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THEORETICAL SPAN LOAD DISTRIBUTIONS
AND ROLLING MOMENTS FOR SIDESLIPPING WINGS OF ARBITRARY
PLAN FORM IN INCOMPRESSIBLE FLOW 1!

By M. J. Queno

SUMMARY

A method of computing span loads and the resulting rolling
moments for sideslipping wings of arbitrary plan form in in-
compressible flow is derived. The method requires that the
span load at zero sideslip be known for the wing under con-
sideration. Because this information 18 available for a variety
of wings, this requirement should mot seriously restrict the
application of the present method. The basic method derived
herein requires a mechanical differentiation and integration to
oblain the rolling moment for the general wing in sideslip.
For wings having straight leading and trailing edges over each
semispan, the rolling moment due to sideslip 1s given by a stmple
equation in terms of plan-form parameters and the lateral
cenler of pressure of the lift due to angle of attack.

The mechanical differentiation and integration required to
obtain the rolling moment for the general wing can be avoided
by use of a step-load method which is also derived. Charts are
presenied from which the rolling-moment parameter C./Cy
can be oblained for wings having siraight leading and trailing
edges over each semispan.

Caleulated span loads and rolling-moment parameters are
compared with experimental values. The comparison indi-
cates good agreement between calculations and available experi-
menlal dala.

INTRODUCTION

The span load distributions and rolling moments of a wing
in sideslip are important in considering the structural and
dynamic lateral-stability requirements of an aireraft and,
hence, have been the subject of numerous experimental and
theoretical studies. Most of the studies have been limited
to the determination of the rolling moment due to sideslip
O,; however, a fow studies have been concerned with the

span load distributions for wings in sideslip. (See refs. 1,
2, and 3, for example.) References 1 and 2 are theoretical
studies: reference 1, for unswept wings; and reference 2, for
sweptback wings. Comparisons between experimental and
theoretical span loads for unswept wings showed good
agreement (ref. 1). The few comparisons in reference 2
between theoretical and experimental span loads for swept
wings indicated fair agreement over most of the semispan
but poor agreement near the wing tip where the theory

18opersedes NAOA Technlcal Note 3805 by M. J. Queljo, 1955.

indicated a rapid decrease in load and experiments indicated
a rapid increase. The method of reference 1 does predict
the rapid tip-load change with sideslip which has also been
observed for unswept wings. Examination of reference 1
indicated that the basic concepts employed therein could be
used in the calculation of span loads and rolling moments
for swept wings in sideslip, provided sweep effects could be
taken into account.

The purpose of the present report is to derive a method,
using the basic concepts of reference 1 and introducing a
means to account for sweep effects, which permits the calcu-
lation of the span load distribution and rolling moment for
any wing in sideslip. The method requires that the span
load distribution at zero sideslip angle be known. Since
this information is available for a large variety of wings
(see refs. 4 to 7, for example), this restriction is not believed
to be serious.

The basic concepts used herein permit the determination
of the span load and the resulting rolling-moment coefficient
of a wing in sideslip by use of either an integration method
and a continuous spanwise circulation distribution or a series
summation in combination with a stepped circulation distri-

bution. Both methods are developed herein.
SYMBOLS
A aspect ratio, b%/S
b span
Cy wing lift coefficient due to angle of attack,
Wing lift due to @
e
o wing rolling-moment coefficient,
Wing rolling moment
1 2
5 pV3Sb
oC
Czp="b—ﬁl
¢ chord, parallel to plane of symmetry
I
cC8 dB8C,
c average chord, S/b
€ chord at inboard end of a vortex
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1 section lift coefficient, S___e;tlon Lft
§ pV20
oc;

01a=$

(c1)a section lift coefficient due to angle of attack

(en)s section lift coefficient due to sideslip

(e =0 section lift coefficient at zero sideslip angle

Co chord at outboard end of a vortex

l section Lift (lift per unit span)

4 rolling moment due to one horseshoe vortex

N number of horseshoe vortices representing wing

n index which indicates a specific horseshoe vortex

S wing ares

8 semispan of a horseshoe vortex

Vv free-stream velocity

Y spanwise distance from plane of symmetry

7] spanwise position of center of pressure due to
angle-of-attack load on one semispan

z distance along quarter-chord line, measured from
plane of symmetry

a geometric angle of attack, radians

o, induced angle of attack, radians

B sideslip angle, radians

T, vortex strength in spanwise direction

(Ty) gm0 vortex strength T, for wing at zero sideslip angle

T, vortex strength along quarter-chord line

v section load parameter for total load on section,
cCy
T

(7)a section load parameter due to angle of attack

(7 section load parameter due to sideslip

(7)8=0 section load parameter at zero sideslip angle

(7)e section load parameter due to twist

6 local angle of attack due to twist, radians

X factor from reference 1

A sweep of quarter-chord line, deg (positive for
sweepback)

