of «?
For purposes of computation, therefore, equation (7) can be
reduced to a quadratic equation in w* by replacing w,® with
w*3.) )

The solutions for zero damping (eq. (5)) represent motion
of the pylon in an ellipse expressed relative to the rotating
coordinate axes. In fixed coordinates, the pylon would
move in an ellipse precessing at the velocity . This motion
can be resolved into simultaneous circular motion at the
two frequencies |w-+tw,| and |w—w,], in which the vertical
lines indicate that the quantity inside is to be considered
positive. If the pylon is subjected to a harmonic force
in the fixed coordinate system of frequency w,, resonance
will occur at each of the frequencies

W= I“’ i“’al

The frequency w, will be referred to as the natural frequency
of the rotor system in fixed coordinates.

The graph of the frequency equation (7) for a typical
get of values of the parameters is given in figure TI-2 in
rotating coordinates and in figure I1-3 in fixed coordinates.
For zero coupling between the blades and rotor hub—that
is, when A; equals zero—equation (7) factors into straight
lines and a hyperbola, which are shown as long-dash lines
in figures I1-2 and TI-3. The straight lines represent hub
motion and the hyperbola represents blade motion. A-
small increase in A; results in a breaking away of the curves
at their intersections to form two self-excited regions. It
is interesting to compare figure II-3 with figure IT-4, which
is the graph of the natural frequencies of a three-blade
rotor having the same values of 4;, A,, and As.

The shaft critical speeds, or natural frequencies that
would be in resonance with an unbalance in the rotor system,
are found by putting w,=0 in equation (7). Figure 112
shows two such speeds, at points A and B (shown also in
fig. IT-3), that bound a region in which w, is & pure imaginary
number. If o, is & complex root of the characteristic
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~— Regions of instability
A,B  Shaft critical speeds
C,D Limits of second instability
region
E,F Responses excited by constant
force
Y/
2 P '?5'
1
1
1
wg i
1
i
1
i
I T
A
i
|
0 3 4

Freore II-2.—Nabural frequencies of a two-blade rotor in rotating
coordinates for case of A;==0.05, A;=0.20, and A;=0.10,

~— Regions of instability
A,B Shaft critical speeds
C,D Limits of second instability

region
E,F Responses excited by constant
force .

/
/4 yd

“r b /
/ L

N\

o E F I 2 3 — 3
w

R e o

Fraure II-3.—Natural frequencies of a two-blade rotor in fixed coor-
dinates for case of A;=0.05, A;==0.20, and A3=0.10.

equation, the complex conjugate of w, will also be & root and
one of the two roots will have a negative imaginary part
implying instability. The rotor system will thus be un-
stable for all rotational speeds between the two shaft critical
speeds. Because o, i8 a pure imaginary number in this
region, the frequency of the resultant self-excited vibration
is zero in a rotating coordinate system—similar to the shaft
critical speeds—and will appear as a self-excited divergence
of the rotor.
The equation of the shaft eritical speeds is

[(1—o®) (43t A1e?) —\-2A3w‘](1 —ao) =0 ®)
The first factor gives the lower shaft crifical speed. The
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Region of instability

Shaft critical speeds

Limits of instability

region

Response excited by constont
force

v i

wr A s

0o 2 3 4

w

\
N\

F1gure I1-4.—Natural frequencies of a three-blade rotor in fixed coor-
dinates for case of A;=0.05, A,=0.20, and A;=0.10.

second factor, which depends on only the reference frequency,
marks the end of the range of instability and is the second
shaft critical speed. Formula (8) and an experimental
verification of it are given in chapter I. A convenient
graph of equation (8) is given in figure IT-5. It will be
noticed that it is impossible to remove the two shaft eritical
speeds or the instability region between them by any possible
change of the parameters A;, 4z, or A,; that is, without the
introduction of damping, self-axcited vibrations will always
occur below the rotational speed w,.

Instability also occurs in a range of rotational speeds
greater than w,. This range is shown in figures II-2 and
IT-3 as the region bounded by the points C and D and is
similar in origin to the self-excited region exhibited by the
three-blade rotor. In this region, the roots of the frequency
equation are complex and self-excited vibrations will take
place. Unlike the three-blade rotor, however, the rotor
hub will be seen from a stationary position to be simultane-
ously executing self-excited vibrations at two different
frequencies. Physically, of course, the rotor is moving in
an ellipse at the frequency w, while precessing at the velocity
w.
A chart showing the lower and upper limits of this in-
stability region for a wide choice of values for the parameters,
45, A, and A; is given in figure II-6. The chart is used
by drawing & straight line that represents the function
(1—44yw® plotted against A;w’--A;. The intersections of
this straight line with the proper Aj,-curves give the desired
values of w. The short-dash line on the chart illustrates the
method for the parameters of figure II-2. (

The position of the instability region is very sensitive
to the values of Ay. (See fig. II-7.) As A, increases, the
region of instability occurs at greater rotational speeds and

moves to infinity for A,=i(1—A1). For values of A;

LIBRARY

REPORT 1351——NALIUINAL AU YIOULL wOiuaid 1iui FOR AERONATUTICS

I
) I
| i

—t

_4 AL
AN
Il WA}

w

Figure II-5.—8haft critical speeds.

greater than i—(l—A,)-—that is, when the total effective mass

of the rotor blades is greater than the effective mass of
the rotor supports—the self-excited region does not appear.

At certain rotational speeds, w,=0. At such speeds
resonance may be excited by a steady force, constant in
direction, acting on the pylon or blades—for example,
gravity acting on a tilted rotor. The two-blade rotor has
two such speeds, shown as points E and F in figures 11-2
and II-3. The mathematical condition for such points is
that w;=0 or o =0w’ in equation (7). The equation giving
the rotational speeds at which this condition may occur is

Equation (9) is plotted in figure 11-8, which is used similarly
to figure 1I-6. If A,=0, then point E occurs at w=0. If

'As_z_é(l—Al), as pointed out in reference 2, then point F

occurs &b w=o.
EFFECT OF DAMPING
The effect of damping will be determined in the same man-
ner as for the three-blade rotor in chapter I. When the
damping parameters A and s are retained, equation (6) in
expanded form can be separated into powers of w, having real
and imaginary coefficients. The terms of equation (6) with
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Fraurp II-8.—8tability chart for second instability region.

o Boundary of instability region for A3=0.10
o Boundary of instability region for A;=0.15
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Fraure II-7.—Effect of coupling parameter A; for ease of A;=0.05
and A;=0.20.

real coeflicients are

2A3(0?+ w2 —1) + [4efwi— (o wi— DA[—243(e?tw 1)+
0l —Ar— A0 FA(—w i+ Azt Arw?) (P —w?) —2A\ g (e —
ws'+1) (10)
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Fieure II-8.—Rotational speeds at which vibration could be excited
by steady foree.

The terms with imaginary coefficients are

ima{z%[(wf—wgﬂ) (AarP+ Ay—a?) - Ay (Bes'—2to?—

)]t L — ot 2t D —\2 (wa’-—w’)} (1)

At a boundary between stability and instability, w, is real.
Such points are the intersections of the equations formed by
setting expressions (10) and (11) separately equal to zero
and plotting them on the same coordinate axes. Figure II-9
shows a calculated case of damping. The imaginary equa-
tion is plotted for several values of the ratio of the damping
parameters A/, with A* assumed to be negligible. It is seen
that, for large values of A/\s; the boundaries of the higher
range of instability are not far different from the boundaries
found by neglecting damping. Small values of A/A;/—that is,
when most of the damping is concentrated in the blade

o Boundary of instability region for \/Ag=1
O Boundary of instability region for M Aga
v/ 7
// 7 ///
f : S =
2 0/ /l///)‘ -® 07’7///,,//”'/
v 749
v ‘o
Wy ///j/
o
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— /,// /O —_— Imag fons
— 7 Reamﬁg?
V4
0 | 2 3 4q

Ficure II-9.—Plot of real and imaginary equations for ease of A,=0.05,
A2=0.20, A3=0.10, and \\s=0.
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hinges—lead to & beginning of the instability at lower
rotational speeds.

For smell amounts of damping, the plot of‘the real equation
is practically the same as when damping is neglected. By
introducing sufficient damping, however, the higher insta-
bility region may be eliminated. (See fig. II-10.) The two
shaft critical speeds and the instability region between them
can also be removed by putting enough damping into the
rotor supports, although a large amount of damping is
required.

BRIEF DESCRIPTION OF VIBRATION MODES

If demping is neglected, the shape of the free vibration
modes can be found from the equations of motion (egs. (1)
to (4)) and the form of the solution (eq. (5)). The rotor
hub generally moves in an elliptical path in rotating coordi-
nates although, at certain speeds, the motion may become
circular or linear. At zero rotational speed, two of the three
modes involve hub motion normal to the line of the blades,
with concomitant blade motion. In the third mode, the
blades do not move about their hinges and the rotor hub
moves in a straight line parallel to the line of the blades at &
frequency equal to o,.

