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A THEORETICAL STUDY OF THE AERODYNAMICS OF SLENDER
CRUCIFORM-WING ARRANGEMENTS AND THEIR WAKES!

By Jorn R. SereiTeEr and ALviNn H. Sacks

SUMMARY

A theoretical study is made of some cruciform-wing arrange-

menis and their wakes by means of slender-body theory. The.

basic ideas of this theory are reviewed and equations are de-
veloped for the pressures, loadings, and forces on slender cruci-
Jorm wings and wing-body: combinations. The rolling-up of
the vortex sheet bekind a slender cruciform wing 18 considered
at length and a numerical analysis i8 carried out using 40
vortices to calculate the wake shape at various distances bekind
an equal-span cruciform wing at 465° bank. Analytical ex-
pressions are developed for the corresponding positions of
the rolled-up vortex sheets using a 4-vortex approzimation to
the wake, and these positions are compared with the positions
of the centroids of vorticity resulting from the numerical analysts.
The agreement is Jound to be remarkably good at all distances
behind the wing.

Photographs of the wake as observed in a water tank are
presented for various distances behind a cruciform wing at 0°
and 4b° bank. For 46° bank, the distance behind the wing
at which the upper two rortices pass between the lower two 18
measured experimentally and s found to agree well with the
4-vortex analysts.

The calculation of loads on cruczform tails 18 considered in
some detail by the method of reverse flow, and equations are-

developed for the tail loads in terms of the vortex pomtwns
calculated in the earlier analyses.”

INTRODUCTION

The importance of the rolling-up of the vortex sheet in
determining the downwash behind slender wings is now
generally recognized and has been discussed at some length
in reference 1. The current use of cruciform wings has
caused the missile designer further concern regarding the
downwash field in the vicinity of the tail. Such calculations
are generally considerably more complicated than those for
planar wings. However, since the wings on missiles of this
type are generally of low aspect ratio and the tail lengths
are long, it is often assumed that the vortex sheet shed from
each panel of a cruciform Wing is completely rolled up into a
single vortex line at the tail position. One of the purposes
of this paper is to investigate the usefulness of such an ap-
proximation at various distances behind the wing. This will

1 Bupersedes NACA TN 3528 by John R. Spreiter and Alvin H. Sacks, 1956,

be accomplished by comparing the results of an analytic

. study of the behavior of a 4-vortex model with the results of

8 numerical computation for a corresponding 40-vortex
system and with observations of experiments conducted in a
water tank.

The calculation of the pressures, loadings, and forces on
cruciform wing-body combinations without regard to the
wake will be treated early in the analysis, and « later section
will be devoted to the calculation of the loads on a cruciform
tail in' the presence of the vortex wake.

PRINCIPAL SYMBOLS

A aspect ratio

@ body radius
b span of equal-span cruciform, 2s,
T o
OL E
, L
. OL QS -4
C, pressure coefficient, 2_——;)—“’
Y
C’Y -QFV
X
Cr 55
c wing chord -

d distance behind wing trailing edge
dy distance behind trailing- edge of cruciform wing
(¢=45°) at which upper two vortices pass be-
tween lower two
dr distance behind trailing edge at which vortices are
essentially rolled up
E elliptic integral of the second kind
F incomplete elliptic integral of the first kind
f lateral distance between centroids of vorticity of the
two halves of the vortex wake for ¢=45° (f=
' +1")
difference between ¢ and ¢,
K complete elliptic integral of the first kind
L force component in the z direction )
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L force component in the 2’ direction
l length of the airplane
M, free-stream Mach number
n outward normal from surface of mrplane or wake
P static pressure
P ¢+ Iree-stream static pressure
. PaU?
q free-stream dynamic pressure, 5
r vii+-2?
S, cross-sectional area
Sk plan form area of wing H
Sy plan form area of wing V'
8 local semispan of component wing H
S maximum value of 8
3 local semispan of component wing V
(2 maximum velue of ¢

U, free-stream speed -

a,p,w fluid velocity components in the 9,z directions .

29,2 Cartesian coordinates fixed in the body and 1]lus~
strated in figure 1.

2,’,2" Cartesian coordinates obtained by rotating the xzyz
system an angle ¢ about the z axis as illustrated

in figure 6
" ,21',} 9y’ and 2z’ coordinates of vortices 1 and 2 of 4-vortex
C o,z analysis
Y force component in the y direction
il force component in the ¥’ direction
Y2 ¥ and z coordinates of centroid of vorticity
I angle of attack in the zyz coordinate system as

llustrated in figure 1 )
o angle of attack in the zy’z’ coordinate system as

iHustrated in figure 6

B angle of sideslip in the ayz coordinate system as
illustrated in figure 1

T, maximum circulation round & wing panel

0 angle from the positive y axis to a point on the
airplane surface, positive counterclockwise, as
illustrated in figure 3

X curve describing the cross section of the vortex wake
in planes z=const.

Pe fluid mass density

v -curve bounding the cross section of the airplane or
wake in planes z=const. as illustrated in ﬁgure 2

& total velocity potential

) angle of bank llustrated in figure 6

@ perturbation velocity potential satisfying Prandtl—

Glauert equation
o2 perturbation velocity potential satisfying two-dimen-
sional Laplace equation in planes z=const.

SUBSCRIPTS

H component wing Iying in the zy plane
TE wing trailing edge

u,l two sides of the wake

1% component wing lying in the zz plane

FUNDAMENTAL RELATIONS

The theory for inviscid compressible flow about slender
bodies of arbitrary cross section has become well formulated

in recent years and is now described in deteil in many papers
(see ref. 2 or 3 for a resumé). These methods can be applied
to the study of flow about cruciform wings and wing-body
combinations and will be used throughout the present

analysis.

THE COORDINATE S8YSTEM

Most of the analysis will be referred to a Cartesian co-
ordinate system fixed in the body, as shown in figure 1.
The free-stream direction may be inclined smeall angles «
and g with the z axis, as projected onto the xz and xy planes,
respectively.

Y
1
t
|
I
I
|

Ficure 1—Cruciform wing-body combmatlon and coordinate system
(=zy2).

THE POTENTIAL

A perturbation velocity potential ¢ is introduced related
to the total velocity potential & according to

o=U_(x—By+az)+o (1)

and it is assumed that the perturbation velocities are suf-
ficiently small that the equations for compressible flow can
be . satisfactorily approximated by the Prandtl-Glauert
equation. Thus ¢ is a solution of

(1_Mm2)‘l’:z+¢w+¢u=o (2)

If it is assumed, furthermore, that the airplane is sufficiently
slender that the longitudinal pertulbo.tlon velocities and
their gradients are small compared with the lateral pertur-
bation velocities and their gradients, Ward (ref. 4) has shown
that the equation for the perturbation velocity potential ¢
in the vicinity of the airplane is

U, 2
LRI B

*dS. 2(17 E)
T In ==L E @

for supersonic flow (M, >>1); and Heaslet and Lomax (vef. 5)
have shown that

ds. a:—g

2o
n s % 4)

LT b:cf
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for subgonic flow (M ,<1). In these equations, [ represents
the length of the airplane and S.=S,(z) represents cross-
sectional area in planes normal to the z axis. The symbol
@z in these equations represents the solution of the two-
dimensional Laplace equation '

¢w+ =0 (5)

for the specified boundary conditions, and can be written
explicitly as

o= 21rf (bn 5 Inrde (6)

where o is the line bounding the cross-sectional area of the
airplane and its wake in the yz plane, and 7 is the surface
normal in the yz plane, as indicated in figure 2. Thus, the
three-dimensional velocity field induced by slender airplanes

———me———oN

Fraure 2.—Cross section of airplane or wake showing o and n.

flying at either subsonic or supersonic speeds is approximated
in the vicinity of the airplane and the wake by a velocity
field that satisfies the two-dimensional Laplace equation
and the boundary conditions in transverse planes plus a
longitudinal velocity field that depends on the longitudinal
rate of change of cross-sectional area and is independent of
y and z. Consequently, equations {3) and (4) are often
written in the following more abbreviated form

o=+ g(x) (7

which is & general solution of equation (5), but where know-
ledge of equation (2) must be introduced to permit the
determination of g(z). As is apparent from comparison of
equation (7) and equations (3) and (4), the function g(z)
contains all of the dependence on Meach number, but the
only feature of the airplane geometry which enters is the
cross-sectional area. Thus, as shown by Keune (ref. 6) and
Heaslet and Lomax (ref. 7), g(x) for any slender airplane
can be thought of as the limit for small r=-+/y?2* of the
difference between ¢ and ¢; for a body of revolution having
the same S.(z) as the airplane, that is,

—13 ___[_]g l@_ﬁ dE U d‘S’c
g(x)—liﬂ[ =) % Ve (M. )R 2r & lm]
®
for M. <1 and
g@)=
[__ :—-\/M 3—lrdS d{; U dSc
bim 2« & Ja——(M—1)r* 27 i
©)]

_normal to and on the surface of the airplane.

for M,>1. It is indicated in references 8 and 9 that a cor-
responding relationship occurs for M_,=1 in transonic
theory, although there is at present no explicit formula for
computing ¢ for & body of revolution in transonic flow.

Once ¢ is determined, the pressure can be calculated
directly using the relationship

Op=—p-loton—Bo)—priloited)  (0)

THE BOUNDARY CONDITIONS

The boundary conditions require that the gradient of
the total velocity potential & is consistent with the free-
stream conditions at infinity, and is zero when evaluated
Consequently,
¢ is a constant, say zero, infinitely far ahead of and to the
gide of the airplane and

O U (—Brutem) gty brap=0 (1)

on the surface of the airplane. In equation (11), n’ repre-
sents the normal to the surface, and 7, 73, and n; represent
the direction cosines of n’ with respect to the z, y, and 2
axes, respectively. By the assumptions basic to slender-
airplane theory, this equation reduces to

U tm—n-+omy+ 2= (12)

where 0/dn=n,(0f0y)-+n;(d/0z) and is the surface normal
in a yzplane. Having equation (12) expressing the boundary
conditions at the surface of an arbitrary slender airplane,
one can easily write the corresponding reletions for specific
shapes. TFor example, the boundary condition for a body
of revolution is i

%";3 r_‘__@:U,,(Z—Z—a sin 048 cos o) (13)

——————=N

<

8

F1cure 3.——Cros§ section of body of revolution showing 8 and a(z).
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Fraoure 4.—Views of wing showing k. (z,y)

where r=a(z) is the body radius and 6 is measured in the

counterclockwise direction from the positive y axis, as

shown in figure 3.
The boundary condition for a thin wing situated near the
zy plane as shown in figure 4, is

3502)
2=0

where h,=h, (z,y) is the z ordinate of the wing surface. If
the wing is situated near the zz plane, as shown in figure 5,
the boundary condition is,

o a4

(3&),_—+v. 54U, %y 15)

~————=N

F1aure 5.—Views of wing showing hy(z,2)
where h,=h,(z,2) now represents the y ordma.te of the wing
surface.

The above statements (and similar ones for other con-
figurations) permit the determination of ¢ for all points in
the vicinity of slender nonlifting airplanes, but only for
points forward of all trailing edges for lifting airplanes. The
insufficiency in the latter instance stems from the fact that
the line integral in the definition of ¢; must be carried around
the trailing vortex wake and that additional relations are
necessary to determine the location of the wake and the
conditions existing thereon.

The vortex wake is ideslized in wing theory to an infinitely
thin vortex sheet extending downstream from the trailing
edge of the wing. The vortex sheet can be thought of as
being composed of vortex lines having constant circulation
T, or strength, along their length. The fundamental prop-
erties are that the velocity must be purely tengential on
either side of the wake, and that the pressures are equal on
opposite sides of the wake. The first of these properties

REPORT 1296—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

corresponds to the statement that d®/on’ is zero on both
sides of the wake, and leads, in the present approximation,
to equation (12). Since the direction cosines ny,n;, and n,
of the normal to the wake are equal and opposite on the two
sides of the wake, one concludes that d¢;/on is equal and
opposite on the two sides of the wake. These two properties,
when combined with the pressure-velocity relation of equa-
tion (10), lead to the conclusion that the vortex lines are
parallel to the average of the velocity vectors on opposite
sides of the wake, again evaluated to an order consistent
with the remainder of the analysis. In other words, I' or
Ag is constant along lines extending downstream from the
trailing edge according to the relation

dy | de __ds
—U.84 ‘°’"+‘°" 7 apfaten U

[ 3 B 2

(16)

where the subscripts « and [ refer to the values on opposite -
sides of the wake. It is interesting to note in closing this
discussion that the inclusion of nonlinear terms in tho
pressure-velocity relation of slender-wing theory requires
consideration of the deformation and rolling-up of the vortex
wake, and that the flat wake commonly assumed in linear
theory is inconsistent with the use of equation (10) for the
pressure. Additional discussion of these pomts can be
found in reference 3.

