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SUMMARY

Approzimate shapes of nonlifting bodies having minimum
pressure foredrag at high supersonic airspeeds are calculated.
With the aid of Newton's law of resistance, the investigation is
carried out for various combinations of the conditions of given
body length, base diameter, surface area, and volume. In gen-
eral, it 18 found that when body length is fized, the body has a
blunt nose; whereas, when the length i3 not fized, the body has a
sharp nose. The additional effect of curvature of the flow over
the surface 18 investigated to determine its influence on the
shapes for minimum drag. The effect is to increase the bluni-
ness of the shapes in the region of the nose and the curvature in
the region downstream of the nose. These shape modifications
have, according to calculation, only a slight tendency to reduce
drag.

Several bodies of revolution of fineness ratios 3 and 8§, includ-
ing the calculated shapes of minimum drag for given length and
base diameter and for given base diameter and surface area, were
tested at Mach numbers from 2.73 to 6.28. A comparison of
theoretical and experimental foredrag coefficients indicates that
the calculated minimum-drag bodies are reasonable approzima-
tions to the correct shapes. It is verified, for ezamople, that the
body for a given length and base diameter hags as much as 20
percent less foredrag than a cone of the same fineness ratio.

INTRODUCTION

The shapes of nonlifting bodies of revolution having mini-
mum pressure drag at supersonic speeds have been the subject
of numerous theoretical investigations. Kérmédn (ref. 1)
dotermined the shape of such a body (neglecting base drag)
with given length and base diameter. Somewhat later
Haack (vef. 2), Ferrari (ref. 3), Lighthill (ref. 4), and Sears
(ref. 5) calculated body shapes baving minimum pressure
drag for various other given conditions using methods similar
to those first employed by Kdrmdn. In all these investiga-
tions the assumption of small perturbation, potential flow
wes made. It is to be expected, therefore, that the shapes
obtained by these investigators are representative of mini-
mum-drag body shapes of practical fineness ratios at low
supersonic Mach numbers.

Perhaps the first calculation of the shape of a body having
minimum drag was made by Newton (ref. 6) using & method
analogous to the present day calculus of variations. Newton
was concerned with determining the body of given length and
base diameter having minimum resistance when moving at

sufficiently high speeds to insure that the inertia forces are
large compared to the elastic forces in the immersing fluid.
Thus, as shown by Sanger (ref. 7) and Epstein (ref. 8), the
law of resistance adopted by Newton approximates that
(neglecting viscous forces) for hypersonic air flows. Ac-
cording to this law, the local resisting pressure is proportional
to the square of the free-stream velocity componnet normal
to the body surface. Legendre (see, e. g., ref. 9) further in-
vestigated Newton’s problem and concluded that if no re-
strictions were imposed on the variation of slope along the
surface, 2 body having a meridian curve composed of jagged
lines (sharp edges forward) could be constructed which, with
this law of resistance, would have less drag than Newton’s
body. It may easily be deduced, however, that Newton’s
law of resistance would not be satisfied on the surface of
Liegendre’s body since gas would be trapped in & number of
regions along the jagged contour. It may be shown in fact
that when this law of resistance is satisfied at the surface—
in which case the surface angles must lie between 0 and =/2
radians—then Newton’s body may be considered the mini-
mum pressure drag body for the given conditions.

It has been undertaken in the present report, using New-
ton’s law of resistance and the calculus of variations, to
determine body shapes having minimum pressure drag
(neglecting base drag) at high supersonic speeds for various
combinations of the conditions of given length, base diameter,
surface area, and volume. The effect of curvature of the
flow over the surface is also investigated to determine its
influence on the shapes for minimum drag.

Several bodies of revolution, including two of the bodies
determined from this analysis, were tested at Mach numbers
from 2.73 to 6.28 in the Ames 10- by 14-inch supersonic
wind tunnel. Foredrag data at zero lift obtained from these
tests are compared with the analytic predictions to assess
the accuracy of the theoretical considerations.

SYMBOLS

A local cross-sectional area of body
a local speed of sound

. 4D
OD dl'&g COGﬁiClent, g,ng
c, pressure coefficient, PP
c constant of integration
D pressure foredrag
d maximum body diameter N

t Supersedes NACA TN 3668 by A. J. Eggers, Jr., Meyer M. Resnikoff, and David H. Dennls, 1956,
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I integrand function

Ip drag parameter, 27_’;“

K hypersonic similarity parameter, M, ,%

l body length

M Mach number, %

N distance measured normal to surface of body

n exponent in equation defining shapes of experi-

mental test bodies

P static pressure

q dynamic pressure

R radius of curvature of streamline in plane con-
taining axis of symmetry (i. e., meridian plane)
of body

S body surface area

U resultant velocity

Vv body volume

z,y coordinates of point on meridian curve of body
(origin of coordinate system coincides with nose
of body, and z axis coincides with axis of
symmetry)

¥ ratio of specific heat at constant pressure to
specific heat at constant volume

) angle (in meridian plane) between free-stream
direction and tangent to body surface

A Lagrange multiplier

P density

SUBSCRIPTS

© free-stream conditions

1 values at nose point of meridian curve

2 values at base point of minimizing curve

+ nghb—hand limiting value of quantity at corner on
minimizing curve

- left-hand hmltmg value of quantity at corner on
minimizing curve

values along meridian curve
c cone values

THEORY

The investigation undertaken here is concerned with the
shapes of nonlifting bodies of revolution having minimum
pressure foredrag at high supersonic airspeeds. Difficulties
inherent in the calculation of these shapes make it desirable
to simplify the drag equation insofar as is practicable, con-
sistent with retaining the salient features of the dependence
of drag on body shape and free-stream conditions. Likewise,
in view of the several conditions to be treated (viz., given
length, base diameter, volume, and surface area), it is
convenient to set up a procedure of analysis to fit the general
problem at hand. These fundamental considerations will
be discussed prior to the determination of specific minimum-
drag shapes.