At the first shaft criticel speed, the rotor hub diverges in &
direction normal to the line of the blades; whereas, at the

/]

o ./
/

—— —— Imaginary equation
Real equations

o] H

3 4q

en

Fiaors 1I-10.—Plot of real and imaginary equations for case of
A;=0.05, A,=0.20, A3==0.10, and A=2s.
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second shaft critical speed, the hub diverges parallel to the
blades.

The forced responses of the system to & vibrator attached
to the pylon can also easily be determined and show that
those responses lying closest to the lines w®=1 are the
strongest. When the coupling parameter A, is zero, no
response occurs along the lines w,=|2w:l:1|. This last con-
clusion is, of course, necessary if the theory is to give the
correct results for the degenerate case of massless rotor
blades.

CONCLUSIONS

The mechanical stability of a rotor having two vertically
hinged blades mounted upon symmetrical supports has been
investigated and reported in this chapter. This investigation
indicated that the main features of such a rotor system may
be summarized as follows:

1. The vibration modes are generally elliptical, as opposed
to circular for the three-blade rotor. The ellipse precesses
at a speed w as observed from a fixed position; the result is
six resonant or natural frequencies in a fixed coordinate
system for a given rotor speed as against four natural fre-
quencies for the three-blade rator.

2. The asymmetry of the two-blade-rotor system gives
rise to a range of rotor speeds in which self-excited divergence
of the rotor occurs. This instability region is bounded by
two shaft criticel speeds. A three-blade rotor, in contrast,
has only one shaft critical speed with no associated instability
region.

3. The two-blade rotor has a second region of rotational
speeds at which self-excited vibrations occur.

LANGLEY ABRONAUTICAL LABORATORY,
NarioNaL Apvisory COMMITTEE FOR AERONAUTICS,
Lanarey Fiewp, Va., July 27, 1966.
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CHAPTER 1II

THEORY OF GROUND VIBRATIONS OF A TWO-BLADE HELICOPTER ROTOR ON ANISOTROPIC FLEXIBLE
SUPPORTS (REVISED)

By RO’BEBT P. CoLemaN and Arvorp M. FEmNGoLD

SUMMARY
An extension of previous work on the theory of self-excited
mechanical oscillations of hinged rotor blades has been made.
Previously published papers cover the cases of three or more
rotor blades on elastic supports (such as landing gear) having
either equal or unequal support stiffness in different directions
and the case of one- or two-blade rotors on supports having

equal stiffness in all horizontal directions. The missing case .

of one or two blades on unequal supports has been treated.

The mathematical treatment of this case is considerably more
complicated than the other cases because of the occurrence of
differential equations with periodic coefficients. The charac-
teristic frequencies are obtained from an infinite-order deter-
minant. Recurrence relations and convergence factors are used
n finding the roots of the infinite determinant.

The results show the existence of ranges of rotational speed ai
which instability occurs (changed somewhat in position and
extent) similar to those possessed by the two-blade rotor on
equal supports. In addition, the existence of an infinite num-
ber of instability ranges which occurred at low rotor speeds and
which did not occur in the cases previously treated is shown.

Simplifications occur in the analysis for the special cases of
wmfinite and zero stiffness in one of the axes. The case of in-
JSinite stiffness in one axis 18 also of special inferest because it is
mathematically equivalent to a counterrotating rotor system
A design chart for finding the position of the principal self-
excited-instability range for the case of infinite support stiffness
in one direction 18 included for the convenience of designers. It
18 expected that designers will be able to obtain sufficiently ac-
curate information by considering only the cases of infinite and
zero support stiffness along one direction together with the cases
treated previously. .

INTRODUCTION

It is known that rotating-wing aircraft may experience
violent vibrations while the rotor is turning and the aircraft
is on the ground. It has been found that these vibrations
can be explained without considering aerodynamic effects
and that they are due to mechanical coupling between hori-
zontal hub displacements and blade oscillations in the plane
of rotation. A theoretical analysis of this vibration problem
is given in chapters I and II. Chapter I deals with rotors
having three or more equal blades on general supports and
chapter II deals with two-blade rotors on supports having
the same stiffness in all directions.

Although in actual two-blade rotary-wing aircraft, the
stiffness of the supports along the longitudinal direction is
certainly different from the lateral stiffness, the equality of

the stiffnesses was assumed in chapter 1T because it permitted
the mathematical simplification of dealing-with differential
equations having constant coefficients and it was believed
that a theory employing such an assumption would be suffi-
cient to indicate the nature of the most violent types of
ground instability.

The present chapter gives a theoretical investigation of the
general case of a two-blade rotor mounted upon supports of
unequal stiffness along the two stationary principal axes.
It thus generalizes the problem of chapter IT, and rounds out
the studies of ground resonance begun in chapter I. As was
shown in chapter IT, a two-blade rotor possesses different
dynamic properties along and normal to the line of the blades.
Equations of motion with constant coefficients for the prob-
lem treated in chapter IL could be obtained by using a
coordinate system rotating with the rotor. This procedure
succeeded because the supports were assumed isotropic (equal
stiffness in all directions). When the supports are aniso-
tropic, however, it is impossible to avoid the appearance of
periodic coefficients in the equations of motion.

The present method of solving the differential equations
of motion follows closely the process employed in reference 1
for a vibration problem in two degrees of freedom. The
form of solution is expressed by an exponential factor times
a complex Fourier series. Substitution of the formal solu-~
tion into the equations of motion yields an infinite set of
algebraic equations and an infinite-order determinant for the
determination of the Fourier coefficients and the character-
istic frequencies. The subsequent analysis is concerned with
methods of finding the roots of the infinite determinant.

Although the present chapter did not originally include
the effects of damping on rotor instability, Mr. George W.
Brooks has prepared appendix B to indicate how effects of
damping may be included in the analyses.

It is expected that designers will be able to obtain suffi-
ciently accurate information by considering only the cases
of infinite or zero support stiffness along ome direction
together with the cases of chapters I and II. In order to
avoid the necessity for extensive calculations, a design chart
is included giving the location of the principal self-excited-
instability range for the case of infinite support stiffness in
one direction.

DERIVATION OF THE EQUATIONS OF MOTION

The symbols used in this chapter are defined in appendix A.

The equations of motion are obtained from ILagrange's

equations and from the expressions for kinetic and potential
289
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energy. Four degrees of freedom of the rotor system are
considered: components of deflection of the rotor hub in the
plene of rotation, and hinge deflections of the two rotor
blades about their vertical hinges. All motions are thus
assumed to occur in the plane of the rotor. The rotor is
assumed to rotate at a constant angular velocity w. The
analysis can be applied to rotors without hinges by assuming
an effective spring stiffness and hinge position to represent
the elastic deflection of the blade.
The pertinent physical parameters are:

a radial position of vertical hinge
b distance from vertical hinge to center of mass of
blade

mass of rotor blade
effective mass of rotor supports
r radius of gyration of blade about center of mass
K,, K, spring constants of the rotor supports along the X-
and Y-directions, respectively

K; spring constant of hinge self-centering spring

Let the origin of the X, Y-coordinate system be placed at
the undisturbed position of the rotor hub. At time ¢ equal
to 0, the line through the blade hinges and rotor hub is
assumed parsllel to the X-axis. After a time interval ¢,
let the rotor hub deflection be z and hinge deflections be 8;
and B,, respectively, where z is the complex position coor-
dinate measured in a coordinate system rotating with the
rotor. (See fig. IIT-1.) Then the positions of the centers
of mass of the two blades, as measured in fixed coordinates,
will be, respectively,

2= (2} a-+beti)et*
oY)

23=(z2—a—be')e?*
The kinetic energy of the rotor system 7" can be written as
T=3 m, { e [(«»+Bo=+ (w‘Héa){l}‘F

1

5 @

m(3+iwz) (Z—inz)

Log hinge--.
g hing ~
~ .
~Undeflected
~& hub position

My

Fiaure III-1.—Simplified mechanical system representing rotor.
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The first term in equation (2) represents the kinetic energy
of the rotor blades, including the energy due to rotation, and
the second term is the contribution of the rotor hub.

Upon expanding equation (1) into power series in 8; and
B: (only small deflections from equilibrium being considered)
and substituting into equation (2), there is obtained

Tk M(i4-io2) G—ic) 45 m, [— (Bi—By) ({ubz—
16207+ wb +wbZ) - (81— ;) (biz+wbz+wbz—biz)+
(b"+r’)(ﬁl’+Ba’)-—abw’(ﬁl’+ﬁa’):| 5

where only the terms that are quadratic in the variables have
been retained, and M represents the total mass of the rotor
system.