A SECOND COORDINATE SYSTEM

In order to take advantage of certain symmetry proporties,
part of the results will be given in terms of a second coordi-
nate system xy’2’. This coordinate system is related io the
ryz system by such a rotation about the z axis that the zz’
plane contains both the = axis and the free-stream direction.
With this system, the airplane is banked an angle ¢ with
respect to the y’ axis, and the free-stream direction makes
an angle o with the z axis as shown in figure 6. Since « and
B are small angles, we have the following relations:

s=tanl, o/ =R (a7)
zl
:
! , ,
1 //’y T
L L
‘¢ 1 e
]
X ~ ¢
S

‘1;
:

Ueo

Fi6URE 6.—Cruciform wing-body combination and rotated coordinate
system (zy’s’).
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This coordinate system will be used from time to time during
the discussion and for the presentation of the specific results
for p=45°.

FORCES ON SLENDER CRUCIFORM WINGS

The relationships outlined in the preceding section apply
to slender bodies of arbitrary cross section. Inasmuch as
the vortex calculations, which are the principal subject of
this study, are confined to cases involving either plane or
cruciform arrangements of thin wings, attention will be
devoted in this section, to the determination of .the aero-
dynamic forces on flat-plate wings of zero thickness. (The
corresponding results for slender wing-body combinations are
included in the appendix.) These results supersede those of
reference 10 in which proper account is.not taken of the
nonlinear terms in the pressure coefficient. Thus, consider
the cruciform wing illustrated in figure 7 and designate the

z
I
} 4
i
I
[
]
]

v

F1aure 7.—Designation of eruciform surfaces.

component wing which extends along the y axis as H and
that which extends along the z axis as V. Both components
are symmetrical about the z axis, the plan form of wing H
being given by y=4s(z) and that of wing V by z=+i(z).
Since the wings have no thickness, g(x)=0, the flow is
unaffected by Mach number, and ¢=¢;. The solution for
this case can be considered to be the sum of the solutions for
the flows about each component alone as shown in figure 8,

-y

u

P Pa + Po
Figure 8,—Addition of potentials for cruciform wing.

since wing H lies in & plane of éymmetry of the pervurbation
flow ¢, about wing V, and wing V lies in a plane of symmetry

of the perturbation flow ¢, about wing H. The expression
for ¢, can be found in many sources (e. g., ref. 11)-and is

’;Umaz (18)

=

where the sign is positive in the upper half-plane and negative
in the lower half-plane. The expression for ppis -

%—iU/QB v t"-l-y’——z’-!-\/ (t2+2/2“‘27)3+4y132+U“’B y {19)
Y

where the sign is positive in the left half-plane and negative
in the right half-plane. The perturbation velocity potential
for the flow about the cruciform wing is thus

(20)

Through application of équ&tions (10) and (18) through
(20), expressions for the differential pressures or loadings on
the two component wings are found to be

4ads/d:c daByls 1

Apy
Co)m i e iy

(8r) — Sl | depefe 1
q /v 1=z 1=z 14-6%2*

The sign convention is such that the loadings are positive
when they are associated with forces in the direction of the
positive ¥ and z axes, and hence with positive lift and side
force as indicated by the subscripts on the symbol Ap.

aOf the two terms in the loading expressions, the sym-
metric first terms contribute to lift and side force and the
antisymmetric second terms contribute to rolling moment.
To illustrate this point further, figure 9 shows the load dis-
tribution on a cruciform wing having triangular components.
The loading on the vertical component is shown by the two

=+

Ficore 9.—Load distributions on triangular ecruciform wing
components.

top sketches, and that on the horizontal component is shown
by the lower sketches. The sketches on the left represent
the contribution of the symmetric-first terms of equation
(21); those on the right, the contribution of the antisym-
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metric second terms. As has been pointed out in many
discussions of slender-wing theory, equation (21) for the
loading applies only to those portions of wings for which
ds/dz and di/dz are positive. Consequently, the present
analysis will be confined to wings having their maximum
span at the trailing edge. The permissible ranges for « and
B are also restricted inasmuch as equation (21) becomes
invalid when either the angle of pitch or yaw becomes so
large that the leading edge rotates beyond the free-stream
direction and becomes, effectively, a trailing edge. Mathe-
matically, this limit occurs when |g|=ds/dz and when
|e|=dt/dz. If it is desired to investigate wings inclined
at large angles, consideration must be given to the influence
of the trailing vortices lying outboard of the sides of the
wing.

The total forces on the cruciform wing can be deterniined
by integrating the loading over the entire surface ares.
Thus, the lift (i e., the total force in the direction of the
positive z axis) is given by

L=ff App dz dy-+2nges,? (22)
H

where 8, is the maximum semispan of wing H. Likewise,
the total side force in the direction of the positive y axis is

Y— f f Apy dz dz——2mgBts? @3)
Vv N

where #, is the maximum semispan of wing V. The same
results, expressed in coefficient form, are .

L
OL—E=§ Aga (24)
Y T
GY='§—V= -3 Ay (25)

It may be noted that these latter integrated results can
be obtained more easily by momentum methods (e. g., refs.
2 and 3) if details of the loadings are not required. For
exemple, the lift of any plane or cruciform wing is given
simply by

+s,
L=pU, f Aprpdy ’ (26)

—8,

where Agrg. refers to the difference in the values of the.

perturbation ‘potential ¢ on the two sides of the wing,
evaluated at the treiling edge.

WAKE AND DOWNWASH

The determindtion of the shape of the trailing vortex
sheet and the associated velocity field behind a wing cus-
tomarily involves considerations of classical vortex laws
together with the known vorticity distribution at the trailing
edge. For slender wings, these relations are all imbedded
in the equations given in the first section of the present
analysis. Thus, since S;=0 behind the wing and d¢fon is
equal and opposite on the two sides of the vortex wake, it

follows from equetions (3), (4), and (6) that the perturbation

potential for the flow in any lateral -plane behind the wing
is given by

: 1 0
e J;¢8n~lnr do @7

A direct consequence of the zero thickness of the vortex
wake is that the normal derivative in equation (27) is equal
and opposite on the two sides of the wake. This means
that the contour integral around the wake indicated by o
in equation (27) can be replaced with a line integral along
only one side M of the vortex sheet. The integrand then
involves not ¢, but the difference in potential Ay on the
two sides of the wake. Since, furthermore

Ap=T (28)
and
K] D, _,2—2
S Inr=— Y tan T (29)

equation (27) becoines, on performing an integration by parts

1 or
= %fl"—ta

-1 22—z —_——
A ON

o = tan—t 2221 g\ (30)

Y=

.since T is zero at the latefal extremities of the vortex sheet.

The corresponding relations for the velocity components v
and w in the direction of the positive y and z axes can be
found by using equation (30) in conjunction with equation
(1), thus

92 _ _ z2—2;
=y UePta=—U ‘3+2arf ™ G e—ap 2
(31)
_0%_ = or Y~
w_bz =U ato=U a » ON (y_,yl)a_l__(z_z‘)zd}‘ (32)

The relation for the path of each vortex line given by
equation (16) can be expressed in terms of » and w, thus

dy dz  dx
vu+vl wu+wl Um
(=) (*3%)
where the subscripts « and [ again refer to the values on the
two sides of the vortex wake.

The principal difficulty in the calculation of » and w stems
from the fact that the shape A and the vorticity distribution
OT/ON of the wake are not immediately known at all sta-
tions behind the wing, but ounly at the trailing edge. At
this station, the circulation distribution can be determinod
directly from equations (18) through (20) by setting 2=0
for the vortex sheet behind wing A and y=0 for that behind
wing V and replacing s and ¢ with s, and ¢, (the maximum
velues for 8 and ¢, occurring at the trailing edge). The
resulting expressions

(33)

Tu=Apg=2U a3 i—y (34}
Ty=Apy=2U_B+t 2—2* ' (35,

indicate that the circulation distribution is elliptic immedi-
ately behind each wing. This case illustrates the fact thai
the circulation distribution and span loading are not alway:
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proportional. This conclusion iz immediately apparent
when it is observed that the circulation distribution for the
present case is symmetric about the z axis, whereas the span
loading is asymmetric, as can be seen by examining figure 9.
If attention is confined to stations immediately behind the
trailing edge and to cases where the wing is at very low lift,
g0 that 2—&pg and T are small, it may be assumed for cer-
tain purposes that the distortion and rolling-up of the wake
are 8o slight that they can be disregarded. With this as-
sumption, the induced flow field behind a lifting wing can be
computed directly. Thus, the perturbation potential for the
flow behind the triangular cruciform wing treated in the
preceding section can be obtained from equations (18)
through (20) by again substituting s, for s and ¢, for ¢, and
the associated velocity field can be found therefrom by dif-
ferentiation. Although the error incurred in the induced ve-
locities by the use of this assumption can be continually
diminished as the lift and distance from the wing is reduced,
the condition of zero force on the wake is always violated
at the edges of the wake. The elimination of these forces
demands that the vortices be free to roll up. Inasmuch as
these effects become of increasing importance as the aspect
ratio is decreased, attention here will be focused more on
determining the behavior of the trailing vortex system than
on performing calculations assuming a simplified wake form.

SIMILARITY CONSIDERATIONS

The rate at which distortion of the wake progresses with
increasing distance from the wing will first be investigated
by means of similarity considerations. Consider two geo-
metrically similar cruciform wings traveling at either sub-
gonic or supersonic speeds, but differing in span and angles
of pitch and yaw. It is desired to relate the distances be-
hind the two wings at which the wake patterns are similar.
Let the symbols referring to.the reference wing be denoted
by asterisks and those referring to the second wing be plain.
Inasmuch as a first requirement is that the vorticity distri-
butions must be similar at the trailing edge, it is necessary
that the ratio of angle of attack to angle of sideslip ¢/ be the
same for both wings. (If the problem is stated in the alterna-
tive manner by specifying the angle of attack o’ and angle of
bank ¢, this condition corresponds to requiring that both
wings have the same angle of bank.) From equations (31)
and (32), it is evident that the perturbation velocity com-
ponents ¢, and ¢, behind the wing are directly proportional
to the circulation and inversely proportional to the scale.
Inasmuch as the former is measured by, say, the maximum
value of the circulation TI',, and the latter by the semispan
8,, the ratio of the lateral induced velocities at correspond-
ing stations behind the wings is equal to the ratio of the
circulation loading of the two wings.

T./s,
I‘a* / 30*

Py __Ps

o ot

(36)

Since the ratio of the longitudinal distances, in terms of
wing semispans, from the trailing edge to stations having
similar wake patterns is inversely proportional to the ratio
of the induced velocities, in terms of the free-stream velocity,
we haveé

400104—068——7

d/'go Ucn/¢' Uwso Po*
d*/ 3% Uo*/ 995'* Ucn*’go*r 0

3D

-

This relation reduces to the following when the circulation

function T, is replaced by the lift L through the introduction
of equation (26)

dfs,  p U8 L*
d¥[s,*  po*U*8,*L
i ¢

(38)

or in dimensionless form 7
d 0 0
d*;§0*= ﬂg} (39)

where A refers to the aspect ratio and O, to thelift coefficient.
In many cases, it is preferred to express the distance d in
terms of the wing chord rather than the semispan, whence

dle AJCp, s,
d*c* A*CL* 8,*/c*

(40)

From this result, it can be concluded that the expression for
the distance required for the trailing vortex sheets to assume
any particular configuration is of the form

(@) (%) =

where £ is, as yet, an unspecified constant. This formula is
directly applicable to both the rolling-up of the vortex sheets
and the relative motions of the rolled-up vortices. Thus,
for instance, one set of values for k will give the distance
required for the vortex sheets to become rolled up to any
given degree as a function of the angle of bank ¢; whereas
another set of values will give the distance for the rolled-up
vortices to assume some particular orientation with respect
to one another.

The foregoing analysis gives no information regarding the
relative rates of rolling-up of the individual vortex sheets
trailing from each panel of & cruciform wing. If the angle
of sideslip 8 is zero and the angle of attack is different from
zero (or the angle of bank ¢ is zero), a vortex sheet exists at
the trailing edge of only the horizontal wing and it rolls up
in exactly the same manner as it does behind a single plane
wing. If, on the other hand, the angles of attack and side-
slip are equal (or the angle of bank is 45°) and the cruciform
wing is composed of four identical panels, the vorticity distri-

{ bution at the trailing edge of each panel is the same and the
wake rolls up into four equal vortices at nearly equal rates.

Other cases are more complicated.