FUNDAMENTAL CONSIDERATIONS
Simplified drag theory.—As pointed out in the intro-
duction, Newton’s law of resistance applies approximately

to bodus traveling at high supersonic airspeeds. This
observation has basis in the fact that at such speeds the
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inertia forces predominate over the elastic forces in the
disturbed air. Thus, oblique shock flows approach the
corpuscular-type flows treated by Newton as the Mach
number of the free stream becomes large compared to 1.
Analysis of such flows can, for our purposes, be simplified
without appreciable loss in accuracy by assuming that y of the
disturbed fluid approaches 1. In this case the shock-wave
angle approaches the flow-deflection angle (see sketch) and
t:-Dist_urbed flow
+ region e

Ay
~

U N

_-Shock wave

\\Body surface

Sketch 1

the pressure coefficient at a point just downstream of the
wave is given by the simple expression (ref. 8)

0,=2 sin% - )

This equation is recognized, of cowrse, as being (aside from
the constant multiplier) & mathematical statement of
Newton’s law of resistance for corpuscular or impact-type
flow.

When the curvature of the body, and hence of the dis-
turbed flow, is small in the stream direction, equation (1)
should also predict the pressure coefficients at the surface of
a body since, in this case, the centrifugal forces in the thin
layer of air (sometimes referred to as the hypersonic boundary
layer) between the shock and the surface should not appreci-
ably alter the impact pressures. When the curvature of the
body is large in the stream direction, centrifugal forces in
the fluid between the shock and the surface may appreciably
alter the pressures at the surface from those just downstream
of the shock. Busemann (ref. 10) investigated this problem
and found that the pressure coefficient at & point on the
surface of 8 body curved in the stream direction is given
by the relation

C,=2siné (sm 5+ % j;A cos § dA) (2)

in the limit as M— « and y—1.

In order to assess the accuracy with which the preceding
equations may be expected to provide the pressure dis-
tributions, and thus pressure drags, on bodies operating at
high supersonic airspeeds, the predictions of these equations
are compared in figure 1 with those of the method of char-

_ acteristics (obtained from ref. 11 for y=1.4) for an ogive

operating at & value of the hypersonic similarity parameter
K (ratio of free-stream Mach number to slenderness ratio)
equal to 2, corresponding to & free-stream Mach number of
6. It is evident that the theory of Busemann (eq. (2)) yields
far too low pressures downstream of the nose, while the
simple impact theory (eq. (1)) is in reasonably good over-all
agreement with the method of characteristics. The rel-
atively poor predictions of the Busemann theory are asso-
ciated with the fact thatit strongly overestimates centrifugal-
force effects at free-stream Mach numbers which are large
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Fiqure 1—Comperison of approximate and exact pressure distri-
butions over a tangent ogive of fineness ratio 3 operating at a Mach
number of 6 (K=2).

compared to 1, but for which v of the air flow downstream
of the bow shock is closer to 1.4 than 1 (i. e., at flow con-
ditions of principal interest in this paper). This matter
will be discussed in greater detail later in the paper. Agree-
ment comparable to that just discussed is obtained with
the other results presented in reference 11 for K=2. For
lower values of K the agreement of the impact theory with
the method of characteristics is somewhat poorer, as would
be expected; however, it does not become wunacceptably
poor except for values of K below 1 (e. g., the pressure
coefficients differ by from 0 to 35 percent for a K of ¥). It
is therefore concluded that for values of K greater than 1,
equation (1) may be used with acceptable accuracy for the
purposes of this paper to predict the pressure distributions
and thus pressure drags on bodies. For this reason, and
because of its simplicity, it is employed throughout the
subsequent analysis,

If the manner in which the pressure coefficient varies over
the surface is known, it is a simple matter, of course, to
evaluate the pressure drag of a body. Neglecting the base-
drag contribution, we have then

4
D=2 gy, [ Cuyas ©

where 9’ denotes the derivative dy/dz. This equation meay
be expressed in a form more convenient for use here
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D H
L—gm-— f Cavy/dz @

If C, in this expression is replaced by its value given in

72

equation.(1) (noting that sin®s =7 EII-’.II”)’ thereisthenobtained

the relation

g
Iﬂff01+g/2d°’ 5)

It remains now to consider the procedure for employing this
expression in combination with the methods of the varia-
tional calculus in order to determine the desired minimum-
drag body shapes.