The potential energy of the system V is given by

V=51 o1+ E 2 LK i erin @

where K is the average stiffness and AK is a measure of the
difference of the two principal stiffnesses; that is,
KK,

2

a5k

As in chapters I and II, simplifications in the analysis are
introduced by replacing the hinge variables 8, and 8, by the
following new variables:

90=% (,31 +ﬁ2)

91=g (ﬁl“'ﬁa)

In terms of these new variables the expressions (3) and (4)
become, respectively,

= (o tion) i) +ma [ (i) (ih:—a0)—

(2+1wz) (’iél—l-a)@l)—l-(l "'71;_22) (902-1-912)—% w? (oo=+o,2):|
)]

and

V=1-2z 25-1—% (9024-91’)—% (233wt Z3g 2 ut) (6)

By use of the Lagrangian form of the equations of motion
d [/ oT , dV
7 (35)- %+ 30

the following equations of motion for the rotor system are
finally obtained:
00+ (02A1+Az) 00=0 (7)

AK _

(D)t in(DF i)+ e— 5 zeHei=0  (§)
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(D—ie)E—ip(D—iaf - H e T zetei=0  (9)

(D4-i0)*2— (D— i) 5+21 (14% (DA A+ A2)6:=0 (10)

where the notation

d
D=2

has been used, and the following combinations of the original
parameters have been introduced:

2m,

P‘=M

AQ,_—____K'S—’J
m,b? (1 +F)

Equations (7) to (10) do not include damping terms.
The general equations for the damped case are derived in
appendix B and it is shown that both the case for no damping
and anisotropic supports, which is treated in the present
chapter, and the case for damping and isotropic supports,
which was treated in chapter II, are readily obtained as
special cases of the generalized equations by neglecting
appropriate terms.

Equation (7) can be solved independently of the others
since it is an equation in 6, alone. The equivalent equation
appeared also in chapters I and II, and its solution repre-
sents in-phase motion of the blades with no resultant reaction
(except torsion) at the rotor hub. This motion will not be
further considered in this chapter.

The problem is thus resolved into the solution of the three
simultaneous equations (8) to (10). It will be noted that
the terms with periodic coefficients in equations (8) and (9)
disappear if % =0, that is, if K,=K,. Equations (8) and
(9) are thus reduced to the problem treated in chapter II.

FORM OF SOLUTION OF EQUATIONS OF MOTION

The equations of motion (eqs. (8) to (10)) are similar in
mathematical properties to Mathieu’s equation, which
occurs in the analysis of vibrating systems of one degree of
freedom with variable elasticity. (See ref. 2.) A general-
ized form of Mathieu’s equation was solved analytically by
Hill. (See ref. 3, pp. 413—417.) An extension of Hill’s
method has been applied in reference 1 to a problem involv-
ing two degrees of freedom, and a further development of
the method of reference 1 is followed in the present paper.

Equations (8) to (10) constitute a system of linear differ-
ential equations with periodic coefficients. Three second-
order ‘equations possess six linearly independent solutions
that, according to the Floquet theory (ref. 3, p. 412), are of
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the form of an exponential factor times & periodic function
of time. Particular solutions are of the form

z=¢“P(t)+e~"Q ()
E=e"'Q () 4¢P (¢) (11)
fr=e "¢ R(t) e R (1)

where w, is known as the characteristic exponent, and P(z),
Q(), and R(t) are periodic functions of period /w.

Since P(t), Q(¢), and R(¢) are periodic functions of ¢, they
can be represented by complex Fourier series, and equations
(11) become

© o N
z2=1 A e@ute,) 41> Bie—@eta) i

E=i B e@ertey) it—l—zm) Z,g —@ots) it (12)

A —

0= Cie@urtw it 57 0 — @arta,) it
—@ —wm o

where 4,, B;, and C, are complex constants.

Equations (11) and (12) show that, when the rotor system
is stable and w, is real, the motion not only is not simple
harmonic as was the case in chapters I and ITI, but, in general,
is not even periodic. The motion can be said to consist
of a fundamental frequency w, plus “harmonics” of frequency
w,+2lw where [ is any integer. From equations (12) it is
seen that the value of w, is not uniquely determinate, since
ws12lw also satisfies equations (12). (The imaginary part
of w, i8 definite, however.) It can be shown furthermore
that, corresponding to each value of w,, —w, is also a solu-
tion. Only those three values of w, for which the real parts
lie between 0 and w need therefore be considered. These
values will be referred to hereinafter as the three “principal”
values of w,. These values of w, differing from the principal
value by 2lw, or having opposite sign, will be referred to as
“harmonics’” of the corresponding principal value.

Since z has been defined as a position coordinate in &
rotating frame of reference, the values of w, can be inter-
preted as the natural frequencies of the rotor system in
rotating coordinates.

SOLfJTION OF EQUATIONS OF MOTION
DETERMINANTAL EQUATION

If the formal solution (eqs. (12)) is combined with the
equations of motion (egs. (8) to (10)), and- the coefficients
of each exponential time factor is separately equated to zero,
an infinite set of homogeneous equations is obtained. These
equations can be separated into two independent sets. Each
equation of one set is the conjugate of an equation of the
other set, and only one set need be considered. Thus

{TK([— [wo+ (2l+1)w]’}Az_‘A'ATFBt+1“‘

pilwgt(2l+1)w]* C;=0 (13)
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~loeH @I+ Dol it @L— Dol Bt 2i 14z ) [— (0u+200) 4 A+ 44 Gr=0

{TKI— lwa (21—1)w]’}Bz—%Ax-1+m? [wot(2I—1)w]* =0

where [ takes on all integral values from — « to =,

(14)

(16)

In order that the values of A; B;, and C; not equal zero, the determinant of the coefficients of 4;, B;, and C; must be

zZero.

Ty, —4

@3, -4

o o o o o o o

where

@y -4=—1+4+

Ayg —3=A,

Ay, —3
a_3, -3

A2, -3

QO o o o o

KM
(we—3w)?

wWg~—
G—s.—4=(
Wy

G-y —3=—1+

3w)’
2w

A102+A3

(ws—20)*

2

a _("’a_“’
-3, -2
3,-2 5

Wa—

(1_2'_3=A3

KM

R R

Q_2, -

AK/M

E—3
(we—w]

-3,
a3,

a—1,

o o o o o

This determinantal equation is

2 0 0
—2
ey a_1,0

o, 0

0 a1, o0

AKIM

Aoy, 1= —1+( K/M

“'-’a_"’)2
@-1,0=A3
2
_fw—w
0.1 ( Wq >'

A1QZ+A2
2

Wg

&ﬂ)’

Wy

o,0=—1-+

a9,1=

a1,0=43

. KM
ot a?

o o O O

g, 1

a1, 1

az, 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0 —=A(w)=0 (16)
a3 0 0
az, 2 asz, 3 0
as, 2 a3, 3 s, 4
0 Ay, 3 ay, 4
:
_ AKIM _( w,tw )’
T.3= (ot o) B3=\ G20
_ AR/M PR i .Y
B Tt a)? R R P
_ KM cu.,-|—3co>2
= o ar O
(1»1,3\=A3 a4,3= Ay
KM

WA= _1+(wa+3w)"'

The determinant has been somewhat simplified by multi-

plying and dividing the rows and columns by various

quantities, and the parameter A; has been substituted for

B2
1+ (/o)

Let this infinite determinant be A(w,). The problem
consists in solving the equation A(w,)=0 for its roots w,.
These roots will be infinite in number, consisting of the three
principal values of w, plus all their harmonics. The vo.lu?s

its equivalent
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of w./K[/M, as a function of w/yK/M, are seen to depend
only on the values of the three nondimensional parameters,

Ay, ZTA/Z’lLf and A; and the sti.ffn%sfratio parameter AK/K.

A determinant of infinite order has meaning only insofar
a8 it is defined as the limit of a determinant of finite order.
Define A,(w,) as the determinant of order 62—3 formed
from a square array of A(w,) centered on the term

—1+ﬁw%—’~ This terra, which originally was associated

with ) in equation (15), will be referred to hereinafter
as the ‘‘origin” of the infinite determinant A(w,). The
choice of this term as center of A(w,) is purely arbitrary, and
it was selected solely for reasons of symmetry.
Thus
A(wa)=lgm An(wr) an
n -3

The limiting values of the roots of the equation
Ax(wg)=0

as n becomes infinite will be the values of the roots of the
equation

Alw)=0

The method of calculating the roots of A(w,)=0, by suc-
cessively calculating the roots of A,(w,)=0 for larger values
of n, is entirely too tedious. Instead, the method reference 1
will be followed. This method involves the calculation of the
value of A(w,) for several specified values of w,. The roots
of A(w,)=0 can then be obtained from a trigonometric
equation involving the roots and the calculated values of
Alwg).

AUXILIARY DETERMINANTS AND RECURRENCE RELATIONS FOR
CALCULATING A(®s)

Before the trigonometric equation is derived, it is con-
venient to have a systematic numerical procedure for de-
termining the value of A(ws). As 7 becomes infinite, the
terms of A,(w,) extend to infinity both above and below the
origin. By expanding A,(ws) in terms of the elements of
the column containing the origin, it can be expressed in
terms of auxiliary determinants that extend to infinity in
only one direction. Recurrence relations can then be ob-
tained that give the value of these auxiliary determinants.

