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DETERMINATION OF MEAN CAMBER SURFACES FOR WINGS HAVING UNIFORM
CHORDWISE LOADING AND ARBITRARY SPANWISE LOADING IN SUBSONIC FLOW !

By 8. Xarzorr, M. Frances Faisown, and Huee C. DuBose

SUMMARY

The field of @ uniformly loaded wing tn subsonic flow s dis-
cussed in terms of the acceleration potenttal. It is shown that,
for the design of such wings, the slope of the mean camber surface
at any point can be determined by a line integration around the
wing boundary. By en additional line integration around the
wing boundary, this method is extended to include the case where
the local section lift coefficient varies with spanwise location (the
chordwise loading at every section still remaining uniform).

For the uniformly loaded wing of polygonal plan form, the
integrations necessary to determine the local slope of the surface
and the further integration of the slopes to determine the ordinate
can be done analytically. An outline of these integrations and
the resulting formulas are included.

Caleulated results are given for a sweptback wing with uniform
chordwise loading and a highly tapered spanwise loading, a
uniformly loaded della wing, a uniformly loaded sweptback wing,
and the same sweptback wing with uniform chordwise loading
but elliptical span load distribution.

INTRODUCTION

The design of mean camber surfaces to sustain a specified
area distribution of lift at subsonic speeds involves basically a
relatively straightforward process: a system of bound and
trailing vortices is set up in the plane of the wing according
to the specified distribution of lift, and the corresponding
vertical velocity is calculated, by the Biot-Savart law, at
points on the surface where the local slopes are desired.
Reasonably practical numerical and graphical procedures
have been developed for performing this integration of the
velocity due to this distribution of vortices (see, for example,
ref, 1). If the chordwise loadiug is specified to be uniform,
as in a number of recent wing-design studies, the problem is
basically simplified ; as will be shown, the solution can then be
reduced from a double integral over the wing area (or over the
wing area plus wake area) to a line integral around the
boundary of the wing and, in the simplest cases, it can even
be reduced to a purely analytical procedure.

The purposes of the present report are to outline the basic
theory behind the solution of these problems involving uni-
form chordwise loading, to summarize the mathematical
application of the theory and the development of the required
formulas, and to describe the actual use of these derived
results in the design of mean camber surfaces for this type of
loading.

The basic theory of the uniformly loaded lifting surface is
reviewed first. The particular case of the infinitesimally
wide, uniformly loaded longitudinal strip is next discussed,
together with the integration of such strips to form the wing
of arbitrary contour and arbitrary spanwise loading. For the
uniformly loaded polygonal wing, closed expressions are
derived for both the local slope of the mean camber surface
and the local height of the surface (relative to the leading

edge). Sections of the mean camber surfaces of four wings
calculated by these methods are also presented.
SYMBOLS
2,7, 2 streamwise, lateral, and vertical coordinates,
respectively (see fig. 1)
',y coordinates of vortex element on wing boundary
U stream velocity
w vertical velocity induced by unit vortex (positive
upward)
P pressure
P density
Cy wing lift coefficient
¢ wing section lift coefficient
¢ chord
c average chord
ds vortex element (vector)
q vector from vortex element to point
M Mach number
A aspect ratio
A sweep angle
Vortex-segment symbols:
(21, Y1), (#2, =) end points of vortex segment; (3> ¥2)
a=tan~! (L=
I1—2
L=y, csc a
M=—y; csc «

l=+/r*—22L cos a+L?
m=+/23422M cos a-+M?
s=+/(@—2’+y
(=T

Subscripts:

LE leading edge

TE trailing edge
I, II, IIT  cases I, I, and III of appendix

1 Supersedes NACA TN 2008, “Dotermination of Mean Camber Surfaces For Wings Having Uniform Chordwise Loading and Arbitrary Spanwise Loading in Subsonic Flow™” by

5. Katzoff, M, Frances Faison, and Hugh O. DuBose, 1953.
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BASIC THEORY FOR UNIFORMLY LOADED WINGS

Application of acceleration potential—In flow fields con-
sisting of a small perturbation flow superimposed on a uniform
flow, the pressure is a potential (multiplied by —1/p, it is
frequently termed acceleration potential) that satisfies
Laplace’s equation (see, for example, ref. 2, pp. 225-227).
In the field of a uniformly loaded lifting surface, then, the
pressure (relative to free-stream pressure) is a harmonic
potential that must satisfy the following boundary condi-
tions:

(a) It has a uniform negatlve value over the upper face
of the lifting surface.

(b) It has a numerically equal, uniform positive value
over the lower face of the lifting surface. (That the upper-
and lower-surface pressures are equal and opposite is not,
perhaps, obvious merely from the fact that & pressure differ-
ence exists across the surface. If, however, the lifting sur-
face is represented by a distribution of bound and trailing
vortices, as in ref. 1, this fact is immediately apparent.)

(¢) It vanishes at infinity.