. Tip chord

A taper ratio, Root chord

P mass density of air

Superscript:

* denotes that factor has been made nondimen-

sional by dividing by 5/2; for example, o*=b%

ANALYSIS

In making span-load calculations, the wing is generally
represented by a system of vortices. For the case of zero
sideslip, the unswept wing can be represented by a system
of spanwise and chordwise vortices as shown in figure 1 (a).
For wings of high aspect ratio, the spanwise vortices are
generally replaced by a single vortex, and the resulting
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system (fig. 1 (b)) is the common lifting-line-theory repre-
sentation of a wing at zero sideslip angle.

Various systems of vortices have been considered for the
representation of unswept wings in sideslip. One system is
a modification of the lifting-line-theory representation and
consists of a single spanwise vortex and a sheet of trailing
vortices which are parallel to the free airstream (fig. 1 (c)).
This system was used by Blenk (ref. 8); however, his calcu-
lated rolling moments due to sideslip were opposite in sign
from those obtained experimentally.

The vortex system used by Weissinger for the unswept
wing in sideslip is shown in figure 1 (d), and this system is
also a modification of the lifting-line-theory representation
at zero sideslip. The theoretical arguments for the system
are given in reference 1 and, therefore, will not berepeated
here. However, it should be noted here that the span load
distributions and values of C;, computed by Weissinger for

unswept wings are generally in very good agreement with
experiment. '

As stated in the introduction, the basic concepts used
herein are the same as those of reference 1 and are applied
directly to the swept wing. The swept wing in sideslip is
represented by a system of vortices, as indicated in figure
2 (a), which consists of & vortex located along the wing
quarter-chord line and a sheet of vortices emanating from this
vortex. The vortices of the sheet are parallel to the wing
plane of symmetry from the quarter-chord line to the trailing
edge, and then they slant so as to be parallel to the relative
wind direction. In the present report, the portion of the
vortex sheet parallel to the plane of symmetry is referred to
as being made up of chordwise-bound vortices, whereas
the rest of the vortex sheet is considered to be made up of
trailing-free vortices.

lV ' Spanwise vorfex

vortices
= ; “irol ; )
et traill
@ lrsiing (0 Voriices
vortices

(d)

(a) General arrangement for zero (b) Lifting-line-theory arrango-

sideslip. ment for zero sideslip.
(¢) Blenk’s arrangement (ref. 8) (d) Weissinger’s arrangement; (ref.
for sideslip. 1) for sideslip.

Fraure 1.—Vortex systems used for representing unswept wings.
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The lift produced by a unit length of vortex is given by
the Kutta~-Joukowski equation

l=pV,T

where T is the vortex strength (or circulation) and V, is
the velocity component perpendicular to the vortex. As
may be seen from figure 2 (a), the free-stream velocity has
components perpendicular to the quarter-chord-line vortex
and the chordwise-bound vortices and, hence, these vortices
will produce lift in accordance with the Kutta-Joukowski
equation, The trailing-free vortices are parallel to the rela-
tive wind and hence produce no lift. The strength of the
chordwise-bound vortices is determined by the strength
distribution of the quarter-chord-line vortex; therefore, the
lift distribution of the wing in sideslip can be determined,
provided the distribution of the strength of the quarter-
chord-line vortex for the wing in sideslip is known.

The vortex strength would be made up of the circulation
due to the basic-type loading (camber and/or twist), angle-
of-attack loading, and some modification to the sum of these
loadings as a result of sideslip. In general, the circulation
at zero sideslip can be obtained from published reports (refs.
4, 5, and 6, for example), and the remaining unknown is the
modification due to sideslip. An approximate method of
evaluating this effect is as follows: with reference to figure
2 (b), which pertains to the right, or leading wing semispan,
the lift per unit length of the quarter-chord-line vortex of a
swept wing in sideslip is given by

L=pV cos (A—B) T,

.