PROCEDURE FOR CALCULATING hlINIhIUl\I:DRAG BODIES

The calculation of minimum-drag body shapes of interest
here is equivalent to determining the form of the function
y=vy(z) which minimizes the integral defined in equation
(5) for the various given conditions. In considering the
procedure for carrying out this calculation, however, it is
convenient, for reasons that will be apparent later, to write
equation (5) in a form which effectively yields the total
drag as the sum of the drag on any finite region of infinite
slope at the nose plus the drag on the surface downstream
of the nose. Thus we have

o=yt f e ®

where the variable limit z; is introduced to permit variations
in body length. The conditions of given volume or given
surface ares are fixed by the auxiliary requirements that,
respectively,

= f z’yzda:= const. ¥))

or (neglecting base area)

S =4 +f i 149" de=const. (8)

When the length and base diameter are given, the problem
is simply to minimize the function I given by equation (6).
However, according to the isoperimetric rule of the calculus
of variations (see, e. g., ref. 12), the problem of minimizing
the function I, subject to the auxiliary condition given by
equation (7) or (8), is equivalent to minimizing the new
function Jp, where

To=Iptnr ©)
or

JD=ID+x% (10)

depending on whether the volume or surface area is given.
The parameter A is a constant, sometimes called the La-
grange multiplier.
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With the aid of equations (6) through (10), the integrand
functions to be minimized can be immediately written.
These functions are as follows:

case &, given length and base diameter

2uy"

f=7 1 11)
case b, given volume and length or base diameter
_ 2
= a2
case ¢, given surface area and length or base diameter
Ay’ —
f=1—_2(_y?,§+)\y1/1 T (13)

Now any function y=y(z) which minimizes equation (6),
(9), or (10) must, irrespective of the given conditions, satisfy
the Euler equation (for zero first variation of Ip or Jp with
small changes in the function y(z))

d
d—:cf"_f'=0 14)

where f,» and f, denote the partial derivatives Wf and bgj;

respectively. Since the integrand functions given above are
free of the independent variable, the first integral of the
Euler equation for these functions follows immediately,

namely,
y'fy»—f=-const. (15)

Substituting, successively, equations (11), (12), and (13) into
this equation there are then obtained the expressions

dapy”®

Ty =const. (16)
%—)\y’=comt. 1n

and
4y A

(1 Ty ity 2:l =const.

for cases a, b, and ¢, respectively. Solutions to these differ-
ential equa.tions satisfying the terminal conditions on the
bodies are minimizing curves for the glven conditions.

When the end points of & minimizing curve are not fixed,
other terminal conditions must be imposed on the function
y==y(z). Thus, to determine the ordinate at the nose, it is
required that (see ref. 13)

18)

=0 19

=¥

_a oy YT
(fv’ dyya _— y(1+y")’

for cases & and b, while

[Pl

: + 2—( +]_,= (20)
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for case c. Similarly, when the length is not given it is
necessary that

W fr—Fsuz,=0 (21)

and when the base diameter is not given it is required that

-fi' I2-23= 0 (22)

In addition to the above described conditions, two checks
must be made to determine completely the shape of a mini-
mizing curve. The first of these checks entails ascertaining
whether there are any corners (between the end points) on
the curve. This is accomplished by determining whether
the function y=y(z) can satisfy the requirement that (see

ref. 12)
Jr+=fy- (23)

at & point of discontinuity in 3’. If this equation is not
satisfied, no corners exist. The second check requires that
the Legendre condition (for a positive second variation),

Jowr20 (24)

be satisfied everywhere on the curve. With the aid of these
checks, the minimizing curves for various combinations of
the conditions of given length, base diameter, volume, and
surface area can be uniquely defined. The calculation of
these curves for several such combinations is now undertaken.

CALCULATION OF MINIMUM-DRAG BODIES

Given length and base diameter.—Equations (16) and (19)
give the first integral to Euler’s equation and the terminal
condition at the nose, respectively, for these given condi-
tions. It is evident upon examining these equations that
the minimizing curve cannot, in general, pass through both
the points (0,0) and (%,ys), but must, in fact, have its for-
ward termination point at (o,y1) with y’=1. With this
information, the minimizing curve can be represented in
parametric form, namely,

_w (4™
=5

% (gt itiny)

It is easily shown with the solution to the Euler equation
and equation (23) that there are no corners on the minimiz-
ing curve; ? thus the variation of y with 2 is readily deter-
mined with the relations of equation (25) for a given [ and d
(corresponding to & given z; and ¥;) of & body. These rela-
tions for a body of given fineness ratio can be shown to be
equivalent to those originally developed by Newton (see
ref. 6).

Given length and volume.—For these given conditions,
the terminal conditions (egs. (19) and (22)) require the
slopes at the nose and at the base to be, respectively, y,'=1
and y,’=0. The first integral to the Euler expression (eq.

(26)

2 8imilarly, it can be shown that there are no corners between (o,¢1) and (z3,y2) on any of the
minimfzing curves to be treated here.
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(17)) then leads to the following parametric representation
of the minimizing curve:

2yt 2" T _w—rysd
TNy v[x(urz/?)*] N
v dy
¥ y,

(26)

=

From the relations of equation (26) it is clear, again, that the
minimizing curve cannot pass through (0,0), the condition
1’=1 determining & value , >0. These relations, together
with the volume condition (eq. (7)) and the given length
condition, serve to determine 7, and A and thus, of course, the
shape of the entire body. As the length approaches 0, A be-
comes infinitely negative; while, as the length becomes in-
finitely large, A approaches 0. (In the latter case the body
shape approaches the minimum-drag shape for the given
length and diameter condition, //d— «.) Intermediate nega-
tive values of A correspond to intermediate values of length
for & given volume.

