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ANALYSIS OF LANDING-GEAR BEHAVIOR !

By Bensaann Minwrrzry and Francrs E. Cook

SUMMARY

Tlis report presents a theoretical study of the behavior of the
conventional type of oleo-pneumatic landing gear during the
process of landing impact. The basic analysis is presented in
a general form and ireats the motions of the landing gear prior
to and subsequent to the beginning of shock-strut deflection. In
the analysis of the first phase of the impact the landing gear 18
treated as a single-degree-of-freedom system in order to deter-
mine the conditions of motion at the instant of initial shock-strut
deflection, after which instant the landing gear is considered as
a system with two degrees of freedom. The equations for the
two-degree-of-freedom system consider such factors as the
hydraulic (velocity square) resistance of the orifice, the forces
due to air compression and internal friction in the shock strut,
the nonlinear force-deflection characteristics of the tire, the wing
lift, the inclination of the landing gear, and the effects of wheel
spin~-up drag loads.

The applicability of the analysis to actual landing gears has
been investigated for the particular case of a vertical landing
gear in the absence of drag loads by comparing calculated
results with experimental drop-test data for impacts with and
without tire bottoming. The calculated behavior of the landing
gear was found to be in good agreement with the drop-test data.

Studies have also been made to determine the effects of varia-
tions in such parameters as the dynamic force-deflection
characteristics of the tire, the orifice discharge coefficient, and the
polytropic exponent for the air-compression process, which
might not be known accurately in practical design problems.

The study of the effects of variations in the tire characteristics
indicates that in the case of a normal impact without tire
bottoming reasonable variations in the force-deflection character-
istics have only a relatively small effect on the calculated behavior
of the landing gear. Approximating the rather complicated
force-deflection characteristics of the actual tire by simplified
exponential or linear-segment variations appears to be adequate
for practical purposes. Tire hysteresis was found to be
relatively unimportant. In the case of a severs impact involving
tire bottoming, the use of simplified exponential and linear-

segment approximations to the actual tire force-deflection
characteristics, which neglect the effects of tire bottoming,
although adequate up to the instant of bottoming, fails to indicate
the pronounced increase in landing-gear load that results from
bottoming of the tire. The use of exponential and linear-
segment approximations to the tire characteristics which take
into account the increased stiffness of the tire which resulis from
bottoming, however, yields good results.

The study of the importance of the discharge coefficient of the
orifice indicates that the magnitude of the discharge coefficient
has a marked effect on the caloculated behavior of the landing
gear; a decrease in the discharge coefficient (or the product of the
discharge coeflicient and the net orifice area) results in an
approximately proportional increase in the maximum upper-
mass acceleration.

The study of the importance of the azr—compresswn process
in the shock strut indicates that the air springing is of only
minor significance throughout most of the impact and that
variations in the effective polytropic exponent n between the
isothermal value of 1.0 and the near-adrabatic value of 1.8 have
only a secondary effect on the calculated behavior of the landing
gear. Ewven the assumption of constant air pressure in the strut
equal to the initial pressure, that is, n=0, yields fairly good
results which may be adequate for many practical purposes.

In addition to the more exact treatment, an investigation has
been made to determine the extent to which the basic equations
of motion can be simplified and still yield acceptable results.
This study indicates that, for many practical purposes, the
air-pressure force in the shock strut can be completely neglected,
the tire force-deflection relationship can be assumed to be lLinear,
and the lower or unsprung mass can be taken equal to zero.
Generalization of the egquations of motion for this simplified
system shows that the behavior of the system is completely
determined by the magnitude of one parameter, namely the
dimensionless initial-velocity parameter. Solutions of these
generalized equations are presented in terms of dimensionless
variables for a wide range of landing-gear and impact parameters
which may be useful for rapidly estimating landzng-gear
performance in preliminary design.