Al

ABBDTTAERGSPACE. €OM

N KM
0"(“’“)—{ lT[wa—I-(Z’n—l)w]’

} Diwo—a[ 2t DT g g
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The auxiliary determinants are minors of A,(w,) and are
defined as follows:

"TER ROTORS WITH HINGED BLADES

Cx(vs) determinant of order 3n—2 consisting of the terms
below and to the right of the origin; that is, de-
terminant having first row and column beginning

K/M

( (@ot)?

determinant of order 3n—3 formed from C,(w,) by

omitting last row and column

with term —

D, (0w

E.(ws) determinant of order 3n—4 formed from D,(ws) by
omitting last row and column

La(w;) determinant of order 3n—3 formed from C,(w,) by
omitting first row and column

M,(vs) determinant of order 3n—4 formed from L,(w,) by
omitting last row and column

Nau(ws) determinant of order 3n—5 formed from M, (w,) by

omitting last row and column
The following three determinants will also be needed:

Gn(w)) determinant of order 3n—4 formed from L,(w,) by
omitting first row and column

H,(w;) determinant of order 3n—5 formed from @,(w,) by
omitting last row and column

Ih(ws) determinant of order 3n—6 formed from H,(w,) by
omitting last row and column

Determinants similar to the foregoing ecan be formed in
the same manner from the upper half of A,(w;). Denote
these determinants by the subseript —n instead of n. It is
seen, however, that their values can be obtained from the
values of the determinants already defined from the lower
half of A,(ws), by merely replacing w, with —w, (for example,
O—u(wa)=05(_wa))'

Expanding A,(w,) in terms of the tlements of the column
containing the origin gives

A,.(wa)=(-—1+l—1£’;i,—£3 O (wa) On(—wa)—

1 () L) G+ (22 a0 | a9)

The auxiliary determinants Ch(ws), D.(wd), and E,(w,)
satisfy the following recurrence relations (obtained by ex-
panding each in terms of the elements of its last row):

wF (2n—2)w

- Awitds | g vt (@n—3)a

Dn(wa)—{ ]-T [wa+ (2%—2)w]’ } Eﬂ(ﬁ’a)—Aa [‘m Oﬂ—l(wa) }. (19)
g KM (AK[M)?

E;(wa) { 1+[‘*’a+ (272/—-3)60]’ } On—l(wa) [‘-"a‘l‘ (271—3)w]4D"_11(w“)

o

The determinants L,(w,), Ma(ws), and N,(w,) and also the system Gn(ws), He(ws), and I,(w,) satisfy the same recurrence

relations as Cp(ws), Da(w,), and E,(w,), respectively.

The values of these nine determinants can be found from the recurrence relations (egs. (19)) and the following

e
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initial values, obtained directly from equation (16):
KM h

Ciled =—1+T o

o KM P (AR/M
Byl [ e +w)2:r (wato)?
., KM
NZ(wa)— 1+( aH"w)a

T (20)

e = R T o)

A
Halu)=— H—(—“’fgw—)

Awi;rcgﬁ:l[ (wa+3w):| <m:i§w>J

By use of the initial conditions (egs. (20)), the recurrence
relations (egs. (19)), and equation (18), the value of A,{w,)
can be calculated. The value of A(w,) will then be the
limiting value of A,(w,) as n becomes infinite.

THE BEHAVIOR OF A.(w,) FOR LARGE VALUES OF

So far it has been tacitly assumed that the determinant
A(wg), 88 defined in equations (16) and (17), is convergent,
and further, that it remains s function of w, in the limit as »
becomes infinite; that is, it is not identically equal to zero,
independent of the value of w,. It will now be shown that
the function A,(w,) does become zero in the limit, independent
of w, but that when A,(w,) is divided by an appropriate
function of n, a new function F,(w,) will be obtained which
will be convergent and remain an unambiguous function of
w, in the limit.

The derivation of the appropriate function by which to
divide A,(w,) evidently depends upon the behavior of A,(ws)
as n becomes very large. As n becomes infinite, the recur-
rence relations (eqs. (19)) become

Gg(wa_)-—-

= _Dﬂ—AaEu (218-')
Du= ’—Ea_ASOa—l (21b)
En= —Ln-1 (210)

with identical equations for L,, A,, and N, and for G,, H,,
and I,. Equations (21) are readily solvable since they
constitute a system of difference equations with constant
coefficients. They are satisfied by solutions of the form

0a= Cok"

where C, is some arbitrary constant and %k is a constant to be
determined. From equations (21¢) and (21b), respectively,

(22a)

E,=—CGk (22b)
and
D= Clr1— A, Ok
=Cy(1—Ay)k*1 (22¢)
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Combining equations (22a), (22b), and (22¢) with equation
(21a) and dividing through by Gyk*! gives

k=2A,—1 (23)

Thus, by use of equation (18), it is seen that for large values
of n, A.(w,) varies as k**. Since by definition A; must have a
value between 0 and 1/2, 2 must lie between 0 and 1. Thus,
in the limit,

lim A,(w)=0

n>o
independent of w,.

Consider the function

F( a)_ n(wa)

The equation F,(w,)=0 will obviously have the same roots
for w, as does Ax(ws)=0. The function F,(w,) has the
advantage, however, as is seen from the preceding discussion,
of remaining an unambiguous function of w, in the limit as »
becomes infinite. Define this limit as

Fo)=lim Fa(w)

e K

24

The primary problem can now be redefined as the problem

of determining the roots, infinite in number and consisting of

@a,, wa,, 80d wa, and all their harmonics, of the equation
F (wz)=0

EVALUATION OF ROOTS OF EQUATION (25)

(25)

The following trigonometric expression for F(w,) will now
be derived:

Fla)=lim “(“‘“)

o (7%,
11=-1 [sm (%>_S ( ):'
sin® <m) cost (’m”‘)
The function F(w,) is seen from equation (24) and equation
(16) to be periodic of period 2w, to have roots = (ws, = 2sw),
& (wa,+280), and = (w,,+2sw) where s is any integer, to
have second-order poles at w,=d4-2sw, and to have fourth-
order poles at w,= =+ (¢8+1)w. Liouville’s function theorem
states that a function of a complex variable (in this case,
w,) that is analytic everywhere in the complex plane, in-
cluding the region at infinity, must be & constant. It will
be shown that F(w,) is finite at infinity (except if w, proceeds
to infinity along the real axis). If the poles along the real
axis could be eliminated by forming a suitable function of
F(w,), without at the same time introducing new poles, then
that function, by Liouville’s theorem, must be a constant.
Such a funetion of F(w,), which is analytic everywhere in

(26)
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F(w,) sin <2w> (W“ 7
[ soe (o (52

where w,, wa, and o, are the three principal values of w,.
The function J(w,) is therefore a constant. The value of
J(w,) found by making «, approach infinity along the imagi-
nary axis is

the complex plane, is

J (@)

27)

J(w)=F(x)

where F'( ) is the value of F(w,), 28 w, becomes infinite.
The value of F( ) can be found by letting w,— « in A,(w,)
and then letting n—> «. Hrom the form of A,(=)it follows

that
An(m)’:Nﬂu(m):_Oin(m)

The recurrence relations defining C,(«) are the same as
equations (21). The expressions D, and E, may be elimi-
nated from equations (21), and, therefore, C, may be given
as follows:

Ch=— (1 —2435)Chq

The initial conditions (egs. (20)) reduce to C;=—1, from
which it follows immediately that

Ag()=—(1—244)""

=j2n-1
from equation (23). Therefore
— 12 An(®) B 1
F(e)=lim =Zfm=tm "= @8)

Thus equations (27) and (28) lead to the evaluation of
equation (26).

After equation (26) has been obtained, the problem of de-
termining wa ws, and w, may be considered theoretically

complete inasmuch as equation (26) is really an identity in

w,. Suppose that w, is assigned any specific value in equation
(26) and F(w,) is computed to a certain degree of accuracy.
If these computations are made for two more values of w,,
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all different, equation (26) will have yielded three equations
in the three unknowns w,, ws, and w.. These equations

can then be solved for the principal values of w,. Any

degree of accuracy may be achieved by carrying out the

computations for F(w,) to a sufficiently large value of n.
The foregoing procedure can be systematized by rewriting

equation (26) as
()= e (5o (329

— 1P (o) sin? (2—w) cos? 2";)

A convenient choice for the three arbitrary values of o, is
w,=0, w, and w/2. The explicit definitions of K(0), K (1),
and K(1/2) then become

ﬂ'waa) W

i () (5

[ (-
o () Lo (5] 0

(29)

K(1/2)=B—sin’

( )5 (5]

The equations for evalugting K(0), K(1), and K(1/2) are
s . g W,
=t e o (52) (52
g W,
Te) oost (50

E(2)=lim, [IcF(wa) sin’ (%) cos! %)l

Carrying out the limiting operations indicated in equations
(31) and using the auxiliary determinants C,(w.), Da(ws),
and so forth, give

-~

K)=lim | kF() sin’(

wer

(1)

—40)2(1-"2113)2"—1

nryo

3757 Gaa
KEW=lim | —gr g5 55

K (0)=lim {W’[(Alw’-l-Az)0,’(0)—2A3w’L,,(0)0.(0)]} N.