Given length and surface area.—In this case a first integral
to the Euler equation is given by equation (18), and the
parametric representation of the minimizing curve may be
written immediately in the form

const. (1+y")*
4+
— ("
i f %
Upon examination of this equation and equations (20) and
(22), it becomes apparent that, again, the minimizing curve
cannot go through the point (0,0). The latter equations
determine uniquely, however, the values of 4" (y,/<{1) and
Yy (0<y,’ <7y} in terms of the parameter A. Similarly, the
length and surface-area condition in combination with the
above equations determines the value of A. Thus it is easily
shown that the practical range of A is from —2 to 0 (corre-
sponding to body lengths of from zero to infinity for a given
surface area—in the latter case the Newton body is again
obtained).

@Given base diameter and volume.—With these given
conditions, the first integral to the Euler relation is given by
equation (17), while the terminal conditions at the fore-and-
aft ends of the body are fixed by equations (19) and (21),
respectively. It is evident that the minimizing curve must,
in general, pass through the origin in order to satisfy all
these equations in addition to the Legendre condition (eq.

(24)). The shape of the minimizing curve may thus be
defined parametrically as follows:

27)

4 &
IR

29"+ 3y"
)‘ (1+y_,2)2

(28)
z=
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where y;"=0. Combining this expression with equation (7),
there is then obtained for the volume of the body

TRSONIC AIRSPEEDS

3
V=1—;’g;7 (va"' 4675 +45) (29)

The range of N\ for which these results are applicable is
from zero to 3+/3/4ys, corresponding to & volume range from
infinity to #y;%/3/5. For & given ¥, and a given V>my%/3/5
(corresponding to (Z—Z>1,/§/2), equation (29) has two solutions

in 7,’. One solution yields values of g,/ greater than /3’
& result which violates the Legendre condition (see eq.
(24)), while the other yields permissible values less than
/3. When ¥; and 7, are known, A may then be determined
from the first relation of equation (28), namely,

4y (30)
A=— — 2
(2 (1+y )

The determination of y and z follows directly, of course,
from equation (28). The solution given here is not appli-
cable to bodies of extremely small fineness ratios (viz.,
(li 1’/— as can be easily deduced from equation (28).

leen base diameter and surface area.—In this case
equatlons (18), (20), and (21) determine the shape of the
minimizing curve as being simply & straight line

where the parameter A is given by the equation

A=4(my,*/S)?

Thus, the minimum-drag body for given base diameter and
surface ares is & cone.

(32)

COMPARISON OF MINIMUM-DRAG BODY SHAPES

The previous calculation of minimum-drag bodies reveals
two general characteristics of their shapes; namely, when
the length is given (fixed) the bodies assume blunt noses,
whereas, when the length is not given (i. e., is free), the bodies
assume sharp noses. The former characteristic may be
traced to the fact that with the length restricted, the net
drag is reduced by accepting higher pressures on a relatively
small area of large slope’ near the nose, thus achieving
lower pressures on & relatively large area of small slope near
the base. On the other hand, when the length is not re-
stricted it is evident that a sharp rather than a blunt nose
will obtain for minimum drag, since the drag of any blunt-
nosed body can be reduced by simply relaxing the require-
ment on length, thereby allowing the body to be made sharp
nosed and generally more slender.

In order to permit & quantitative comparison of the
shapes of the calculated minimum-drag bodies, typical
meridian curves for these bodies are shown in figure 2.
For simplicity the bodies are compared on the basis of the
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Freure 2.—Minimum drag bodies for various given conditions (I/d=5.0
for all bodies).

same fineness ratio—ordinates have been plotted to an
expanded scale to better indicate the relative shapes. The
maximum bluntness is evidently obtainéd when the drag is
minimized for a given length and surface ares, while the
maximum sharpness (a cusp nose) iz obtained when the
base diameter and volume are given. It is apparent from
figure 2 that the flat-nosed portions of the meridian curves
for the given length bodies are in all cases very small. For
example, ¥; equals 0.0050y; for the body of given length
and volume. On the basis of several calculations it is
indicated, as might be expected, that the degree of bluntness
will increase with decreasing fineness ratio.

It is also of interest to compare minimum-drag body
shapes determined with the aid of the linear theory (see,
e. g., ref. 2) with those found using the impact theory, that is,
bodies especially suited for flight at low and high supersonic
speeds, respectively. Such a comparison is shown in figure 3
for the case of given length and base diameter. It is seen
that qualitatively the shapes are similar although the mini-
mum-drag body for low supersonic speeds is generally the
fatter of the two. Part of this difference in shapes stems
from the fact that the body derived using linear theory was
required to have zero slope at the base. (Also, as will be
shown later, the true minimum-drag shape at high super-
sonic airspeeds may be somewhat fatter than that obtained
using impact theory, due to the fact that centrifugal forces

0
—
/

g ]
o Linear theory {ref. 2) / /
R — -~
Ei . ,// ">~ Impact theory
E / -
g, )7

o 1+ 2 3 4 5 6 1 B 9 10

Body 'axiul coordinate, x/xa'

F1aure 3.—Comparison of minimum drag bodies of given length and
base diameter determined by linear theory and by impact theory.
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are neglected in this theory.) Comparisons of the results of
this paper with those of reference 2 for other given conditions
also indicate qualitative agreement as to general body shapes
despite the marked difference in the laws governing the
surface pressures.