< —/ _Quorter-chord-
~~ """ line vortex
Leoding .~Chordwise-
edge "> 7 bound
vortex
Tralling ‘
edge™~._. __ Trailing-free
“““ vortex
(a)
14

Y

.~~~ Quarter-chord-line vortex

(b} \z

(a) Overall representation.
(b) Details of an element of the quarter-chord-line vortex.

Fiaure 2.—Representation of a wing by the vortex systemn used in
analysis.
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and also by

a,

1 —
1=5 pV? cos* (A—f) e, m ‘

so that the circulation T, is
1 .
I=3 Vee, (a—ay)

Similarly, for the wing at zero sideslip, the circulation is
given by

(Pz)ﬁ=-0=% Vee, (a—ap)sao

Thus the circulation at a sideslip angle is related to the circu-
lation at zero sideslip by

a—a

r=(T)sm0 E—asms

It appears, therefore, that the local circulation of the quarter-
chord-line vortex of a wing at a given angle of attack will be
changed by sideslip only if slideslip changes the induced
angle of attack. For infinite aspect ratio, the induced angle
of attack is zero and, hence, T', is exactly equal to (I';)gu0.
For large aspect ratios, when o, is small relative to «, & modi-
fication to «; due to sideslip probably will have a negligible
effect on the local circulation. Even for small aspect ratios,
when «; can be large relative to , it does not appear that a
small sideslip angle should affect «; enough to change the
local circulation appreciably. This argument is substan-
tiated to some extent by calculations of the circulation dis-
tribution of unswept wings in sideslip made by Weissinger
(ref. 1). These results showed that for unswept wings the
change in circulation due to sideslip was small and resulted
in anincrement in ¢ ,ﬂ/ C;, that was independent (for practical
purposes) of aspect ratio and taper ratio for a fairly wide
range of both parameters.

Because of the effort involved in actually computing the
circulation distribution for wings in sideslip and because of
the arguments given in the preceding paragraph, the analysis
of the present report is based on the assumption that the
circulation distribution for the wing in sideslip is the same
as for the wing at zero sideslip. Span load distributions for
the wing in sideslip can then be obtained by the methods
derived in the appendix. The rolling moment due to side-
slip can be obtained for any wing by integration of the span
load due to sideslip, and this method is referred to herein
as the integration method. For the most general case, the
integration involved in this method cannot be made con-
veniently. In such instances a second method, wherein the
wing is represented by a number of horseshoe vortices (see
figs. 3 and 4), can be used. This method also is derived
herein. The resulting values of the rolling-moment param-
eter Cy, are obtained and a small correction to account for
effects of slideslip on the circulation distribution (as deter-
mined in ref. 1 for unswept wings) is applied. Although this


http://www.abbottaerospace.com/technical-library

432

_____ ..-rStep load
= -3
~Continuous load
/]
I Y I
b b
2 2
(@
B
v

4

~ 74

““Trailing edge

(a) Approximation of continuous load by step load.
(b) Representation of a wing by & finite number of horseshoe vortices.

Fiaure 3.—Representation of wing when span load is assumed to be
made up of spanwise step loadings.

~- .Wing leading edge
~z

—~—
Y “~Wing frailing edge
“nth horseshoe vortex

Ja
“~~pigne of symmetry

Ficure 4.—Details of nth horseshoe vortex used in representing wing
in sideslip by a number of horseshoe vortices.

final correction may not be strictly applicable to swept wings,
it is a small quantity and should be of the right order of
magnitude even for swept wings.

RESULTS AND DISCUSSION
GENERAL REMARES

The general equations derived in the appendix can be
used to obtain span loads and rolling moments for side-
slipping wings of arbitrary plan form and twist in incompres-
sible flow. The general equations have been used to deter-
mine equations which apply specifically to wings having
straight leading and trailing edges and for wings of elliptic
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plan form. Equations for specific types of wings not treated
herein (for example, M, W, or cranked wings) can be obtained
from the general equations with little difficulty. The span
loads and rolling moments for wings in sideslip can be
obtained by the methods presented herein, however, only if
the span load at zero sideslip angle is known. This is not a
serious restriction since such information is available for a
large variety of wings. However, wings of odd plan form
present an additional problem in that it will generally be
necessary to compute the span load at zero sideslip before
proceeding to the sideslip case. In such instances, the span
load at zero sideslip can be computed by using a method
such as that of references 7, 9, and 10.

In the following sections, some of the equations derived
in the appendix are repeated and results obtained are
discussed.