Attention has been called in reference 1 and elsewhere to
the value of £=0.28 given by Kaden in reference 12 for the
constant in equation (41) for the distance required for the
vortex sheet trailing from a plane wing having elliptic circu-
lation distribution to become “‘essentially rolled up.”
Although the accuracy, as well as the precise meaning of
Kaden’s result is impaired by the numerous and somewhat
arbitrary assumptions introduced in the course of the

- analysis, the result is useful for predicting the order of

magnitude of the distance involved. The problem actually
attacked by Kaden is that of the rolling up of a vortex sheet
of semi-infinite width, having parabolic circulation distri-
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bution. The result is applied to the case of a vortex sheet
of finite width having elliptic circulation distribution by
selecting the strength of the parabolic distribution to match
the known elliptic distribution at the wing tip, and assuming
that the rolling up of the finite vortex sheet and the semi-
infinite sheet proceed identically.

If the same ideas together with Kaden’s result for the
plane wing are applied to the cruciform wing, the distance
from the trailing edge to the station where the vortices are
essentially rolled up is 9 :

(dB) =0. 2853:— ~ | ‘ 42)

for the horizontal wing and

() o

for the vertical wing.

A 2t,

0}' c (43)

NUMERICAL RESULTS (20 AND 40 VORTICES)

A detailed analysis of the form of the vortex system behind

lifting wings can be made on the basis of equations (31) -

through (33) by replacing the continuous sheet of vortices
with a finite number of discrete vortices and determining
their positions at each longitudinal station by a step-by-step
calculation procedure. Such a calculation was carried out
long ago by Westwater (ref. 13) for the plane wing with
elliptic circulation distribution. In this particular treat-

ment the vortex sheet was replaced by 20 vortices of equal
strength and the results were presented by giving, both
numerically and graphically, the positions of each of the
vortices at several different distances behind the wing.
These results, which of course apply equally to cruciform
wings at zero sideslip, are summarized in graphical form in
figure 10. Although these results are presented here in
terms of body axes, rather than wind axes as previously
given in reference 1, additional reference lines are included
which extend downstream from the treiling edge in the free-
stream direction. This sketch clearly illustrates how the
center of the vortex sheet behind low-aspect-ratio wings ex-

tends downstream in nearly the direction of the extended

chord plane, while the vortex cores extend downstream in
nearly the direction of the free stream. Similar calculations
have been made recently for wing-body combinations and
are reported in reference 14 by Rogers.

A numerical calculation ? has been carried out for the case
of & cruciform wing having four identical panels at equal
angles of attack and sideslip (¢=45°). In this calculation,
the vortex sheet trailing from each of the four panels is re-
placed by 10 discrete vortices of equal strength distributed
in such & fashion that the ares under each step of the approxi-
mate circulation distribution is equal to that under the cor-
responding portion of the elliptic curve representing the
given circulation distribution. With the strengths and po-
sitions of the vortices thus determined, the velocity com-

1 The actual computations were done under the supervision of Mr. Stewart M. Orandall of
the Electronie Machine Computing Branch of the Ames Aempsutlcal Laboratory.
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F1cure 10.—8hape of vortex sheet for plane wing with elliptic circulation distribution.
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ponents at the position of each vortex are computed using
equations (31) and (32) and the change in the position of the
vortices with a small increase of the distance from the wing
is determined using equation (33). This process is then re-
peated using the new vortex positions. Since the entire
trailing vortex system is symmetrical about & line inclined
at 45° to the zyz coordinate system the results are expressed
in terms of the zy’z’ coordinate system described earlier
with the angle of bank ¢ set equal to 45°. With the posi-
tions of the vortices given in this system, it is necessary to
specify the coordinates of only half the vortices, since the
strengths and locations of the remainder are just those of
mirror images about y’=0; that is, with the vortices num-
bered from 1 through 40 as indicated in figure 11, vortex
2041 is the image of vortex 7 and the following relations
hold between the two vortices. :

2'20+1=zt'; y'm+1='—1/i'§ Togpei=—T (44)

Since the force component in the direction of the y’ axis, or
the side force Y/, vanishes, the force component in the direc-
tion of the 2’ axis, or the lift Z’, is equal to the resultant
lateral force, thus

L'=PXV?=3L (45)
or, in coefficient form ‘
L
C/= QSE—»/?-C'L (46)
Since it follows, furthermore, from equation (17) that
o' = a’-—l—ﬁ’:ﬁa (4:7)
we have
Or' =5 Az’ =5Ave’; C/=0 (48)

for cruciform wings of equal span. -

The results of the calculations are given in three forms.
A highly abridged illustration of the results is given in figure
12, a more complete series of illustrations is provided in figure

’

30,

21

— —— —— —— —— — oty 2 oas B Ny

40 20
F1iqure 11.—Numbering system for 40-vortex calculations,

13, and & complete listing of the numerical results is given
in table I. In order to facilitate the fairing near the ‘plane of
symmetry of the curves representing the vortex wake, the
position of the point lying in the plane of symmetry was cal-
culated at each downstream station. In keeping with the
remainder of the present analysis, the above results are given
in terms of body axes. Additional reference marks are shown
on the graphical presentations, however, to indicate the posi-
tion of a line in the free-stream direction passing through the
trailing edge of the wing root. In figure 12, thisline is shown
as a solid line lighter in weight than the axes. In figure 13,
its position is indicated by a small circle on the z’ axis. As
can be seen from examination of the results, these calcula-
tions were carried forth for distances behind the wing up to
approximately an (4/C;')(b/c) of unity. The rolling up of
the vortex sheets is clearly evident and has progressed to a
substantial extent at the most rearward station. Attention
is called to the fact that this distance is much greater than
that indicated by Kaden’s formulas for the distance to roll
up and that the rolling up of the vortex sheets proceeds at a
much slower rate than indicated by these relations. The
same conclusions follow from an examination of the planar
case.

A second prominent feature of the vortex wake of cruci-
form wings 2t°45° bank concerns the tendency of the vortices
from the upper wing panels to incline downward toward
those from the lower wing panels, and eventually to pass
between them. Although the present calculations were not
carried on to sufficiently large distances from the wing to
display this phenomenon fully, the results do confirm the
conclusions of reference 15 that this ‘“leapfrog’ distance is
much greater than the distance indicated by Kaden’s formula
for rolling up of the vortex sheets. An important conse-
quence of the difference in these distances is that the full
details of the rolling up need not be considered in the analysis
of the slower leapfrog phenomenon. Thus, if the properties
of a continuous vortex system are to be ascertained by con-
sidering the properties of a system comprised of a finite
number of discrete vortices, & great many vortices are
necessary to trace the course of the rolling up, whereas a
satisfactory model for studying the leapfrog characteristics
may often be had by using only one vortex per wing panel.

ANALYTICAL RESULTS (4 VORTICES)

It is apparent from the preceding discussion that a very
large number of discrete vortices must be included to give
.an adequate representation of ‘the vortex system near the
wing. At greater distances from the wing where the vortex
sheets are substantially rolled up, it appears plausible that
the analysis can be simplified, while still retaining the
essential features, by assuming that the vortex sheets are
fully rolled up into four vortex lines (one from each wing
panel). This simplification is analogous to the use of a
vortex pair for calculating the induced flow field at great
distances behind & lifting planar wing. .
In contrast to the case of the plane wing for which the -
vortex sheet rolls up into two vortéx lines that, at great-
distance behind the wing, are simply straight lines inclined
at & small angle from the free-stream direction, the analogous


http://www.abbottaerospace.com/technical-library

90

N

N

/

©

330

210

570

/

X

Fiaurr 12.—Shape of vortex sheets for cruciform wing at 45° bank with ellipﬁc circulation distribution.

problem for cruciform wings is necessarily more complicated.
Instead of two rolled-up vortices, thers are now four and
their induced effects upon one another are such that the

curves described by the vortex lines are quite intricate.

The simplification introduced by diminishing the number of
vortices from 40, say, to 4, however, is particularly important
since it permits the use of analytical methods instead of the
numerical procedures described in the preceding sections.

The first step in the development of this analysis is to
select the strengths and locations of the four vortices used to
represent the actual vortex sheet at the wing trailing edge.
Since it is assumed that all of the vorticity from each wing
panel rolls up into a single vortex, it appears natural to con-

sider that each vortex is of strength equal to the circulation
around the corresponding wing panel and is situated later-
ally, at the trailing-edge station, at the position of the cen-
troid of vorticity of the vortex sheet it replaces. Itis further
assumed that the strength of each vortex is constant along its
length, but that its lateral position changes with z in accord-
ance with the velocities induced by the other three vortices.
Although coincidence of the lateral position of each of the
four discrete vortices of the simplified model and the centroid
of vorticity of each of the actual vortex sheets is assured at
only the trailing edge of the wing, it is tacitly assumed that
the two sets of locations are sufficiently near to be inter-
changeable for most practical purposes.' The accuracy of


http://www.abbottaerospace.com/technical-library

>
.8 BT G B &
p /G 1%, 25, i
40042 E.’?' 0 4004’!53.. 3 -1—:1\‘:)./!‘b 2 I 400./2 FqB i
51 81 B E
. o :
2%, F7 % =
21 2t 2 : a
H
- =
0 £ a4 o T 4 68 ° 2 4 8 R
4 yisa . . yi/a ey E
~21 'E‘L =271 L E
o
S
-At -4% -4 5
-6 -6 \9 -5+ E
o {o) (&) {0) -0
—.Bl -8 -8+ %
8 8 ¢ 8 & 8 & BJ & S
| ¢ a g, gt, 449,
400./25.%-& 4007 fX. 1 4002 733 40042 £ 3 4?°ﬂbd 47‘ g
5 : 81 & 8 . & 8
g
a 41 A4 4 41 !
% 275 vs, ' r'ra, §
2 21 2 2 £
: | ‘ E
s — 0 + + 0 —i 0 — + - 0 + —
2 f 4
24 yon B 2 8 yirs, ro 8 ' A B * y'e
-2 -t - -2 -2t -2
-4 -4 -4 "ATL -af 5
. .
- -5 - - -
T " S I 5 [ E
" 4
Froure 13.—Caloulated wake shapo at varlous distances behind an equal-span oruciform wing; pemd5® E
=
—


http://www.abbottaerospace.com/technical-library

107 o7 0 ’ 107 Loy
400./% 43X v a00v2 2%, &3 a00s2 5. 7 a00/2 £9. 79 w007 %, g7
-] b A A oA oA
8 C A B 8] 8
o [ ] [ ] L J *
8 & 8 8 I

@6

{n

Fraurg 18.—Coniinued.

SOLINVNOUEY HO4 EELLIIUNOD XHOSTAQY TYNOLIVN—6ZT ITHOJEH )

¢ —— o~  —— — t e e

e e ——— e


http://www.abbottaerospace.com/technical-library

4
400./F F‘.fﬂ. 230

(u)

406J!;?=290

12}

(v}

-woﬂf?-m

{w)

3
=3

T'm

Fravre 13,—Continued,

B

¢f SEHVA YITHL ANV SINEWIDNTVIYY DNIA-WHOAIOOHD THANETSE 0 KJINVMGOEEV EHEL 40 108 TVOLLEHOHHL ¥


http://www.abbottaerospace.com/technical-library

T6

» &5

>

o

400./2 ff"-

\_

9

Figure 13.—Concluded.

w >

1)

Q

(]



http://www.abbottaerospace.com/technical-library

A THEORETICAL STUDY OF THE AERODYNAMICS OF SLENDER CRUCIFORM-WING ARRANGEMENTS AND THEIR WAKES 95

this assumption, which has already been demonstrated for
planar wings in reference 1, will be discussed at the end of the
present section.

Determination of vortex paths for 45° bank.—In reference

15 an enalysis was carried out in which equations were .

developed for the paths of four rectilinear vortices which
start in a symmetrical arrangement as shown in figure 143
In that paper, the analysis was applied to the calculation of
the paths of four vortices representing the wake behind an
equal-span cruciform wing at 45° bank. It is necessary to
reinvestigate this application, however, because the.vortex
positions at the trailing edge were calculated from the span
loading, since it was not recognized that the circulation
distribution and span loading were different. The present
analysis supersedes the part of reference 15 dealing with the
application to the cruciform wing. The results will be given
here in terms of the body axes zy’z’ defined earlier. From
the analysis of reference 15 it is found that if the 4 vortices
are of equal strength, the projection of the path of vortex 1
on the y’z’ p]ane is given by (if G<4)

z,’ G 8in ¢; COS ¢y
= Bk p,)— E(k, ———
f 02 [ ( 59) ( Gpl)] T 8(4 G) 1-]62 > p
sin ¢, cos ¢, TGTD ( 8in ¢
J1=I2sin? o, >+ A (. +4) V1—F*sin? ¢
e )yuted (@)
JI—I®sinl g,/ I
where
1
=1, / G= ————2
S=y'+y: w7 (1 7
S I
y./=value of y, at k=4g d=distance behind
wing trailing edge Wing trai]ing edge
i o )
e (=3 (y PO
R? 4(G+4)

and the subscripts 1 and 2 refer to the vortex numbers
indicated in figure 14. The symbol &’ represents the angle
of attack in the zy’z’ coordinate system and is the angle
between the z axis and the freestream direction.