1 Supersedes NAGA TN 27655, “Analysls of Landing-Gear Behavior” by Benfamin Milwitzky and Francis E. Cook, 1852,
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INTRODUCTION
The shock-absorbing characteristics of airplane landing

gears are normelly developed largely by means of extensive

trial-and-error drop testing. The desire to reduce the ex-
pense and time required by such methods, as well as to pro-
vide a more rationsal basis for the prediction of wheel-inertia
drag loads and dynamic stresses in flexible airframes during
landing, emphasizes the need for suitable theoretical methods
for the analysis of landing-gear behavior. Such theoretical
methods should find application in the design of landing
gears and complete airplane structures by permitting
* (a) the determination of the behavior of a given landing-
gear configuration under varying impact conditions (velocity
at contact, weight, wing lift, etc.)

(b) the development of a landmg—gea.r configuration to
obtain a specified behavior under given impact conditions

(c) amorerational approach to the determination of wheel

_spin-up and spring-back loads which takes into account the
shock-absorbing characteristics of the particular landing gear
under consideration

(d) improved determination of dynamic loads in flexible
airplane structures during landing. This problem may be
treated either by calculating the response of the elastic sys-
tem to landing-gear forcing functions determined under the
assumption that the airplane is a rigid body or by the simul-
taneous solution of the equations of motion for the landing
gear coupled with the equations representing the additional
degrees of freedom of the structure. Inmany cases the former
approach should be “sufficiently accurate, but in some
instances, particularly when the landing-gear attachment
points experience large displacements relative to the nodal
points of the flexible system, the latter approach, which takes
into account the interaction between the deformations of the
structure and the landing gear, may be required in order to
represent the system adequately.

Since many aspects of the landing-impact problem are so
intimately connected,with the mechanics of the landing gear,
the subject of landing-gear behavior has received analytical
treatment at various times (see bibliography). Many of
the earlier investigations, in order to reduce the mathematical
complexity of the analysis, were limited to consideration of
highly simplified linear systems which have little relation to
practical landing gears. Some of the more recent papers
consider, with different degrees of simplification, more real-
istic nonlinear systems. The present report represents an
attempt at a more complete analysis of the mechanics of
practical landing gears and, in addition, investigates the im-
portance of the various elements which make up the landing
gear, as well as the extent to which the system can be reason-
ably simplified for the purpose of rapid analysis.

The basic analysis is'presented in a general form and takes
into account such factors as the hydraulic (velocity square)
resistance of the orifice, the forces due to air compression and
internal friction in the shock strut,.the nonlinear force-
deflection characteristics of the tire, the wing lift, the inclina-
tion of the landing gear and the effects of wheel spin-up drag
loads. An evaluation of the applicability of the analysis to
actual landing gears is presented for the case of a vertical
landing gear in the absence of drag loads by comparing cal-
culated results with drop-test data.
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Since some parameters, such as the dynamic {force-
deflection characteristics of the tire, the orifice discharge
coefficient, and the polytropic exponent for the air-compression
process, may not be accurately known in practical design
problems, a study is made to assess the effects of variations
in these parameters on the calculated landing-gear behavior.

Studies are also presented to evaluate the extent to which
the dynamical system can be simplified without greatly im-
pairing the validity of the calculated results. In addition to
the investigations for specific cases, generalized solutions for
the behavior of a simplified system are presented for a wide
range of landing-gear and impact parameters which may be

useful in preliminary design.
-.SYMBOLS
4, pneumatic area
Ay hydraulic area
A4, area of opening in orifice plate
A internal cross-sectional area of shock-strut inner
cylinder
A external cross-sectional area of shock-strut inner
. cylinder
4, cross-sectional area of metering pin or rod in

plane of orifice

4, - net orifice area

C; orifice discharge coefficient

d overall diameter of tire

F, . pneumatic force in shock strut

F, hydraulic force in shock strut

F, friction force in shock strut

Fy total axial shock-strut force

I normal force on upper bearing (attached to inner
cylinder)

By normal force on lower bearing (attached to outer
cylinder) '