SPAN LOAD DISTRIBUTION IN SIDESLIP

The span load distribution of & wing in sideslip can be
determined from the following general equation:

Y=(")g=o (1+pB tan A)_..% Be* d("iyl);-o (1)
The load due to sideslip is given by
(Me=(")p=o(LP tan A)—_ Be* d(;z);.-o @

Wherever a choice of signs is indicated, a plus sign applies to
the right or leading wing semispan, and & minus sign applies
to the left or trailing wing semispan.

A study of equation (2) shows that, if a portion of the total
wing load is symmetric over the wing span at zero sideslip,
the change in that portion of the load due to sideslip will be
antisymmetric (and, hence, will produce & resultant rolling
moment). On the other hand, if & portion of the total wing
load is antisymmetric over the wing span at zero sideslip, the
change in that portion of the load due to sideslip is symmetric
(and, hence, will produce no resultant rolling moment).

In order to illustrate the effects of sideslip on span loads,

the parameter _0’ has been computed for several rigid

B

wings of aspect ratio 4.5. This parameter can be obtained
readily by expanding equation (2); thus,

2(X
e e

Inasmuch as the term (y)e is independent of Oy, due to angle
of attack for rigid wings, differentiating with respect to 8 and
C;, yields the desired parameter

d (C’OL)

(v)ﬂ=[(v),+(—0";)a Gy | (48 tan A)

¢ __

For elliptic wings, equatlon 3) reduces to
CC; —
i o @

Computed values of T:_CE are shown in figure 5 for several

wings. The span load due to sideslip is, of course, anti-
symmetric and, hence, results are presented only for the
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(a) Elliptic wing.
(b) A=0°; A=0.50.
Fiaure 5.—Estimated span load due to sideslip for several plane wings,
A=4.5.

right semispan. In each case the contributions of the
quarter-chord-line vortex and chordwise-bound vortices are
presented individually and are also combined. The results
show that, for the true elliptic wing (unswept midchord line),
the chordwise-bound vortices account for three-quarters of
the local load coefficient and the local load coefficient varies
linearly with spanwise position.

The results for the unswept wing are in qualitative agree-
ment with the results given for unswept wings in reference 1
and indicate an infinite load coefficient at the wing tips.
The effects of sweep can be seen by comparing figures 5 (b)
and 5 (¢). The local load due to sideslip associated with
the quarter-chord-line vortex is, of course, a consequence of
sweep and can contribute greatly to the load in sideslip.

Some comparisons between calculated and experimental

span loads due to sideslip are shown in figure 6 for an un-
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Fiaure 5.—Concluded.

tapered 45° sweptback wing of aspect ratio 5.16. The loads
due to sideslip were computed from equation (2) and ex-
perimental values of (v)g-o. In general, the computed and
experimental span loads due to sideslip are in very good
agreement at low angles of attack.

ROLLING MOMENT DUE TO SIDESLIP

Integration method.—A general equation for the rolling
moment due to sideslip is given in the appendix as

0
Orp= —i{ f_l I:(v)a tan A—I—g c* ‘{—é—")ﬁ ydy*+

I [('Y)a tan A-—— c d(7)°:| }

5 f I:('y)a tan A—Z c* (Z(;,)," *dy*+0.05C, 6))
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7

(a) A=5.16; A=45°; »=1.00; «=5.7°; and B=10°.
(b) A=5.16; A=45°; A=1.00; «=11.5°; and p=10°.

F1aure 6.—Comparison of experimental and calculated span loads due
to sideslip.

If the wing under consideration has symmetrical twist,
equation (5) can be written as

0’ﬁ=_% ﬁl{ [()e+()a] tan A—

_c"‘ ‘{g}: ‘Z(;)::l}y'dy*+0.050}, 6)

The rate of change of (i, with i, for rigid wings is given by
d(a)

which, for wings having straight leading and t:railing edges

over each semispan, reduces to
S R [ta.n A ):l +0.05  (8)
A WZIEDN) 1+x

For elliptic wings (having unswept midchord lines), the
parameter Cy,/C}, is given by

Ciy
oA -—m—l—o .05 ()]

Ci,

el L 5% tan A43 f o 005 (7)

Equation (8) has been used to evaluate the parameter
C\,/Ct. for rigid wings covering a wide range of aspect ratio,
taper ratio, and sweep, and having straight leading and
trailing edges over each semispan. The values of 7* used
in equation (8) were obtained from references 4, 5, and 6.
The results are given in figure 7.