The values of y5,f, and @ are to be determined from the
spanwise distribution of circulation T'. For the case of an
equal-span triangular cruciform wing banked 45° the T
distribution is identical on both component wings and, as
shown in equations (34) and (35), is elliptic. Hence, the
four vortex lines replacing the vortex sheets are all of equal
strength and must be placed at the corners of a square in
the plane of the trailing edge. Thus the initial values of
'’ and ¥’ must be equal and the lateral position of the
centroid of vortices 1 and 2 is given by the average of their
9’ coordinates. That is,

3 Tho motlons of 2s vortices were treated by Grobli (Vierteljahrechrift der naturforschenden
Qesellschaft in Zurich, vol, 22 (1877), 37-81, 120-167), However, his result for the case of
interest here is Incorrect. B

4601904—5H8—-8

2

y’

Plane of symmetry

Ficure 14.—Four vortices in zy’z’ system replacing wake behind
equal-span’ cruciform wing at 45° bank.

Yo' === (50)

and therefore- @=2. Furthermore, since the four vortices
are to be placed at the centroids of vorticity from each of
the four equal-span panels, one can immediately write, for
the elliptic circulation distribution and 45° bank,

% ay3 (61)

Now, since the impulse in the 2’ direction of the four vortices
trailing behind the cruciform wing must be equal to the
resultant foree in the 2z’ direction, one can write

20U Tuf =5 pU 20, (52)

so that

T, _C//A_Cl[A_242 G " 69)
U.s flse 20/[s0 = A

where S and A are the ares and aspect ratio of one component
wing. Thus, all the necessary constants have been obtained
for equation (49) so that, upon evaluation of the required
elliptic functions, it becomes

z‘ 2[1 1675—E (% ¢1>:| + \/___. (cospr+3)+22
sin? ¢,

(54)

and it is noted that ¢, increases positively from its initial
value g,=7/2 at the wing trailing edge.
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In reference 15 it was shown that the path of vortex 2
can be obtained from that of vortex 1 by the-use of the
expression for the relative paths

(al = G%, (1 ] <2yl 1> (55)
-6 (1)
so that (since G=2)
=) G (56)

Similarly, with the use of equations (50) to (53), the expres-
sion given in reference 15 for distance behind the wing

: WUJ{ 0(1

[F(k,%) Fk, gpl):]Jr_7 ( %& B

75 | Eed—Elee) |+

SIN ¢ COS ¢ )} (57)
-\/l—kz sin? o1
reduces to
d = A
iz4 [ L0836+ 2 2 (L)
4F ( , (pl/ Sl.n (pl CO8 ¢ ~ (58)
-\/ 1—— sin? ¢

so that the paths of vortices 1 and 2 are completely defined by
equations (50), (54), (56), and (58) and the paths of vortices
3 and 4 are found by symmetry. The leapfrog distance,
which is defined by the condition z;’=z,’, is obtained by set-
ting gy=m. The last term in the bracketed expression above
then vanishes and the distance d; can be expressed, after
evaluation of the necessary elliptic functions, as

dy_ )

T 8 . ,(1 0834) (59)
dp_dof A 4.664
3=76 2.332 X (60)

Note that this relation has exactly the form of equation (41)
and is independent of plan form.

Comparison with results of 40-vortex caloculation.—It is
evident that at very large distances behind the wing the cen-
troids of the vorticity shed from each panel must lie within
the rolled-up vortex cores. Hence, the problem of determin-
ing the positions of the rolled-up vortices is essentially that of
determining the positions of the centroids of vorticity at dis-
tances greater than the rolling-up distance behind the wing.
If this is to be done by using four vortex lines leaving the
trailing edge at the centroid-of-vorticity positions, then the
assumption must be made that the positions of the four

vortices as determined by equations (50), (54), (56), and (568)
coincide with the positions of the centroids of vorticity at all
distances behind -the wing. This assumption has therefore
been made in the above analysis. In order to investigato
the validity of this assumption for 45° bank, comparisons
have been made at various distances behind the wing be-
tween the vortex posilions given by the present 4-vortex
analysis and the centroid-of-vorticity positions obtained
from the 40-vortex numerical calculations of the proceding
section. - The latter positions were calculated according to the
relations

/__Eyi,rt, r__

2 EZ;’I‘{
yC - EI‘{ 2 ¢ —

=Ty

(61)

for the vortex sheet from each wing panel, and these positions
are tabulated in table IT and indicated on the plots of figure
13 by the symbol customarily used for the conter-of-gravity
position. The fact that the centroid-of-vorticity positions
become indicative of the vortex-core positions only after the
vortex cores are well developed is clearly illustrated by the
centroid-of-vorticity positions of figure 13. On the other
hand, ‘the comparison shown in figure 15 of the centroid-of-
vorticity positions for the 4- and the 40-vortex approxima-
tions indicates that the agreement is remarkably good for all
distances behind the wing. It can therefore be concluded
that the vortex positions obtained in the present 4-vortex
analysis furnish good approximations to the positions of the
vortex cores at distances behind the wing at which the
rolling-up process is essentially completed.

Determination of initial slopes of vortex paths for all bank
angles.—The analytical method of the present section is
restricted to an angle of bank of 45° inasmuch as a solution
was obtained by making use of symmetry considerations.
Forother angles of bank, itis doubtful that & closed analytical
solution could be obtained for the paths of even the simple
4-vortex model. It is a simple matter, however, to writo
analytical expressions for the initial slopes of the 4 vortex
lines at the wing trailing edge; and it is possible to write
corresponding expressions for the initial slopes of the paths
described by the centroids of vorticity of the flat vortex
sheets leaving the trailing edge. In this way, one cen gain
some idea of whether the 4-vortex approximation might be
a good one for other angles of bank. It will be convenient
here to return to the zyz body axes lying in the planes of the
wing panels. In this coordinate system it becomes clear that
the ¥ and z components of the slopes of the vortices from
opposing panels are equal. Thus, equations (31) through
(33) reduce for the 4-vortex model to

@) dy4) °V )
dz /gm0 d:-o B+_ﬁm_to-

4T

>a- o \dz >a- o UG
- (62)
dy2> 6+ 4P°Vto
-0 dx dao U (302+t02)

Qﬁz) - %) L
dz d=o dx d-:o— 1"glfm'sa J
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Freure 15.—Comparison of positions of centroids of vorticity calculated with 4 and with 40 discrete vortices.


http://www.abbottaerospace.com/technical-library

98

I
G.-\ zy
, _
e e y
o ;J
~3% %
a lp7%

F1eurEe 16.—Initial positions of four vortices in zyz coordinate system.

where the subscripts 1 through 4 refer to the vortices num-
bered as shown in figure 16, and T,; and I',_ refer to the
maximum circulations of the horizontal- and vertical-wing
components, respectively. Since the latter quantities are
related to the angle of attack and the angle of sideslip accord-
ing to
Top .
T e

T,
L - (83)

the expressions of equation (62) can be rewritten as follows:
d_y_1> - d_lh) —af — 3) A
). =&, =(—1+5

le) d24> B 8

el | =f & =] ] ———
dx Jawo dx Jamo “ ty :|
» | (s

- (64)

‘il>= %l-fﬁ—"”f@]
| ty

%) (@), (%)
dz duo_ dz d-o—a< _;'3 J
Determination of initial slopes of centroids of vorticity of
the vortex sheets for all bank angles.—For comparison with
the above 4-vortex approximation, consider now the initial
slopes of the paths described by the centroids of the vorticity
trailing from each panel of the cruciform wing. Inasmuch
as the singularities at the edges of the wake contribute
substantially to the slopes of these paths, and conditions
in the immediate vicinity of such singularities are difficult
to investigate directly, a control-surface type of analysis
will be used. As will become evident on reading, the analysis
bears many features of resemblance to that employed in the

REPORT 1296—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

me’m 17.—Vortex wake and cylindrical control surface C.

calculation of forces on the leading edges of thin wings.
' To start, consider that portion of the trailing-vortex system
contained between two parallel planes normal to the =
axis and dz apart, and inside an arbitrary cylindrical surfaco
O having generators parallel to the x axis, as illustrated in
figure 17. The y and z coordinates of the centroid of vor-
ticity of the enclosed-portionof-the-vortex system-ure given:
by _
_Ey,I‘t.

2 =Ez,1‘,
Y= 211’ ? ¢

ZTy (65)

where ¥; and z, are the coordinates of a vortex having
strength T';, and the summations are extended over all
vortices extending through the planar ends of the control
surface. Since the slopes of each vortex filament are given,
according to equations (31) through (33), by

dy:, 01,0y Ty, dzg Wi, tWy W,

&2, U & W, U. .
the slopes of the path of the centroid of vorticity are
dyc ETJ}P( . ng_ 2177.;1‘1 (67)

dz U_ZT, dx U_ZT,

Now, an important consequence of the fact that the flow
in the vicinity of the wake is governed by Laplace’s equation,
that is, by equation (5), is that the velocities at any station
are the same whether the vortices at that station are free or
fixed. This means that

(68)

v’ﬂga=v’ff:ed= 01; w‘fru= w’ﬂ:ld= w‘

In contrast to the force-free state of the actual trailing-
vortex system, the fixed-vortex system sustains forces
given by

dY=—p,wlde;  dL=p, 0Lz (69)
on each vortex filament, or
dY=EdY{= —pmzﬁ,l‘fda;
(70)

dL=EdL,=p,,E_v',I‘fdx
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in total. Combining equations (67) and (70) yields the
following relations:

dy._dL . dz,___ dY
dz p U 2Tdz dr  p U ZTdz

(1)

Hence, the slopes of the lines connecting the centroid-of-
vorticity positions of the free-vortex system can be deter-
mined from the forces on the fixed-vortex system.

The total forces dY and dL on the fixed system can be
determined by applying momentum methods to the control
surface shown in figure 17. This calculation is simplified
by the fact that the pressures and flow of momentum
through the plane faces exactly counterbalance, leaving
only the contributions from the contour C. Thus

.__—-—f pdz— p,,,f v(vdz—wdy)
(72)

%=fc ply-+o. | wtwdy—ode)

where the integrals are to be taken in the counterclockwise
gense and the pressure p is related to the velocity com-
ponents according to equations (10), (31), and (32), that is

P=Po—pUa (¢:+a¢z—6¢y)—%°’ (o't
(73)
o m¢:+ U 2 (a2+ﬂ2)—

=p.—p (4w

Now, p., «, and 8 are constants and contribute nothing to
the integral of equation (72) when integrated around the
contour, and ¢, is zero because the vortices are fixed. Hence,
equation (72) can be rewritten as follows:

dY p‘z

dz

@—”i f [ —dy— 20w dz]

((w2 —v9)dz+20wdy]
(74)

Finally, on substitution of equation (74) into equation (71),
wo' have the following relations between the slopes of the
path of the centroid of vorticity and the velocity compo-
nents » and w which exist at the location of the cylindrical
control surface C,

tzz:/; El‘,f[ o dz+ =8 v*+w2)dy:|

% U, zr,f[mdy"'( vq_mdz]

(75)

where
oy f (0 dy+w dz) (76)
4]

The above results will now be applied to the calculation of
the initial slopes of the path of the centroid of the vorticity
trailing from the wing panel which extends along the positive
y exis., In keeping with the notation of figure 16, this panel
will be designated with the number 2. If the control surface
C is selected as shown in figure 18, the integrals of equations
(75) and (76) can be divided into three parts.

-==N

a
3 . .[ _____ Z»®
So
[ - a

a

Frqure 18.—Components of selected control surface.
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Fiaure 19.—Polar coordinates near edge of wake.

The contributions of part & can be written directly, and that
of part b can be evaluated by considering the asymptotic
form of the velocities in the vicinity of the edge of the wake
to be the same as that of the velocities around the edge of a
flat plate; that is,

p=—-_t sm w—’1 cos = 77)

v i

where p and w are polar coordinates, with origin at the edge
of the wake as indicated in figure 19, and p is a constant.
The contribution of part ¢ is zero because dy is zero, dz
approaches zero, and the velocities are nonsingular there.
Upon carrying out the necessary operations, one finds that
the slopes of the path of the centroid of vorticity immediately
behind the wing are

Ep——
& Jone . ToTor)o "dg™

(@), [ —ogarees]

The velocity components v a.nd w can in turn be expressed
in terms of the circulation distribution at the trailing edge
by employing equations (31) and (32). The circulation
distributions on both the horizontal- and vertical-wing com-

-

(78)
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ponents are elliptie, accordmg to equations (34) and (35).
Hence,

oH=2ansa; 0V=2Ucoﬁt0 (79)

Tt also follows from equations (76) and (77) that
= (80)

and therefore

REPORT 1296—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

and pliotographing the water surface from above with a
moving-picture camera. The traces of the wake were made
visible by applying fine aluminum powder to the wing {railing
edges. The models tested were triangular flatplate wings
of aspect ratio 2.

