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SECOND-ORDER SUBSONIC AIRFOIL THEORY INCLUDING EDGE EFFECTS *

By Mivton D. Van Dygs

SUMMARY

Several recent advances in plane subsonic flow theory are
combined into a unified second-order theory for airfoil sections
of arbitrary shape. The solution is reached in three steps:
The incompressible result ts found by integration, it i8 con-
verted into the corresponding subsonic compressible result by
means of the second-order compressibility rule, and it is ren-
dered uniformly valid near stagnation points by further rules.
Solutions for a number of airfoils are given and are compared
with the resulls of other theories and of expertment. A straighi-
Jorward computing scheme is outlined for calculating the sur-
Jace velocities and pressures on any airfoil at any angle of
attack.

INTRODUCTION

Thin-airfoil theory provides a useful first approximation
to the incompressible flow past two-dimensional airfoils,
and the results can be immediately extended to subsonic
compressible flow by the Prandtl-Glauert rule. It is natural
to attempt to improve this simple theory by successive
approximations so as to increase its accuracy for thicker
airfoils and higher subsonic Mach numbers. There results
o series expansion of the flow quantities in powers (supple-
mented by logarithms in the fourth and higher approxima-
tions) of the airfoil thickness ratio, camber ratio, and angle
of attack.

For incompressible flow, the higher-order theory has been
studied by various writers, in particular Riegels and Wittich
(rofs. 1 and 2) and Keune (ref. 3). A less straightforward
sories of approximations was developed by Goldstein (ref.
4). Perhaps the most concise exposition of higher-order
incompressible thin-airfoil theory is given by Lighthill
(vef. 5).

For subsonic compressible flow, the corresponding analysis
was first undertaken by Gértler (ref. 6),followed by Hantzsche
and Wendt (refs. 7 and 8), Schmieden and Kawalki (ref. 9),
Kaplan (refs. 10 and 11), Imai and Oyamsa (refs. 12 and 13)
and others. These investigators treated only specific simple
shapes by rather laborious analysis. Later, it was discovered
that particular integrals of the second-order iteration equa-
tion can be expressed in terms of the first approximation
(refs. 14 and 15). This permits the second-order subsonic
solution for any profile to be given in terms of integrals
(refs. 156 and 16). However, the resulting solutions are
sometimes incorrect everywhere for airfoils with stagnation
points, for reasons to be discussed later.

Recently Hayes (ref. 17), improving on a result of Imai
(ref. 18), has given & second-order similarity rule for surface
pressure that implies a second-order extension of the Prandtl-
Glauert rule (ref. 19). This remarkable result was overlooked
by earlier investigators because they did not calculate sur-
face pressures, but were content with finding surface speeds,
for which the second-order compressibility rule is more
complicated. These rules reduce the second-order problem
of subsonic compressible flow past airfoils to the correspond-
ing incompressible problem.

However, the solution by successive approximations
breaks down near leading and trailing edges if there are
stagnation points. The result is therefore merely a formal
series expamsion, which fails to converge near the edges.
In first-order theory spurious singularities arise at stagnation
edges, but it is known how they can be teken into account,
since they are integrable. In the second approximation,
however, these singularities are intensified, so that at round
edges they are no longer integrable. In any case, the calcu-
lated speeds and pressures are incorrect near such edges,
and more so in the second approximation than the first.
Moreover, in subsonic compressible flow the second ap-
proximation may be incorrect everywhere as a consequence
of the defects in the first approximation.

For round edges in incompressible flow, previous in-
vestigators have shown how these defects can be corrected.
Riegels (vef. 2) gave a simple rule that renders the first-
order thin-airfoil solution valid near the edge. Lighthill
(ref. 5) gave an equivalent rule for the second approxima-
tion. Recently, corresponding rules have been developed
for higher approximations, for sharp as well as round edges,
and for subsonic compressible flow (ref. 20).

Tt is the aim of this paper to combine these recent advances
into & unified theory. There results a uniform second ap-
proximation to subsonic flow past any profile at angle of
attack, expressed in terms of integrals that can, if necessary,
be evaluated numerically. It may be noted that, except
possibly for certain perticular shapes at isolated Mach
numbers, the resulting solution is now generally believed
to be valid only below the critical Mach number—that is,
for purely subsonic flows. Although only flow quantities
at the airfoil surface are considered here in detail, the entire
flow field could be treated in the same way.

For numerical computation, the most useful method
appears to be that initiated by Riegels and Wittich (refs.
1 and 2) and independently by Germain (ref. 21), with

1 Supersedes NAOCA TN 3390, “SBecond-Order S8ubsonic Airfoll-Section Theory and its Practical Application,” 1955, and portions of NAGCA TN 3343, ‘“Subsonic Edges in Thin-Wing and
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extensions by Watson (ref. 22), Thwaites (ref. 23), and
Weber (ref. 24 and 25). It requires a knowledge only of
the airfoil ordinates at a specified set of points. In this
report a straightforward scheme, based on an extension of
this method, is given for computing the second-order sub-
sonic solution for any airfoil. The reader interested only
in calculating & specific case, without necessarily under-
standing the details of the theory, can turn directly to the
section “PRACTICAL NUMERICAL COMPUTATION.”

The author is indebted to R. T. Jones for many belpful
discussions throughout the course of this work.

THEORY

From the preceding remarks it is clear that the solution
is reached in three steps. First, the formal second-order
incompressible solution is found by integration.
this is converted into the corresponding subsonic com-
pressible solution by means of the second-order compressi-
bility rule. Third, this is modified near stagnation points
by the appropriate rules for round or sharp edges. These
three steps will be considered successively.

FORMAL INCOMPRESSIBLE SOLUTION

The expansion of the velocity components in a formal
series of powers of the airfoil thickness ratio, camber ratio,
and angle of attack has been discussed in detail by Lighthill
(vef. 5). It will suffice here to summarize his results for the
second approximation. We mainly follow his notation
except to meke it more mnemonic, and to suppress his
parameter e characteristic of the airfoil thickness, which ig
only convenient in the detailed analysis.

Accordingly, consider an airfoil of moderate thickness and
camber at a moderate angle of attack to a uniform sub-
sonic stream (fig. 1). It is essential that the x axis be
chosen to pass through both the leading and treiling edges.
Let the upper and lower surfaces of the airfoil be described by

y=Y@)=C@) = T() ey
y

el

where C(z) describes the mean camber line and 7'(z) the
thickness. The airfoil extends over the interval z,<z <z,
which is usually conveniently taken 4o be either —1<z<1
or 0<z<1. All symbols are defined in Appendix A.

First-order solution.—In the first approximation of thin-
airfoil theory, the condition of tangent flow at the airfoil
surface is imposed on the two sides of the chord line y=0
rather than at the surface, and requires that

== Tow |

Fiarre 1.—Notation for airfoil.
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Second, .
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The corresponding horizontal velocity disturbance on the
chord line, which is required for calculating the surface
pressure, consists of a term associated with the airfoil
thickness, and another associated with its camber and
angle of attack. For the thickness

me_ 1 L7 T (£)dE
U =J, z—t @

and for the camber and angle of attack

p-( I ()5

The latter result is due to Munk (ref. 26) and the former
was first given by Pistolesi (ref. 27). Cauchy principal
values are indicated in each integral.

The surface speed is then given to a first approximation by

O Uy We
gt TED ()

Second-order solution.—In the second approximation, the
tangency condition is transferred from the airfoil surface
to the chord line by Taylor series expansion. The condition
on the second-order increment in vertical velocity is thus
found to be

2 =Cu@)E ) (60)
y=0
where

(x)— 0+“1=

(6b)
Ta(a:)=% T+"%; c

(We depart here from Lighthill’s notation in order to em-
phasize that the functions : and T: are effectively the
camber and thickness for some fictitious airfoil.) The
problem is identical with that in first-order theory except
for the condition at infinity, which is readily disposed of.
Thus, corresponding to 7T, is the increment in horizontal
velocity

w1 T L,
e T 2

and corresponding to C;

e L
U #\z—2

The velocity components on the surface of the airfoil
include also terms arising from the transfer from the chord
line to the surface, which is again effected by Taylor series
expansion. Hence the surface speed is given to a second
approximation by

E—Ia % C'y(E)dk

Tz—F

@

_=1+% 'u'lc_l_U U+(0:1:T)(0//:|:TN)+_ (C'£T"? (9)

and the surface pressure coefficient by

'ula

Cpy=—2 (-%3-1) ‘é‘;iﬁ (10)
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Higher-order solutions can be found by continuing this
process. Lighthill gives explicit formulas for the third-order
solution.

Airfoil integrals,.—The incompressible solution to second
order (or, indeed, to any order) is thus reduced to a succession
of “airfoil integrals” typified by equations (3), (4), (7), and
(8). Goldstein (ref. 28) emphasizes that in first-order theory
these integrals can be evaluated analytically for practically
every profile for which formulas have ever been proposed.
In second-order theory this appears to true to a somewhat
lesser extent, although the labor of calculation becomes great
except for simple shapes. Often the integrals are most
readily evaluated by guessing (u—iv) as a function of the
complex variable (z+14y) that has the required behavior on
the chord line. A short table of airfoil integrals useful for
finding second-order solutions is given in Appendix B.
Other can be found in references 28, 29, and 30.

For complicated profiles, exact analytic evaluation of the
integrals may be impossible or excessively laborious. Then
numerical integration may be resorted to, or the profile can
be approximated by a simpler shape that can be treated
analytically. The most useful numerical procedure is ap-
parently that originated independently by Riegels and
Germain and simplified and extended by Watson, Thwaites,
and Weber. In this method the airfoil ordinates are approxi-
mated by the trigonometric polynomial

Ymko+1§‘)l (k; cos r6-+-t, sin r9)-+-ky cos NO

F1auRrE 2.—Parametric angle 6.

where 8 is the angle indicated in figure 2. The coefficients
kr (for camber) and ¢, (for thickness) are chosen to give the
actual ordinates at the 2N points for which §=m=/N. In
this way it is found that the airfoil integrals can be expressed
approximately as sums of the airfoil ordinates at certain
pivotal points multiplied by standard influence coefficients.
The details of this method, as adapted to second-order thin-air-
foil theory, are given in Appendix C. The numerical com-
puting procedure is outlined in the last section of this paper.
435876—57——36
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SECOND-ORDER COMPRESSIBILITY RULE

The second-order counterpart of the Prandtl-Glauert
compressibility rule is implicit in an extension of transonic
similitude that was initiated by Imai (ref. 18) and carried
to completion by Hayes (ref. 17). Imai sought to improve
the transonic similarity rule by retaining in its derivation
all terms proportional to the square of the airfoil thickness
except one appearing in the condition of tangent flow at the
surface. The correlation of experimental data was not
appreciably improved, which led him to suggest that the
neglected second-power term should also be included. This
probably cannot be done for the whole flow field. However,
in attempting merely to reproduce Imai’s result as announced
before publication, Hayes actually included that term in a
second-order rule for surface pressure.