These boundary conditions, which uniquely define the pres-
sure throughout the field, are recognized as identical with
the conditions on the velocity potential in the field of a
closed vortex that coincides with the edge, or boundary, of
the lifting surface. Accordingly, the pressure at any point
in the field of a uniformly loaded lifting surface is equal in
value to the velocity potential of such a vortex, the strength
of which is the pressure difference between the upper and
the lower faces, or the lift per unit area. Correspondingly,
the pressure gradient at any point in the field is equal in
both magpitude and direction to the potential gradient (that
is, the velocity) associated with this vortex at that point;
and it can accordingly be determined by the Biot-Savart
law. For present, purposes, only the vertical component of
this gradient is of interest. The vortex should not, of
course, be confused with the lifting vortices of the usual
airfoil theory; the latter vortices are not used in the present
report.

The vertical acceleration of a fluid particle is —% % (see

fig. 1 for coordinate system), so that the vertical velocity
acquired by a particle which has come into the neighborhood
of the wing from a large distance upstream is the integral of

this cxpression with respect to time, or f —%%%ﬁ
where the factor dx/U is the element of time. (In order to

simplify the notation, the same symbol z is used for both
the running variable and the upper limit.) All perturbation
velocities are assumed to be small so that the path of
integration, or the path of the fluid particle, is the line
y=Constant, z=Constant.

Dividing this vertical velocity by U gives the vertical
slope dz/dz of the streamline. In particular, if the integral
is evaluated for a point on the lifting surface itself, the local

_%‘2[—0 -g—g dz, where the

integration is along the line y=Constant, z=0. Here again
the small-perturbation theory assumes that all displacements
from the straight undisturbed streamlines are so small that
the path of integration may, with sufficient accuracy, be

slope of the surface is given by
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x, %0

F1cure 1.—Element of vortex on wing boundary showing coordinate
and vector systems used in the application of the Biot-Savart law.

taken in the plane 2=0, and, in particular, it assumes that
the vertical displacement of the trailing edge relative to the
leading edge is so small that the boundary vortex may also
be taken in the plane z=0. The local height of the surface
2, relative to the leading edge, is the integral of this slope, or

1 f‘ op
—— dz
pU2 TLE

For any lift coefficient O the pressure difference acruss

the lifting surface is == 0 pUP?, which, as previously noted, is

numerically equal to the strength of the vortex that is as-
sumed around the edge of the projected plan form of the
lifting surface. Thus, finally, the local slope of the surface
is

P .

£_la f w do B
where w is the vertical velocity (positive upward) in the
plane of the lifting surface induced by a unit vortex along
the edge of the surface. The local height of the surface,
relative to the leading edge, is then

F—%OLI: dxf’ » dz ©
ILE —w

The direction of rotation of the unit vortex is such that its
flow is upward through the surface of the wing; that is, the
potential increases by unity along a path from the upper to
the lower wing surface around the edge of the wing.

Line integral for local slopes of uniformly loaded wing
with arbitrary plan form.—By equation (1), the local slope
dz/dx may be determined by evaluating the vertical velocity
w induced by the entire boundary vortex and then integrat-
ing w from —  to z. A more convenient method, however,
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is to evaluate the contribution to w induced by an infinitesi-
mal element of the bounding vortex, to integrate this con-
tribution from — « to z (which is readily done analytically),
and then to integrate this result over all the elements of the
bounding vortex,

The differential form of the Biot-Savart equation (see ref.
2, p. 167) for the induced velocity dw due to an element ds
of a unit vortex is

1 dsXq
4r Jqff

where q is the vector from the vortex element to the point
in question, and the direction of ds is taken as the direction
of advance of a right-hand screw rotating in the direction of
the circulation about ds (see fig. 1). For the present problem,
where the point lies in the plane of the wing, this induced
velocity is in the z-direction and is given by

_ 1 y—y)de' —(x—2)dy’
W=t (e TGy "
where (z, %) is the point at which the induced velocity is
desired, and (z’, 9’) is the location of the vortex element
(d#’, dy’) on the wing boundary.
Accordingly, by equation (1), the contribution of & bound-
ary element (dz’, dy’) of a uniformly loaded wing to the
slope of the wing surface at point (z, ¥) is

d (Slope) aw,m=~l Gy . (f’(}qugi_éi—y’x)”)]% d

24rx
___I: (z—a)dz’ -4
87 | (y—y)Ja—2 )+ ly—y) ¥~ T

dw=

. dy] ]
Ve—2Y+@y—y')
The signs of dx’ and dy’ are determined from the previously
mentioned convention for the direction of the vector ds (or
(dr’, dy")); for example, both dz’ and dy’ are negative for
the leading-edge element shown in figure 1.
The net slope of the mean camber surface at the point

(z, y) is the integral of the preceding expression around the
wing boundary, or

dz__C é[ (@—a")da’
& N R T
ay :l ©
T T

where the counterclockwise direction of the integration
automatically takes care of the signs. The problem of
determining the local slope of the mean camber surface at
the point (z, %) is thus reduced to the evaluation of this line
integral.