Abridged series of photographs are presented for angles
of bank of 0° (plane wing) and 45° in figures 20 and 21,
respectively. The latter results are shown for distances up
to the leapfrog distance dr behind the wing, and measure-

For cruciform wings having horizontal and vertical com-
ponents of equal span, that is, s,=t,, the relations of equation
(81) reduce to

These results also apply to the 1mt18.1 slopes of the path of
the centroid of the vorticity trailing from panel 3. The
corresponding expressions for panel 1, and likewise panel 4,
can be found by the proper interchange of quantities and
are

dztl
d-'B d=o0

These results may be compared with the corresponding
values for the inital slopes of the vortex lines of the 4-vortex
approximation to the wake of an equal-span cruciform wing
by substituting 8,=t, into the relations of equation (64).

dya) —=—0.7858; =0.599¢ (83)
dm=0

dy‘) =—0. 797,3, (dz ) =0.5950 (84)
d=o d=o0

dys — . (%2 —
E)ﬂ_o——0.595ﬁ, 3?)4_0_0'7970‘ (85)
It can be seen by comparing the results of the immediately
preceding equations that the initial slopes of the individual
vortex lines of the 4-vortex model are very nearly the same
as the initial slopes of the paths of the centroids of vorticity
of the corresponding portions of the continuous vortex sheet.
This conclusion serves as & first indication that the 4-vortex
model may be as satisfactory for determining the positions
of the rolled-up vortex cores at great distances from the wing
for all angles of bank as was demonstrated for 45° bank in
figures 13 and 15. )

WATER-TANK EXPERIMENTS

.Experiments were conducted in & water tank for the
purpose of observing visually the vortex paths calculated
in the foregoing analysis. Photographs were obtained of
the wake at various distances behind a cruciform wing by
plunging & model vertically into the water at uniform speed

-

3
(dg;:’)dno:—ﬂ 1+§—:§ E(sin"l 1 t02> 2 /‘;OzK sin™? 1 =
' Vitas) e ViTas (81)

ments of this distance were obtained by means of a tape
which moved with the model and recorded on the film the
distance between the wing trailing edge and the water
surface. The results of such observations at various angles
of attack are presented in figure 22 and compared with tho
4-vortex calculation of equation (60). The agreement is
seen to be quite satisfactory except possibly at the very high
lift coefficients. The lift coefficients for the experimental
points were calculated from equation (48).

Because of the persistence of the vortex sheets connecting
the vortex cores (see figs. 13 and 20), the 4-vortex approxi-
mation may not yield -accurate vortex paths at distances
behind the wing greater than about d; since the sheets may
upset the periodic nature of the predicted paths. The 4-
vortex approximation likewise cannot be expected to give
the vortex core positions accurately at distances behind
the wing at which the vortex sheets are only partially rolled
up since there the positions of the centroids of vorticity
do not correspond to the vortex cores, as discussed pre-
viously in connection with. figure 13.

" LIFT ON A TAIL IN A NONUNIFORM
DOWNWASH FIELD

Once the vortex position§ at the tail station are known

through calculations similar to those described in the pre-

ceding sections, or by other means, the associated down-
wash and sidewash fields and the lift and side force on the
tail can be determined by direct calculation. The deter-
mination of the lateral velocities can be accomplished by
substituting the known strengths and positions of the vortices
into equations (31) and (32) and integrating (or summing in
the case of a discrete vortex approximation). This problem
is exactly the same as the classical problem of determining
the incompressible flow field associated with & distribution
of rectilinear vortices, and several alternative mothods are
avsailable for obtaining the solution.

The determination of the lift and side force on a tail
in a nonuniform downwash field of known structure is the
remaining task necessary to complete the calculation of such
quantities as the lift and-center of pressure of a wing-tail
gystem. Although the solution of this problem is often
approximated by the introduction of additional assumptions
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(8) d/6=0.09. o ) d/b=0.35. -
(c) d/b=0.60. - ) - (d) dfb=0.89. !
(e) dfb=1.45. - . (D ~d/b=1.80. i
F1aure 20.—Photographs of the wake st various distances behind a - -7 : ,’
triangular plane wing (or cruciform wing at $=0) of aspecf ratio, 2; = . A
a=20°, - ~ - o ~ TR 2
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(a) dfb=0.11. ' , (d) dfb=0.94.
(b) d/6=0.33. ’ (e) d/b=1.38.
(c) d/b=0.61. . ) db=1.79.

Ficure 21.—Photographs of the wake at various distances behind an
equal-span triangular cruciform wing of aspect ratio 2; ¢=45°

a'=17°.
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-~ s . : . L. . T e
- - - A . N -

(®) d/b=2.24. (D d/6=3.65.
(h) d/b=2.83. G) djb=4.26.
(k) d/b=4.81. -

Ficure 21.—Concluded.

N


http://www.abbottaerospace.com/technical-library

104

—— 4—Vortex calculation (Eq.60)
o Experiment {water tank)

10 /

g /
¥

- A

Q.

Fiaure 22.—Comparison of theory and experiment for leapfrog
distance behind equal-span cruciform wing (p=45°).

such as strip theory, etc., the exact linear-theory solution
can be obtained by use of reciprocal theorems. This has
already been demonstrated in reference 16 and elsewhere
for the case where the tail is & planar surface of sufficiently
high aspect ratio that the linear pressure-velocity relation
can be used. The following discussion will be concerned with
the derivation of the . corresponding relationship that is
consistent with the formulation of slender-body theory
summarized in the first section of the present analysis for
the lift of a low-aspect-ratio cruciform wing having flat-
plate wing panels. This aim will be accomplished by con-
sidering certain properties associated with a second cruciform
wing identical to the first, but immersed in a uniform flow

"""""-"“"T_N
L

Q/
——_i

8
<
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field streaming in the opposite direction to that about the
first Wing,' as illustrated in figure 23. Inasmuch as
wing 1 is immersed in a nonuniform flow field, the local or
effective angles of attack and sideslip « and § are variable,
that is

E =
, (86)
El(:c,z)——-——ﬂl—%;’—)l

where o, and 8; represent the geometric angles of attack
and sideslip, and (¢,); and (g,); represent the additional
lateral velocity components induced, say, by the vortex
system trailing from a wing somewhere upstream. In order
to express the lift on wing 1 in terms of simple properties of
the flow about wing 2, it is necessary that wing 2 be at zero

sideslip, thus
B=0 87

The proper reciprocal relation for use with multiplanar
systems is given in reference 16 and is

: f J'ul(v,,)zds= ffué(Vn)ldS (88)
z ) z

where the area of the integration £ extends over both sides
of all wing surfaces, V, is the component of the perturbation
velocity normal to and directed away from the surface, and
the subscripts 1 and 2 refer to conditions on wings 1 and 2.
Since, for wings having no thickness, V, is equal and opposite
on the two sides of its surface, and is furthermore propor-
tional to & on wing component H and to § on wing component
V, equation (88) can be rewritten as follows:

f f Auy~od dy+ffAu1§7dz dz
o s

- f f Augdnda dy+ f f Aufdzdz  (89)
H Vv

Here Au refers to the difference in % on the two sides of any
surface and the subscripts H and V indicate that the inte-

Z2

O
]
[}
1
1
1

Fiaure 23.—Cruciform wing in forward and reverse flow.
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grals are to be carried over wings H and V, respectively.
In the present case, simplification occurs not only because

&=const., and =0, but also because it follows therefrom

that Aug—O on wing V.

% f f AudS= f f AusdS (90)
it 24

Now if the integral on the left side of equation (90) is re-
written in terms of ¢ and integrated with respect to-z, that is

JJauds— [ a38as dy= [ @ermty 1)
H H

Thus equation (89) reduces to

where the subscript TE refers to the values of Ap, at the
trailing edge, and if equation (26) is recalled for the lift
including the effects of the nonlinear terms in the pressure-
velocity relation of equation (10),

+3,
L=p.U. | "Aprsdy . @)

equation (90) becomes
A
B0 [ (3
H

In many problems a; varies only slowly with . If it is
assumed that o, is actuelly independent of z, equation (92)
can be simplified in the following manner:

+ao. TEAUQ +2,,, Apg \
= WU‘”f d f T‘h= OUO\[ * (~—> d
? —3% 19y LE & P -3 ! % /re Y

Inasmuch 2s wing 2 in reverse flow is composed of flat-plate
elements and is at zero sideslip, the circulation distribution
at the trailing edge Az is proportional to the span loading
! and equation (93) can be rewritten as

50

L) a(E)w ©
It is interesting to observe that this expression is identical in
form with that obtained in reference 16 for planar systems
of sufficiently high aspect ratio that the linear pressure-
velocity relation can be used. It isimportant to remember,
however, that the present application requires the wing in
reverse flow to be at zero sideslip, whereas the analysis of
reference 16 requires the wing in reverse flow to be at the
same angle of sideslip as the wing in forward flow.

It is evident that equation (94) can be applied in several
different ways. One can compute the total & induced by
the vortices at the tail station, multiply by /&, and integrate
by either analytical, numerical, or graphical means; or one
can determine a general formula for the lift due to a single
vortex and superpose the lift contributions of all the vortices.
The latter method is of particular utility where the I, dis-
tribution is of a common form, such as elliptic. This case,
which includes all low-aspect-ratio flat-plate wings having

(93)

zl

r(

Fraure 24.—Cruciform wing in the presence of a single vortex.

plan forms such that no part of the trailing edge lies forward
of the station of maximum span, has already been treated in
reference 16 but will be included here for the sake of complete-
ness. Thus, consider the problem of determining the lift on
& low-aspect-ratio cruciform wing at zero geometric angle of
attack resulting from the presence of an infinite line vortex of
strength I' passing through the point y=7% and z={ and
extending parallel to the z axis as shown in figure 24. The
wing panels will be considered to have such plan forms that
the span loading is elliptic when the wing is in flight in the
reverse direction at zero sideslip. Thus, equa.tlon (34)
yields for the wing in reverse flow

b_pUeber_o, 17 3 oy (©95)

a ay

The effective angle of attack of the wing in forward flow is

~ _(¢8)1 T h—n -
=U." " %U. = ta (96)

Substitution of equations (95) and (96) into equation (93)
or (94) yields the following formula for the lift:

1= _PpwUmso{ _1+
8o

WCE ST -

The lift on & wing in the vicinity of & number of such vortices
can be found by superposition. The Tesult so calculated
applies to the wing when the geometric angle of attack o is
zero. If oy is not zero, an additional contribution must be
included which is just the lift on the wing in the absence of
all adjacent vortices. For the present class of plan forms,
this contribution AL, can be ca.lculated by direct application
of equation (22), that is,

A Ll= wp mUozsogal B (98)



http://www.abbottaerospace.com/technical-library

106

The above result may be contrasted with that of strip
theory in which each section of the wing is assumed to act as
though it were in two-dimensional flow at an angle of attack
@;. The latter assumption results in a relation for lift of a
wing in a nonuniform flow field which resembles equation
(94), except that the span loading L/a, is replaced with a
function proportional to the locel chord. Inasmuch as l; is
not proportional, in general, to the local chord, it is evident
that the use of strip theory will usually result in error.

CONCLUDING REMARKS

Several facets of the aerodynamics of slender cruciform-
wing and tail interference problems have been investigated
in the foregoing discussions. Formulas are given for the
computation of the loading and integrated forces on cruci-
form wings and for the determination of the lift on & tail in
an arbitrary, but known, downwash field. The principal
difficulty in wing-tail interference problems resides in the de-
termination of the flow field at the tail station and stems from
the fact that the trailing vortex sheet rolls up and deforms
very rapidly behind low-aspect-ratio wings. One can always
compute the behavior of the vortex system within the frame-
work of inviscid theory, but the labor is great when & suffi-
cient number of vortices is used to give adequate representa-
tion of the actual vortex sheets. In the present study, re-
sults are given of & caleulation using 40 vortices, but even
this number proves insufficient to study the nature of the
vortex spirals at large distances behind the wing. On the
other hand, the calculations show that at sufficient distances
from the wing most of the vorticity from each wing panel is
concentrated within a single restricted region, and these re-
sults bear out the assumption often made that the vortex
system can be represented by a much simpler model having
only four vortices. If each vortex is assigned a strength
equal to the total circulation around the associated wing
panel, and is located, at the trailing edge, at the lateral posi-
tion of the centroid of the vorticity it represents, it is shown
that the lateral positians of the four vortices change with dis-
tance in such & manner that they are in close accord with the
positions of the centroids of vorticity of the actual vortex
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i
system at all distances from the wing. Consequently, the
lateral position of each of the four vortices is in reasonably

- good agreement with the lateral position of the-corresponding

vortex core at large distances from the wing, in spite of the
fact that the 4-vortex model is clearly inadequate for repre-
senting the details of the flow at small distances from the
wing.