Some comparisons of values of (i,/Cy computed from the
equations presented herein with those of other theories are
shown in figures 8, 9, and 10. The variation of Ci)/C;
with aspect ratio for elliptic wings was computed by using
equation (9) and is shown in figure 8. The computed values
are somewhat greater than those given in equation (4) of
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reference 1 with k=1.5. The primary reason for the differ-
ence in the curves is that the effects of the quarter-chord-
line vortex were not considered in reference 1. Omission
of these effects in the present analysis yields a curve of
Ci,/Cr against aspect ratio which is in close agreement with
Weissinger’s curve. The remaining difference between tho
two curves (when the quarter-chord-line vortex is neg-
lected) is present because, for elliptic wings, reference 1
evaluated the increment in C,/Cy, due to the small change
in vortex strength associated with sideslip by an exact
expression which is slightly different from the value of 0.05
used herein.

Values of Ci/Cy computed from equation (8) are com-
pared in figure 9 with those from reference 1 for unswept
wings having straight leading and trailing edges. In refer-
ence 1, Weissinger derives the following equation for this
type of wing:

Ciy_ x 0.71040.29

C,- A 1+
The reference also states that the exact theory fixes the
value of x at 1.5, but that, from comparison with experi-
ment, & more practical value is x = 1.0. The practice in
the past therefore has been to use this equation with x = 1.0
for uriswept wings; and, in instances where sweep has been
considered, the same equation generally has been used and
an increment due to sweep then added. (See ref. 11, for
example.) Tests of present-day wings generally have shown
more negative values of Cp,/Cy, than those predicted by
equation (10) with x = 1.0, but these values are in good
agreement with calculated values if x = 1.5 is used. It
appears likely that the value of x considered practical by
Weissinger was based on tests of wings which were in use
at the time the investigation was made. These wings gen-
erally had rounded tips, which would tend to reduce the tip
loading and, hence, also reduce 013/01,-

Figure 9 presents a comparison of values of Cy/Cy, from
figure 7 (computed from eq. (8)) with theoretical values
from reference 1 (computed from eq. (10)). Agreement
between the values is good when x = 1.5 is used in equation
(10); in fact, with « = 1.5, equations (8) and (10) are
identical for a taper ratio of 1.0 and zero sweep.

Values of Cy,/C, computed from equation (8) for untapered
45° sweptback wings are compared in figure 10 with values
from reference 11. The values from reference 11 arec some-
what lower than those of the present report. . Most of the
difference is associated with the fact that the values of refer-
ence 11 are in part made up of the value for unswept wings
determined by Weissinger’s equation, equation (10), with
x=1.0. The remaining difference is associated with the con-
tribution to C;; due to sweep. A comparison of equation
(17) of reference 11 and equation (8) of the present report
shows that the remaining difference is due to an induction
factor A+2c0s 4
At4cos A
effects because of the antisymmetric load due to sideslip. No
such induction factor appears in the present report because
it has been argued that the circulation remains symmetric
even when the wing is sideslipping.

+0.05 (10)

used in reference 11 to account for induced
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Figure 7.—Variation of EIE with aspect ratio, taper ratio, and sweep.
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Figurr 7.—Continued.
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Figure 8.—Coefficient of rolling moment due to sideslip for elliptic

wings.
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Fraure 12.—Comrparison of expérimenta] and calculated effect of A
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L

Some comparisons of experimental and calculated low-
speed values of Oy,/Cy, are shown in figures 11 and 12. The

present theory correctly predicts effects of sweep, aspect
ratio, and taper ratio, and the calculated values also gen-
erally agree quantitatively with experimental data from
references 12 to 15.

Step-load method.—As stated previously, the advantage
of usmg the step-load method instead of the integration
method is that any integration or differentiation is avoided
and, hence, the method is convenient to use for wings having
the following characteristics: (1) chords which are not
simple functions of spanwise position and (2) loads which are
associated with twist.

The general equation for the rolling moment is derived in
the appendix and is

C=— T Z‘, @n+1)(1—8 tan 4)—

% BNTne*—(n+1)es*] } [(Vs=cla—

nel

%BN[ma*—(n—l)ci*]} [(-clxt0.058C, (D)

If the wing is symmetric, the rolling moment due to sideslip is

1 n=N/2
015=—'I—V—, 21 {(Zn—l) tan A

n=

%N [Ma*—('n—l)ct*]} [()s=0lx+0.05C;, (12)

If in addition to being symme};ric, the wing is also rigid, then
the rate of change of C;, with C; is given by

Oy =2
Copa 24

%N[nco*—(n—l)c,*]} [(%);Ij-o.os (13)

(2n—1) ten A+
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Fraure 13.—Concluded.