Hayes’ result is that for two-dimensional subsonic or super-
sonic flow the ratio of the second-order to first-order pressure
term on the surface is proportionsl to the parameter

Qi [y M= | v
where 7 is some measure of the thickness, camber, or angle
of attack. Now at subsonic speeds the first-order pressure
term is related to its value in incompressible flow by the
Prandtl-Glauert rule. Combining these two results yields
the second-order compressibility rule (ref. 19).

In incompressible flow the second-order surface-pressure
coefficient has the form

Gy (&) A0, (@)

where the first-order term (), contains linear terms in thick-

@)= (12a)

ness, camber, and angle of attack, and the second-order

increment AC,, contains their squares and products. Then

for the same airfoil in subsonic compressible flow, according
to the compressibility rule, the pressure coefficient is

C’pM=K10p1+K2(A0p’) (12b)
where
1 _1
K== 8
(12¢)
_+1)M*4-46°
4ﬂ4

The corresponding compressibility rule for surface speed
i8 readily found from the above rule for pressure by con-
sidering the small-disturbance series form of Bernoulli’s
equation for compressible flow. Thus it is found that if
the surface speed ratio in incompressible flow is

R (13a)
where Ag; contains linear terms in thickmess, camber, and
angle of attack, and Ag, their squares and products, then
at subsonic speeds

Lotk P B (Y ey
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(13c)

This rule is seen to lack the fundamental simplicity of the
rule for pressure. ’
EDGE CORRECTIONS

Thin-airfoil theory is known to fail near leading and
trailing edges if there is a stagnation point. The flow is

actually brought to rest, but thin-airfoil theory predicts .

infinite speeds instead. If r is the distance from the edge,
the velocity contains powers of 712 for a round edge and
for any leading edge with flow around it (associated with
angle of attack), and powers of Inr for a sharp edge. First-
order theory contains first powers of these singularities,
second-order theory their squares and products, and so on,
50 that the formal thin-airfoil series diverges in some neigh-
borhood of the edge. Not only are the velocities and pressure
incorrect near stagnation edges, but nonintegrable singu-
larities appear in the higher-order expressions for aero-
dyanamic forces on round edges.

False subsonic solutions.—Even more serious difficulties
may arise in subsonic compressible flow, where the infection
spreads in some cases so that the formal second-order solution
is incorrect not only near the edges but over the entire airfoil
surface. Thus, using the particular integral of reference 14,
Harder and Klunker gave an expression for the second-order

golution for any symmetric airfoil at zero angle of attack ‘

(ref. 16). However, they noted that their expression does
not apply to round-edged airfoils, for which it contains
divergent integrals. A more deceptive defect appears if
their expression is applied to a sharp-edged airfoil such as &
biconvex section; then the predicted surface speeds are
finite (except near the edges) but incorrect everywhere by a
term proportional to 342 This defect arises from the fact
that near sharp edges the first-order source distribution is
not approximately the airfoil slope, as is assumed in thin-
airfoil theory. The second-order solution involves the
derivative of the source strength which, as indicated in
figure 3, has infinite peaks that are missed by thin-airfoil

Source

_____ strength
- \\\ . S
T

e} ®

Its
derivative

Thin—aqirfoil
approximation

Fi1gure 3.—Source strength for biconvex airfoil.

Actual values
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theory. It is enough to take account of this shortcoming in
even the crudest fashion. Thus, if the region of integration
is extended an infinitesimal distance beyond the edges to
include the pulses (Dirac delta functions) of the thin-airfoil
approximation, Harder and Klunker’s expression yiclds a
solution that is correct to second order except in the vicinity
of the edges.

Keune has discovered an alternative particular integral
containing the stream function rather than the velocity
potential, and so has obtained another expression for the
second-order solution (ref. 15). Because the tangency
condition is one degree smoother for the stream function than
the velocity potential, his expression yields tho correct
result (except near stagnation edges) for sharp-edged shapes.
It fails, however, for round-edged shapes, so that his solution
for subsonic flow past an ellipse is incorrect everywhere,

Both these expressions can be manipulated by partial
integration so as to be correct except near stagnation edges.
However, the result is simply that obtained by applying
the second-order compressibility rule to the expressions for
second-order incompressible flow. Hence these more serious
difficulties are of no further concern here. They do serve,
however, to warn of the danger of false second-order solutions
in more complicated problems.

The role of edge corrections.—Thin-airfoil theory fails
near stagnation edges because there the basic assumption of
small disturbances is violated. It might be feared that uni-
formly valid solutions could be found only by abandoning
that assumption, which leads to such great mathematical
simplification. Fortunately, however, Riegels and Light-
hill have shown that for round edges in incompressible flow
all the results of small-disturbance theory can be salvaged.
They have given simple rules to be applied to the formal
thin-airfoil solution that render it uniformly valid near the
edge.

For present purposes, corresponding rules are required for
subsonic as well as incompressible flows, for sharp as well
as round edges, and for cambered round edges, for which
Lighthill’s rule is correct only to first order. It is believed
that neither Riegels’ nor Lighthill’s technique can be ex-
tended to these cases. Instead, a different technique is used
bere, which is particularly suited to the study of edges. It
consists in comparing the exact and thin-airfoil solutions for
simple shapes that approximate the airfoil in the vicinity of
the edge. This technique was first applied in reference 20
to the surface velocity on airfoil sections, three-dimensional
wings, and bodies of revolution. It is reproduced here
insofar as it applies to second-order theory for airfoil sec-
tions, and is extended to treat surface pressures as well as
velocities.

Round edges in incompressible flow.—Most subsonic air-
foil sections have finite leading-edge radius, and many are
actually analytic (except at the training edge). This means
that all derivatives are continuous, so that, with ¢ the
abscisse, measured from the edge into the airfoil, the upper
and lower surfaces are described by

y=+ T2+ Cis+ T18 4O+ . . . (14)
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Here the 7, and C, are coefficients for the thickness and
camber, respectively (fig. 1). Thus 7T, determines the nose
radius, (; the initial camber, and so on.

Thin-airfoil theory breaks down close to the edge where s
is of the order of the leading-edge radius p. Now p is pro-
portional to the square of the thickness ratio r, so that thin-
airfoil theory fails where s=0(s?). In this small region the
airfoil is described to second order by the first two terms of
equation (14). In terms of the leading-edge radius p and
initial slope A of the camber line, the airfoil is given by

y=+/2ps+2As (15a)
This is the equation of an inclined parabola, described in

rotated coordinates by
Y=4+2p% (15b)

where the two origins of coordinates are separated by a
negligible distance, and the difference between p and » can
also be ignored.

F1GURE 4.—Flow past inclined parabola.

The exact velocity on this parabola in a uniform stream
is found, from conformal mapping or otherwise, to be given

by N

g_(_-38 _ i3

b=(im) (%) e
where the signs refer to the upper and lower surfaces. Here
a has the physical interpretation that the stagnation point
lies at §=a? and §=—a+2p (fig. 4. When the flow past
the parabola is related to that near an airfoil nose, a is some
moderate multiple of the angle of attack measured from the
“ideal” angle—the angle at which the stagnation point coin-
cides with the vertex. The factor of proportionality depends
on the entire airfoil shape (and the trailing-edge condition),
but its value is not required here. Expanding this expression
for small p/3 yields, to second order, the formal series

U 1ch/_ &t (17
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and, as it must be, this is the second-order thin-airfoil
solution for a parabola. It is clear from this formal expan-
sion how the singularity arises at the leading edge.

The ratio of the exact speed on the parabols to its formal
series expansion serves as a multiplicative correction factor
for other shapes having the same nose radius. Thus the
second-order thin-airfoil solution ¢, for any airfoil of leading-
edge radius p is. converted into an approximation ¢ that is
uniformily valid near the edge by

o) (5),,

9_
U e U e
N

Simplifying this insofar as possible without destroying its

. validity near the edge, and retaining only second-order torms,

gives the rule

’g=(g+p/2> ’ ia 4%) (19)

It might be supposed that since the airfoil nose was fitted
to second order, this rule yields a solution that is uniformly
valid to second order. Compaiison with various exact
golutions indicates that this is true, in the sense that the
velocity disturbance and hence the pressure coefficient are
correct to second order everywhere (except near the trailing
edge, where additional modifieation is required). This will
be indicated by replacing g by ..

The oblique abscisse. § can be expressed in terms of the
original abscissa s, since on the surface of the parabola

F=s\/2p8+ . . . (20)

. Hence the rule becomes finally

Ts_ [ 8EN/2p8 2)”’ (92 P (21)

U \8:2+2p8+0/

In the special case A=0 this reduces to Lighthill’s rule
(ref. 5).

The corresponding rule for surface pressure coefficient is
found by proceeding in the same way with the exact pressure
on the parabola, which is found from equation (16) using
Bernoulli’s equation. Again expanding formally for small
pfs and taking the ratio as a multiplicative correction factor
yields the rule

5 — 3:':)\'\}2P
st N2pstpf2

Airfoils of the NACA four- and five-digit series are not
analytic at the nose. Their thickness distribution 7'(z)
consists initially of the ordinates of a parabola minus those
of a wedge, so that the airfoil is described by

(22)

y=:I:T03%+018q:T113|+... (23)

These airfoils are fitted only to first order by an inclined para-
bola, and it follows that the preceding rules render the thin-
airfoil solution uniformly valid only to first order near the
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edge, though it remains correct to second order elsewhere.
An appropriate second-order rule would require finding the
conformal mapping for & parabola minus & wedge.