All the preceding analysis has been predicated on the
assumption that the flow of air at high supersonic speeds
may, insofar as pressure forces are concerned, be approxi-
mated by a Newtonian type flow. It remains now to test
the accuracy of this assumption and other aspects of the
analysis by experiment.

EXPERIMENT

It has been undertaken to obtain a partial check on the
findings of the preceding theoretical analysis by determining
experimentally the foredrags on a family of bodies of given
fineness ratios at Mach numbers from 2.73 to 6.28. The
anelysis may be expected to apply, at least approximately,
in this range since for the bodies tested the corresponding
values of the hypersonic similarity parameter K were, for
the most part, greater than 1. A brief description of these
tests is now presented.

APPARATUS AND TESTS

The tests were conducted in the Ames 10- by 14-inch
supersonic wind tunnel, which is of the continuous-flow non-
return type and operates with a nominal supply pressure of
6 atmospheres. The Mach number in the test section may
be varied from approximately 2.7 to 6.3 by changing the
relative positions of the symmetrical top and bottom walls
of the wind tunnel. During operation at the higher Mach
numbers, the supply air is heated before it enters the wind
tunnel to prevent condensation of the air. A detailed
description of the wind tunnel and its associated equipment
and of the characteristics of the flow in the test section may
be found in reference 14.

Aerodynamic drag forces were measured with a strain-
gage balance. Tare forces on the sting supports were essen-
tially eliminated by shrouds that extended to within 0.040
inch of the model base. Axial forces on the bases of the
models were determined from measured base pressures and
from free-stream static pressures and were subtracted from
measured total drag forces; thus, the data presented do not
include the forces acting on the bases of the test bodies.

Reynolds numbers based on the maximum diameter of the
test bodies were:

Reynolds

Mach number,
number million
2.73 0.70
3. 50 . 95
4. 00 .72
5. 05 .35
6. 28 .15

Reynolds numbers based on model length may be obtained
by multiplying the above values by model fineness ratio.

MODELS

Five models of fineness ratio 3 ({/d=3) and three models
of fineness ratio 5 ({/{d=5) were tested. With the exception
of an //d=3 tangent ogive (this shape was included as being
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typical of those in common usage), all models had meridian
section shapes given by the equation

0)

where n was given values of 1, %, ¥, and %. When n=}, the
body shapes defined by the above expression closely approxi-
mate the minimum-drag shapes for given length and base
diameter (eq. (25)) for I/d=3 and 5 (see fig. 4). The accu-
racy of this approximation increases with increasing values
of I/d as can easily be seen upon exemination of equation (25).

1.0

Equation (25)
— —— — 3/4-power approximation

{a)

Body radial coordinale, y/y,

(b) 1 1
(o} .2 4 8 8 10
Body axial coordinate, x/x»
(a) l/d=3
() l/d=5
Fieure 4,—Comparison of profiles of minimum drag bodies of revolu-

tion for given lengths¥and base diameters with the approximate
profiles employed in the present tests.

When n=1, the cone is, of course, obtained which is the
minimum-drag body for 2 given base diameter and surface
area, Minimum-drag shapes for two different given condi-
tions are thus included among the bodies tested.
Photographs of the eight models tested are shown in
figure 5. The I/d=3 bodies (fig. 5()) are, from left to right
in the photograph, the cone, %-power body, %-power (para-
bolic) body, ¥-power body, and the tangent ogive which has
a profile section radius of curvature of 9.25 body diameters.
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From left to right in figure 5(b) are the {/{d=5 cone, %-power
body, and ¥%-power body. The base diameter of all models

was 1 inch.
Qgive

n={(cone) =34 ncif2

"ERSONIC ATRSPEEDS

n=l/4%

@ ‘ A-SETA2 o :
(a) Fineness ratio 3 bodies.
Fraure 6—Photographs of the seven test bodies, the shapes of which

are given by the equation y=g(z/1) n and the I/{d=3 tangent ogive.

{}
i

r=l(cone) n=3/4 n=/2

i
)]

‘ . LY AN
(b) Fineness ratio 5 bodies.
Figure 5,—Concluded.