In order to determine the compatibility of the integration
and step-load methods, values of C,/C;, for several rigid sym-

metrical wings were computed and the results are presented
in figure 13. The results show that values of C,,/Cy com-

puted by the step-load method converge rapidly on the


http://www.abbottaerospace.com/technical-library

440

values from the integration method as the number of
horseshoe vortices used in the step-load method is increased.
About 20 horseshoe vortices should be sufficient for a reason-
able representation of a wing.

Equation (12) was used to compute the increment in 0‘3

due to linear twist for a wing having an aspect ratio of 4.0,
a taper ratio of 0.6, 45° sweep of the leading edge, and —6°
maximum twist at the wing tips. Values of (v), used in the
calculations were obtained by interpolation of the material
in reference 6. The computed value of C; due to twist at

a=0° was 0.05, a value which compares well with the ex-
perimental value of 0.04 (ref. 16).

CONCLUDING REMARKS

A method of computing span loads and the resulting roll-
ing moments for sideslipping wings of arbitrary plan form
in incompressible flow is derived. The method requires that
the span load at zero sideslip be known for the wing under
consideration. Since this information is available for a large
variety of wings, this requirement should not seriously re-
strict the application of the present method. The basic

REPORT 1269—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

method derived herein requires a mechanical differentiation
and integration to obtain the rolling moment for the general
wing in sideslip. For wings having straight leading and
trailing edges over each semispan, the rolling moment due
to sideslip is given by a simple equation in terms of the plan-
form parameters and the lateral center of pressure of the lift
due to angle of attack.

The mechanical differentiation and integration required
to obtain the rolling moment for the general wing can be
avoided by a step-load method which is also derived herein.

Charts are presented from which the rolling-moment pa-
rameter O'Lﬂ/OL can be obtained for wings having straight
leading and trailing edges over each semispan.

Calculated span loads and rolling-moment parameters are
compared with experimental values. The comparison in-
dicates good agreement between calculations and available
experimental data.

LANGLEY ABRONAUTICAL LABORATORY,
NartioNaL ADvisorY COMMITTEE FOR AERONAUTICS,
Lawarey Fieup, Va., October 6, 1955.

APPENDIX
DERIVATION OF EQUATIONS

GENERAL EQUATIONS FROM INTEGRATION METHOD

In the following derivation, all equations refer to the
right or leading wing semispan unless otherwise noted.
" The considerations presented in the section entitled “Analy-
sis”’ permit lift to be obtained from the quarter-chord-line
vortex and from the chordwise-bound vortices. By refer-
ring to figure 2(b), it is seen that, for the right (leading)
wing semispan, the lift per unit length of the quarter-chord-
line vortex of a swept wing in sideslip is given by

l1=pV cos (A—ﬁ) I,
or, per unit length of wing span, by
1

Li=pV cos (A—B)T, o5 4

The lift due to one chordwise-bound vortex is
ly=—pV sin ﬁ(i—c)%"

For small sideslip angles such that sin 8=p and cos =1.0,
the lift component per unit of wing span for the quarter-
chord-line vortex is

L=pVT,(1+8 tan A) (A1)
and for the chordwise-bound vortex,
li=—3 pVep e )

In general, span load or circulation distributions are
presented in terms of the spanwise circulation strength
Ty rather than the strength T, along the quarter-chord line.
The relationship between I, and T, can be dotermined
readily from consideration of the lift on a wing at zero
sideslip angle. The lift per unit span is given by

Ds-0=pVT, (A3)

and also by
(D)gm0=pVT; cos A

cos A

from which it is seen that T'; and T, are equal. Equations
(A1) and (A2) therefore can be written as:

Li=pVT,(1+8 tan 4) (A4)
and
z,=~§chﬁ%—" (A5)

The vortex strength T, is related to the section lift at zero
sideslip by equation (A3) or, in coefficient form, by

ru=% Veler)sao (AD)

Substituting equation (A6) into equations (A4) and (A5),
adding the resulting equations, and nondimensionalizing
yields the following general equation for determining the
span load distribution:

T=(seo(1+8 ton A or Eloce (A7)

dy*
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Similarly, for the left (or trailing) wing semispan, it can be
shown that