First-order theory; Riegels’ rules.—In the first-order
theory, the terms in A can be neglected, so that the rule for
pressure, equation (22), simplifies -to

- 8
Cpl=m C'pl (24)

The last term in equation (21) is also of second order, so that
the rule for speed becomes

@
U <s+p/2 (26)

This is not precisely Riegels’ rule. However, for a parabola

8 18
(8_—+ S /2 =CO0S8 7

where 7 is the angle of the surface. Hence an alternative
form of equation (25) is

%=cos 7 4

U (27)

and this is Riegels’ rule (ref. 2).
pressure is

The corresponding rule for
C,,= (cos 1)*Cy, (28)

These alternative forms suffer the defect of falsely implying
that the nose exerts an influence even at remote points if
the local airfoil slope-is appreciable (for example, at the
trailing edge). To this extent they fail to render the solution
uniformly valid. However, it happens that they are exact
for ellipses as well as parabolas, and are accordingly much
more accurate for most airfoils, as indicated by the example
of figure 5.

1.3¢
| ‘
H
\‘\‘ —q-
Ll —e Y . CTACA 0012 —
/’_\
V4 ~-
/ - - \
D o S
U AR
10 A
Exact (ref, 37)
------ --Formal first-order theory
— — —First order, nghlhlll s rule
o  First order, Riegels' rule
| 1
‘90 .2 4 6 .8 10

Fraction of chord

Ficure 5—Comparison of Lighthill’s 2and Riegels’ rules for incom-
pressible flow past NACA 0012 airfoil.

(26)
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The second-order rules can be manipulated into the form
of Riegels’ rule (ref.20), but the slight advantages of accuracy
and simplicity then scarcely offset their defects. The same
is true of the rules for compressible flow given later. Hence
Riegels’ rules are recommended only for first-order incom-
pressible-flow theory.

Round edges in subsonic low.—The previous rules can
be extended to subsonic speeds simply by considering sub-
gonic rather than incompressible flow past an inclined
parabola. Although no exact solution of this problem is
known, existing approximate solutions by the Janzen-
Rayleigh method are probably sufficiently accurate, at least
at the ideal angle of attack, and could, in principle be refinod
indefinitely. Alternatively, one could use experimental
measurements on & parabola.

The problem is defined by p and a and the free-stream
Mach number M. (The adiabatic exponent v also enters,
but is assumed fixed at 7/5.) Therefore, dimensional reason-
ing shows that the surface speed is given by

(p ::1:1/—7 ) (29)

where, as usual, the upper and lower signs apply to the upper
and lower surfaces. (Choosing p/2 rather than p as the reof-
erence length leads to later simplification.) Expanding this
function formally for z large compared with p and a* would
yield the thin-airfoil series, which is, to second order

=1:|:K1j§ KL :K’z"l 2

where K, and K; are the compressibility factors of equation
(12¢). Again the ratio of @ to its series expansion serves as
a multiplicative correction factor to be applied to any round-
nosed airfoil. Simplifying as before, and replacing & by s
according to equation (20), gives the rule?

q2
7 (30)

84-N\/2p8
/2

T o
£ ,i@M)X

|: :FKI a 41 Ka p+(K1 22—1>0§:| (31)

where ¢,/U is the first-order thin-airfoil solution. Here a
must be identified as the coefficient of :I:K,/«/_ in the second-
order solution, as is clear from equation (30). (The physical
interpretation of @ shown in fig. 4 is valid only at zero Mach
number.)

The corresponding rule for pressure is found by consider-
ing the exact pressure coefficient for the parabola, which
must have the form

C,=II (%iw/—:ﬁ M) (325

3 As Af—0 this reduces not to the rule glven previously for incompressblo flow, but to an
alternative that Is equivalent up to terms of second order., The difference arlses from tho
fact that in the incompressible case the dependence of ¢/ U upon ¢ i3 given oxplioltly by tho
factor (12=aFY7) 1n equation (18), which 1s used to cancel a corresponding term In the
denominator of equation (18).
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Its series expansion would give the thin-airfoil result
a p a
Cn=TF2K, ﬁ-l-Kz (mf) (33)

Hence the rule for any airfoil is

,,=P si)‘/‘z/ﬁ,i M) Chs (348)
where
P(P 1k WS M> <p/9 M> (34b)

F2K; —\—/_§+K2 <2—§—'—;>
In this case a is the coefficient of F2K;/y/% in the second-
order pressure coefficient.

Imai has recently calculated the Janzen-Rayleigh solution
for o parabola at the ideal angle of attack including terms in
M* (ref. 31). Thus, his results give

Q (P% 0, M>=qo+M2g,+M4g,+0(Mﬂ) (35)
where the ¢, are increasingly complicated functions of
8/(p/2). In reference 20 an attempt was made to increase
the accuracy of this approximation by modifying it so that
for large 8/(p/2) it tends exactly to the second-order thin-
airfoil solution of equa.tlon (30). However, the third-order
thin-airfoil solution has since been calculated by Kaplan

(ref, 32):
15 ()15 K [(2‘9)’5*
HORCINO)

E=g 5 [1#?”2{’(1#“%@ —09 ]

(It is o matter of taste whether the logarithmic term in-
cluded here is regarded as being of third or fourth order.)
The comparison with this result shown in figure 6 suggests
that the modification was detrimental, and that Imai’s
solution is adequate for practical purposes® A short table

of the function Q[3/(p/2), 0, M] calculated from equation (35)
is given below:

where

g
Q (—, 0,M
pl2
/(o)
0 0.5 1 2 4 10 20 50
M

0 0 0.5774 | 0,7071 | 0.8165 | 0.8944 | 0.9535 | 0.9759 Q. 9901

4 0 5570 0874 473 . 9885

b 0 5449 . 6752 7898 8753 . 8431 09699 9874

[} 0 52061 .63592 7758 8648 9858

7 0 5104 6388 76574 8508 9200 9016 9835

8 0 4870 6133 L7338 | .8324 . 9182 . 9551 . 9805

856 0 L4737 | 5982 L7197 | .8213 L9116 | .9512 . 9788

9 0 4580 5816 L7039 | .8088 . 9042 9468 9785

3 Tho table on p, 11 of ref. 20 also involves an error in computing the ¢: of eq, 35).
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‘ /'3 rd —order thin-airfoil
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F10URE 6.—Various approximations for velocity on parabola at 1/=0.6.

The corresponding table of the function P[§/(p/2), 0, M]
appearing in equation (34) is:

§
P <E‘a 0, M)

%
fefm 0.5 1 2 4 10 20 50
M

0 0.3333 { 0.5000 | 0.6667 | 0.8000 0. 8091 0. 9524 0. 8804
.4 L2024 | L4444 6018 . 7339 .8502 8015 . 9402
13 .4019 | . 5600 6779 .7958 8507 8950
8 L2189 | .3301 | .4703 . 5881 . 7025 . 7687 .8073
7 21607 | 2523 | . 3560 .4531 .8528 . 6044 .8517
8 0018 | .1468 2111 L2742 L3427 .3797 . 4165
86 0578 | .0032 [ .1857 -1783 . 2238 . 2518 L2714
] .0463 | .0632 . 0906 .1162 . 1305 . 1437

For other angles of attack, the function @ to order M?
can be extracted by a limiting process from Kaplan’s Janzen-
Ra.ylelgh solution (ref. 33) for an inclined ellipse. This
gives, with §/(0/2)=2X, a/p2=A

o, 4,0Vt I L (1 X acer s
1+ A2

trx | (FAx—34)m Ty

(1—X424VX) tm-lﬁ]} (36)
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The corresponding approximation for the pressure coefficient is

1—24/X—A?

H('X:A:ﬂ{)= 1+X T

M?
(14-X)2

and for the function P, according to equation (34b)

II(X AM)

P(X,AM)=
~2K, - +K, EY A’)

(37b)

The error involved in retaining only terms of order Af*
can be estimated from figure 6 in the special case a=0. At
other angles of attack the error may be greater; in particular,
neither the Janzen-Rayleigh expansion nor the thin-airfoil
expansion is believed to converge if the local Mach number
exceeds unity.

Sharp edges.—The corrections for sharp edges can be
found by considering flow in an angle. At a trailing edge
with Kutta condition enforced, or a leading edge at ideal
angle of attack, the surface and the dividing streamline meet
at slightly less than a straight angle, as indicated on the

7T TN

/ \\ / AN

I/ /SZ\" \
3

\ e o=t
\ \ /
\ / \ /

\\\_// \\\///

F1auRe 7.—Flow near sharp edges.

right of figure 7. For incompressible flow, the surface speed
is found from conformal mapping to be given by

3

F=ci (38)

where & is the semivertex angle, and ¢ is again measured into
the edge. In fixing the constant ¢, the difficulty that in the
angle flow the velocity increases indefinitely upstream can be
circumvented by requiring that at any point the velocity
must approach that of the free stream as the angle § tends to
zero. Thus it is seen that ¢ is unity except for terms of
order é.

The connection with thin-airfoil theory follows from the

. fact that for small e

s=1-+eln s+ ¢ loghs+. .. (39)

<1+A;)J§§+A) [(F+5ax—1a) m HE 4 (- x+24/T) tan-yX |
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T (1—24{X— 492+ (1— 49 (X+AVT) ~AX+47) (X+4)+

(37x0)

though this relation is not uniformly valid near s=O0.
Hence, the thin-airfoil series for flow in an angle is, to second
order.

U—cl: +2inetd (Ins+ In?s ):I (40)

and it is clear how the spurious logarithmic singularities arise.

Comparing these expressions gives a rule that renders the
second-order thin-airfoil solution for any sharp-nosed profile
uniformly valid:

_q__sr‘-ii —-—E g Ins— (111 8-—— In? ):I (41)

For a leading edge not at the ideal angle of attack, the
flow includes a circulatory component, as indicated at the
left of figure 7. For incompressible flow, conformal mapping
gives the surface speed associated with this component as

x—23
4 13735 42
F=+as? (42)
and its thin-airfoil expansion is
L, T o
&y <1+ Ins) (43)

Comparing these yields a rule for correcting the circulatory
component:

RN
&2 ms) (44)

The second-order thin-airfoil solution can be treated by
splitting off the terms that are singular at least as §~/2 near
the leading edge, applying equation (44) to this circulatory
component, applying equation (41) to the remainder, and
recombining.

These rules could be extended to subsonic speeds, in the
case of ideal angle of attack, by calculating the Janzen-
Rayleigh solution for flow in an angle. However, at other
angles the Janzen-Rayleigh approximation certainly fails,
because it would predict infinite speeds that are tolerable
only in an incompressible fluid. In any case, the correction
is negligible for most practical purposes, because it is signifi-
cent in only a minute neighborhood of the edge, and, fur-
thermore, sharp edges are usually trailing edges, in which
case the details of the flow are masked by viscous effects.
For these reasons, no correction for sharp edges is included
in the computing scheme given later.