WINGS WITH ARBITRARY PLAN FORM AND
ARBITRARY SPANWISE LOADING

Wing considered as sum of uniformly loaded chordwise
strips.—For the wing having uniform chordwise loading and
arbitrary spanwise loading, it is convenient to consider the
wing to be made of a series of uniformly loaded chordwise
strips of infinitesimal span. TFor each such strip (span dy’,
sce fig. 2), the pressure field can be represented by the

473

Figure 2.—Wing composed of uniformly loaded chordwise strips of
span dy’ with a closed vortex superimposed on the boundary of
each strip.

velocity potential of a closed vortex superimposed on the
boundary of the strip. Each of these bounding vortices has
strength equal to the local pressure difference Ap between
the upper and lower. surfaces of the strip.

If, as in the preceding analysis, the spanwise loading is
uniform, all these closed vortices will be of the same strength,
so that the chordwise segments common to any two adjacent
strips cancel and only those vortex elements lying on the
boundary of the wing remain. The result is thus the same
as that previously dlscussed for the uniformly loaded wing
(eq. (3)).

If, however, the spanwise loading is not uniform, the
closed vortices surrounding adjacent strips will be of unequal
strength; vortex segments common to adjacent strips will
no longer cancel, and vortex elements lying on the wing
boundary will vary in strength along the boundary. The
contribution of these boundary vortex elements to the in-
duced velocity w can still be summed by a line integration
around the wing boundary of the expression given in equa-
tion (3), except that O, must be replaced by the local section
lift coefficient ¢;(y’) and placed under the integral sign. The
contribution of the chordwise segments is derived in the
following paragraph.

Streamwise vortex segments,—The Biot-Savart formula
for the induced velocity due to the straight-line chordwise
vortex segment of unit strength is

w=é—r (cos B;+cos 8) 4
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where r, 6;, and 6; are defined in figure 3. With r and the
cosines expressed in Cartesmn coordinates, this expression
becomes

1 { z—(2"+c) z—2z }
4x(y—y) We—@ +IP+—y) Je—2)P+u—y)

where ¢ is the local chord. The integral of this expression

from — o to z, multiplied by —dey/2 or ;(‘Zj
(1)), gives the contribution to the slope from the streamwise
vortex segment of strength corresponding to de¢; and length

equal to the local chord:

dy’ (see eq.

1 dCz
T 8rly—y) &y

W{z—GE 1o P+a—yV+2—E'+0)l)

Finally, integrating this last equation with respect to ¥’
across the span of the wing (from left to right) gives the
contribution of all these chordwise segments to the slope at
the point (z,y). It will be observed, however, that the term
within the second bracket in this equation is the same as

d(Slope)= dy (Ne—2Y+y—y)+e—)]—

{(x; ¥")

X

F1gurE 3.—Geometrical relationships for straight-line chordwise vortex
gegments that occur with spanwise-varying area loading.
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that within the first bracket except that 2’ is replaced by
z’+c, the corresponding trailing-edge coordinate. Accord-
ingly, the integral of this expression across the span can, for
convenience, be considered as the line integral

dC; 1 2 2
b 2ty L W F G+ =) )

1 éd&

around the boundary of the wing.

The problem of determining the local slope of the mean
camber surface at point (z,y) is thus reduced to the evaluation
of the line integrals (3) and (56), where the integral (5) is
omitted if there is no spanwise variation in the ares loading
(or in the local lift coefficient ¢;) and where the local lift
coefficient ¢; replaces Cy, in equation (3) and must be brought
under the integral sign if there is a spanwise variation of ¢;.

or

; W=+ —y)P+@—2)]  (5b)

COMPUTATION

Although computing the integrands of expressions (3) and
(5) and then performing the integrations should be a fairly
straightforward process, a short outline of suggested proce-
dures may be helpful. It may be noted at the beginning
that, since the slopes (and the integrals for the slopes) are
nondimensional, the results will be independent of the dimen-
sional scale chosen for the work; taking the root chord or
the semispan as unity will probably be most convenient.
It may also be remarked that a carefully drawn plan form of
the wing will be helpful in setting up the computations.

R&sumé of procedure for computing slopes of unifermly
loaded mean camber surface.—Given the plan form of a
wing that is to have uniform area loading and a specified lift
coefficient, a possible procedure is as follows:

(1) Select points (r,5) on the surface where the slopes are
to be obtained. In general, these points should lie along
several selected chord lines, with perhaps four along each
line. :

(2) Select points (z',y’) along the leading and trailing
edges where the integrands of equation (3) are to be deter-
mined. In general, trailing-edge points should be at the
same spanwise positions as the leading-edge points,

(3) Consider the integral in equation (3) to be broken up
into two parts—one with respect to 2’ and one with respect

to y’:

1 r—z
57 \/(x—xo=+(y—w+1] = (o)
and .
dy’ b
b =t (6

Tor each point (z,y), compute the values of the integrands in
expressions (6a) and (6b) for all the (z’,3") points.