Several aspects of the analysis of the behavior of vortex
wakes remain to be investigated in future studies. In the
first place, both the numerical study of the 40-vortex model
and the analytical study of the 4-vortex model are confined to
the case of 45° bank. Although the numerical method can
be used for other bank angles and, of course, for simpler
models, it does not appear possible to extend the present
analytical method to other bank angles. The numerical
method is slow and cumbersome, however, and there is need
for other more rapid ways for calculating the form of the
vortex system at the tail station. Also needed is a method
for estimating the form of the vortex system in the intermedi-
ate stages of rolling up. In this range, only a part of the
vorticity can logically be assumed rolled up into the vortex
cores, the remainder being in the relatively undeformed
sheet. A related problem exists even at great distances be-
hind the wing where nearly: all of the vorticity is concentrated
in the vortex cores. Replacement of the vortex cores having
finite lateral extent with line vortices of zero diameter leads
to very large errors in the induced velocities at points in the
immediate vicinity of the vortices. Inesmuch as the energy
method used for planar wings and described in reference 1
cannot be applied directly to cases involving banked cruci-
form wings, there exists a need for a method for estimating
the size and velocity distribution of the vortex cores so that a
correction can be applied to the 4-vortex results. This need
is diminished somewhat by the fact that, in many cases, the
forces on the tail are not affected by the finite size of the
vortex cores. This situation prevails whenever the vortex
cores do not touch the tail surfaces.

Ares AERONAUTICAL LABORATORY

NaTroNAL ApvisoRY COMMITTEE FOR AERONAUTICS
Morrerr FigLp, Cavrr., Oct. 25, 1966
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APPENDIX A

FORCES ON SLENDER PLANE- AND CRUCIFORM-WING AND BODY COMBINATIONS

Formulas are presented in the text of this report for the
pressures and integrated forces on slender cruciform wings
These results are obtained following the procedures of
reference 10, but differ in that the effects of nonlinear terms
in the pressure-velocity relation are now properly accounted
for., Inasmuch as the inclusion of these terms also alters
the pressures on cruciform-wing-body combinations, and
the corrected formulas have not been given elsewhere, they
will be given briefly in this appendix.

The precise problem to be discussed is that of determining
the load distribution and aerodynamic properties of slender
cruciform-wing and body combinations inclined at small
angles of pitch, @, and yaw, 8. The wing-body combination
is considered to consist of a slender body of revolution and
flat, pointed, low-aspect-ratio wings extending along the
continuation of the horizontal and vertical meridian planes
of the body as shown in figure 1. The component wings
are designated wing H and wing V, as in the case of the

wing alone discussed in the text. The plan form of wing H

is given by y==+s(z) and that of wing V by z=di(=).
The radius of the body is, in general, a function of z and is
designated by r=+y*+2z*=a(z). The analysis is confined
further to wing-body combinations having wings whose
edges are leading edges everywhere upstream from the base
section. To extend the solutions to other configurations,
further consideration must be given to the influence of the
vortex wake extending downstream from the trailing edge
of the wing. A brief discussion of this problem can be
found in reference 17. ‘

As described in the text, the perturbation velocity potential
¢ 18 related to the total velocity potential according to
equation (1), and satisfies the Prandtl-Glauert equation
given in equation (2). The general solution for slender
bodies of arbitrary cross section is given in equations (3)
through (6). ¥or the present cruciform-wing and body
combination, the solution must satisfy the boundary condi-
tions given by equation (13) on the surface of the body of
revolution and by equations (14) and (15) on the horizontal

and vertical .wings. Inasmuch as sttention is confined to
wings of zero thickness, the boundary conditions on the
wing simplify somewhat because % is zero. Once ¢ is
determined in this way, the pressure can be calculated
directly by using the relationship given in equation (10).

Following equation (7), the solutions for ¢ in the vicinity
of the wing-body combination can be written as

e=pr+9() (A1)

where ¢y represents the solution of the two-dimensional
Laplace equation for the specified boundary conditions and
g(@) is & function of z alone defined by equations (3) and
(4), or explicitly by equations (8) and (9). The function
o9 18 independent of Mach number, all of the influence being
confined to the function g(z). As in the case of the wing
alone, ¢, can be divided into components each representing
@ for a simpler problem. These components are illustrated
schematically in figure 25. Component ¢, represents the
potential for two-dimensional incompressible flow about the
wing-body cross section undergoing uniform translation in
the direction of the negative z axis and is

Pa= :I:%‘g{[——-(l—l%) r? cos 2048 (1-}%:)]-]-
I:T‘ (1—;‘,"—:)2-1-4@4 cos? 26+t (1-{%1)2_
28 (1 —I-%‘) <1+Z'—:> 2 cos 20] # }M—U,az (A2)

where the sign is positive in the upper half-plane 0<{6<w
and negative in the lower half-plane 7<{6<2x. The ex-
pression for ¢, is :

= :I:?:;{[ 1 -l—%‘) % cos 2022 <1 4%)]4-
[7'4 (1 —%;>g+4a,‘ cos? 2614 (1 —I—%:— 2+

ét2<1 -l—%) <1 -l—i:;) 72 cos 20]%}’ +U._By (A3)

<‘3 : | b :
NS PN

C 9_)'.@ \ /'/\}’+ Y + ‘ —Y
Q\ }' - /li - /%

Figure 25.—Addition of potentials for cruciform wing-body combination
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where the sign is positive in the left half-plane #/2<(6<3=/2
and negative in the right half-plane (—=/2<{6<#/2).
Component ¢, represents the potential for two-dimensional
incompressible flow associated with a source situated at the
origin and is
. _U.dS.
= or dz

Inr (Ad)

where r==+fy>+22. The perturbation velocity potential
for the flow field about a cruciform-wing-body combination
inclined in both pitch and yaw is .
»= ¢t ot 0. +9g(x) (A5)
Through application of the above equations to the pres-
sure-velocity relationship of equation (10), the following
expressions are found for the lifting differential pressures
(lower minus upper) on the horizontal wing and body

R
' V(s yg(”yb
4aﬁ<y>(1
VOH)5(+) Vi (1 )+(1+—3
oy _[B0-S) 2G|
L (F
=00
V() -k

Similarly, the lateral differential pressure (port minus star-
board) on the vertical wing and body are given by

(%) ~ & (-5 a2 1>+(1_—’)2:|}
" ‘/(1'*—?) <1+2‘>

1op2(1-%)

(A7)
4

T2y EaN o )
'2 +
1/——(1%) e
(-3
N =R

(Apy _ —48 dx (1

(A9)
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The total lift and side force exerted on a complete cruci-
form-wing and body combination can be determined by
integrating the loading over the entire surface area. It is
often convenient to carry out the integration by first
evaluating the lift and side force on one spanwise strip
and then integrating these elemental forces over the length
of the wing-body combination, thus

d(IN_ (+ebpy, o d[.af &, d
(G- a2 (55| @0
' ' 2 4
B[t [o(-$48)] o
and l

=) &) e[ ()] -

9
S PR A
[t’ (1—‘;—:+‘t‘—:>0]} (A13)

where the subscripts 0 and [ in the integrated results refer
to the values of the bracketed quantities at 2=0 and z=I,
respectively. If the wing-body combination is pointed at
the nose, the bracketed quantities vanish at z=0, and the
expressions for lift and side force reduce to

L ore [:s’ (1—§_+‘-;-)] (A14)
——9n8 [t’(l—%-l—‘;—:)]’ (A15)

The above expressions for the loadings and forces indicate
that there is & complete correspondence of the expressions for
lift and sideforce, and that the lift is independent of the angle
of yaw and the side force is independent of the angle of at-
tack. Inasmuch as the pitching and yawing moments A4
and IV about an arbitrary moment center z, are obtained by
performing the following itegrations

—_—f (5~ a:,,) 4L dz (A16)

i e x")dx(Y)‘“

it is evident that the above statements have corresponding
counterparts for these moments. Although the details of
the calculation will not be given here, it can be shown fur-
ther for cruciform-wing-body combinations having identical
borizontal- and vertical-wing panels that the resultant latoral

force /L*+Y? is independent of the angle of bank, and that
the total rolling moment is zero for all angles of bank.
Equations (A14) and (A15) show that the lift and side
force on a slender pointed wing-body combination depend
on the geometry of only the base section and not of the plan

(A17)
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form, This result is in conformity with- the more general
integral relation of equation (26) obtained using momentum
methods, but not with the result obtained in reference 10
using the linear pressure-velocity relation. The latter
analysis (here being superseded) indicates that equation (A14)
is the proper expression for the lift of & wing-body combina-

tion consisting of a low-aspect-ratio triangular wing mounted

" on a slender pointed body that is cylindrical along the wing
root, but not, for instance, for a conical wing-body combina-
tion. The conical configuration is of particular interest be-
cause of the existence of a supersonic conical-flow solution
(ref. 18), and because it has recently been suggested (e. g.,
ref. 19) that that result be used to check the applicability of
approximate solutions., Comparison reveals, however, that
the reaults of reference 18 do not agree with equation (A14),
but check the slender-body results of reference 10. The
explanation is that the linear pressure-velocity relation is
used in the supersonic coiical-flow solution, and that the
latter results agree with those given here if the effects of the
additional terms in the pressure-velocity relation are in-
cluded in the analysis.
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TABLE I.—CALCULATED LATERAL POSITIONS OF 40 VORTICES AT VARIOUS DISTANCES BEHIND A SLENDER
CRUCIFORM WING AT 45° BANK