Combined edges.—Airfoils with two stagnation edges are
treated by applying the appropriate corrections in turn at
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cach edge by shifting the origin. Thus, consider an airfoil
with round leading and trailing edges of radii p, and p,
located at =2, and z=z,, respectively, and initial and final
camber angles A\, and »,. Assume that the Kutte condition

@ | T—ZaENvV2p.(2— )
=4 paf2 £

549

is imposed at the trailing edge. Applying equation (31)
twice, identifying s successively with z—z, and x,—2, and
then simplifying to keep no more than second-order terms
gives

a 2’ M] Q[a’b—z:’: s Vzpb(xb—x)’ 0’ M]X

pf2

a TQ1 | Kz Pa
I:U:FKI'\KG— (x—:xa
(The simpler form of this equation for incompressible flow
is given as equation (24) of reference 20.) The corresponding
rule for pressure coefficient is

77 T—2, 3 NV 2ps(2—1,) a
Cp= PI: 2 w/EJ_-‘Z' M:|><

P[mb—x:F)\M&pb(xb—x)’ 0 M] o
’ P3

Pof2

Similar rules can be found for combinations of a round
and a sharp edge, or two sharp edges. For example, for
incompressible flow past two sharp edges of equal angle,
both with Kutta condition imposed (as for a symmetrical
biconvex airfoil at zero angle of attack) and located at =41,
the combined rule has the form of equation (41) with s
replaced by (1—2%).

(46)

EXAMPLES: COMPARISON WITH EXPERIMENT AND OTHER
THEORIES

INCOMPRESSIBLE FLOW

It has been seen that the solution for subsonic low depends
on that for incompressible flow. It is therefore pertinent to
test the second-order theory in the case of incompressible
flow, where it can be checked against the exact results of
conformal mapping.

Ellipse.—Consider an ellipse of thickness ratio r with the
interval —1<2<1 as chord line. It is described by

y= + T‘\mf

Suppose that the Kutta condition is satisfied—the rear
stagnation point coincides with the end of the major axis.
Then the first-order solution for surface speed is found,
from equations (3), (4), and (5), together with Appendix
B, to be

—1<Lz<L1 47

1I—z
1+:z:

Proceeding with equations (6) to (9) gives the formal second-

order result
z? /1 z 1
1— ’.172 14z 2 —5 ¢ (48b)

This can be checked by expanding the exact result, which is

ﬂ——1+ + (488)

—l-l-:I: 1-I—a: 27’

—z? cos @F-(1—2) sin @
B

The formal second-order solution clearly breaks down near
the ends of the ellipse. It is converted into a uniformly

LA

(49)

l Ty— >+<Kl T 1

)i (45)

valid second approximation by applying equation (21)
twice in succession, or using the combined rule of equation
(24) of reference 20, which gives

Vs x2+#[(1+7)<1i1\/h—x>+ = —a’)] (480)

1.0
D
>
Exact
©  Modified second-order theory
—=-— Formal second-order theory
—~—= Formal first—order theory
9
1]
1
'80 .25 .50

Fraction of chord

Figure 8.—Speed on 18-percent-thick ellipse at zero angle of attack in
incompressible flow.

These approximations are compared in figure 8 with the
exact solution for an 18-percent-thick ellipse (which has
nearly the same nose radius as an NACA 0012 airfoil) at
zero angle of attack. The precipitate descent of the formal
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second-order solution toward negative infinity is just dis-
cernible near the nose and is elimineted by the edge cor-
rection.

Symmetrical Joukowski airfoil.—To second as well as first
order & symmetrical Joukowski airfoil of thickness ratio =
is described by

y==+n(1—z)y1—23, —1<z<1
. (50)
n=——= 7=0.7698+
33
By the foregoing procedure, the formal second-order solution
is found to be

=1-|-n(1—2:c):!:m\/i+z ;‘rl iTs (1—|—2:::)2

11—z 1
27'10':1:.\/%—-2—&2
where the first three terms give the first-order solution.
Correcting this by means of equation (21) with s=1+z

and p=47® (and A=0) gives the uniformly valid second
approximation

(51a)

U—\/ : +1$':_”; [1+n(1 20:)—1——- (1l —2z)*+
a(l—2ra)y [ s —5 ] (51b)

In figure 9 these approximations are compared with the
exact solution (ref. 34) for a 12-percent-thick section at
zero angle of attack. The effect of the edge correction on
the second-order result is not discernible to this scale.

Biconvex airfoil—To second order & symmetrical biconvex
airfoil of thickness ratio 7 bounded by either circular or
parabolic ares is described by

y=z=% 7(1_22))

The formal second-order solution is found to be

\/: [ﬂ (2_ In 12 1+a:

Lo | FLary 12| (420l - |-
(53a)

In deducing from this & uniformly valid second approxi-
mation, the terms independent of « are treated by the rule
for combined equal sharp edges that was described just
after equation (46), with §=27. The terms in ¢ are modi-
fied according to equation (44) with s=1-+2. The result is

—1<z<1 (52)

—1+— (2—-:vlnl+z
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L (1—ay7 5 { 142 r2- (4 I 1+~ (=9 In(—a]+
(% T>2 [3—%a (1—2)—3(1+2) In(1+2)—8(1—2) ln (1 —2)+
3 (1432 (1+2) 0?1 +a)+7 (1—32) (1—2) In* (1—2) +
g(l—x*)ln(l-i-:c)ln(l-—a:)]—%a’}:t %(1“)75?{1—

;r [2(14+2)In(142) — (14+22) ln(l—:c)—4]} (53b)

\ Exact (ref 34)
\ o  Second-order theory,
\ formal or modified
\ ————Formal first-order theory
o
{\K\}
1.2
S
S
1.0
.90 e

.5
Fraction of chord

Figues 9.—Speed on 12-percent-thick symmetrieal Joukowski airfoil
at zero angle of attack in incompressible flow.
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v
=)

Exoct
6  Second-order theory,
formal or modified
— ——Formal first-order theory

9 25 50

Fraction of chord

Fiaure 10.—Speed on 18-percent thick biconvex airfoil at zero angle of
attack in incompressible flow.

These approximations are compered in figure 10 with the
exact solution (ref. 35) for a circular-arc airfoil 18 percent
thick at zero angle of attack. Although the vertex angles
are large in this example, the edge correction is appreciable
in such a small neighborhood of the edge that it would be
invisible even on & much larger plot.

NACA 00XX airfoils.—Symmetrical airfoils of the NACA
00XX family (such as the NACA 0012) are naturally de-
fined for the interval 0<z<1. The airfoil of thickness
ratio 7 is described by (ref. 36)

y==% T@)= £ r(b/z+bx+ba*+ b +bsz'), 0<z<1 (54)
where
b= 1.48450
,=—0. 63000
b,=—1.75800
be= 1.42150

bs=—0. 50750

With the aid of Appendix B the first-order solution is found
to be

b 1 4
1/‘_111 bl/_ %b,—3 bo—g bo—

—T

[
U_1+7r I:T T'(z)In 1

(3bit 20— bt | ey [172 (550)
in agreement with the result given by Goldstein (ref. 28).
Applying Riegels’ rule (eq. (27)) renders this a uniformly
valid first approximation except’ very near the trailing
edge.

The second-order terms in thickness, in addition to being
very complicated, involve integrals that apparently cannot
be evaluated in terms of tabulated functions. Accordingly,
the second-order terms have been calculated using the
Riegels-Germain numerical method discussed in Appendix
C, with N=16. The accuracy of this approximation is
assured by the fact that cruder approximations modify the
numerical results only slightly, as will be seen in a later
example.

The formal second-order solution for surface speed there-
fore has the form

=1+7Qtay /1;;+72an:fan—% o (55b)

where values of @, from equation (55a) and approximate

numerical values of @, and @.. are

T Or QOrr Ora F Or Orr Ora
0.025 1.048 —9.00 8.80 0. 50 0. 900 —0.135 032
.05 1.836 —3.35 5. 556 .60 .67 —-.220 .11
.10 1.714 —1.00 325 .70 .485 —.315 —.08
.2 1. 510 090 1.65 .80 .238 —.410 —-.23
B0 | 1309 o10 | Loo || ‘e0o | =124 [ —lam | -3
40 | 18 | —loso | .88 || ‘es | —4s0 | —l3e0 | —3

Applying equation (21) with p=1.10187 %, §=1.16925 7
(and A=0) yields a uniformly valid approximation. How-
ever, as discussed previously, the curvature of the profile
does not vary continuously neer its nose, so the result is
only & first approximation there, though a second approx-
mation elsewhere.

The various approximations are compared in figure 11
with the result of a ‘“long and elaborate calculation” by
conformal mapping for the NACA 0012 airfoil that is given
by Goldstein (ref. 37). Again the effect of modifying the
second-order solution is indiscernible. Also shown is the
“gxact’’ solution tabulated in reference 38. The agreement
between the first-order solution with Riegels’ rule, the
second-order solution, and Goldstein’s calculation leaves
little doubt that his is the more accura.te of the two “exact”
solutions.

COMPRESSIBLE FLOW

When extended to subsonic compressible flow, the preced-
ing examples can all be compared with other theories or with
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1.3
"Exact” (ref. 37)
- - "Exact” (ref. 38)
o Second-order theory \
a First-order theory, Riegels rule
\ —-———— Formal first-order theory
AN
\\
1.2 ‘
o \

744
7

\

.90 5 1.0
Fraction of chord

F1Gure 11.—Speed on NACA 0012 airfoil at zero angle of attack in
incompressible flow.

experiment. As before, the comparisons will, for simplicity,
be made only for zero angle of attack.

Ellipse.—Applying the second-order compressibility rule
of equations (13) to the incompressible solution of equation
(48b) gives as the formal second-order solution for the speed
on an elliptic cylinder

1—z),1 1—22
L1+K, (-r:!:a—‘ [ )3 (i1 )

1+(2K9_1)I
2(1-+2)

1—z

142z

ra(2K;—1) (56)
For zero angle of attack the maximum speed, occurring at
midchord, is given by

&) 14Kyt (KD (57)

U/ mas
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in agreement with the result of Hantzsche and Wendt (ref. 7)
The corresponding third-order result has been given by
Hantzsche (ref. 8); his expression can be simplified to

1 M?
Bt (-]

R e

%‘(1 +§) (8—M’):| rinlpoe  (s80)
where
v+1 M?
The terms in +'ln = are found correct together with those in
7% in the second iteration; it is a matter of taste whether they
are regarded as being of third or fourth order. The solution
to 7 has subsequently been given by Hasimoto (ref. 39), and
although typographical errors unfortunately appear in his
equations, his numerical results agree with those calculated
from equation (58a).