(4) For each point (2,7), plot the mtegra.nds of (6a) against
o/, plot the integrands of (6b) against y’, and determine the

.
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aren of each (for example, by running the planimeter around
the curve in the direction corresponding to a counterclock-
wise movement of the variable point (2’,3’) around the wing
boundary).

(5) For each point (z,y), sum these two areas and multiply
by — (/8 in order to determine the local slope dz/dz.

(6) The actual heights of the mean camber surface along
the chosen chords are now determined by integrating the
slopes found in the preceding steps. The integration cannot
extend quite to the leading and trailing edges, however,
because the slopes cannot be readily determined very close
to the ends of the chord lines, where the slopes become
infinite. Near the ends, however, the mean camber lines of
the sections may be considered as NACA ¢=1.0 mean lines
(ref. 3), and they may accordingly be filled in, with generally
adequate accuracy, by fitting NACA ¢=1.0 mean lines
between the front and rear limits of the calculated segménts
of the mean camber lines and the leading and trailing edges.

The integral (62) is actually improper, since the integrand
becomes infinite where %’=y. The Cauchy principal value
exists, however, and is evaluated by first adding the inte-
grands at equal distances but on opposite sides from the
singular point and then integrating the sum. This method
will be further described in a subsequent section.

Résumé of procedure for computing slopes of a mean
camber surface with uniform chordwise loading and arbi-
trary spanwise loading.—For an arbitrary spanwise loading,
an additional integration is required, together with a modi-
fication of the preceding integrations.

(1) Determine the integrals

c z—z’
36?/—1/ 4(x—a:02+<y—z/)2+1:|df (72)
and
Czd’y, b
$ e )

by the same process as was used for (6a) and (6b), except
that ¢;, being now a variable, must be brought inside the
integral,

(2) Determine the spanwise rate of change of local lift
coefficient de,/dy’ at points y’. Compute velues of the
integrand in

(101 1 2 2
Wy NP a7ty @®

Plot against ' and integrate. 'This integral is also improper
and is treated as previously mentioned.
(3) For each point (z,y), the local slope dz/dx is

§1; [ntegral (8)—Integral (7a)—Integral (7b)]

Example,—In figure 4 is shown the plan form of a swept
wing and the desired spanwise lift distribution. As an
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example of the computation, integrals (7a), (7b), and (8)
will be obtained for the point designated P in the figure.
Points designated & . . . z and &’ . . . z’ are the points on
the boundary where the integrands were evaluated; the
primed symbols are used merely because more than 26 sym-
bols were needed. The origin was taken at the wing apex
and the wing semispan was assumed equal to unity.

The computation of the integrands at the points around the
boundary is given in table I. Most of the points were evenly
spaced, but near the singularity (y’=y), the intervals were
reduced to one-tenth as much as most of the other intervals.

Figure 5 shows the plots of the integrands (multiplied by
1/8x or —1/8x) against &’ or ¥’ and also shows the method of
determining the Cauchy principal value at the singularity.
For example, in figure 5(c) it will be seen that the integrand
goes to o at the right of the singularity and to — = at the
left of the singularity. Algebraically adding the integrands
at equal distences from the singularity (for example, the
value at point b plus the value at point v, the value at point
¢ plus the value at point u, and so on) and plotting the sum
results in the section Bl of the curve, where the portion
nearest the singularity is obtained by extrapolation from
point k. The desired integral (8) is finally determined by
running the planimeter along the path abBlLVva’b’j’r's’a.

Ag o further éxample of the intermediate steps in the
calculation of a mean camber surface, figure 6(a) is shown,
which is a plot of the slope dz/dz along the streamwise chord
through point P. The example calculation described in the
preceding paragraphs, it will be noted, gives the three in-
tegrals the sum of which provides one point on this dz/dx
curve of figure 6(a). In figure 6(b) is shown the correspond-
ing curve for the NACA ¢=1.0 mean line, for ¢;=1.0, from
reference 3. The curve may be found useful in extra-
polating to the leading and trailing edges, as previously
mentioned.

As may be inferred from the preceding résumé of the
computations for one point P, the total effort required to
compute accurately a mean camber surface by the method
described is very large, although, according to the authors’
experience, it is not at all prohibitive. Nevertheless, the
work is ideally suited to modern high-speed computing
machinery—for example, of the punched-card type—so that
consideration should be given to the use of such equipment
where it is available.