ACCURACY OF TEST RESULTS

The accuracy of the foredrag coefficients is affected by
uncertainties in the measurements of the following quantities:
stagnation pressures, free-stream static pressures, base
pressures, and the forces on the models as measured by the
strain-gage balance. Both static and free-stream dynamic
pressures were determined from wind-tunnel calibration
data and stagnation-pressure readings. The latter measure-
ments were accurate to within % percent, thus static and
dynamic pressures are uncertain by this amount plus possi-
ble calibration errors of 41 percent over the Mach number
range of the tests. The uncertainty in foredrags due to
inaccuracies in the determination of base pressures does not
exceed +1 percent. Because of the small drag forces
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measured, the source of greatest error was the strain-gage
balance system. The uncertainty in drag due to zero shifts,
thermal effects, and friction varied from approximately 42
percent at the lower Mach numbers to 6 percent at the
highest Mach number. The combined effects of all the
sources of error result in probable uncertainties in measured
foredrag coefficients of from 3-0.001 at the low Mach num-
bers to +0.005 at & Mach number of 6.28. In order to re-
duce this error in the data presented here, particularly at the
higher Mach numbers, several measurements were made at
each Mach number and the average values of foredrag
coefficients were employed.

RESULTS AND DISCUSSION

The variations with Mach number of the measured fore-
drag coefficients are shown in figure 6. It is evident that the
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" \ \77=1, cone
02374
. .
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Mach number, M,

Fraure 6.—The variation with Mach number of the foredrag coeffi-
cients at zero lift of the test bodies.

¥-power bodies do, as predicted, have the minimum foredrags
of all the test bodies with the same fineness ratio, the drag of
the ¥-power body being as much as 20 percent less than that
of the cone of the same fineness ratio. The general increase
in foredrag at Mach numbers in the neighborhood of 5 and
greater can be traced to an increase in friction drag. This
latter increase is, in turn, caused by the relatively large de-
crease in Reynolds number with increasing Mach number in
this range (see section on Apparatus and Tests).

A check on the over-all accuracy with which the optimum
shapes are predicted by the analysis is obtained by com-
paring theoretical and experimental values of the relative
foredrag coefficients of the test bodies. Such a comparison
is given in figure 7 where the ratios of the foredrag coeffi-
cients of a test body to the corresponding coefficients of the
cone of the same fineness ratio are shown as a function of
the exponent n in equation (33) which defines the shapes
of the test bodies. The theoretical predictions of the impact
theory appear to be in good agreement with the experimental
results at the higher values of n (approximately n>>0.6).
Thus it is suggested that the ¥%-power body is a reasonable
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Freure 7.—The ratios of foredrag coefficients of test bodies to foredrag
coefficients of cones as functions of the exponent, n, in the equation
defining body shapes. '

approximation to the correct minimum-foredrag shape of
given fineness ratio. At the lower values of n, however, it
is indicated that the relative drag is significantly overesti-
mated by this theory. This result is not entirely surprising
gince the theory mneglects centrifugal-force effects in the
disturbed flow, and these effects must appreciably alter the
pressures over the highly curved noses of the blunter bodies.

As discussed earlier, the Busemann theory for infinitely
high Mach numbers overestimates these effects at the Mach
numbers of interest here. It has therefore been undertaken
in Appendix A of this paper to obtain a better estimate of
centrifugal forces by accounting approximately for the de-
crease in these forces (at finite but high Mach numbers)
associated with the increase in the lateral extent of the
disturbed flow field with increasing distance downstream
from the nose of the body. The predictions of the modified
impact theory shown in figure 7 were obtained with the aid
of this estimated centrifugal-force effect (see eq. (A9)) in
combination with equations (1) and (3). It is indicated
that this theory is markedly superior to the impact theory
at the lower values of n, corresponding to the blunter bodies,
over the test Mach number range. The estimate of the
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contrifugal forces would thus appear to be in fair agreement
with the actual magnitude of these forces.

It is also indicated in figure 7 that with increasing test
Mach numbers, and hence incressing values of K, the
accuracy of the modified theory improves. (Note, especially,
the trend of the data for the n=1% nose shape in fig. 7(a).)
This result suggests that improved approximations to the
correct minimum-foredrag shapes for values of K appre-
ciably greater than 1 may be obtained by using this theory
rather than the simple impact theory. Accordingly, calcu-
lations of minimum-drag shapes have been made using the
modified impact theory in the manner discussed in Appendix
B. The body shapes obtained (see Appendix B) are for
the same given geometric conditions as those previously
determined using impact theory. The resulting shape for
given length and diameter is shown in figure 8. Newton’s

1,0
S 8 = ~
EY /
; Modified impact theory J__
§ ified impac eor); /
g S | —
3 / "~1- Impact theory (Newton's body)
2 4 <
B ~
> /
3 2 2

0 d 2 3 4 5 6 g 8 9 10
.Body axial coordinate, x/x,

Traure 8,—The effect of centrifugal forces on the shape of the minimum
drag body of given length and base diameter (I/d=6.18).

body of the same fineness ratio is also shown for comparison.
The body shape determined by the modified theory is some-
what more blunt in the region of the nose and has more
curvature in the region downstream of the nose than New-
ton’s body. A similar comparison is shown in figure 9 for
the bodies of given base diameter and surface area. In this
case both bodies have pointed noses because the length is
not fixed, but, in the same manner as for the bodies of given
fineness ratio, the shape calculated with the modified theory
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Frours 9.—The effect of centrifugal forces on the shape of the minimum
drag body of given diameter and surface area (d=2, S=31.57).
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has more curvature in the region aft of the nose than does
the body calculated with the impact theory. This result is
not surprising in view of the pressure relieving effect of
centrifugal forces.