Values of the maximum speed ratio calculated from these
and other approximations for a 10-percent-thick cllipse at
zero angle of attack (whose critical Mach number is about
0.80) are:

l M=0.70 | M=0.75 | M=0.80

First-order theory (or Prandtl-Glauert ruleapplied

to exact incompressible value of 1.1) ..o oooaanne. 1,140 1,151 1,107
Karmén-Tslen rule b - - 1,149 1.163 1,184
Becond-order theory e v ccm e imcereeeeemee 1.148 1.163 1,185
Third-order theory;

including 73 1.150 1.167 1.100

Including rlnr 1.149 1.168 1,104

(Here the Kdrmén-Tsien rule has been applied to the pressure
coefficient for incompressible flow, and the speed ratio then
calculated from Bernoulli’s equation.) It might have been
anticipated that the second-order theory is mors accurate
than any of the compressibility correction formulas such as
the K4rmén-Tsien rule, because it allows for a dependence
on the particular airfoil shape and on the value of v. How-
ever, in this example the results of second-order theory
and the Karman-Tsien rule are practically identical.

In the same way the second-order solutions are readily
calculated for the Joukowski and the biconvex airfoils, and
are found to agree with the results that Hantzsche and
Wendt obtained by laborious analysis.

NACA 0012 airfoil—The formal first- and second-order
solutions for NACA 00XX airfoils in subsonic flow are
easily obtained from equations (13) and (55). The second-
order solution can then be rendered uniformly valid near the
nose using equation (31), although again the modification is
significant in only a very small region of the nose.

For the NACA 0012 airfoil at zero angle of attack, Em-
mons has calculated the flow field at Mach numbers of 0,
0.70, and 0.75 using the numerical relaxation method (ref.
40). The last of these Mach numbers is supercritical, so
that the flow contains shock waves, and is beyond the scope
of the present theory. The pressure distribution calculated
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~—-—-- First-order theory
~~——- Second-order theory N
~—-— Relaxation method (ref. 40) \
—--— Prandtl-Glauert rule

—-—-— Kdrmén-Tsien rule

——— Exact, incompressible

A5 5 10

Fractiofm of chord

TIraure 12.—Pressure coefficlent on NACA 0012 airfoil at zero angle of
attack in subsonic flow.

by the relaxation method for M=0.70 is compared in figure
12 with the results of first- and second-order theory and
various other approximations. The relaxation solution for
incompressible flow is also shown in comparison. with Gold-
stein’s “‘exact’’ solution, and is seen to be inaccurate near the
nose. The solution for A{=0.70 probably contains similar
inaccuracies; however, just as for the ellipse the pressure
coefficients calculated by second-order theory may be slightly
less negative than the true values near the minimum.

Experiments on NACA 0015 airfoil—Experimental pres-
sure distributions in two-dimensional flow over the NACA
0015 airfoil at high subsonic speeds are reported in reference
41, For zero angle of attack, the critical Mach number is
approximately 0.70. The measurements at this Mach
number are compared in figure 13 with the results of first-
and second-order theory and of the two common compressi-
bility correction formulas applied to the incompressible
flow values tabulated in reference 38. Unfortunately,
the model was imperfectly constructed, and the ordinates
were inaccurate near the nose and midchord. Otherwise,
the measured pressures are in satisfactory accord with
either second-order theory or the results of the Kaormén-Tsien
rule.

Tomotike and Tamada's airfoil—Using the hodograph
method, Tomotika and Tamada have calculated the flow
past a certain family of symmetric airfoils (ref. 42). As
usual in hodograph solutions, the airfoil shape varies some-
what with free-stream Mach number. The critical Mach

SECOND-ORDER SUBSONIC ATRFOIL THEORY

553

-l.2
Formal first-order theory
——— Formal second-order theory
—— PrgndLI-GIouerI rule
—-—— Karman-Tsien rule
Experiment (ref. 41)
o Upper surface
o Lower surface
-8 ‘-‘\ :/_ -
1,27 TN E
e
!f\-\‘O\B\\
i
Cp l‘
-4

= mrermrOn O T e

'40 5 10

Frucﬁon. of chord

Figure 13.—Comparison of theoretical and experimental pressure
distributions on NACA 0015 airfoil at M=0.70, zero angle of
attack.

number is 0.717, and the corresponding shape is shown in
figure 14 together with the surface speeds predicted by
various theories.

For mathematical simplicity, Tomotika and Tamada have
adopted a hypothetical gas, which is fitted at Mach numbers
zero and unity to a polytropic gas having y=7/5. At any
intermediate Mach number, however, the hypothetical gas
corresponds to & polytropic gas whose y is greater than 7/5,
reaching & maximum value of 1.91 at M=0.78. To second
order, any such hypothetical gasis equivalent to a polytropic
gas having the value of v corresponding to the free-stream
flow, given by
de

= £
=14H(E T s
where p is the density and ¢ the speed of sound in the hypo-
thetical gas. For Tomotika and Tamada’s gas with M=
0.717, that value is 1.82. Actually, the second-order solution
depends so slightly upon the value of ¥ that the change from
v="7/5 to y=1.82 increases the maximum value of ¢/U by only
two parts in a thousand. However, the nonpolytropic
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1.6 . r . .
—— Hodograph method, Tomotika and Tomada (ref. 42)
——— Second-order theory
——-  KArmén-Tsien rule
~———First-order theory
--------- Incompreésible flow
1.4

|
& 2 4 6 8 0

F1aure 14.—S8peed on Tomotika-Tamadsa airfoil at M=0.717.

nature of the hypothetical gas must be considered in con-
verting Tomotika and Tamada’s values of surface speed
(which are referred to the critical speed) to the form ¢/U.
At the freestream Mach number of 0.717, the ratio of
freestream to critical speeds is 0.769 for the hypothetical
gas, compared with 0.748 for a polytropic gas having y=7/5
(and 0.774 for a polytropic gas having y=1.82).* Thus, as
Tomotika and Tamada emphasize, their results should be
regarded as exact for the hypothetical gas; and the present
method should be regarded as giving the true second approxi-
mation for the same gas (which to second order is equlvalent
to a polytropic gas with y=1.82).

The agreement between the hodograph method and
second-order theory is satisfactory. Third- and higher-order
terms are seen to increase the surface speed near its maximum
and reduce it slightly elsewhere, which is the effect of
third-order terms calculated by Asaka for a biconvex airfoil
(ref. 43).

As shown in figure 14, the results of second-order theory
and the Kérmén-Tsien rule nearly coincide except over the
forward portion, where the second-order theory is apparently
more accurate. The second-order solution calculated with
the present computing scheme is in close agreement with an
unpublished second-order solution carried out by Naruse.

PRACTICAL NUMERICAL COMPUTATION

The following computing procedure yields the second-order
subsonic solution for the surface speed or pressure on any air-
4 The author Is indebted to Mr. H. Naruse of Tokyo Metropolitan University for having

polntedauttheseldens,someofwhichstemlnmmfmmhiscoﬂmgues. I Imal and H.
Toaknmi.
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foil at any angle of attack. It requires a knowledge only of
the airfoil ordinates at 7 (or 15) points along the chord. It is
based on the foregoing theory together with the numerical
method of Riegels and Germain that is discussed in Appendix
C. It includes the correction for a round leading edge, but
not for sharp edges.

COMPUTING PROCEDURE WITH N=8 (OR 16)

(1) Tabulate the ordinates Y, and Y; of the upper and
lower surfaces at the 7 (15) pivotal points z, listed in table I.
(The z axis must pass through the leading and trailing edges
with the leading edge at z=0 and trailing edge at z=1.)

(2) Calculate the corresponding values of

—(T—Y),  C=(TutY) (59)

(3) Using the influence coefficients of tables IL, ITI, and IV,

calculate

ull 7018 U, *  7(15 A
TFT— uTs L= uC’:
U =] ¢ U =]
7(1. 7(15
=§ xs T C'= fu C, - (60)
sm=] §m]
7(15 7(15)
=R, =0,
tm] am] J

(4) Using table I (with « in radians), calculate

* —
Y L (61)
(5) Calculate
Tg—u“ _*_% Y C’—I—u” (62)

(6) Using the influence coefficients of table II, calculate

Uy ﬁ) i -

a=1

u2c g druO" (63)
(7) Using the compressibility factors of table V, calculate

%=1+K1”'"+K2 (oo rr 43 0oy T -

S () o) L o (e

T 0’T’)+(K,—1) Yy o (642)
or
— ulx 'u’lc 'u"lc

2O LT HC TP ) | (o4

The + signs refer to the upper and lower surfaces of the
airfoil.
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Correction for round leading edge.—If the airfoil has a
round leading edge, continue as follows:
(8) Using the influence coefficients of table I, calculate

7(15)

'\/“_g:= ﬁ TnTm )‘=7%5.‘!) fﬂom (6 5)

n=]1 n=l

7(1 7(15)
W= Al =2 O (66)

n= n=
(9) Calculate

a=+2 (a+a1*+as*)~l—513 x\/é (67)
A=-2 (68)

Vo2

(10) At each pivotal point on the upper and lower surfaces
calculate

X“=Z"_:I:)‘p/___ 15/32'% (69)
and thea calculate

Q(X, +A4, M) or

from equation (36) or (37)
(11) Using the compressibility factors of table V, calculate
at each point

PX,,+ A, M) (70)

©_olBrg & (1480, U\, Esp _ K1\ d
9 U*Klﬁ(l* G ) re (BT 7

(71a)
or

Cpy=PC,, (71b)

REMARKS

1. The summations of steps (3), (6), and (8) are conveni-
ently carried out by tabulating C and T in columns that can
be matched with successive columns of tables II and IIT
while cumulative multiplication is carried out on a desk
calculating machine.

2. If the airfoil slope and second derivative can be found
more directly, step (3) can be simplified by omitting the
calculation of TV, C’, T, and C"’.

3. If the leading-edge radius p and initial camber angle A
are known, omit their calculation from step (8).

4. Seven pivotal points yield sufficient accuracy for most
purposes. If conditions near the nose of a thin airfoil are
of interest it may be necessary to repeat the computation
using 15 pivotal points.