_ _ d(¥s=o

T=")gno(l—B tan A)— 4 Be* == o
Equations (A7) and (A8) can be used to determine the span
load on & wing in sideslip, provided that the load at zero

sideslip is known. The load due to sideslip for the right
semispan is

(A8)

(p=(PpooB tan A—3per Skt (49)
and for the left semispan,
(Mp=—")s=0 B tan A-g ﬁc*%"—c’ (A10)

The parameter (v)s-o i8 made up of the components (v)s
and (v)a. For rigid wings, only (y). varies, with Cj, and,
therefore, the rate of change of load due to sideslip with
(,, is given by the following equation for the right wing

semispan:
g t \ ( L>
C,
DOL (OL 4

A second differentiation, with respect to 8, yields the fol-
lowing load parameters:

For the right semispan,

oo
tan A— CPNACLY 72 cCy

( (A1)
00,,6 cCr/a 4 dy*
For the left semispan,
o (55) tana _j(a@) (412
cC’zﬂ dy*

The rolling moment of a wing in sideslip can be determined
by an integration of the span load multiplied by the proper
moment arm. A general form of a rolling-moment equation
is obtained from equations (A7) and (A8), to which must
be added the increment determined by Weissinger (ref. 1)
for unswept wings and which is supposed to account for the
small modification in circulation strength T’y due to sideslip.
Thus, the rolling-moment equation is

o=z ([ wrar— [ wrar)+o. 050,  (A13)
where v for the left wing semispan is used in the first inte-
gral and « for the right wing semispan is used in the second
integral. The rolling moment due to sideslip is determined
by substituting equations (A7) and (A8) into equation
(A13) and differentiating with respect to 8. The result can
be shown to be, in expanded form,
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=i { [ [0 ton st o0 S et

f |:(’Y)a tan A_Z o* d('y),

L[ [0 tan a3 o0 L0

The rate of change of Oy, with (%, for a rigid wing is given by
:I y*dy*+0.05

d
7= =/, |:<0L> ton 4~ <GL>
(A15)

Equation (A15) can be reduced by noting that the first
term on the right-hand side can be integrated by inspection;
that is,

mw}—

Y dy*+0.05C, (Al4)

1
f (%) tan A y*dy*=7* tan A (A16)
0 'L/ «
The second term of equation (Al5) can be simplified by
integration by parts, so that equation (A15) becomes

(A17)

Equation (A17) can, of course, be further simplified if ¢* is
a simple function of spanwise position.

The differentiation and integration indicated in the
various rolling-moment equations can be avoided by use of
the step-load method which is developed in the following
section.

GENERAL EQUATIONS FROM STEP-LOAD METHOD

The basic assumptions of the step-load method of deter-
mining the span load and rolling moment of & wing in sideslip
are identical to those of the integration method. In the
step-load method the span load distribution at zero sideslip
angle is approximated by & number NV of equal-span horseshoe
vortices which are oriented and numbered ag shown in figures
3 and 4. By considering one horseshoe vortex with its
center at spanwise position y, (see fig. 4 for details), it is
readily seen that lift is produced by the quarter-chord-line-
vortex segment and the two chordwise-bound vortices of
the horseshoe vortex. The lift due to one horseshoe vortex
on the right wing semispan is

Lift=V cos (A~8) Ty g2’ +stm BT, ( 2e—s 3¢,
or, when small sideslip angles are assumed,

Lift—2spV'T, (14+8 tan A)—I—% pVT,B(co—c)  (AL8)
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The step-load method results in a total load on each
horseshoe vortex made up of a distributed load due to the
quarter-chord-line-vortex segment and two concentrated
loads (concentrated relative to spanwise position) due to
the chordwise-bound vortices. It appears, therefore, that
the step-load method does not lend itself to the determination
of & continuous span load distribution.