Calculation of the drag of these bodies indicates that those
obtained using Newtonian theory will as expected have the
higher drag at hypersonic speeds, although not by more than
a few percent. This result suggests that consideration of
centrifugal forces will, in the practical case, principally
influence the shape and not the drag of minimum drag bodies.

CONCLUDING REMARKS

It has been undertaken in this report to determine approxi-
mately the shapes of several bodies having minimum pressure
foredrag at high supersonic airspeeds. With the aid of
Newton’s law of resistance and the calculus of variations, an
investigation was carried out for various combinations of the
conditions of given body length, base diameter, surface area,
and volume. In general, it was found that when the length
is fixed, the body has a blunt nose (i. e., a finite area of
infinite slope at the nose) as in the classical problem con-
sidered by Newton; whereas when the length is not fixed the
body has a sharp nose.

Several bodies of revolution of fineness ratios 3 and 5,
including the calculated minimum-drag bodies for given
length and base.diameter and for given base diameter and
surface area, were tested at Mach numbers from 2.73 to
6.28 in the Ames 10- by 14-inch supersonic wind tunnel. A
comparison of the relative theoretical and experimental fore-
drag coefficients indicated that the calculated minimum-drag
bodies were reasonable approximations to the correct shapes.
It was verified, for example, that the minimum-drag body
for a given length and base diameter hes s much as 20 per-
cent less foredrag than a cone of the same fineness ratio.
The cone is, however, the calculated minimum-drag body
for a given base diameter and surface area.

The comparison between theory and experiment also
indicated that the centrifugal forces in the flow about bodies
curved in the stream direction may influence their drag.
The relative extent of this influence was found to be pre-
dictable, particularly at the higher Mach numbers, with a
simple modification to the impact theory of Newton. It
was therefore suggested that improved approximations to
minimum foredrag shapes at high supersonic airspeeds (for
which the hypersonic similarity parameter has a value
appreciably greater than 1) may be calculated with the aid
of the modified impact theory. Such a calculation was
carried out for bodies with the same given conditions as
those calculated with the Newtonian theory. In general,
the resulting shapes were found to be somewhat blunter in
the region of the nose, to have more curvature in the region
downstream of the nose, and to have slightly lower drag than
the corresponding shapes obtained using the simple impact
theory.

AMES AERONAUTICAL LABORATORY
NaTtionan Apvisory CoOMMITTEE FOR AERONATUTICS
Morrerr Freup, Cavrr., Dec. 14, 1956

s


http://www.abbottaerospace.com/technical-library

564

REPORT 1306—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

APPENDIX A

ESTIMATED EFFECT OF CENTRIFUGAL FORCES ON SURFACE PRESSURE COEFFICIENTS

An estimate of the effect of centrifugal forces on the pres-
sures at the surface of & body operating at high but finite
Mach numbers may be obtained by comparing the disturb-
ance flow fields at these Mach numbers with that associated
with infinitely large Mach number.

At high Mach numbers the disturbed air flows in a rela-
tively thin region (sometimes termed the hypersonic bound-
ary layer) between the bow shock wave and the surface of the
body (see sketch).

£ ,,'Shock wave

N !
Uo V¥ =~ ~-Streamline
R o < \\
i 3 “Body surface
Uy
AN X
Sketeh 2

The change in pressure from the surface to the shock due to
centrifugal forces in the fluid is given by the equation

N
sp= [ av= [T v
1]
assuming the directions of the normals to the streamlines
between the surface and the shock do not differ appreciably
from the direction of the normal to the surface. This expres-
sion is more conveniently written in the form

U (N
ap=Y f U dN (A1)

RJo
where U and R are mean values of the velocity and radius,
respectively, in the interval N. Now the mass m of air be-
tween the surface and the shock flowing (in unit time) by a
point on the body is given by the relation

N
me;2w-yj; pU dN 2wy p, U (A2)

Combining equations (A1) and (A2) there is then obtained
for the pressure change

U
AP=§ 5P= U
or in coefficient form
AC, ———y g (A3)

Now in the limit as the Mach number approaches infinity and
v of the disturbed fluid approaches 1, the thickness of the
layer becomes infinitesimal and hence

R=R; (A4)

Similarly, it is easily shown (e. g., with the compatibility
equations applying along characteristic lines in axially sym-
metric supersonic flow) that

dU=0

along any streamline downstream of the bow shock, and
thus that

(A5)

Hence, in this limiting case, equation (A3) takes on a form
equivalent to that first deduced by Busemann (gee second
term on right of eq. (2)), and later derived in reference 15,
namely, '

AO”=722:_yj;’ y cos & dy (A6)

where
L _gins &
Ry dy

On the other hand when the Mach number is finite, but
high, and v of the disturbed fluid is closer to 1.4 than 1,
the preceding evaluations of E and U are in considerable
error since the hypersonic boundary layer, although thin,
i8 no longer of infinitesimal thickness. This change in the
boundary layer results from the fact that the bow shock
is detached (except perhaps at the nose) from the surface
of the body, the lateral distance from the surface to the
shock increasing with incressing distance downstream from
the nose (see sketch). Thus, for example, ® would be
expected to approach Rz only near the nose, while with
increasing distance downstream of the nose it would be
expected to become larger than Rz From the pressure
distributions presented in reference 11 it is indicated, in
fact, -that for K>1 (the range of K’s of interest in this
paper) R>>Rjy near the maximum ordinate of the body.
(This indication follows from the small values of the pressure
coefficients near the maximum ordinate.) It is suggested,
therefore, that at the high supersonic speeds under consider-
ation, an approximation to R is given by the relation