5. The above scheme is designed for calculating a single
case. If the same airfoil is to be calculated at more than two
angles of attack, it is economical to subdivide the computing
scheme to separate terms in @ and e*. Similarly, the scheme
should be subdivided if more than two thickness or camber
ratios are to be calculated for the same family of airfoils.

6. For NACA airfoils T is the basic thickness and C the
camber Jine. To second order it is immaterial that the thick-
ness is added normal to the camber line rather than to the
chord line.

7. In step (10), if A=0 the values of @ or P can be taken
from the tables following equation (35).

EXAMPLE

The following table gives the complete computing form
for calculating the first- and second-order increments in
surface speed for an NACA 00XX airfoil (of unit thickness
ratio) at zero angle of attack and zero Mach number:

n z T e Aq ™ ™ Ty uxn Ap
U U U [ 44
1| 0.03806 | 0.26316 1.8936 3.0014 | —54.721 | 0.48832 | 4.8040 | —4.8180
2] 14645 | .44238 L 6158 .8652 | —8.928 .TI478 | 8.1691 | —, 4082
3| .30888 | .40090 1. 20068 —.0235 | —3.638 .64617 | 1.8200 .0028
4 . 50000 | 44051 . 9053 —. 5445 —1.989 . 36879 - 5719 —. 1340
5| .60134 | .30843 . 4009 —.8063 | —1.048 .156142 | —. 3081 | —, 3063
6| .858355 ] .18199 .0824 | —LOI163 | —1574 .01335 | —.6013 | — 4208
7| .96194 | .04499 | —. 5051 —1.0870 1643 | —. 02677 | —. 0888 | —. 3230

The accuracy of this solution with only 7 pivotal points is
indicated by comparison with the following values, which
were obtained analytically for Ag,/U and with 15 pivotal
points for Ag,/U:

z _dy an
U U U
0.14645 1.6186 —0. 4009
. 50000 . 9003 —.1348
. 85355 .0725 —. 4239

Itis seen that the solution using 7 pivotal points yields ample
accuracy.

AvES AERONAUTICAL LLABORATORY
NarioNaL Apvisory COMMITTEE FOR AERONATUTICS
Morrerr Frewp, Cavtr., March 12, 1966
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APPENDIX A
PRINCIPAL SYMBOLS
a/\ol2 t coefficient in trigonometric polynomial ap-
factor proportional to angle of attack meas- proximation to T’
ured from ideal angle U free-stream speed
coefficient of z? in series for airfoil ord- | % velocity perturbation parallel to chord line
inate ? velocity perturbation normal to chord line
camber of airfoil z abscissa
camber of fictitious airfoil in second-order | X 8/(p/2)
solution Y(x) ordinate of airfoil
surface-pressure coefficient Y.,,Y ordinates of upper and lower surfaces of
first-order surface-pressure coefficient Ci”;;fml’ respectively
second-order increment in surface-pressure v or tlm? bl
coefficient 2 comlp e? va.nak ©
influence coefficients for calculating velocity, g ange 02 attac
dlope, and second derivative of airfoil I—M . . .
ordinate B cotafﬁcle.nt in numerical calculation of u
influence coefficient for calculating a v adiabatic exponent of gos .
analytic function of complex variable Ty coefficient in numerical calculation of Y’
fon, influence coefficient for calculating ini- o semivertex angle of sharp edge
tial camber angle 0 polar angle
imaginary part of f(z) on unit circle ] angle of airfoil surface to chord line
o 1 A terminal angle of camber line to chord line
first-order compressibility factor, B By coefficient in numerical calculation of ¥’/
second-order compressibility factor I pressure coefficient on parabola in subsonic
(v+1) M 4-48° ﬂf)w
ST P radius of round edge
coefficient in trigonometric polynomial ap- | 7 a;rfoﬂ thickness ratio
proximation to C 1 ——7 for Joukowski airfoil
free-stream Mach number 3v3 ) ) )
number of subdivisions of chord line in | ¢ perturbation velocity potential
numerical integration v perturbation stream function
ratio of pressure coefficient on parabola in (Ja value at leading edge
subsonic flow to second-order thin-girfoil | ( )o value at trailing edge .
value (e component associated with camber and
surface speed ratio on parabola in subsonic angle of attack
flow . ( Jar value at Mach number M
(See eq. (55b).) (= value at mth pivotal point counted from
flow speed on surface of airfoil trailing edge .
first- and second-order increments in ¢ ()= va.llue at nth pivotal point counted from
.. eading edge
?eal part of f(2) on unit circle . ()p index of summation, counted from trailing
influence coefficient for calculating edge edge
radius e (e index of summation, counted from leading
abscissae measured from edge positive into edge
. airfoil @F component associated with thickness
distance from round edge ;Ileasured along | () value at zero Mach number
initial tangent to camberline () first-order approximation
thickness of airfoil ()2 second-order approximation
thickness of fictitious airfoil in second-order Yy derivative
solution ™) uniformly valid approximation
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The following are the Cauchy principal values for z2<1:

1. 95_1 x—_gdg— e
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bog 1+=x
2. Eﬁ_l ey d&-—a:ln——2

oo
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o

' 9€—ll z—E
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-1 2—¢& n

1
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14,
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~
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19.
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APPENDIX B

ATRFOIL INTEGRALS
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APPENDIX C

THE RIEGELS-GERMAIN METHOD

The numerical procedure introduced by Riegels (ref. 2)
and Germain (ref. 21) can be adapted to give approximately
the thin-airfoil velocities on any profile in terms of its ordi-
nates at certain fixed points. Thwaites has applied Ger-
mein’s procedure to thin-airfoil theory (ref. 23), and Weber
has systematized the calculation of the slope and surface
velocity (refs. 24 and 25). Here we must also find the
second derivative. In applying the edge correction at a
round nose we also require the edge radius. It is convenient
to derive all these results from Watson’s analysis (ref. 22).

Let f(z) be regular within the unit circle, and on the unit
circle have the form

f(e®)=R(6)+1I() (C1)
(Our R and I are Watson’s ¢ and e.) Then following Ger-

main, Watson approximates to R by the trigonometric
polynomial

N=
R() zko-{-zl)l(k, cos 70+, sin 10)Fky cos N8 (C2)
which can be made to coincide with R at the 2NN equally
spaced pivotal points 6=6,=mz/N. Thus he derives
approximate formulas for I (aside from a constant), R/, I’,
JR, and fI in terms of the values of B at the pivotal
points times fixed influence coefficients.

In thin-airfoil theory the complex perturbation potential
-1y is regular outside the unit circle in the absence of circu-
lation. Inversion shows that this involves a change in sign
of either the real or imaginary part, since f(e~*)=R—1l.
Hence (p,—¢) or (¢,») may be identified with (R,I).

In thin-airfoil theory the tangeney condition on the per-
turbation stream function ¢ is y=—2Y, where Y is the air-
foil ordinate. Therefore, in order to obtain a solution in
terms of the airfoil ordinates we identify (¥,—¢) with (R,I).
It is assumed throughout that the z axis passes through the
leading and trailing edges.

STREAMWISE YELOCITY INCREMENT FOR a=0

Let 2 run from 0 at the leading edge of the airfoil to 1 at
the trailing edge, and

:c=% (1+4-cos 6) (C3)
Then the streamwise perturbation velocity on the airfoil is
given by

u_ Op  dpfol _ 2 ﬁp

U d2 dzf/d9 singod
Now according to Watson’s equations (10), (24), and (27),
in the absence of circulation the values of dp/00 at the points
6., are given by

(C4)

-‘N, 1):0

1
2
dp\ =1
-b_a) = ;?:3 BoY mip Bo== 0, p=-even, not 0
1
" N(—cos6,) p=odd

(C5)-

Now since Bawv—p,=85 and Yo=Y,=0,

EBp mip= Eﬁﬂ—n p+Eﬁp+mY2N— (CG)

Symmetrical airfoils—For a symmetric airfoil ¥Yoy_,=

—Y,=—1T,. Then according to equations (C4), (C5), and
(Ce)

u N—1

T m=;§ [ Cmp= sn 0 (Bo-m—Bpm) (C7)
This form is convenient for calculating the c¢,,. It is also
easily shown, using trigonometric identities, that

Sh]lvo ’ pEm=0

Cap< O, ptm=even, not 0 (C8)

4 sin 6, _
" N(cos 6,—co8 6,)% pEm=odd

which is Weber’s result (ref. 24). Corresponding forms can,
if desired, be found for the other influence coefficients dis-
cussed later.

Antisymmetric airfoils.—-For a cambered airfoil of zero
thickness Yoy_,=Y,=C,. Equation (C6) gives

ZBme+ﬂ E(ﬁp—m+ﬁp+m)0 (Cg)

This expression represents the velocity on the unit circle
into which the airfoil is mapped. , The Kutta condition will
be violated at the trailing edge of the airfoil unless the ex-
pression happens to vanish for m=0. Adding & component
of circulatory flow changes the velocity on the circle by a
constant. Hence the Kutta condition is enforced by sub-
tracting from the expression of equation (C9) its value at
m=0, so that

2N—1 N-1
gﬁpyn+p_)p§1(ﬂp—n+ﬁp+n_zﬁp)op (010)
Hence, according to equations (C4) and (C5)
/ll” N
ﬁ>=p§_:;; dnpom dup sin 0 (ﬁp—m+ﬁp+m 2ﬁp) (Ol 1)
SLOPE OF AIRFOIL
The airfoil slope is given by
28X 2 dY
Y = =50t & (©12)

Now according to Watson’s equations (29), (31), and (34)

0, p=0
sin 9, (O 13)
1—cosd,

2N—-1
a8 /). 2 Vol miny Vo=
™ p=0

-—‘%(—1)” 1p7=0
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or, since yay—p,=—"7,

dB E 'Y,,-,.Y Z 'Y,,.,.,,Ym_ (014)

m  pol

Symmetric airfoils.—Using the symmetry conditions again
gives for symmetric airfoils

N-1

2
T;=;,Y:‘{ Cmme Cnp=—"" sin 0, ('Yp m+'yp+rn) (015)
Antisymmetric airfoils.ﬁSimilarly, for camber lines
N—1
=p§1fnp0p: fnp sin 0 ('Yp+m 'Yp—n) (016)

SECOND DERIVATIVE

The second derivative of the airfoil ordinate is given by

Y 4 [dY
" hadhn SR Bhedin =

R (! oﬁ) ©17)

An approximation for d?Y/dg?, which is required here, is

found by extending Watson’s analysis for the first derivative,

as he suggests. Following closely his section 2.4 gives, after

some computation,

_2N*41 o

& aN—1 6 P =

'%)m: pzn“:) l-‘ﬁYm+p: Bp= 1 (C18)
—(=1r 1—cos 0,’ P70

Symmetric airfoils,—By the foregoing procedure, it is
found that for symmetric airfoils

N
T::=2 Gmp Ym

((ep—m— Epim)—COb 0n(Vo-mtVp4m)] (C19)

Imp= 15;1112 O

Antisymmetric airfoils.—Similary for camber lines !