’ Vortex numbers
w075
1 2 3 4 5 ] 7 8 ] 10 11 12 13 14 15 16 17 18 19 20
0 v 0.2076; 0.3704| 0.4667} 0.5367) 0.5599] 0.6312{ 0.6616] 0.6828] 0. 0. 7060 0.2075‘ 0.3704] 0.4667] 0.5367{ 0.5300| 0.6312] 0.6616{ 0.6328| 0, 0. 7060
F4 0.2078) 03704} 0.4607] 0. 5367 0.5809] 0.6312] 0.8616] 0.6828| 0.7008] 0.7060;—0.2076|—0. 3704| —0. 4667)—0. 5367|~—0. 5899|—0. 6312)—0, 6616)—0. 6328(—10. =0, 7060
1 - 0.2078] 0.3708{ 0. 0.5373| 0. 0.6318] 0. 0. &% 0.6985] 0.2074| 0.3600{ 0.4661] 0.5360) 0.5892] 0.6305] 0.6609| 0.6328| 0.6990( -0.7134
z! 0.2050] 0.3709] 0.4673] 0.5374] 0.5207| 0,6320} 0. 0.6843| Q. 0. 7150|~-0. 2071} —0, 3698} —0, 4660] —0. 5359 ~0. 5890{—0. —0. 6606|—0. 6812]|—0, 7005 —0. 6969
3 v 0.2082| 0.3718] 0.4684} 0. 0. 5818 0Q.6333| 0.6638] 0. 0.7027| 0.6867( Q. 0.3680| (.4650 0.5348| 0.5880] 0.6292| 0.6800{ 0,6833| 0,7073| 0.7160
F4 0.2088} 0.3721{ 0. 4687} 0. 5389 0.5923] 0. 0.6646] 0.6880; 0.7121 o.m—o.msa]—am —0. 46471 —0. ~—0, 5875{—0. 6288 —0. 6560)—0, 6781|—0, 6979]—0, 6300
] v Q 0. 3727 0.4&95' 0. 0. 5032{ 0.6348) 0.66854] 0.6831| 0.6991] O. 0.2085] 0.3680] 0.4638| 0.5336| 0.5368| 0.6282] o. 0.6857[ 0.7173] 0.7140
t4 0.2096] 0.3732] 0.4700{ 0. Q. 0.6357] 0.6675] 0.6935] 0.7252; 0.7219]—0. 2055] —0. 3675 —0. 4634]—0. 5330) 0. 5860] —0. 6274 —0, —0, 6763]—0, 6911]—0. (682
7 I 0.2089] 0.3738| 0.4707] 0.5411| 0. 5046] 0. 6365] 0.6675] 0.6337| 0.6924] 0.6601| 0.2061} 0.3671| 0.4627| 0.5324] 0.5857| 0.6274| 0.6604] 0.063%| 0,7255f 0.7110
z 0.2105; 0.3744] 0.4714} 0. 5420 0. 0.6370] 0.6711| 0.7004{ O. 0 7220| —0. 2047} —0. 3664|—0. 4621| —Q. 5317]—0. 5845(—0, 6261|—0. 8568|—0. 6727]—0 6812|—0. 0578
1 14 0,2007| 0.3785} 0.4730( 0. 5438) 0.5975 0.6402| 0.6724] 0.6846] 0.6759] 0.8570( 0.2053| 0.3652 0.4605| 0.5302{ 0.5837[ 0. 0.6632[ 0.7003} O 0. 7040
z 0.2122] 0.3767] 0.4742{ 0. 0. 0.6429] 0.6800] 0.7173] 0.7549] 0, 7212{—0, 2031|—0. 3642] —0. 4595|—0 5200{~—0. 58 —0.6238—0.0565—0.6072—0.8581 —0.03%4
15 v 0.2105] 0.3774| 0. 4754 o.uas'u. 0.6441 0.6774; 0. 0.3587' 0.6500; 0.2045] 0.3634] 0.4584] 0.5281 068'2?‘ 0.6268]| 0.6697| 0.7143] 0.7418| 0.00568
[4 2139 0.3792) 0.4771) 0. 5488) 0.6039) 0. 6492 0. 6924] 0. Q. 0. 7192;—0. 2015{—0. 3631} —0. 4671 —0.6233—0.6791 —(. 6218) —0. 8544|—0, 0560} —0, 6343] —0. 6260
pid v 0.2116{ 0.3803{ 0.4780] 0.5507| 0.6054| 0.6505] 0. 0.6683] 0.6341| O. 0.2032| 0.3807] 0.4554| 0.5253] 0.5807| 0.6203 0.6848| 0.7324] 0.7400| 0.0859
z 0.2165( 0.3829; 0.4817] 6. 5541 0.6110} 0. 0.7164] 0.7651| 0.7731] -0. —0. 1991|—0. 3589{ —0, 4535| 0. 5226]—0. 5755| —0. 6193|—0. 65610} —0, 6344|—0, 5998|—0. 0116
27 v 0.2127) 0.38311 0. 4826] 0. 5561 0.6104] 0.6575| 0.6834] 0.6515| 0.6158] 0. 0.2019] 0.3580; 0.4525| 0.5231] 0.85804] 0.6350; 0.7041] 0.7452 0,7301| 0.6801
z 0.2192) 0.3867| 0.4885| 0. 5601} 0.6193| 0.8748] 0.7450| 0.7875| O©. 0. 7218]—0. 1968| —0. 3550} ~ 0. 4500} —0. 5191|~0, 5721| 0. 6174)|—0. 6408{ —0. 6075]—0. 5718|—0., GOOU.
r 0. 0.3859| 0.4863] 0.5595] 0.6156] 0.6652] 0.6772] 0.6316] 0.6044| 0.6434] 0.2006] 0.3554] 0.4400| 0.5214| 0.5813| 0.6440 0.7226' 0, 7520 0‘7177 0.0784
F4 0. 2220) 0.3807| 0.4015] 0. 5666) 0.6287] 0.6921) 0.7727}. 0.5038] 0.7693] 0. —0. 1848} —0. 3529} —0. 4467 —0. 5157 —0. 6690 —0. 6160|—0. 6246]—0, 5770)— -
7 0. 2148 0.3888| 0.4000] 0.5641| 0. 0210} 0.6728| 0.6660] 0.6115] 0.5976| 0.6426] 0.1993] 0.3528] 0.4476] 0.5203| 0. 0. 6568 0.0702
2 0. 2248] 0.3948| 0, 4069] 0. 0.6392¢ 0.7129; 0.7881} (L8137 0.7662| O0.7397|—0. 1924|—0. 3501| 0. 4435]|—0. 5125|—0 6660—0.613‘9—0.6040 —0 6475-05342—0.6305
47 v 0.2162] 0.3925} 0.4950; 0. 5703} 0.6283] 0. 0.6492f 0.5873) 0.5026] 0.6411] 0.1975] 0.3497| 0.4449] 0.5197] 0.5881) 0.6785] 0.7550 0, 0818
z 0.2287] 0. 0. 5043} 0. 5340 0.6547{ 0.7466] 0.8282] 0.8202] 0.7631} 0. 7552]—0. 1896|—0. 3464]| —0. 4363 —O.B{B.'aL—O.Eﬁﬂl —0.6079 —0.6725—0.5099—0.6107 —0. 6607
55 Ll 0.2174| 0.3963} 0. 5001| 0. 5766] 0. Q. 6320}- 0. 6284} 0.-68814- 0. 5817| -0. 0.1957} -0.3467| 0.4428] 0.5202| 0.5950{ 0.7034| 0.7667| 0.7364| 0.06777| 0.0800 -
z 0.2328| 0.4065) 0.5123] 0. 5952) 0.6722] 0.7824] 0.8522} 0.8212| O. 0.7724|—0.1868] 0. —0. =0. 5048) —0. 5583} —0, §942{—0. 6370} —0. 4776) —0, —0, 5630
a3 v 0. 21871 0.4000} 0.5052! 0. 5831 0.643185] 0. 6756 0. 0.5044] 0.6383] 0.1030] 0.3429| 0.4410] '0.5219] 0.6043] 0.7272] 0.7718 0.7218] 0.6674] 0.0039
z 23671 0. 4127 0. 0.6073} 0.6918} 0.8191} 0.8703] 0.8104] 0.7631] 0.7917}—0. 1842]|—(. 3305 —0. 4317|—0. 5010] —0. 5542 —0. 5727| ~0, 5024| —0, 4505 —0.4930-—0.5400
n bl 0.2198/ 0. 4037] 0.51031 0. 5897| 0.6513| 0.6033] 0.5852| 0.5443] 0.5090] 0.6356) 0.1921f 0.3413] 0.4398] 0.5247| 0.6189| 0.7477( 0.7718| 0,7069| 0,6005 0.7032
r 0.2409} 0.4191] 0.5297| 0.6203] 0.7137| 0.8531| 0.8831{ 0.8165] 0. 0. 8124] —0. 1816{—0. —0. 4280] — 0. 4874)~—0, 5496|—~0. 5454| —0. 4675)—0, 4281| 0, 4848| ~0. 6250
™ A 22091 0.4073} 0.5154] Q. 5065] 0. 6580; 0.6468} 0.5653] 0.5353] 0.60411 0.6317| 0.1004] 0.3389] 0.4394] 0.5288 0.6300 0.7639 0.7675f O. 0.6567| 0.7134
Fo4 0. 2451 0.4.2581 0. 5391 Q. 0. 7380 0.88&' 0.8913| 0.8133| 0.7770 0.8339;—0.1791|—0. 3331| 0. 4245/ —0. 4039 —0. 5438{ 0. 5139 —0. —0.4097|~-0. 4774} —0. 5082
87 v 0.2220 0.4109] 0. 5208 0. 0.6856 0.6275] 0.5476] 0.5357| 0.6086] 0. 0.1886| 0.3368] 0.4384| 0. 0.6464| 0.7788] 0.7507| 0.6782| 0.6557| 0.7240
r 0.2495] 0.4327| 0. 5489] 0. 6488 0. 7649] 0.2090; 0.8959| 0.8107| 0.7884| O. —0.1767}—0. 3301| —0. 4211|—0. 4903] —0. 5364|~-0. 4800| —0. 4032|—0. 3948|~0. 4699|—0, 4590
95 bl 0. 2220 0.4145} 0. 5257} 0.6102] 0.6706] 0. 6086} 0. 5320} 0. 5357 0. 8197] 0.1868] 0.3320] 0.4401] 0.5307) 0.6845| 0.7826| 0.7403| 0.6855( 0.0568] 0.7340
z 0.2539] 0.4398] 0.5592} 0.6645) 0. 70943] 0.9304} 0.8976] 0.8091 0.8016 0. —0. 1744]—0. 3272 —0. 4177(—0. 4865| —0. 5284) —0, 4448|—0. 3751]{ —0, 3827} -0, 4620| —0. 4692
110 Y 0.2247] 0.4211| 0. 5353| 0.6232} 06749} 0. 5661 0.5099] 0.5400| 0.6193] 0.6047] 0.1836] 0.33211 0.4424] 0.5533 0.7007] O. 0.7264| 0.6447| 0.6024] 0.7540
z 0.2624] 0.4537| 0.5792] 0.6834| 0.8529] 0.9624| 0.8972) 0.8090| 0.8290| 0.9187(—0.1702|—0. 3220| —0. 4113} —0. 4790]—0. 5017| ~0. 3783| —0, 3284| —0, 3644| —0. 4465{—0. 4284
130 r Q. 2287] 0.4288] 0. 0. 6403 0.5162] 0.4932| 0.5518] 0.6271 0. 0.1785] 0.3207] 0.4482] 0.5761] 0.7469] 0.7771| 0.6939] 0.6260| 0.0778{ O.7746
z Q. 2740} 0.4730; 0.6078] 0.7411| 0.9321| 0.8858] 0.8940] 0.8177| 0.8725 —~0. 1649] —0. 3152| —0. 4024 —0. 4| —0. 4536/ ~0. 2062| 0. 2808| —0. 3465|—0, 4221{—0 3039
150 v 0.2283) 0.4378! 0. 5610 0.6583! 0.6405] 0.4704| 0. 4888] 0.5857| 0.6297 0.646&' 0.1758] 0.3291| 0.4576] 0.6048| 0.7833 0.7534] 0.6850| 0.6183; 0,7000] 0.7844
z’ 0.2861 0.4936; 0. 6386 0.7929] 1,0028] 0.9926] 0.8936) 0.8350] 0.9247] 1.0110)—0.1600]—0.3036]— 0. 3520] —0. 4498} —0. 3010]~0. 2279] —0. 2474| —0. 3315]—0. ~0.2018
170 ol 0. 2200] 0.4456] 0.5738) 0.6606] 0.6981| 0.4564( 0.4919 o.wro.m 0.5114| ©.1725f 0.3305] 0.4701| 0. 0.8004| 0.7243] 0.6440| 0.0194{ 0,720 0.7838
z 0,20841 0.5153| 0.06716] 0.8508} 1.0630| 0.9920] 0.8978| 0.5669] 1.0816] 1.0487{—0.1555}—0. 3018|—0. 3821|—0. 4268]—0. 3227| —0. 1734] —0, 2225| —0. 3169 —0. 3487|—0. 2252
160 Fd 0.2305| 0.4530} 0.5866| 0.6778] 0.5715{ 0.4446] 0. 0.5894 0.6148 0.4 0.1697] 0.6733 0.8254| 0.6640] 0.6283] 0,6275| 0.7467| 0.7741
F4 0.3111| 0.5379| 0.7068} 0.9142] 1.1129| 0 9903 0.9067| 0.9022| 1.0370 0853—0.1511—0 —0.3698—0.3959 —0. 2501 ~0. 1309]—0. 2025|—0. 2981|—Q, 3012]—0. 1680
210 - 0.23114 0.4599] 0.5993] 0.6793] 0.5337] 0.4405} 0.5115} 0.5084} 0.5987| 0.4510; 0.1676 0.7004| 0.8323 0.6681] 0.6183| 0,6411{ 0,7082 0.75675
F4 0.3238) 0.5614] 0.7440] 0.9507) 1.1 0.9904] 0.9205] 0.6430] 1.0917} 1.0788]—0.1460 —0%&6—03555—0.3575 —0.1768| ~0. 0980| —0. 1854| —0. 2763} —0. 2480)—0. 0070
230 v 0.2313| 0.4685] 0.6121| 0.6735} 0.4871| 0.4416] 0.5267| 0.6045! 0.5770] 0.4201] 0.1660) 0.3453] 0.5242 0.7 0.8312) 0.6453] 0.6132] 0.6888] 0,7818] 0.7304
F4 0.3366! 0.3857| 0.7835] 1.0478) 1.1 0.9830] 0.9403| 0.9881) 1.1432| 1.0871|—0.1426]—0.2777{—0. 3390} —0. 3116} —0. 1048{~0. 0721|—0. 1699| —0, 2512| —0, 1923|—0. 0434
250 ol 0.2313{ 0.4727] 0.6248] 0.6812{ Q. 0.4469| 0. 0.6072] 0.5536] 0.4131] 0.1652{ 0.3535| 0.5468| 0.771 0.8232| 0.6270 0.6130] 0.6704| 0.7631 0.7131
F4 0.3495| 0.6106] 0.8253] 1.1134) 1. 2043| 0.9983| 0.9668] L 0384 1.1 1. 0922{—0. 1382{—0. 2677} —0. 3199]—0. 2500(—0. 0359|~—0. 0510|—0, 1549} —0, 2207|-0,1338| 0.0032
20 ol 0.2309} 0.4750} 0. 6374] 0.6434| 0.4350! 0.4567} 0.5548) 0.6063] 0.5251] 0.4024f 0.1650] 0. 0.5712 0.8046) 0.8097| 0.6130; 0,6177| 0.7013] 0.8000{ O0.0807
F24 0.3a23| 0. 0.8695] 1.1760] 1.2183] 1.0068] O. 1.0863] 1.2332( 1.0957|—0.1334]—0.2564]—0. 2080| —0. 2007 0.0285}—0. 0331|—~0. 1305]—0. 1852|—0,0742| 0.0428
290 v 0.2303] 0.4810| 0.6497| 0.6214| 0.4116] 0.4674] 0.5660| 0.6020] 0.4975| 0.3964] 0.1655! 0.3738)° 0.5971| 0.8283| 0.7919| 0.6030| 0.6270] 0.7230| 0.8028| O0.0675
F4 0.3749] 0.6623] 0.9162] 1.2340| 1.2295| 1.0189| 1 0382 1.1369] 1.2703| 1.0986|—0.1281(—0. 2438}-0. 2732{--0,1380] 0. 0889]—0, 0176]|—0. 1234|—0. 1450{—0, 0146 0,0701
310 'l 0. 22931 0.4591 0. 6612 0.5960] Q. 0. 0. 5785] 0. 0.1667| 0.3856] 0.6244| 0.8470| 0.7710} 0.5968! 0.6404| 0.7436] 0.8018] 0.6470
z 0.3874| 0.6889] 0.9654] 1. 2895 L2366 1.0352] 1.0809] 1.1875 1.3015 1.1013—0.1223-0.2297 —0.2453]—0.0722] 0.1435]—0. 0035/—0. 1024| —0.1007) 0,0441] 0,1041
330 7 0. 22321 0.4938] 0.6716} 0. 5679 0.3804 0.49&5 0.5769| 0.5846| 0.4392 0. 0.1684| 0.3884] 0.6520| 0.8606] 0.7482| 0.5944| 0.6567| 0.7025f 0.7075 0.63056
z 0.3997| 0.7159] 10171} 1.3397 1.1261f 1.2375| -1.3268] 1.1055|—0.1157)—0. 2142]—0. 2142[—0. 0044] 0.1923| 0.0097(—0.0785{—0.0532( 0.1014] 0.1379
350 'l 0.2269] 0.4882| 0. 6502 0.5378 0. 0.5121 0.5768| 0.5720] 0.4134] 0.4027] 0.1708| 0.4120| 0.6822{ 0.8693| 0.7246| 0.5057| 0.6748| 0.7704] 0.7003] 0.6104
Fd 0.4117] 0.7434| 1..0713 117221 1.2867 1.3485] 1 1108|—0.1083|—0.1973|—0.1788| 0.0543] 0.2351] 0.0226|—0.0502|—0.0030| 0.1563| 0.1484
370 v 0.2255| 0.5024] 0.6868 0.5065| 0.3662| 0.5271{ 0.5736] 0.5573| 0.3834| 0.4115] 0.1738] 0.4264) 0.7119] 0.8733| 0.7012| 0.6008) 0.6935| 0.7042| 0.7807] 0,6055
F4 0.4235) 0.7712] 1.1277] 1L 4248} 1.2518} 1.1124] 1. 2184} 1. 3347} 1.3615] 1.1183/—0.1001|—0.1790]—0.1420| 0,1331) 0.2723] 0.0369]—0.0174] 0.0491] 0.2100) 0,1084
390 v 0.2240] 0.5063| 0.6302| 0.4748| 0.3641| 0. 5409 0.5679] 0. 5403] 0.3677} 0.4220| 0.1772| 0.4413} 0.7418| 0.8720 0.‘6790 0.6000] 0.7118} 0.8070{ 1,7691| 0.5078
b4 0.4348( 0.7093} 1.1860] 1.4593] 1.2572] 1.1460) 1.2638| L.3814{ 1.8728 1.1 —0, 0909|—0.1583|—0.1007] 0.2014] 0.3038| 0.0501| 0.0164] 0.1031| 0.2608 0.1828
410 v 0, 2224} 0.5099] 0.6909| 0.4435| 0.35846} 0. 5532| 0.5602| 0.5218! 0.3508] 0.4384] 0.1811| 0.4569] 0.7712| 0.8635f ©.e588| 0.6200] 0.7288| 0.8178} 0.7560( 0.5930
F4 0. 4450} 0.8277) 1. 2456] 1.4881{ 1.2635] 1.1848| 1.3081| 1.4265| 1.3808| 1.1423|—0.0807|—0.1383|—0.0567] 0.2684| 0.3304] 0.0858| 0.0588| 0.1584| 0.3080| 0.1930
430 sl 0. 2208| 0.5134| 0. 68831 0.4135] 0.3674| 0. 5838 0. 8508] 0, £011] 0.3369] 0.4512| 0.18565| 0.4730| 0.7008] 0.8603| 0.6415 0.6352| 0.7440] 0.8200| 0.7416] 0,013
F-4 04566 0.8564| 1.3061| 1.5113| 1.2708] 1.2256] 1.3512} 1.4698| 1.3869| 1.1599|—0.0696]—0.1161|—0.0072| 0.3337| 0.3528 0.0837| O, 1030, 0.21{8 0.3536 0.3127
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TABLE -IL—CALCULATED LATERAL POSITIONS OF 40 VORTICES AT VARIOUS DISTANCES BEHIND A SLENDER
CRUCIFORM WING AT 45° BANK—Continued