The loads given by equation (A18) cen, of course, be used
to determine the rolling moment of the wing. The rolling
moment due to each horseshoe vortex is obtained by mul-
tiplying the load on each lift-producing element by its
moment arm; therefore,

I'=—2spVyTy(1+6 tan A)—z VT, Bly+8)ca—y—s)ei]

This equation can be simplified to

I'=—pVyT, {28(1+B tan A)+:?;- B[(l +§) oo—<1—§) c,:l}
(A19)

Substitution of equation (A6) into equation (A19) yields

I'=—% pV’yc(c,)p_o{,‘Zs(1+B tan A)+

H{(+)e()eTy w0

The spanwise distance to the center of a horseshoe vortex on
the right wing semispan is given by

y=(2n—1)s

Therefore, equation (A20) can be written as
z'=—% pV’c(c,)3-0(2n—1)8{28(1+ﬁ tan A)+

36 (1+gy) (1 —zg) | ¥

This equation can be simplified further by algebraic manip-
ulation to obtain

e _pV:c(c,)ﬂ_osﬂ{ (2n—1)(1+8 tan A)+%B [ﬂ%“(”_l)% ]}

Similarly it can be shown that, for the left or trailing wing
semispan, the rolling moment due to one vortex is given by

z'=—pw¢<c,)ﬁ-os*{(2n+1)(1 —B tan A>—§ﬁ [%'(”“)%]}

The horseshoe-vortex semispan is related to the wing span
by b=2Ns; hence, the rolling moment per vortex on the
right wing semispan can be written as

‘ 2
U'=—pV(c:)s-0 1%,—5 {(211—1)(1 +8 tan A)-+

g BN [ne*—n—1)c,*] } (A21)
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and on the left wing semispan as

2
U=—pV?%(c))s=0 4?\7’ {(2n+1)(1—ﬁ tan A)—

3o et~ e} (422

The most general form for the rolling-moment coefficiont is
obtained by summing equations (A21) and (A22) over the
wing span and adding the correction determined by Weis-
singer in reference 1. The result is :

=53 23,4 Cr+D(—B ton )=

n=a—N,

% BN [ne*—(n+1)c¥] }[('Y)B-o]n—

n

1 ez
o o 4 @D tan A
3 B lncsr—n—1)0] } ((p-oluH0.060,  (A23

If the wing is symmetrical, then it is necessary only to
integrate over one semispan, multiply the result by two, and
add the 0.058C; increment. The rolling moment due to
sideslip for a symmetrical wing is given by

1 n=NR2 3
C,=—77 2 { (@n—1)tan A+ZN[1wa*—(n-1)c:‘]}

n=]

[(V)s=0la+0.05C (A24)

For rigid wings, the rate of change of C, A with C,, is given by

01 1 nee

AP

=l

s o) [(2) o

The various equations can be simplified if ¢, and ¢, are
simple functions of spanwise position.

(2n—1) tan A+

EQUATIONS FOR SPECIFIC TYPES OF WINGS

Elliptic wings—integration method.—Elliptic wings have
geometric and aerodynamic load characteristics at zero
sideslip which can be defined by simple mathematical ex-
pressions; hence, some of their aerodynamic derivatives can
be obtained readily. The following characteristics, which
can be derived with little difficulty, are listed for reference:

()=
A==

*

-2 _ Y
tan A—ﬂ_ A W

Y
¢ E)a=_g v
N
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These relationships can be used with equations (A9) and
(A15) to obtain

ay_
a5~

32

V0 (A26)

and
C,

Oo="ga7 1005

3 (A27)

Wings with straight leading end trailing edges—integra-
tion method.—The chord of a wing having straight leading
and trailing edges over each semispan is given by

4
o*=m [1—1—n)y* (A28)

Equation (A28) can be used with equations (A9) and (A17)
to obtain

d(V)a
dy*

{A(1+x)+y‘[t*m A—7 <1+x>]}+0 05  (A30)

Elliptic wing—step-load method.—The following charac-
teristics of elliptic wings, when represented by horseshoe
vortices, can be readily derived and are listed for reference.
For the right semispan,

[@).]—=e

dy 3
a’—e=‘('7)a tﬂI} A—m 1—1—Ny¥] (A29)

and

A=y N2

(ct*)n NA A 4(71‘— )2

(tan A)v=- [4N2—4(n—1)2 N*—47?]

These relationships can be used with equation (A25) to obtain

c, 4 naNf —
ﬁf’=—m{ 25 [en+)YN*—ani—

(4n—5)«/N‘2—4(n—1)2J1/N’—(2n—1)“}-|—0.05 (A31)

Wings with straight leading and trailing edges—step-load
method.—The local chord of a wing having straight leading
and trailing edges over each semispan is given by equation
(A28). The chords can also be expressed as

=i | 1= F |
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and

o _ 4 2n 2
(c: )n—m [1 1= ——

These expressions can be used with equation (A25) to obtain

Oy
T -I—)\)N’ > [(471—2)(1—7\) —N—

VAN 4o a [ (& )]} +0.05  (A32)
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