E__1
RB 1= Yy
Ya

Similarly, in the case of U it no longer follows that the
magnitude- of the velocity must be constant along stream-
lines downstream of the bow shock since pressure disturb-
ances can now be transmitted across streamlines. Thus a
better first approximation to U than that given by equation
(A5) may be obtained from the simple corpuscular or impact
theory, namely,

(A7)

U=U, cos s (A8)

‘When equations (A3), (A7), and (A8) are combined, the
estimated change in pressure coefficient at the surface of a
body due to centrifugal forces in high supersonic speed
flow is obtained in the form

AC’,,=RLB (1—3;) co8 §

or

Y (1_¥\2 (s
ac,=L (1 y,> 7 6n® (A9)
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APPENDIX B

CALCULATION OF MINIMUM-DRAG BODIES, WITH CONSIDERATION OF CENTRIFUGAL FORCES IN THE DISTURBED
FLOW FIELD

GIVEN LENGTH AND BASE DIAMETER

For the purpose of this calculation, equations (1) and (A9)
for the pressure coefficient are combined with equation (4)
to yield the drag parameter in the form

o=yototurt [ 2sint s4% (1=L) 2 s 5 |yy'de
®D

The term 7,® represents the drag on any finite region of
infinite slope &t the nose, while the function ¢(y;), given by 2

2
¢(y1)=—-y7‘ (1—-%9 cos? &
represents & ‘leading-edge thrust”’ due to the acceleration

of the air flow about a corner (if it exists) at (0,y1)-
The expression (Bl) may be put in the form

%3 .
ID=?!12+J; {[2 sin? 8-]—%(1-—2% %}

2
whereupon (recalling sin?= v
o ( &

sin? a]w—d%¢(y>}dz

,) the integrand simplifies
to & function f given by the relation

(e
f=yy'\2— "

With the aid of this expression and equations (15) and
(19) the parametric representation of the minimizing curve
can be obtained in the following form:

y__[ 12 (1+43/’)“J
=
=)
where
=1
and, in general,
1>0

The minimizing curve given by these relations, similar to

the curve obtained from the impact pressure treatment,

does not have a corner between the points (o, ¥1) and (zs, ¥2).

The minimum-drag shape defined by equation (B2) is com-
3 This function may bo obtained by evaluating

+¢
lim n f

v\ ¢
1— ) — (sin3 8)d
o Ju—e 3 7’)“(3111 8dy

along the body-surface streamline aboat the corner at(o,y1).

pared in figure 8 with that determined earlier by considering
impact pressures only.

The equations defining the minimizing curves for the other
given geometric conditions are obtained in a similar manner.

GIVEN LENGTH AND VYOLUME

__ )
—z/'s+\/y’°+c(1+y”)’ %}i—h(l-l-y’z)’
y= 3 =1 =
L\ - B9)
= ”:%,

o

with 9,’=1 and 3,’=0.274 and a value of A between —
and 0 as required for the given values of length and volume.
+ Numerical integration of equation (B3) is accomplished
by first evaluating the first integral of the Euler equation at
the base of the body and solving for ¢fy, in terms of yg\.
Letting ¢(y’, ¥s\) represent the resulting funection of ' and
727, equation (B3) becomes

?/=?Iz¢(:l/': Ys\)

% dy 0.3714
l= y’—y’f s 7—%11(%)\)

and the volume is given by

\74 s 0.3 o, .

e ¢ '?7=2/2 T'(yzN)

The values of the functions A and T are obtained by numerical
integration for various values of 7\ to enable interpolation
for that value of y:\ which makes I'/A’>=V/xl*. The set
(yaM, A, T) 80 determined satisfies the given volume and
length requirements and yields a value of the base ordinate,
ya=l[A.

GIVEN LENGTH AND SURFACE AREA
1 3_
y—Wa{ -+ =2y gt

4[7(1+z/’)3”—2y'3]’y2=+12cy"‘(1w’)’y,} (B4)

v
[
nyY
with a range of A given by

—0.64<)\<2(1+%2>

The procedure used to integrate equations (B4) is similar to
that employed to integrate equations (B3) above.
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GIVEN BASE DIAMETER AND VOLUME

Mp(lty)? 5
y/S
"%
X " y,
Mp=5y" /(144"

For I/d ratios greater than ¥, y,=0, ,"=0, and the ranges of
9" and X are

y
(B5)

where

0<ys' <3

V3
0<A<37F
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GIVEN BASE DIAMETER AND SURFACE AREA
3r
Iy:%[)\(l-’-y/:) —-2]

om | gt 2D
Sy 8 v v’

ln1+1,/;l+1/’ c]

(B6)
with ¢,=0 and
A=121.6(y.%/S)?

The minimizing curve given by equations (B8) is compared
in figure 9 with that determined earlier (the cone) by con-
sidering impact pressures only.
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