It may also be mentioned that two contour charts of the
integrands in (62), (6b), and (8), with the factor ¢, or de,/dy
omitted, have been prepared on film and may be obtained on
request from the National Advisory Committee for Aero-
nautics. Their form is such that, if the transparency is
superimposed on a correctly scaled drawing of the wing
plan form, with a boundary point (’,5’) at the origin of the
chart, the contour value read at point (z,y) is the desired
value of the integrand. The charts are satisfactorily
accurate except in the neighborhood of the singularities.
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Figure 4.—Plan form and spanwise lift distribution of the wing for which example calculations are shown in table I and in figures 5 and 6.
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COMPUTATION OF INTEGRANDS FOR INTEGRALS (7a)
FOR POINT P (z=0.7707, y=0.2500) OF FIG RE 4

TABLE I

(7b), AND (8)

Boandars paat ® ® ® ® ® @ e @
oun y :
@ - - ore C ©
-z vy’ Vo a deudy’ g s+] @@ Dio+al
Y 0.7707 | 0.2500 | 0.8102 | -0.5880 0 45900 | 0.7259 0
b . 4660 - 1250 . 4825 5725 | —.214 0.0097 | 11874 ~1. 6238
¢ . 4355 .1125 . 4498 .5700 | —.228 9.9722 | 12672 —1. 7942
d . 4051 - 1000 - 4173 (5660 | —. 244 111725 | 13585 —2. 0087
o . 3746 . 0875 . 3847 5637 | —.259 12 7161 | 1 4663 —2. 2475
f 3441 - 0750 . 3522 .5604 | —.273 147721 | 15011 —2. 5345
g 3137 - 0625 3199 .5569 | —. 289 17.6479 | L 7409 —2. 0208
. 2832 - 0500 . 2876 .5536 | —.300 219746 | 1 0249 —3 4248
i 2527 0375 . 2555 .5501 | —.316 20.1773 | 2.1530 —4.2824
j 2223 - 0250 . 2237 .5459 | —. 331 43 5344 | 24403 ~B. 9050
k 1918 . 0125 - 1922 5410 | —.344 86.6130 | 2.8105 | —10.5677
1 1613 | 0 -1613 (5373 | —.360 | oo 33329 | oo
m 1300 | —.0125 1315 .5320 | —.373 | "—85.0670 | 40535 7. 8300
n 1004 | —.0250 . 1035 .5279 | —.387 | —41.5985 | 6.1005 3. 1564
0 0899 | —.0375 - 0793 .5225 | —.401 | —26.2156 | 6.5880 1. 5954
p 0394 | —. 0500 - 0637 .5168 | —.415 | —16.7288 | 8 1130 . 8557
q 0090 | —.0625 - 0631 J5115 | —.429 —9.3510 | &1062 . 4949
r —.0215 | —. 0750 0780 (5050 | —. 444 —48863 | 64850 3345
8 —.0520 | —.0875 -1018 .5009 | —. 458 —2.8005 | 4 9204 - 2607
t —.0824 | —.1000 - 1296 L4947 | =470 —~1.8017 | 3.8171 -9218
u —. 1129 | — 1125 - 1594 (4885 | —.d484 —1.2666 | 30646 . 2001
v — 1434 | —1250 . 1902 .4831 | —.498 —.9d407 | 2.5363 - 1865
w —.4481 | —. 2500 . 5131 .4123 | — 634 —. 2001 - 8039 1648
x —.7527 | —.3750 . 8400 .328L | —.770 —. 0912 - 3879 -1811
y —1.0574 | —.5000 | 11697 .2206 | —. 902 —. 0425 1890 . 2026
7 —1.3621 | — 6250 | 14986 -1006 | —1.006 —. 0146 - 0668 - 2195
Y —1.6668 | —. 7500 | L8278 | 0 —. 380 0 0 - 0816
% -2.5271 | — 7500 | 2.6360 | 0 —. 380 0 0 - 0552
o —2.2041 | — 6250 | 23777 .1006 | —1.005 —. 0056 . 0421 -1344
@ —2.0611 | —. 5000 | 21200 -2206 | —.902 —. 0125 1042 - 1079
¢! ~1.8281 | —.3750 | 1.8662 .3261 | — 770 —. 0177 1748 0782
f —1.5951 | —.2500 | 1 6146 .4123 | —l63¢ —. 0200 2555 - 0405
' —1.3621 | —.1250 | 1.3678 4831 | — 498 —. 0162 3527 - 0227
b’ ~11291 | o 1. 1201 .5373 | —.360 0 4761 0
i —. 8961 . 1250 . 0048 5725 | —.214 . 0439 . 6322 —. 0149
i —. 6631 - 2500 . 7078 . 5880 0 -1512 . 8207 0
k/ —. 8961 - 3750 -9714 . 5725 214 1182 - 5888 . 0432
v —1. 1201 .5000 | 1.2349 5373 - 360 - 0920 -4348 0760
m’ —1. 3621 .6250 | 1.4986 4831 498 . 0705 - 3228 1088
n’ —1. 5051 -7500 | 17626 - 4123 634 0522 . 2337 1414
o —1. 8281 .8750 |  2.0267 . 3261 . 770 - 0365 - 1608 1748
D’ —2,0611 | 10000 | 22909 . 2206 - 902 0221 - 0960 2070
q’ —2,2041 | 11250 | 2. 5551 - 1006 1. 005 - 0002 - 0395 2329
r —2.5271 | 12500 | 28193 | 0 380 0 0 . 0888
8’ —1.6668 | 12600 | 2084 | 0 380 0 0 1266
t/ —1.3621 | 11250 | 1.7666 . 1006 1. 005' . 0206 . 0572 3610
u —~1.0574 | 10000 | 14554 - 2206 - 902 0602 - 1512 - 3586
v —. 7527 (8750 | 10152 - 3261 770 - 1296 . 2824 3533
W’ —. 4481 . 7500 . 8737 4123 634 . 2676 . 4716 3600
X/ —. 1434 . 6250 -6412 . 4831 498 . 8010 7545 3966
¥’ -1613 - 5000 - 5254 -5373 360 14035 | 1.0219 . 4931
2! . 4660 - 3750 . 5981 . 5725 214 -2. 7137 - 9564 6101