K(1/2)=lim

[ 0] ,9) 6, (59) [, (52) (290 (8) n(52)]

[ (32)

T8(1—2AgF1

Py

where the quantities in brackets are conveniently represented by K(0),, K(1)., and K(1/2),, respectively. The quantities
K{( ).are used in numerical computations as approximations to the functions K( ).
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The formulas (82) for K(0), K(1), and K(1/2) converge
slowly with increasing n. The convergence can be speeded
up greatly by making use of the concept of convergence fac-
tors used in reference 1. A convergence factor for K( ), is
a function of n approaching the limit 1 as n becomes infinite,
which, when multiplied by K( ),, gives an expression which
converges rapidly with increasing values of » to the values of
K(). The details of the derivation of an appropriate con-
vergence factor for K(0), will be found in appendix C. Con-
vergence factors for K(1), and K(1/2), are derived in & simi-
lar fashion. The resultant expressions are

-

i K(0). sinﬂﬂ
ﬂaQ n—l (1——

4 J=1

E(0)=lim

| K1), 003’1@ 7

(1~ @~D" )

-K(I/Z),cos 7/Q ]
(2.7—1)’>J

K(1)=lim

3w

k (33)

K(1/2)=lim | -

_J=-1
where

2K (1— 8+ A At oA
F(A—2243)

Tor a given value of n, the quantities in brackets are found
to be better approximations to the respective values of K( )
than K( ), alone.

The method of obtaining the values of w, may be sum-
marized as follows. By use of the initial conditions (egs.
(20)) and the recurrence relations (egs. (19)), the values of
the determinants C,(0), L4(0), Ga(—), Ca(w/2), Cx(—w/2),
L,(w/2), and L,(—/2) can be computed for increasing values
of n. With the substitution of these values into equations
(33) and with the use of equations (32), approximate values
of K(0), K(1), and K(1/2) can be computed. The process
appears to be rapidly convergent with 7, especially for
large values of w//EJ/M. The values of w,, ©a, 8nd w, can
then be found from equations (31), the definitions of K(0),
K(1), and K(1/2).

CONDITIONS FOR STABILITY

From equation (13) the condition for stability of the sys-
tem is seen to be that all three values of w, must be real
numbers. If any one of them is complex or pure imaginary,
then one of the terms in the solution (egs. (11)) will increase
indefinitely with the time, the motion therefore being unsta-

mq)
zw 2

sin® (_> and sin? ( 2:) all are real positive numbers less

ble. This condition implies that the expressions sin

FOR AERONATUTICS

than or equal to 1. The conditions for stability can be ex-
pressed directly in terms of K(0), K(1), and K(1/2) by means
of their definitions (egs. (30)). The three equations (30) are
formally equivalent to a single cubic equation

- 224batHextd=0
the roots z;, 23, and z; of which are sin® (%l), sin’(ﬂ;::’),

and so forth, and the coefficients b, ¢, and d of which are
functions of K(0), K(1), and K(1/2) where

2b=4K(0)+4K(1)—8K<% —

2c=—6K(0)—2K(1)+8K<%>¢|—1

d=K(0)

After some manipulations involving the Descartes rule of
signs, the necessary and sufficient conditions for stability are
found to be
0=—K(0)=1
0sK(1) =1
—158K(1/2)s1
A=18bcd—4b*d+ B2 —4c*—27d° 20

(34)

The quantity A is the diseriminant of the cubic equation.

SPECIAL CASES OF GENERAL THEORY

Three special cases of the general theory are of interest.
These cases are the cases for which one of the principal
stiffnesses K, is respectively zero, equal, or infinite in
magnitude in comparison with the second principal stiffness
K..

CASE OF K,=XK,

The case of K,=K, has been treated in chapter II. If
K,=K,, equations (8) to (10) reduce to the equations of
chapter II. In this special case, the motion of the rotor
system becomes simple harmonic, since all the coefficients
Ay, B, and C; in equations (12) are identicelly zero except
Ao Bo, and C{).

CASE OF K,-O

The specm.l limiting case of K,=0 is of interest in the case
of a pylon of which the stiffness is mnegligible along one
principal direction with interest centered on the frequencies
involving the other principal stiffness. In the case of K,=0,
the function K(1) as given by equations (32) becomes
identically zero. This result is also evident from the original
definition of K(1) as given in equation (28), because one of
the values of w,, s&y wg, i3 of necessity equal to +w. (It
will be recalled that w, is the frequency as measured in
rotating coordinates. In fixed coordinates it would be
Z€ero.)
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It is possible to give much simpler stability criterions for
this case because there are only two K-functions, K(0) and

K(1/2), and two values of w,, w, and w,, to be determined.
The new K-functions may be defined as follows:

K =sin? (%‘) sin? (%):-K(O)
—cos’( ) cos? ( 1+2K(0) ——8K<2>

In terms of K, and Kj, the criterions for stability become

(35)

0sK =<1 (362)
0=K;=1 (36b)
VE K =1 (36¢)

Given the values of K; and Kj, the values of w, and w,
can be determined from equations (35). A graph of the
relation in equations (35) is given in figure TII-2 by means
of which the real values of w,, and @, D be read off directly
once K; and K, are known.

A graph showing the variation of K; and K, mth - / 17
for the typical parameters A,;=0.1, A;=0, A;=0.1, and
K,=0, is shown in figure ITI-3. By use of figure III—2 the
values of w, and w,, can be obtained. These values are
shown in figure ITI—4 plotted against w/VK,/M. Calcula-

tions are carried down to ——=—

JK,/M
below this speed is discussed in the section entitled “‘General
Behavior of Rotor System as a Function of Rotor Speed.”

CASE OF Ky=o

The formulas for the limiting case of K,= « cannot be
obtained conveniently from the general theory. Instead of
carrying out the limiting process, it appears preferable to
begin by treating the problem as one of only three degrees of

6
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Fieure ITI-2.—Chart for obtaining principal value of w, from values
of K, and K;. K,=0or K=,
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Figure ITI-3.—Graph of K; and K, as functions of rotor speed w for
A1=0.1, Az=0, A3=0.1, and Ky=0.
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meu-: IIT—4.—Principal values of w, plotted against rotor speed w
for case of A1=0.1, A;=0, A;=0.1, and K,=0.

freedom (two hinge-deflection coordinates and one hub-
position coordinate z) and by developing the theory along
lines similar to those used for the general treatment. In
this way a system of two simultaneous equations with
periodic coefficients is obtained, with the variables 8, and z.
These equations are solved in a manner similar to that for
the general case, the treatment being simpler, however, since
the solution has only two principal values of w,.

The details of the solution of the equations of motion,
together with the final formulas for the K-functions, includ-
ing convergence factors, are given in appendix D. It is
found that the same K, and K; occur as for K,=0. The
criterions for stability are exactly the same as those for
K,=0, the conditions of equations (86). Figure IIT-2 can
also be used to determine the values of w, from the values of
K, and K,.

A graph giving the variation of K; and K, with ——=— E / M
the parameters A;=0.1, A;=0, A;=0.1, and K,=o is
shown in figure III-5. In figure III-6 the values of
9o /YK, /M and wo/JE. /M are shown plotted against

ol K/M.
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DISCUSSION OF RESULTS
TYPES OF INSTABILITY

Instability may occur as a result of the violation of any
one of the stability criterions of equations (34). Violation
of each condition is associated with a different type of in-
stability, which would show up differently in the motion of
the rotor system. Experience with computations indicates,
however, that the criterions of most practical importance for

FOR AERONAUTICS
helicopters are

A0
—K(0)=0
K(1)=0

Similarly, the important cntenons in the limiting cases of
K,=0 and K,= « are

VE+VE, 51
K20
K;=0

If the condition A=0 or (VE,++E;=1) is violated, the
other conditions being satisfied, then w, and ws, will be com-
plex conjugates, and the rotor system will execute self-
excited vibrations at frequencies, in general, incommensurate
with the rotor speed. (Higher harmonics will also be pre-
sent.) This type of instability will be referred to herein-
after as a “‘self-excited vibration.”

If the stability condition —K(0)=0 (or K;=0) alone is
violated, then one of the values of v, will be a pure imaginary
number. Physically, the rotor system will execute self-
excited vibrations having a basic frequency, as seen in rotat-
ing coordinates, of zero. This behavior is similar to the
ordinary critical-speed behavior of a shaft. Frequencies at
higher harmonics 2n¢ will also be present. This type of
instability will be referred to as & “self-excited whirling.”