Fy, force normal to axis of shock strut, applied at
axle

Fy, vertical force, applied at axle

Fg, horizontal force, applied at axle

Fy, - resultant force, applied at axle

Fs, force parallel to axis of shock strut, applied to
tire at ground

Fy, force normal to axis of shoek strut, applied to
tire at ground

Fy, vertical force, applied to tire at ground

Fg, horizontal force, applied to tire at ground

Fp, resultant force, applied to tire at ground

g gravitational constant

K, Iift factor, L/W

L Lift force

L axial distance between upper and lower bearings,
for fully extended shock strut

L axial distance between axle and lower bsaring
(attached to outer cylinder), for [fully ox-
tended shock strut

a,b,m,r constants corresponding to the various regimes
of the tire-deflection process

& combined constant, ad

m’ combined constant, md’

n polytropic exponent for air-compression process
in shock strut
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R Reynolds number

Da air pressure in upper chamber of shock strut

Dy hydraulic pressure in lower chamber of shock
strut

Q volumetric rate of discharge through orifice

Ty radius of deflected tire

8 shock-strut axial stroke

T wheel inertia torque reaction

L time after contact

T time after beginning of shock-strut deflection

v air volume of shock strut

Iy polar moment of inertia for wheel assembly

about axle

Ve vertical velocity

"w horizontal velocity

W total dropping weight

W, weight of upper mass above strut

Wy - weight of lower mass below strut

2 horizontal displacement of lower mass from
position at initial contact

2 vertical displacement of upper mass from p051—
tion at initial contact

2 vertical displacement of lower mass from posi-
tion at initial contact

Uy dimensionless upper-mass displacement from
position at initial contact

a2 dimensionless lower-mass displacement from
position at initial contact

7 dimensionless shock-strut stroke, %~z

0 dimensionless time after contact

? angle between shock-strut axis and vertical

| as
N5 shock-strut effectiveness, 21—
1 maxTmazr
f 1-‘/7 d’ul
Mo landing-gear effectiveness, ——°
U mulm

€ time interval in numerical integration procedures

B coeflicient of friction between tire and runway

m coefficient of friction for upper bearing (attached
to inner cylinder)

U2 coefficient of friction for lower bearing (attached
to outer cylinder)

P mass density of hydraulic fluid

a angular acceleration of wheel

Axes:

z vertical axis, positive downward

x horizontal axis, positive rearward

Subscripts:

0 at instant of initial contact

T at instant of initial shock-strut deflection

su at instant of wheel spin-up

max maximum value

Notation:

[ absolute value of ( )

()* estimated value of ( )

The use of dots over symbols indicates dlﬁerentmtmn with
respect to time ¢ or 7.

Prime marks indicate differentiation with respect to
dimensionless time 6.
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MECHANICS OF LANDING GEAR
- DYNAMICS OF SYSTEM

In view of the fact that landing-gear performance appears
to be relatively unaffected by the elastic deformations of
the airplane structure (see, for example, refs. 1 and 2) par-
ticularly since in many cases the main gears are located
fairly close to the nodal points of the fundamental bending
mode of the wing, that part of the airplane which acts on a
given gear can generally be considered as a rigid mass.
As a result, landing-gear drop tests are often conducted in
a jig where the mass of the airplane is represented by a
concentrated weight. In particular instances, however, such
as in the case of airplanes having large concentrated masses
disposed in an outboard position in the wings, especially
airplanes equipped with bicycle landing gear, consideration
of the interaction between the deformation of the airplane
structure and the landing gear may be necessary to repre-
sent the system adequately.

Since the present report is concerned primarily with- the
mechanics of the landing gear, it is assumed in the analysis
that the landing gear is attached to a rigid mass which has
freedom only in vertical translation. The gear is assumed
infinitely rigid in bending. The combination of airplane
and landing gear considered therefore constitutes a system
having two degrees of freedom (see fig. 1(a)) as defined by
the vertical displacement of the upper mass and the vertical
displacement of the lower or unsprung mass, which is also
the tire deflection. The strut stroke & is determined by
the difference between the displacements z; and 2 and, in
the case of inclined gears, by the angle ¢ between the axis
of the strut and the vertical. For inclined gears, compression
of the shock strut produces a horizontal displacement of the
axle zz. From consideration of the kinematics of the system

it can be seen that s=zl—:2 and z2=3¢ sin o= (2;—z)tan ¢.