*Integrand for (7a)
**Integrand for (7b)
#*¥Integrand for (8)

4

.
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(a) Determination of integral (7a).
FigurE 5.—Determination of the mean surface slope dz/dz at point P of the example wing of figure 4.
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G)]

() Calculated slopes, example wing.

Fiaure 6.—Calculated slopes along streamwise mean camber line
through point P (see fig. 4) and slopes along NACA a=1.0 mean
line at ¢=1.0.

POLYGONAL WINGS WITH UNIFORM AREA LOADING

For a uniformly loaded wing (uniform chordwise loading
and uniform ¢, across the span) the boundary of which con-
sists of & number of straight-line segments, the integrations
to determine the local slope of the surface and the local
height of the surface may both be done analytically. The
previously derived equations can be integrated with respect
to #’ and 7', where the point (¢’,5’) moves from one end of
the straight-line segment to the other. In the present
development, however, the straight-line segment will be
treated as a whole. The vertical induced velocity w due to
the unit bounding vortex is expressed as the sum of wa,
wg, . . ., the velocities due to the separate straight seg-
ments A, B, . . . (see fig. 7) which are given by the Biot-
Savart law (eq. (4)). The contribution of segment A to the

T

.slope of the surface at point (z,y) is, therefore, —% wadz

and the contribution to the height of the surface at the
point (z,y) is

~G

2 Jroe

da.:f: 'lDAdx
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(b) Slopes along NACA a=1.0 mean line, for ¢;=1.0, from reference 3.

Fiaors 6.—Concluded.

Summing these expressions for all the segments A, B,
.*. . gives the total slope or height of the mean camber
surface at the desired point.

As already noted, these integrals for the separate straight
segments can be evaluated analytically. Because the
mathematical manipulation and the resulting formulas are
somewhat lengthy, they are given in the appendix. Three
different cases, distinguished by the relative geometry of
the vortex segment (that is, the segment of the wing bound-
ary) and the point (z,y) where the slope or height of the
surface is to be found, are discussed in the appendix. In
case I (fig. 8), the path of integration from — o to 2 crosses
the segment; in case IT (fig. 9), the path of integration does
not cross the segment; and in case III (fig. 10), which is a
special case of II, the path of integration is parallel to the
segment.

It should be noted that this same problem has been treated
from a somewhat different viewpoint in reference 4.

COMPRESSIBILITY CORRECTION

If the mean camber surface is desired for a compressible
gubsonic flow at Mach number M, the Prandtl-Glauert
method, as described in reference 5, may be used. That is,
all the longitudinal (streamwise) dimensions of the wing are

stretched by the factor 1/4/1—AZ% so that the aspect ratio is
reduced by the factor 4/1—2A4* and the tangent of the sweep
angle is increased by the factor 1/J/1—M?, and the mean
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Fraure 7.—Unit bounding vortex composed of separate straight
segments A, B, G, D, E, and F superimposed on wing plan form
boundary.

camber surface is calculated for this fictitious wing in in-
compressible flow at a lift coefficient equal to the desired lift
coefficient multiplied by 1—242. The ordinates (values of 2)
so obtained will be precisely the ordinates of the mean
camber surface for the desired wing at the desired Lft cp-
efficient in the compressible flow at Mach number 4.

EXAMPLES OF CALCULATED MEAN CAMBER SURFACES

Sweptback wing, A=1.74.—Figure 11 shows (by the
curved lines) mean camber lines calculated for the wing
already described in the example and in figure 4. The points
where the slopes were computed are indicated by small
circles. It should be noted that figure 11 and subsequent
similar figures do not represent oblique projections of the
wings. Rather, they show the true plan forms of the wings
(in the zy-plane) and the true mean camber lines (parallel to
the zz-plane) ; accordingly, the y- and z-axes comclde on the
figures.

In figure 11 and the subsequent similar figures, all the
leading-edge points have been assumed to lie along & hori-
zontal line. This choice is, of course, arbitrary; that is, the
extent to which the present linear theory is applicable would
be essentially unaltered if, for example, the wing had a
reasonable amount of dihedral.