The third stability condition K(1) =0 cannot be violated
since K (1) as given by equation (32) cannot be negative.
However, K(1) can be exactly equal to zero. (A similar
statement applies to K;.) At such a point, where the rotor
system is on the border line between stability and instability,
one of the values of w, will be equal to +w. In fixed coordi-
nates this result means that the rotor system will have a
natural frequency equal to zero. The rotor system will,
therefore, be in resonance with a steady force—a force of

. Zero ﬁ'equency The amplitude of the zero-frequency term

for the hub motion in such a situation can be shown to be
zero, but the blades will oscillate. Also, higher harmonic
terms, notably the term of frequency 2« (in nonrotating
coordinates), will show up in the hub motion. This type
vibration, which is a resonance phenomenon and not a self-
excited wbratlon will be ca]led 8 “steady-force resonance’
vibration.

Each of the vibrations described—self-excited vibrations,
self-excited whirling, and a steady-force resonance vibra~
tion—appeared in the discussion of the two-blade rotor on
equal supports (chapter IT); however, there the motions
were simple harmonic, no higher harmonics being present.

GENERAL BEHAVIOR OF ROTOR SYSTEM AS A FUNCTION OF ROTOR SPEED

The approximate location of the instability regions can
easily be found by examining the limiting case of A,=0,
that is, the case of zero coupling between the blade and hub



‘“EEHMBAL

ABBOTTAEROSPACE.COM

THEORY OF SELF-EXCITED MECHAI

motions. For simplicity, the discussion is also restricted to

the case of free hinges (A;,=0) and K,= . The K; and
K, functions become
K;=sin? (% w/A_1) cos? (%;—\/%) )
37

ot (55) 0 (3

Eliminating the rotor speed w from equations (37) gives

K, K,

+ =1
sint (347)  cost (5

which considered as an equation in the variables K; and K,
represents a straight-line segment (one of the lines in fig.
ITT-2) terminated by the K; and K; axes. The segment can

be shown to be tangent to the curve VK +VEK;=1. As
decreases, the representative point moves up and down the
line segment, performing an infinite number of such oscilla-
tions as » approaches zero. Whenever K;=0, the point is
at a self-excited-whirling speed. The corresponding speed is

JE ML

o1

where s represents any positive integer. Thus a self-excited
whirling will occur when the rotor speed is approximately
equal to 1, ¥, %, ¥, and so forth of the natural frequency
of the hub yX,/M. Similarly it can be shown that there
will be a steady-force resonance vibration whenever the rotor
speed is approximately equal to ¥, %, %, and so forth
of the hub natural frequency VK./M. TFinally self-excited
vibrations will occur at rotor speeds approximately equal to

o YESM
2s4-1—+/A,

Figure I1I-7 shows the general pattern of response fre-
quency plotted against rotor speed for a small value of the
mass-ratio parameter A;. Along the horizontal parts of the
curves, blade motion predominates over pylon motion.
Pylon motion predominates along the slanting parts.

Although the foregoing discussion was developed for the
case of K,=, it is believed to apply equally well to the
case of K,=0 and also to the general case of K,=K, if the
rotor hub is considered to have two natural frequencies
VK./M and yK,[M, each frequency having associated with
it an infinite set of instability ranges located at approximately
the speeds given,

COMPARISON OF RESULTS FOR DIFFERENT VALUES OF K,/K.

Figures ITI-4 and III-6 give the principal values of

w NI/ plotted against the rotor speed w/yE./M for
K,=0 and K,=, respectively, both calculated for the
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Fraume III-7.—Typical pattern of response frequencies against rotor
speed » for a small value of the mass-ratio parameter As.

same set of parameters A;, A;, and A;. The caleulations
o ‘

=0.4. The similari

i gimilarity
between the two curves is striking. So far as the calcula-
tions have been carried, each system shows the presence of
one self-excited-vibration instability range, one self-excited-
whirling instability range, and one steady-force resonance
speed 4. If the calculations were carried to lower values
of w, further instability ranges and steady-force resonance
speeds would appear.

For comparison, the response frequencies of a two-blade
rotor on equal supports (K,=K,) for the same set of param-~
eters is shown in figure I1I-8. The frequencies were calcu-

[

lated from the formula in chapter II. Down to Wi 0.5,
this chart is very similar to figures III4 and III-6. In
addition it shows one range of rotational speed at which
self-excited-vibration instability occurs, one range of rota-
tional speed at which self-excited-whirling instability occurs,
and one range of rotational speed at which a steady-force
resonance speed occurs. Figure ITI-8 differs principally
from the figures for K,K, in that it shows no further
instability ranges at low values of w.

have been carried down to
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Fieure IIT-8.—Response frequencies of a two-blade rotor oo sym-
metric supports for A;=0.1, Ay=0, A3=0.1, and K,=K..

In chapters I and IT charts are presented giving the loca-
tion of the self-excited-vibration instability range for various
values of the parameters A;, A;, and A;. A similar chart for
the case of a two-blade rotor with K,= is given in figure
IIT-9. In using the chart, a straight line is drawn repre-

2 2
K_—C:/M with the function ————AEE’-
The intersections of this line with the appropriate A, curves
give the beginning and end points of the instability range.
The dashed line in figure III-9 indicates the stability ranges
for the parameters of figure ITI-6.

Some observations concerning the relative location and
extent’ of the various instability ranges in figures I1I4,
IIT-6, and IIT-8 appear to be applicable to a wide range of
values of the parameters A;, A;, and A;. Thus the self-ex-
cited-vibration instability range in the case of K,=K, (fig.
IT1-8) is wider (and hence the vibration probably more
severe) than the corresponding ranges in the cases of K,=0
and K=o, (See figs. IlI-4 and ITI-6.) Also, this in-
stability range occurs at lower rotor speeds in the case of
K,=» than it does in the cases of K,=K, and K,=0.
The self-excited-whirling instability range is considerably
narrower for K,== o than it is for the K,=K, case, and it is
still narrower in the K,=0 case.

In the general case of K,>K, the location and extent of
the instability ranges can be found fairly accurately by
considering the problem as the superposition of two problems,
one of finding the significant rotor speeds referred to
VK.[}M as reference frequency with K, assumed infinite and
the other of finding the significant rotor speeds referred to
VE,/M as reference frequency with K, assumed zero.
With the foregoing discussion as a guide, sufficiently accurate
design information can be obtained without extensive cal-
culations for each value of K,/K, encountered in practice.

senting the variation of

EFFECT OF DAMPING

Although the effect of damping has not been examined
mathematiceally, because complications would be introduced
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Figure I1I-9.—Chart giving position of the main instability range for
K, =,

in the analysis, several inferences from the damping investi-
gations'in chapters I and IT can probably be safely applied
to the rotor-system studies in the present report. The
numerous instability ranges occurring at low rotor speeds,
which are very narrow and represent a mild type of insta-
bility, are probably completely eliminated by the presence
of a slight amount of damping in the rotor system. The
primery self-excited-vibration instability range can probably
be narrowed and eliminated by introducing sufficient damp-
ing into both the rotor supports and the blade hinges.

APPLICATION TO DUAL ROTORS

It is easily shown that the analysis for the case of K=«
applies also to the case of a counterrotating rotor system
consisting of two equal two-blade rotors revolving at equal
speeds and acting equally upon the same flexible member.
The rotors may be on the same shaft or on different shafts
go long as the nonrotating flexible member is the same for
both rotors. The supports, moreover, may have unequal
stiffness in the X- and in the Y-directions, provided that the
undeflected blade positions make equal angles with a principal
stiffness axis.

The proof consists in showing that the energy expressions
for the dual-rotating system can be separated into two inde-
pendent sets of terms, each of which is of the same form as
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for o single rotor with K,= w. The resulting equations of
motion will thus also be the same.

The separation is accomplished by introducing new vari-
ables

1
51=‘2‘ (01p05—01“,)

1
fo=§ (aom,—ao,w)
and

1
"71=§ (alm,‘l'ﬂl“,)

1
K (00,5, +b0,,,,)

where the subscripts pos and neg refer to the 6’s defined for
the rotor turning in the positive direction and for the rotor
turning in the opposite direction, respectively. The energy
expressions become

N

T=1Mp2m, [—2@(& sin wt-Fot; cos wf)+-
2 . .
(1+5) Gotin—for @+ [+
%Mg’/’-l—Zmb [2?./(7}1 COS wl—wn; sin O)t)—l"

T (38)

<1+Z—:> (ﬁ12+ﬁo’) '—% w? (’712""702)]

V=2 (tottaibued +3 Kt L K

P

where 1 is the total mass of the system (M=m--4m,). .

I'rom equations (38) it is seen that £ is coupled only with z
and 7 is coupled only with y. Equations (38) yield equa-
tions of motion of the same form as equations (D2) and (D3).