N-1
0:;= E hrnpym
p=1

4
hmﬂ=m [(F‘p—n+#p+m)_'00t' 0"'(7P—”'_77+”‘)] (020)
EDGE RADII

If the airfoil has round leading and trailing edges, their
radii are given by

p= lim 2xY"3, p= lim 2(1-x)Y"? (C21)
-4 -1
Near the edges, to a first approximation
dx\? dz\?
I=<'JB-> y 1—$=<ﬁ> (022)

1 The oxpression given for pu» in NACA TN 3390 is incorrect, differing from that of the
present equation (C18) by 1f2(—I1)sN. The etror cancels out in the gms, but the values of
hmy tabulated thero are affected. However, the correction has little effect (except to simplify
the tables) ainco the approximation merely becones exact for the first 8 Fourler comnponents
rather than the first 7 (In the caso N==g),

559
80 that

(C23)

Setting m=N and 0 in equation (C14) and using the sym-
metry properties of the thickness and camber distributions

gives
N—1
JE=_2 2 Tv—pTy
2 =1

at the leading and trailing edges, respectively.
SLOPE OF CAMBER LINE AT END

Equation (C16) is indeterminate at the ends of the airfoil.
Applying L’Hospital’s rule to equation (C12) gives at 6=0

axx
2

Then using equation (C18) and the fact that Yay_,=Y,=0C,
for a camber line gives

N-—1
2 ,,Zﬁl Y1y (C24)

Y=— (C25)

N-1
Y0,=""21 fpom prfop__4(_ P (C26)

1— cosﬁ

ANGLE-OF-ATTACK PARAMETER «

The parameter @ is the coefficient of the square-root
leading-edge singularity in the surface speed. There is a
first-order contribution from ,./U (eq. (4)), and second-order
contributions from u,/U (eq. (8)) and (C+T) (C"'+T"")+
1/2(C"+ 1) (eq. (9)).

For zero angle of attack, equations (C4), (C5), and (C10)
give

uc 9 N-1
m E (ﬁp—n‘l‘ﬁﬁm 26#)0 (027)
Near the leading edge
sin ~+2z (C28)
so that (since B,_xy="F,1y="Bnv_p)
N-1
%fvz\/? > (Br-r—B,)Cy (C29)
Z p=1

Including the contribution of angle of attack from equation
(4) gives for the first-order approximation to a

N—
a1=1,/§ a+p2_1 de’p)’ d,=2(By_»—B5) (C30)

For a round nose described by equation (15a), the terms
(CE£D) (C"£T")+1/2(C' £ T")? of equation (9) contribute.

1
et P p—1s2
5 )\\/% T
Hence the second-order increment in a is

M=% 3 4,0y 0 2 (1)
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TABLES

The various influence coefficients have been calculated for

N=8 and N=186.

The values have been checked by apply-

ing them to & number of simple shapes—ellipse, parabolic
arc camber line, etc.—for which the approximation of the

airfoil by a trigonometric polynomial is exact.

They were

also checked against Weber’s values (vefs. 24 and 25) where

possible.

The values are believed to be accurate to within

one unit in the last place.
For convenience of computation, the coefficients have been
renumbered so that the pivotal points are counted from the

leading to the trailing edge.
by using indices (n, 8) instead of (m, p).

This renumbering is indicated
The above results

are formally unchanged, except that the roles of leading and
trailing edge are interchanged in equation (C24), the sign of
equation (C26) is reversed, and the sign of d, is reversed

(eq. (C30)).

The renumbered influence coefficients are

given in tables I to IV.

1.

10.

11.

12.

13.

14,

15.
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TABLE I—PIVOTAL POINTS, INCLINED FLAT PLATE SOLUTION, AND INFLUENCE COEFFICIENTS FOR nNa

N=8 N=16
1-z, Tn I da /1—: s I d
i i Voo | CorpB | ory (for @) » Fa = | Cr VA | oy (tora)
1 0, 03800 56,0273 5.0373 52, 5483 —3.1543 1 0. 00961 10.1532 10. 1532 208,174 —6. 4423
2 . 03806 8.0273 —5.0273 —b52, 548 0
2 . 14645 2,4142 —2, 4142 —13. 6569 0 3 . (03428 3. 2068 3.2066 23.735 —. 6735
4 . 14648 2 4142 —2. 4142 —13.657 0
3 . 30885 1. 4968 1, 4880 8. 4797 —. 2242 b <2222 1.8709 1. 8709 0.000 —. 2000
[i] . 30866 1. 4066 —1.4986 —8. 480 0
4 . 50000 L 0000 —1.0000 —4, 0000 0 7 . 40246 1.2186 1.2185 4.970 —. 0507
8 . 50000 1 0000 —1. 0000 —4.000 0
5 . 69134 . 6682 . 6682 2, 8029 2242 9 50754 . 8207 . 8207 3.347 . 0507
10 . 69134 . 6682 —. 6682 —2,.803 (]
8 . 85355 .4142 —. 4142 —2,3431 0 11 TTT78 . 5345 . 5345 2,571 . 2009
12 . 85355 4142 —. 4142 -—2.343 0
7 . 96104 . 1989 . 1689 2.0701 3.1543 13 91674 . 3033 . 3033 2.184 . 6735
14 . 06194 .1080 —. 1989 —2.079 0
15 . 98039 . 0885 . 0885 2.019 6.4423
TABLE II.—INFLUENCE COEFFICIENTS FOR VELOCITY (a) N=8
cas (veloolty due to thickness) das (velocity due to camber)
\ 1 2 3 4 5 8 7 \ 1 2 3 4 5 8 7
L4 3
1 20, 0050 —4.0719 0 —0. 2242 0 —0,0719 0 1 21. 5841 —4.8408 0.2818 | —0.3259 0.2813 | —0.0710 0. 6791
2 —7. 6240 11.8137 | —3.3592 ¢ —-. 2977 0 —~.1329 2 —9, 6405 11.3187 | —3.7508 0 —. 5790 0 —.8120
3 1] —4, 3800 8,8501 | —3.1543 0 —. 3800 0 3 L9450 —4. 3800 9.0508 | —3.0528 39141 —.2451 . 9450
4 —, 5858 0 —3.4142 8.0000 | —3.4142 0 —. 5858 4 —1. 5307 0 —3. 6955 8.0000 | —3.6055 0 -1, 5307
3 0 —. 3890 0 —3.1543 8.6591 | —4.3800 [} 5 2.1165 . 3890 8767 | —2 6043 9.5368 | —3.7549 2.1165
i} —. 1329 0 - 2077 0 —3.3602 | 1L3137 | —7.5240 8 —. 8120 0 —. 57 0 —3.7508 { 11.3137( -—0,6405
7 0 -—. 0719 0 —. 2242 0 —4.0719 20, 9030 7 17.1644 8 8498 7.1097 5. 0828 7.1007 4.0719 38. 064
(b) N=16
¢xs (velocity due to thickness)
ﬂ\ 1 2 3 4 5 [ 7 8 9 10 11 12 13 14 15
2 .
1 82,0133 | —15.0814 0 —{.8512 0 —0.1363 —0. 0507 0 —~{0.0262 —0.0171 0.0134 0
2 —~29, 5439 41. 8100 | —1L 2032 —. 7053 0 —. 1801 0 —. 0764 0 —. 0437 —. 0310 —. 0264
3 ~186. 2646 28,7002 | —8.6804 0 —. 8896 —. 2000 —. 0842 —. 0587 —. 0451 1}
4 —2, 3602 —11.4800 | 22.6274 —7.6082 0 —. 6743 0 —. 2172 —.1109 —. 0747 —. 0620
b —1. 5324 o -9, 0522 19.2430 | —8.9545 —. 6735 —. 2361 —. 1304 —. 0950 0
] —, 8467 ~1.1468 0 —7.7274 17.3183 | —6.5633 (] —. 6919 —. 2624 —. 1667 —. 1242
7 1] —. 4616 0 —. 9353 0 —6. 9676 16.3135 | —6.4423 —. 7845 —. 3012 —. 1958
8 —. 2509 —. 3618 0 —. 8100 —B. 5685 16.0000 | —6.5685 0 —. 8100 —. 3616 —. 2509
9 0 —. 16858 0 —. 3012 0 —. 7345 0 —8.4423 16. 3135 —8. 867 0 —. 9353 —.4816
10 -, 1242 —. 1567 —. 2024 0 —. 6919 0 —8. 5633 17.3183 -7.7274 0 —1.1468 —. 8457
11 0 —. 0950 0 —, 1304 ] —. 2361 —. 6735 —8.9545 19. 2430 —0, 0522 —1.5324
12 —, 0620 —. 0747 1] —. 1109 0 —. 2172 0 —. 6743 —7.6982 22,6274 ~11. 4300 0 —2, 3602
13 (] —. (451 0 —. 0587 0 —. 0842 0 —. 2000 —. 6898 0 —8. 0804 28, 7992 —16. 2846
14 —. 0284 0 —. 0310 0 —. 0437 0 —. 0764 0 —. 1801 —. 7053 —11. 2032 41,8100 | —20.5439
15 0 —. 0134 0 —. 0171 0 —. 0262 0 -—. 0507 —. 1363 0 —. 6512 —15.0614 82,0133
dus (veloclty dus to camber)
1 82.6602 | —18.6070 0. —~1, 2682 0.1518 —0. 3359 0.1287 —0.1337 0.1286 -—0.0638 0.1518 —~0. 0317 0.2272 —0.0134 0.6469
2 —37.1476 41.8100 | —12.2157 [1] —1.0788 0 —. 3934 —. 2403 0 - 0 —. 2582 -
3 , 6097 | —17,3778 . 0449 | —90. 2267 .1642 —. 7683 L1392 —. 2251 . 1392 —. 0942 1642 —. 0441 . 2457 —.0182 . 6097
4 —b5,2438 0 —11,0800 | 22.6274 —7.9498 0 —. 8383 —. 3564 0 —. 2827 0 —. 3018 —. 7617
5 L8238 | —1,9240 .2893 | —9.1207 19.4383 | —6.9545 .1639 —. 0492 .1639 —. 1988 .1833 —. 0816 . 2893 —.0317 .8238
1] —~2.2377 0 -1, 5233 0 —7.0207 17.3183 —6. 7025 —. 8206 [} —. 4142 0 —. 4024 1} —. 9480
7 L0723 ~.4618 .3765 —. 8687 . 2516 —B. 8589 18, 5267 —6. 354 . 2133 —. 5447 . 2516 —. 1884 . 3785 —. 0602 1.0723
8 —1,3322 0 —. 6500 0 —. 9741 0 —8.6973 18. 0000 —8. 6072 0 —. 9741 1} —. 6509 —1. 3322
0 1. 5020 1958 . 5590 —.0550 .3738 —. 5349 . 3187 ~8. 2580 16. 6301 —8.7701 .3738 —. 7233 . 5500 —. 1967 1. 5920
10 -, 5480 0 —. 4024 [+ —. 4142 0 —. 8208 0 —6. 7026 17.3183 —=2.9207 0 —1. 5233 0 —2.2377
11 1,0183 1,0125 . 4868 . 8765 . 2361 5736 —. 2474 . 5785 —0. 5195 19. 9196 —8. 5525 1.012% —. 8740 2.8831
12 —, 7617 0 —. 3018 0 —. 2627 0 —. 3864 0 —. 8382 —7.9498 C22.6274 —11. 9890 0 —5.2436
13 7.6037 3. 5016 2.8701 1. 8807 1. 7841 1.3837 1. 5125 1.1218 1.5125 6890 1.7841 —7.3218 31.4603 —13.8582 7. 6037
14 —, 6733 0 —. 2582 1] —. 2079 1} —. 2403 0 —. 3034 —1.0788 —12, 2147 41,8100 —~37. 1478
16 66. 6915 33. 65568 23.4100 | 18,1900 15. 6480 13.8827 13. 2858 12.7610 18. 2058 13. 6103 15. 6450 18. 9535 23. 4190 15. 0614 148, 7048
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TABLE IIL—INFLUENCE COEFFICIENTS FOR SLOPE