Uniformly loaded friangular wing,—The formulas derived
in the appendix for cases I and I were used to calculate the
mean camber surface of a triangular wing having an angle

REPORT 1176—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

of sweep of 68.4° of the leading edge (aspect ratio, 1.57) such
that the wing should be uniformly loaded at unit lift co-
efficient in incompressible flow. Figure 12 shows the plan
form and the chordwise camber lines for several spanwise
stations. The dimensions shown correspond to a root chord
of unity; however, the z-scale is shown somewhat exaggerated.

Uniformly loaded swept wing.—The formulas derived for
cases I, II, and III were used to calculate the mean camber
surface of a swept wing of aspect ratio 8, taper ratio 0.45
and 45° sweepback of the quarter-chord line such that the
wing should be uniformly loaded at unit lift coefficient at a
Mach number of 0.9. Inaccordance with the proposed method
of taking into account compressibility, the calculations were
made for the stretched wing in incompressible flow. The

. . 1
stretching factor is T—0.0"
of the stretched wing is 3.5 and the sweep of the quarter-
chord line is 66.46°. Figure 13 (a) shows this stretched wing
and the mean camber lines calculated for this stratched wing
in incompressible flow at unit lift coefficient. The dimen-
sions shown correspond to & semispan of unity; however,
the z-scale is shown somewhat reduced. The corresponding
mean camber lines for the physical wing (4=8; design
Cr=1.0 at M=0.9) should have 44 percent as much camber
as the mean camber lines for this stretched wing in the incom-
pressible flow.

Swept wing with elliptical span load distribution.—For the
wing plan form of the preceding example another mean
camber surface was calculated that, at unit lift coefficient and
8 Mach number of 0.9, would give uniform chordwise loading
but an elliptical span load distribution for the wing as a
whole. Mean camber lines for this case are presented in
figure 13 (b).

This example was also calculated, under the direction of
Mr. Robert R. Graham of the Langley Laboratory, by the
method of reference 1. The two results were in very good
agreement. No definite information was obtained, however,
with regard to the relative expediency of the two methods
(that of ref. 1 and that of the present report). One might
suppose that the present method would be preferu.ble Tor
wings with uniform chordwise loading, since it is designed to
take advantage of this particular characteristic. The work
represented by table I and figure 5 (outlining the computa-
tions for the slope at one point), however, is by no means
small, so that such a presumption is not definitely sub-
stantiated by present experience. Perhaps the fact that
the computations and integrations are of such form that
they can be readily performed by modern high-speed com-
puting machinery constitutes the most significant charac-
teristic of the present method.

=2.29, so that the aspect ratio

LanGLEY AERONAUTICAL LABORATORY,
NarronaL Apvisory COMMITTEE FOR ABRONAUTICS,
LanerLey Fiewp, Va., January 18, 1958.
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FIraure 8. —Geometricel relationships for case I. Heavy lines in
small sketch show relative positions of vortex segment and path of

integration for this case.
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Freure 9.—Geometrical relationships for case II. Heavy lines in
small sketches show relative positions of vortex and path of integra-
tion for three different conditions for which this case applies.
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F1aure 10.—Geometrical relationships for case III. Heavy lines in
gmall sketch show relative positions of vortex segment and path of

integration for this case.
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F1gure 12.—Chordwise mean camber lines at several spanwise stations
for a triangular wing with uniform ares loading. Leading-edge
sweep angle, 68.4°; C1=1.0; aspect ratio, 1.57.

L —

20 24 28 3e

F16URE 11.—Mean camber lines for the wing of figure 4 in incompressible flow. Aspect ratio, 1.74; taper ratio, 0.6;
quarter-chord sweep angle, 66.46°,
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(8) Uniform area loading.

(b) Uniform chordwise loading; elliptical span load distribution.

Figure 13.—Mean camber lines for the stretched wing at unit lift coefficient in incompressible flow. Aspect ratio, 3.5; taper ratio, 0.45; quarter-
chord sweep angle, 66.46°; C1=1.0. For the physical wing (aspect ratio, 8; taper ratio, 0.45 ; quarter-chord sweep angle, 45°) with unit lift
coefficlent at A/=0.9, the mean camber lines should have 44 percent as much camber as the lines shown here. Small figures show span load

distributions, Cirecles indicate points for which z was computed.
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APPENDIX
DEVELOPMENT OF FORMULAS FOR UNIFORMLY LOADED POLYGONAL WINGS

Case I—Path of integration crosses vortex segment.—If
the vortex segment is the leading edge of the wing, the path
of integration may cross it. The vortex segment and the
path of integration for this cese are shown by the heavy

lines in the small sketch in figure 8. The integral f * wrde

is improper because the integrand becomes infinite where
the path of integration crosses the vortex. The Cauchy
principal value, however, can be determined. Before the
integration is performed, the Biot-Savart formula (eq. (4))
is expressed in terms of the variable z and the fixed dimen-
sions of the vortex segment, where the origin is defined as
the point of intersection of the path of integration and the
vortex segment. Accordingly, the end points of the vortex
segment are (z1,71) and (z3,%.), where y; >y, (see fig. 8). Let

L=y, cs5c e

M=—y,cac a’

=9

a=tan™!
Then it can be seen that
r=2zsin «

L—zcosa L—2zcos

0 —
€08 & l +22—22L cos a+L3

M-z cos o M4z cos a
m 7220 cos at+ A

€08 07—

The contribution of w; to the slope of the mean camber
surface will be

dz\ _ 1 =
a—a-: I__EOL _ wId:c

c f L—zcosa .
o YL K T
2 VJ_o4mzsin a \[r*—22zL cos a-FL°

M+t2cos e
2?42z cos a+M?