The stability properties for the dual-rotating case are thus
exactly the same as in the case of K,—=« for the single-
rotating two-blade rotor. In particular, figure ITI-9 can be
used to find the location of the primary self-excited-vibration
instability range. The value of A; for the dual-rotating
2m,

(m--4my) (1—]%

rather than

rotor is defined as A=

m

A3=
(m~+2my)

2 as for the single-rotating rotor. All
(1+5)

other parameters are the same for both cases.

The quantity £ sin «f can be interpreted physically as the
z-component of the displacement of the center of gravity of
the blades due to hinge deflections. The quantity », cos wt
is the corresponding y-component. The separation of the
variables means, physically, that the motion of the system
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can be separated into two independent modes, each of which
involves linear motion of the supports along one of the
principal stiffness axes.

Similarly, the stability of counterrotating rotor systems of
six or more equal blades can be determined from the results
of chapter I with K,=w.

CONCLUSIONS

The following conclusions are indicated by the results of
an investigation of the problem of vibration of a two-blade
helicopter rotor on supports that have different stiffnesses
along the two principal stiffness axes:

-1. Many speed ranges are found in which self-excited
oscillations can occur. These oscillations are of two types—
self-excited vibration and self-excited whirling. There are
also many speeds at which steady-force-resonance vibration
may occur.

2. A stability chart which shows the self-excited vibration,
self-excited whirling, and steady-force resonance speeds of
the highest rotor speed for each support natural frequency
for a two-blade rotor on anisotropic supports is similar in
appearance to a.stability chart for a two-blade rotor on
isotropic supports. However, for the same rotor parameters,
the instability regions are changed somewhat in position and
extent.

3. Mild self-excited-whirling speed ranges exist at rotor
speeds approximately %, ¥, ¥, and so forth of each
support natural frequency. Steady-force resonance speeds
exist at approximately ¥, %, ¥, and so forth of each
support frequency. Self-excited vibrations also occur at
certain low rotor speeds. All these mild instability ranges
are probably eliminated by the presence of moderate amounts
of damping in the system.

4. A familiarity with typical results of limiting cases of the
support-spring constants K,=e, K,=K, and K,=0
should enable a designer to avoid extensive calculations of
cases of unequal support stiffness. In the general case of
unequal support stiffness, the location and extent of the
instability ranges can be found fairly accurately by con-
sidering the problem as the superposition of two problems,
one of finding significant rotor speeds referred to one support
frequency VK./M as reference frequency with K, assumed
infinite and the other of finding the significant rotor speeds
referred to the other support frequency K,/M as reference
frequency with K, assumed zero.

5. The analysis of & four-blade counterrotating rotor
system in which the rotors cross along the prineipal stiffness
axes of the rotor supports leads to the same equations as
those considered for the special case of K,=w, and the
stability properties are given by the investigation of that
special case.

LaNeLEY AERONAUTICAL LABORATORY,
Namronar Apvisory CoaMaarrTeE FOR AERONAUTICS,
Lawneuey Frsup, Va., August 24, 1956.
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) SYMBOLS
radial position of vertical hinge | V
elements of determinant defined | =z, y
in equation (16)
Fourier coefficients in equations
(12) Y
complex conjugates of A4, B,
and C,, respectively
distance from vertical hinge to | X, Y
center of mass of blade
minors of the determinate A,(w,)
time-derivative operator, g
¢ z
z
integers Bly 52
function of F(w;) defined by A
equation (27)
function of w,fw defined in Awe)
equation (29) An(wd)
functions defined by equations e
(30) b
functions defined by equations 00=§ (81182
(385)
spring constants of the rotor 0= b, )
supports along the X- and Y- =5 Br=hs

directions, respectively
average stiffness of rotor sup-

ports, ——K%I&-

spring constant of blade self-
centering spring

effective mass of rotor supports

mass of rotor blade

total mass of two-blade rotor
gystem, m--2m,

periodic functions defined in
equations (11)

complex conjugates of P(t), @),
and E(f), respectively

constant defined in equations
(33) °

radius of gyration of blade about
center of mass

time

kinetic energy

__ o
Al_b(1+-g—:>

e Eo
m,b‘(l—i%:)

e

El; ED: M, M0

Wg

Wayy Wayy Wy

potential energy ,

deflection of rotor hub measured
in fixed X,Y-coordinate sys-
tem

deflection of rotor hub measured
in rotating X,Y-coordinate
system

fixed rectangular coordinate
axes taken parallel to the prin-
cipal stiffness directions of the
rotor hub

complex position coordinate of
the rotor hub in rectangular
coordinate system rotating
with angular velocity, .4y,

complex conjugate of z, z,—iy,

angular hinge deflections of rotor
blades, respectively

discriminant of cubic equation
24+ ex+d=0

determinant of infinite order
defined by equation (16)

determinant of order 6n—3
formed from A{w,)

blade wvariables for counterro-
tating rotor

mass ratio 21y
M

constant angular velocity of
rotor

characteristic exponent or nat~
ural frequency of rotor sys-
tem as viewed in coordinates
rotating at angular velocity o

principle values of w,
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APPENDIX B
THE GENERAL EQUATIONS OF MOTION FOR TWO-BLADE ROTORS

By Georas W. Brooxs

GENERAL CASE

The present chapter, although it generalizes the theory
of ground vibrations of two-blade rotors by treating the case
of anisotropic supports, does not consider the effects of damp-
ing. Chapter II treated the case of isotropic supports or
equal pylon stiffness in all horizontal directions and included
damping. The more general case is one which involves the
treatment of the two-blade rotor with anisotropic supports
and damping. The equations of motion for this case, derived
in the complex coordinate notation of the present report, are
given in this appendix.

The equations for the kinetic and potential energies of the
rotor system are g1ven by equations (5) and (6) of chapter
TIT as follows:

Ty (iiae) Giad)+ma | (=) (i6,—e0)—

(i+io2) (i6ta0)+(145z) Go+6) —F o0 |
(B1)
V=K 2155 gpton—2E @atmer @)

Two types of damping of the rotor system are assumed
to exist: (1) damping in the rotor supports which is propor-
tional to the translational velocity of the rotor hub and (2)
damping of the rotation of the blades about the drag hinges.
The damping dissipation function is then

F——— [224-wt22+iw (zz—zz)]+ (62462  (B3)
where B is the damping force per unit velocity of rotor-
hub displacements and B is the damping torque per unit
angular velocity of blade motion about the drag hinge.

By using the Lagrangian form of the equations of motion

2T\ 2T, oF OV
dt %2 ) oz o5 oz (B4)

and using as variables 6,, , z, and §,, respectively, the fol-
lowing equations of motion for the rotor system are obtained:

(D*+ D1+ 4)0,=0 ®5)
[ @+ +rD+ia B |~ B iuDioya=o
B6)
—5F tet ] (D—i) N Do)+ |7 in(D—ie)0,=0
®B7)
(D-Fiw)3o— (D—iw) 521 (14-1’)—': (P4 Dst Ao+ 42)0,=0
B8

where two additional combinations of parameters have been

introduced, namely,
Bs -
N———
myb? (1-{-%)

B
A=3r

SPECIAL CASE—ZERO DAMPING

and

If damping is neglected, As=A=0 and the equations of
motion, (B5) to (BS), reduce to

(D2+w2A1+A2)90=0 (BQ)

[(D+iw)’+ﬂ]—§:| e AX Featei L ip(Dtin)0=0  (B10)
—aR zeﬂ»'+[(p—w)24%] F—iu(D—10)%,=0 (B11)

(D+i)2e— (D—iw)5+21 (1+b1:> (D A+ A0)6,=0

(B12)

which are the equations of motion (egs. (7) to (10)) for the
case treated in the present chapter.

SPECIAL CASE OF ISOTROPIC SUPPORTS

If K.=K,, then AK=0 and equations (B5) to (B8) reduce
to

(D*-Drg+ oA+ Ag) =0 (B13)

[ @+iw-AD+i 45 | o+ inD+ioro—=0 B14
[(D—iw)zﬂ(p—w)+§]5-@(D-@)201=0 (B15)

(D-}-1) 22— (D—iw) 5421 (14%:) (DP+ Dgt A+ A2)0,=0
(B16)

Equation (B13) involves only the in-phase motion of the
blades, can be solved separately, and will not be further
considered here. If z and Z are expressed in the equivalent
notations -4y and 2—1y, respectively, and equations (B14)
and (B15) are added together, equation (1) of chapter IT is
obtained. Equation (2) of chapter II is obtained by direct
substitution and equation (3) is obtained by subtraction of
equation (B15) from equation (B14). Thus the equations
of motion for the case treated in chapter IT as well as for the
case treated in the present report are shown to be special
cases of the general equations of motion, equations (B5) to
(B8), for a rotor mounted on anisotropic supports with hub

and blade-hinge damping. 203
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APPENDIX C
DERIVATION OF THE CONVERGENCE FACTOR FOR K(O)

A convergence factor for K(0) is found by finding a simpler
function @, that changes with n in nearly the same way as
K(0),. Then, if @ denotes Iim @&,, the expression

Do

K(0).6
G

for a given value of » is a better approximation to K(0) than
is K(0), alone. A suitable form for @, is found from a study
of the behavior of K(0), for large values of n.