(a) N=8
eas (slope due to thickness) Jns (slope due to camber)
N 1 2 3 4 5 6 7 \ 1 2 3 4 5 8 7

1 ~8.30586 | —4.9932 1.5307 | —0.8284 0.6340 | —0.6638 1.0824 1 0.3086 | —9.2262 3.6065 | —2.1648 1.5307 | —1,2262 1.0824
2 17,0479 | —L 4142 | —4.7183 2.0000 | —1.4046 1.4142 | —2,2058 2 9. 2262 1.4142 | —6.1648 2,8284 | —1.5352 1,4142 | —1,2202
3 ~-8.9218 8.0547 —. 4483 | —4.8284 2.6131 | —2.3978 3. 6955 3 —3. 6955 6. 1648 .4483 | —b5.2262 2,6131 | —1.8352 1. 5307
4 5. 6568 | —4.0000 5. 6568 0 ~—5.6568 4.0000 | —5.6568 4 2.1648 | —2.8284 5, 2262 0 -5, 2262 2,8284 | —2.148
5 ~3. 6955 2.3978 | —2.6131 4. 8284 4483 | —8.0547 8.9218 b —1. 5307 1.8352 | —2.6131 5. 2262 —. 4483 | —0.1648 3. 6955
] 2.2658 | —1 4142 1. 4046 | —2.0000 4.7183 L 4142 | —17.0478 [ 1.2262 | —1.4142 1.8352 | —2.8284 6,1648 | —1.4142 | —0.2202
7 —L 0824 . 6636 —. 6340 .8284 | —1.5307 4.9032 6. 3088 7 —1.0824 1262 | —1.5307 2.1048 | —3.6985 09,2202 | —0.3080

(b) N=16
eas (8lope due to thickness)

B 1 2 3 4 5 6 7 8 9 10 1 12 13 14 156
3

1 --25.7693 | ~17.9172 4.7035 | —2.0162 11038 | —0.7061 0.5083 | —0.3978 0.3383 | —0.3098 0.3054 | —0.3260 0.3875 ~0. 5353 1.0100

2 63.9411 | —6.3038 | —14.9078 4.9032 | —2.4002 1.5307 | —L1.0708 .8284 —. 6974 . 6340 —. 6223 . 6636 - 1.0824 —2.0508
3 ~—38. 1441 3L 4204 | —2.6938 | —12.6350 8436 | —2.6799 L7802 | —13364 1.1038 —. 9008 .0635 | —1.0213 1.2027 —1.0641 3. 1428
4 26.4874 | ~17. 479 20.4685 | —L.4142 | —11.2241 7183 | —2.8162 2.0000 | —1.5983 14046 | —1.3470 1. 4142 —1. 85645 2.2058 —4, 2047

5 ~20. 0462 117084 | —10.8489 15. 5194 —. 8036 | —10.4112 4.7035 | —2.9932 2.2587 | —L9184 1.8000 | —1.8625 2.1580 —2.0972 5. 5182

-] 158356 | —8.9218 7.4108 | —8.0547 12. 8510 —. 4483 | —10.0428 4.8284 | —3.2607 2 6131 —2.3685 2.3978 —2. 7393 3. 6958 —0. 405

7 ~12.7972 7.0334 | —35.5482 54180 | —6.5445 11.3181 —.2028 | —10.0547 5.1258 | ~—3.6748 3.1428 | —3.0748 3. 434 —4, 5308 8. 5508

8 10.4525 | —5.8568 4.3298 | —4.0000 4.3208 | —6.8568 10. 4525 —10. 4525 5. —4.3206 ~4.3200 5.0508 | —10.4528
9 —8. 5508 4.5808 | —3.43%4 3.0748 | —3.1428 3.6748 | —5.1258 10. 0647 .2028 | ~-11.3181 6.6445 | —b5.4180 5. 5482 —7.0334 12.7972
10 60485 | —3.6955 27383 | —2.3978 2.3685 | —2.6131 3.2607 | —4.8284 10.0428 .4483 | —12 8540 8. 0547 —7.4108 8.0218 | —15.8350
11 —5.5482 29372 | —2.1580 1.8625 | —1.8000 1.9184 | —2.2587 2.0032 | —4.7035 10. 4112 .8036 | —15. 514 10,8489 | —11. 7084 20. 0462
12 4.2047 | —2.2858 1.6545 | —L 4142 1.3470 | -1 4048 1.5082 | —2.0000 2.8162 | —4.7183 11 2241 1.4142 | —20.4085 17.0470 | —28.4874
13 —3.1428 L6541 | —1.2027 10213 —. 0635 L0006 | —1.1038 L3364 | —1.7802 2.6799 | —4.8438 12, 6356 2.06938 | —31.4204 38. 1441
14 0588 | —10824 . 7848 -, 6638 . 6222 —. 6340 . 6974 —. 8284 L0708 | —1.5307 2.4992 | —4.0932 14. 9078 6,3080 | —08.0411
15 —1.0196 . 5353 —.3875 . —. 3034 . —.3383 .3978 —. 5063 L7061 | —1.1038 2.0162 —4. 7035 17.90172 7093

Jas (3lope due to camber)

1 25,7683 | —35.1459 13,344 | —7.3078 4.7035 | —3.8439 2.5466 | —2.0392 L7009 | —1.4668 13018 | —L1.1849 1.1038 —1. 0600 1.0190

2 35. 1459 6.3080 | —2L 6427 0.2262 | —5 4302 3.6855 | -—-2.7443 21648 | —1.7874 1.5307 | —1.3518 1.2262 —11394 1.0824 —1.0500
3 ~13.3944 21. 6427 20938 | —16.03820 7.2400 | —4.4585 3.1428 | —24054 L0483 | —L 6472 L4419 | -1 1,2027 =L 13 1.1030
4 7.3078 | —9.2262 16. 0820 14142 | —13.1982 6.1648 | ~—-3.9061 2.8284 | —2.2168 —1. 5830 L4142 —1.2999 1.2202 —1.1849

5 —4. 7035 5.4302 | —7.2490 13.1982 L8036 | —11.5683 5.5482 | —3.5090 2.6643 | —2.1316 1.8000 | —1.5830 1. 4419 —1.3518 1,3018
6 3.3439 | —3.6955 4.4565 | —B8.1648 1L 5883 . 4483 { —10. 6614 2262 | —3.4616 2.6131 | —2.1316 1.8362 —1. 6472 1. 6307 —1. 4609

7 —2. 5453 2.7443 | —3.1428 3.9081 { —5.5482 10. 6614 . —10. 2517 1268 | —3.4616 2.6643 | —2.2168 1.9482 —1.7874 1, 7000
8 20392 | —2.1648 24054 | —2.8284 3.5000 | —6.2262 10. 2617 —10.2517 —3. 5099 2.8284 —2.4054 2,148 -2.0393

9 —1 7009 L7874 | —L 9482 2.2168 | —2.6643 3.4616 | —6.12588 10. 2517 - —10. 6614 5.5482 | —3.9061 3.1428 —2.7443 2. 5465
10 14669 | —1.5307 L6472 1 —1.8362 2.1316 | —2.6131 8.4616 | —5.2262 10. 6614 - —11. 5683 6.1648 —4. €955 —3.3439
3} —1.3018 13618 | -—L 4419 1.5839 | ~—1.8000 21316 | —2.6643 3.5990 | —b5.5482 11. 5683 —. 5086 | —13.1982 7.2490 —5.4303 4. 7035
12 L1849 | —1.2262 L2099 | —L1.4142 1.5839 | —1.8352 22168 | —2.8284 3.0081 | —6.1648 13.1082 | —1.4142 | —16.0820 9. 2202 —~7.3078
13 —1.1038 L1304 | —1.2027 12009 | —L4419 L6472 | —L.90482 2.4054 | —3.1428 4.4585 | —7.2490 16. 0320 —2.6038 | —21.06427 13,3044
14 0500 | —L OS24 L13%4 | —L2262 L3518 | —1.5307 L7874 | —2.1648 2.7443 | —3.6955 54302 | —9.2262 21, 6437 —6.3080 | —35.1460
18 —10198 10500 —1.1036 1.1840 { —1.3018 1.4668 | —1. 7009 2.0302 | —2.5456 3.3439 | —4.7035 3078 | —13.3944 351489 | —
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TABLE IV.—INFLUENCE COEFFICIENTS FOR SECOND DERIVATIVE
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