, Vortex numbers
T
1 2 3 4 5 (] 7 8 9 10 11 12 13 - 14 15 18 17 18 19 20
450 v 0.2193) 0. 5166} 0.6823| 0.3859| 0.3723) 0.5726] 0.5401| 0. 4789{ 0.3266| 0.4666] 0.1902] 0.4806] 0.8285| 0.8487| 0.6274] 0.6545| 0.7571] 0.8323 0.7263] Q.5021
r 0.4689) 0.8854] 1,3667( 1.5202{ 1.2706 1.265¢] 1.3928] 1.5112] 1.30156] 1.1816]|—0.0574|—0.0027| 0.0446] 0.3966 0.3718] 0.1044] 0.1450] 0.2721] 0.3055 0.2271
470 v 0.2178] 0. 5197( 0.6730] Q. 3615| 0. 8788 0. 5707 0.5282| 0.4551| 0.3191] 0.4821) 0.1853| 0.5066] 0.8515] 0.8342] 0,6163] 0.6755| Q. 0.8364] 0.7108f 0.5357
-4 0.4770] 0.9145| 1.4269| 1.5423| 1.2000] 1.3143| 1.4323} 1.5502] 1.3952] 1.2076—0.0443)—0,0681| 0.0999| 0.4565| 0.3886] 0.1285| .0.10942| 0.3209] 0.4340( 0,2416
490 v 0.2167| 0.5227| 0.6605| 0.3412) 0.3868| 0. 58490} 0. 5156] 0.4205] 0.3144] 0.4970; 0.2007| 0.5239] 0.8740{ 0.8173] 0.60068 O. 0.7774| 0.8383] 0.6850 06021
F4 0,4868| 0, 0437 1.4861] 1. 5515| 1.3023| 1.3615] 1.4702| 1. 5863 1.3084] 1.2377)—0.0303|—0.0425] 0.1580] 0.5131] 0.4042] 0.1583] 0.2410] 0.3381| 0.4692] 0.2568
510 ¥ 0.2156{ 0.5254| 0.6440| 0.3252| 0. 3058} 0. 5882] 0. 5025| 0.4025| 0.3121} 0.5108] 0.2084] 0.5416} 0.8038| 0.7986| 0.6053f 0.7234] 0.7848 0.83<0| 0.6801f 0.6110
4 0.4964] 0.9730] 1. 5437 1.5583] 1.3166] 1.4104| 1.5062| 1. 6185 1.4013| L 2718{—0.0152}—0.0157] 0.2187| 0.5859| 0.4192| 0.1 0.2881 (L4462 0.5011| 0.272%
530 y 0.2149} 0.5278| 0. 6286] 0.3130| 0.4058{ 0. 5804| 0.4891] 0.3750| 0.3121] 0.5233| 0.2123| 0.5695] 0.9108] 0.7780 0.6038] O0.7480] 0.7006] 0.8358| 0.6663] 0.6220
F4 Q. 1.0024} 1. 5093( 1. 5838| 1 3332] 1.4607| 1.5403| 1.6462| 1.4043| 1.3097| 0.0008] 0.0120| 0.2814] 0.6147| 0.4340{ 0.2241| 0.3352] 0.5040] O.5301} 0, 2804
550 v 0.2144] 0.5300] 0.6058| 0.3041| 0. 4164 0.5885] 0,4757| 0.3481] 0.3142| 0.5339} 0.2184| 0.5778| 0.¢241| 0.7586| 0.6041{ 0.7750] 0.7951] 0.8312] 0.6539] 0.6368
z 0.5151| 1,0320] 1,6524| 1. 5680| 1.3522 1.5120] 1.5728| 1. 6601} 1.4074| 1.3511; 0.0174| 0.0400 0.3457| 0.6594| 0.4491| 0.2841] 0.3819] 0.5612| 0.5565| O.3082
570 v 0.2143] 0. 5320} 0.5320| 0.2978| 0.4274] 0. 5853| 0.4625] 0.3227] 0.3183| 0.5421] 0.2248] 0.5963| 0.9342] 0.7885] 0.6063| 0.8007| 0.7984| 0.8249| 0.6430] 0.6533
4 0. 5244| 1.0816| 1. 7026| 1.5740| 1.3738{ 1. 5640} 1.6036] 1.6875| 1.4110[ 1.3954| 0.0350] 0.0708| 0.4110] 0.7002] 0.4644] 0.3081{ 0.4281| 0.6175{ 0.5807 0.3202

TABLE II.—CALCULATED LATERAL POSITIONS OF CENTROIDS OF VORTICITY OF 40 VORTICES BEHIND A SLENDER
CRUCIFORM WING AT 45° BANK

P Vortex numbers 4o Vortex numbers d Cy Vortex numbers d Cy Vortex numbers
00335 T wVig WIg g wyig g -
1to10 11 to 20 1to10 11 to 20 1to10 11to 20 1to10 11to 20
0 -4 0. 5854 0. 5554 47 §e’ 0. 5454 0. 5053, 190 v 0. 5147 0. 5960 410 I 0. 4654 0. 6453
zd 0, 5564 —0, 5554 2’ 0. 6284 —0. 4820 z/ 0. 8484 ~0. 2553 F24 1174 0.1115
1 04 Q. 8551 0. 5558 55 y 0.5437 |- 0.5670 210 I’T4 0. 5104 0. 6003 430 v 0. 4608 0. 6409
24 0. 5569 —0. 5537 F24 0. 8408 —0.4685 z 0.8787 —0.2230 z, 1.1995 0.1461
3 v 0. 5/47 0. 5560 63 5o 0. 5420 0. 5687 230 ¥ 0. 5080 0. 6047 450 be' 0. 4562 0. 8545
£ 0. 5600 0. 5508 F24 0. 6532 =0, 4570 z/’ 0. 9088 —0.1005 2 L2274 . 0.1810
5 ye’ 0. 5543 0. 5564 71 04 0. 5403 0. 5704 250 124 0. 5018 0. 6091 470 v’ 0.4518 0. 8591
2y 0. 5631 —0. 5476 z’ 0. 6857. —0. 4443 2 0. —0. 1578 E2 1. 2550 0.2169
7 v 0. 5639 0. 5568 70 - 24 0, 5388 Q. 5721 270 1-24 0. 4971 Q. 6138 490 1-24 0, 4470 0. 6637
F24 0. 5662 ~0. 5444 z,’ 0. 6781 —0.4217 E24 0. 9685 —0.1248 2’ L 0.2513
n 1.4 0. 5530 0. 5577 87 pe’ 0. 5369 0.5738 260 124 0. 4927 0. 6180 510 124 0. 4424 0. 6083
2’ 0.5724 —Q. 5382 2’ 0. 6905 —0. 4192 zo 0. 9931 —0.0917 2’ 13007 0. 2869
15 1’24 0. 5622 0. 5585 05 04 0. £362 0. 5756 310 124 0.4882 0. 6225 530 124 Q. 4378 0.6729
2 0. 5787 ~0. 5319 z’ 0. 7029 . —Q. 4068 z’ 1.0275 —0.0584 E24 1. 3384 0.3226
2 [04 0 5500 0. 5508 110 124 0. 5320 0. 5788 330 ’04 0. 4536 6270 5650 -24 0.4332 0.6775
[%4 0. 5830 ~0, 5226 L4 0. 7260 —~0. 3530 7/ 1. 0568 —0.0249 2’ 1. 3638 0.3585
104 0. 5{96 0. 5611 130 ¥’ 0. 5277 0. 5830 850 | 24 0.4701 0. 6318 570 04 0.4288 0. 6821
z’ 0. 5973 ~0.5132 z/ 0. 7568 ~0,3512 2o 0856 0. 0088 2’ 1.389%8 0. 345
B v 0. 5493 0. 5624 18 v 0. 5234 - 0.5873 370 104 0. 4745 0. 6362
7,/ 0. 6087 —0. 5039 2/ Q. 7875 —0. 3194 z/ 11144 0. 0428
ye 0. 3471 0. 5036 170 154 0. 5101 0.5016 |- 390 124 0. 4700 0. 6407
= 0.6160 —0. 4045 2/ 0. 8150 —0.2874 2s L 1430 0.0771
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