The behavior of K(0), is studied by first observing the
behavior of C,(0) and L,(0) for large values of 7 and then
inferring the behavior of K(0), from the appropriate relation
of equations (32). In the discussion of equations (22) it was
shown that, as » becomes infinite, the ratio Cu4./C,
approaches the value  (eq. (22a)). A closer approximation

to the value of this ratio can be written as
0n+l(0) (
C.(0) =k(1- n 471,‘ (C1)
where P and @ are constants to be determined.
Equations (19) become, for w,=0,

T KM 2n4-1\? A
0n+1(0)—_—‘1+m D,(O)—A;;( o >En(0)

T AwitAs L (2n—1Y?
Dun@=] —1+25 2 B0 — 2 (B2 ) o) (02

gy EMM
En+l(0)—— 1+(2’7L'—‘1)2€02 Cn(o) J
where the second term in the equation for E,(w,) in equations

(19) has been neglected as being of higher order in powers of 1/n than the terms retained. Eliminating Z(0) and D(0)

from the equations (C2) results in

u+1 (0)
.0

_1_1

(25%%*] [ Aclzwr:jﬁ] [+ (215K /Iia)[*w*

:l A*‘{ 2n—1) [ SRRy

K/M

4+

o) [t 1)%’]}

Upon expanding this expression into powers of 1/n and retaining terms up to and including those in 1/n?

K
2"—+A1w2+Ag
Cana(0) 1 |: M KM :I
GO ~ ATy 20 (1) (C3)
Comparing equation (C3) with equation (C1) results in
P=0
K 2
2_217(1-A3)+A1w + Ao+-2A 507
9= W (1—247)
Similarly
Ll+1(0)=k [1* Q ] ‘
L,(0) (2n)?
Therefore, from equations (32)
- KO (19
K(0), 4n’
Hence, an approximate value of K(0) can be obtained from
< EO KOs KQxis EQusa
K(O)n K(O)n K(O)n+1 K(O)n+2
: ()
=t ﬂ-“Q’H(l (7
4

The right-hand side of equation (C4), which is seen to be of the form G/@,, is a convergence factor.

factor is the one used in equations (33).
304
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APPENDIX D

MATHEMATICAL ANALYSIS FOR THE CASE OF Ky=»

In terms of the variables 6, 6;, and =, the expressions for
the kinetic and potential energy are

7 =M e, [ (1457) G-
w’% (002"“012) —2% (01 sin wt—l—wlh [a ) Cot):l
V=20 2 g

The three equations of motion are

fo+ (A 1+ A3)8,=0 (D1
:E+% I—p.% (6; sin wt)=0 (D2)
! 3 & 8in @b+ (@A) By =0 (D3)
I+5
o KM T

Equation (D1) is identical with equation (7). Equations
(D2) and (D3) constitute a system of two linear second-order
differential equations with periodic coefficients.

Equations (D2) and (D3) are satisfied by solutions of the
form

r= Z 4, ol lwatlant

l=—

(D4)
6,= 2 By et GH0ak

l=a—w

where [ takes on all odd integral values and 4; and B,y
are constants to be determined along with the two principal
values of w, (g, and wg). The constants 4; and B,y in
equations (D4) are, of course, different from those in equa-
tions (12).

Combining equations (D4) with equations (D2) and (D3)
and setting the coefficients of the various exponential time
factors equal to zero give

[ RS
a2y ([ _octle

*27;(115){ =z

The determinantal equation is then equal to

Q3,3 O3, —3 0 0

G_g-3 Qeg-3 G_g 0
0 Gy, —3 @y, 1 Q—y,0
.0 Gy, Qy,0
0 0 0 1,0

0 0 0 | 0

0 0 0 0

4, N ; (—Bz—1+Bz+1) =0

w.tHlw
o+ (—1)

@*A1+Aq
ot (I —1)o]?

A g o

0 ’/0 0
0 0 0
0 0 0
o, 0 0 =A(ws)=0
1,1 a2 0
az,1 ' 3,2 Gz,3
/ 0 3,2 3,3
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where
— Jl‘.[ 160 +Ag
A-3,-3 1+(%_3w)2 1-1-——
A i a+ 2
(1/_3,—2—?3 ao,1=<w w¢w>
We— 3w\ _As
Q-3,-3= = 0,0="7
_ w’A1t+44 sz
@-2.-2= 1+(w —2w)? == (w (watw)?
we—w\? _As
a’—2,—l a,)a—2(|.) a’1,2 2
_4s _ {0t
1T )
.KJM - CO’A1+A3
=Tl T T
A3 _ wa+3w
@-10= 0= (t20)
wWe—w\2 As
G0, =15\ " Ga2=%
L+ KM
(o —|—3wi’
The term — —l—mwﬂl be taken as the origin of the
determinant. '

Define A,(w,) as the determinant of order 4n—~1 formed by
taking a square array from A(w,) centered on the origin. Then

Aa)=lim An(w)

Define auxiliary determinants from A,(w,) as follows:

Ca(wy determinant of order 2n—1 consisting of the terms to
the right of and below the origin term

D.(w,) determinant of order 2n~2 obtained from C,(w.) by
omitting its last row and column

My(w;) determinant of order 2n—2 obtained from C,(w.) by
omitting its first row and column

N,(w,) determinant of order 2n—3 obtained from D,(w,) by

omitting its first row and column
The determinants ('y(ws) and D,(w,) satisfy the following
recurrence relations:

Cuwd={ G e |
k== HCEC I

R = = s R
HEio= A RO

~

FOR AERONAUTICS

The recurrence relations (eqs. (D5)) are also satisfied bY
M.(w,) and N,(w,), with M and N replacing ¢ and D,
respectively. The initial values are

K./M
Ol(wa)— 1+(w __I__w)z
KM G A4 Asf wato )
o<1 S it s
Ny =— 1+‘g:f_;;‘§i
_oPAtA KM 7] As fwt3w\?
Myfwd) =| 1 -|—2(o)’] [1 (wa+3w)’_J 2 (et 20

Expanding A,(w,) in terms of the elements of the column
containing the origin gives

Antod =(—14+225H2) 0, (00 Oy —
7 (%

As n becomes infinite, or as w, becomes infinite, the recur-
rence relations (egs. (D5) ) approach

) 00D M(—a)— ke ’0,.<—%>M,<wa):|

Ou= —Dn_% Cu— 1

(D8)
Dy=—Car—3 Dacy
Equations (D6) are satisfied by a solution of the form
C=Ck*
D——c <lc—l—% (DD
where k satisfies the equation
B—(1—A)k D8)

The larger root of equation (D8) will be denoted by & and
the smaller root by k;. Although the complete solution of
equation (D6) is of the form

= C'IC”'I" Olkln

for large values of n the term in %, becomes negligible com-
pared with the term in £.

With the same values for k, M, and N, will have solutions
similar to those of equations (D7). Thus as n becomes
infinite A,(w,) will vary as the quantlty k3,

Deﬁne the function

L) (‘l’a)

Flo)= sz F, (wa)—i’l:’m

The function F(w,) is periodic in w, of period 2w, has roots
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ok (o, +25w), = (w,,+280), and second-order poles at (w,2-sw) for all integral values of s. Furthermore, F(w,) approaches

the limit
E=lim F(w)= Z'LMF a(®)
WP
g Caa(@) B2 -
=bm e R

48 w, becomes infinite in a direction other than along the real axis.

Form the function

J(w)=F(w,)

()

(D9)

The function J(w,) is an analytic function of w, everywhere.

(e

Hence, by Liouville’s theorem, J(w,) is 2 constant. By

sint( ™

—gin? w"s)
2w

letting w,—>- « along the imaginary axis, it is seen that J(wa) —4F,

Substituting —4F for J(w,) into equation (D9) results in

lim An(“’a) F(wa_)

n-w

ol @ G [ G (3)

Introducing K functions defined similarly to those used
for the case K,=0 gives

\
. T . Fw
E,—sin? (_1> sin? (_2

= lzm[ ( e a):|
K;=cos? (ﬂ) cos? (1;0_‘0_“2
=lim [M]

wade —45

- D10)

Carrying out the limit processes indicated in equations (D10)
gives
Kl=l'im Klﬂ
n-Ho

(73 (A4 Ag) Co2(0) — Agw?e?Cy(0) N, (0)
'—4"32021:( © )

=lim
nowl,

K=limK,

_«f%km—w)]

L —4&!202,,( 03)

=lim
nro

sin? (m.oa)

Finally, upon introducing appropnate convergence factors,
the following quantities needed in equations (36) are ob-

tained:
) Klnsm’< )
)
= 4]
-
) Kgncos’(w?R
S
g=1 -1
where

%+w2A1+Az+wz(l+k1—k)
w(k—ky)
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