81r_sg {cos a log, I:( ) (—’G;I‘—l‘é ccﬁz Z——ll—jln):l_l_
2? sin?
log, I:(H_L——:c o8 &) (m-+2M+z cos a) }

dz

. (AD)

It is of interest to note that, along the wing tip or the wing
root, where I or 34 goes to zero while = is positive, t}ns slope
becom% infinite.

The contribution to the height of the mean camber surface
will be the integral of this last expression; that is,
486

* /dz
a=| (%),
'—OL

T 8z sin «

2
{a; cos « log, ]\LT’_‘-‘% log, sin a2 log, 2*+

(z cos a— M sin® ) log, (z+M cos a+m)—
(z cos a+L sin?® &) log, (z—L cos a+1)—

z log, (m+M+2z cos a}(l-+L—2z cos a)+cos a(l—m)} i
(A2)

or, after subst.itut.ing the indicated limits,

21=

Sr s { cos « log, M;+2a: log, sin a-z log, 2*+

(z cos a—M sin? a) log, (z+M cos at+m)—

(x cos a+L sin? @) log, (z—L cos a+t1)—

z log, (m+M-+2 cos a)((+L—2z cos )+

M sin® @ log, M(1+-cos o)+

L sin? a log, L(1—cos a)+[(—m)— (L—2)] cos a}
(A3)

Case II—Path of integration does not cross vortex seg-
ment—The three small sketches in figure 9 show three cases
in which the path of integration does not cross the vortex
segment. In two of these cases, the segment lies along the
trailing edge; in the third case, the segment lies along the
leading edge but lies wholly to one side of the path of inte-
gration.

For the derivation of the formulas for case II, the origin of
coordinates is specified. as the intersection of the path of
integration with the vortex or with the line of the vortex
extended. The end points of the vortex segment are again
designated (z,1) and (2:,), where y;>%:. The angle « is
defined as before. Following the sign convention indicated
in figure 8, M will be considered positive if (22,y5) lies to the
left of the origin, and L will be considered positive if (z(,7)
lies to the right of the origin. For example, in figure 9, Lis a
negative quantity, whereas M is a positive quantity.

For any of the three cases shown in figure 9, the expression
for wg is identical with that for wy. Furthermore, the ox-
pression for

dz G)_', o
(E Hz———z— - wndx
is identical in form with the expression (A1) derived for

(%) ; that is, neither singular points in the integration nor
I

negative values of =, L, or M affect the expression for the
integral.
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Tntegrating (‘-;—5) in order to obtain zx yields the same
hag
expression for the indefinite integral as was found in inte-
grating (3—2) » so that the only differences between the ex-
) ¢

pressions for 2y and 2z arise from the different limits of inte-
gration—for z;, the limits were 0 and z, whereas for 2y, the
limits are x5 and z; that is,

dz
A= ILE dz I dz
L? .
~8r sin a{“ cos a log, a2 log, sin a2 log, 2+

(x cos a—M sin? a) log, (x+2M cos a+m)—
(x cos a+L sin? ) log, (x—L cos atl)—

zlog, (m~+ M-z cos a)(l4L—x cos a)+cos a(l—m)} i
(A4)

Case III—Vortex segment parallel to free stream and
hence to path of integration (fig. 10).—Coordinates are
chosen so that the path of integration lies along y=0. The
end points of the vortex segment are (0, ) and (z;, 1) where

371>0.
Then, from figure 10,

t=+yi
cos 01=a:1— 2

T
8 NJ@—2)ut

cos fy==

T =
N
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(dz m=“_ o 4
———— d
Swylf ['\/(171—‘33)2+y1 x/a:’+y1:| *
o=y = (A5)
and
r — )@ —2 Fyit+evEtyt+

167ry
yitlog, [zi—z+@m—2*Fu’]+-

i log, (zHVZFyd—{@—as) Vo—a) Fut+
vz Voog FycHyctlog. [si—apet+@—ze Hull+
yi* log, [ng-l-m +2951($_ﬂ71;3)]}) (A6)

For equations (A5) and (A6), the direction of rotation of
the vortex segment was assumed to be that corresponding
to the right wing tip. For the left wing tip, the signs
should be reversed. Stated differently, the equations will
be correct in either case if ¥, in the first factor on the right-
hand side is replace by |-
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