In the analysis, external lift forces, corresponding to the
aerodynamic lift, are assumed to act on the system through-
out the impact. In addition to the vertical forces, arbitrary
drag loads are conmdered to act between the tire and the
ground.

The system treated in the analysis may therefore be con-
sidered to represent either a landing-gear drop test in a jig
where wing lift and drag loads are simulated, or the landing
impact of a rigid airplane if rotational motions are neglected.
Rotational freedom of the airplane, where significant, may
be taken into account approximately by use of an appro-
priate effective mass in the analysis.

Figure 1 (b) shows a schematic representation of a typical
oleo-pneumatic shock strut used in American practice. The
lower chamber of the strut contains hydraulic fluid and the
upper chamber contains air under pressure. The outer cyl-
inder of the strut, which is attached to the upper mass,
contains a perforated tube which supports a plate with a
small orifice, through which the hydraulic fluid is forced to
flow at high velocity as a result of the telescoping of the
strut. The hydraulic pressure drop across the orifice thus
produced resists the closure of the strut, and the turbulence
created provides a powerful means of absorbing and dis-
sipating a large part of the impact energy. In some struts
the orifice area is constant; whereas, in other cases a metering
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(a) System with two degrees of freedom.

(b) Schematic representation of shock strut.

Fieure 1.—Dynamical system considered in analysis.

pin or rod is used to control the size of the orifice and govern
the performance of the strut.

The compression of the strut produces an increase in the
air pressure which also resists the closure of the strut. In
figure 1 (b) p, represents the oil pressure in the lower chamber
and p, represents the air pressure in the upper chamber.

In addition to the hydraulic resistance and air-pressure
forces, internal bearing friction also contributes forces which
can appreciably affect the behavior of the strut.

The forces created within the strut impart an acceleration
to the upper mass and also produce an acceleration of the
lower mass and a deflection of the tire. Figure 1 (c) shows
the balance of forces and reactions for the wheel, the inner
evlinder, and the outer cylinder. Tt is clear that the strut

and the tire mutually influence the behavior of one another
and must be considered simulteneously in analyzing thosystem.
FORCES IN SHOCK STRUT
From consideration of the pressures acting in the shock
strut it can be readily seen from figure 1 (b) that the total
axial force due to hydraulic resistance, air compression, and
bearing friction can be expressed by

Fs=pa(A1—A4;)+pa(42—A4,) +PaAp"fFf

where

4, internal cross-sectional area of inner cylinder

A external cross-sectional area of inner cylinder

4, cross-sectional area of metering pin or rod in plane

of orifice
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This expression can also be written &s
Fs=(pyr—pa) (41— 45)+p.dat+F; -
=(P—pa)Art+p.datFy

=F+F,+F, : 9]
where
Dr—P. Pressure drop across the orifice
Ay hydraulic area (4;—.4, for the strut shown in fig. 1)
A, pneumatic area (4. for the strut shown in fig. 1)

In this report the terms (py—p.)4, and p.4, are referred
to as hydraulic force F, and pneumatic force F,, respee-
tively. For the struf shown-in figure 1, the hydraulic
and pneumsetic areas are related to the strut dimensions as
previously noted. In the case of struts having different
internal configuratious, the hydraulic and pneumatic areas
may bear somewhat different relations to the dimeunsions
of the strut. In such cases, however, consideration of the
pressures acting on the various components of the strut
should permit these areas to be readily defined.

Hydraunlic force.—The hydraulic resistance in the shock
strut vesults from the pressure difference associated with the
flow through the orifice. Iu 2 landing gear the orifice area
is usually small enough in relation to the diameter of the
strut so that the jet velocities and Reyunolds numbers are
sufficiently large that the flow is fully turbulent. As &
result the damping force varies as the square of the tele-
scoping velocity rather than linearly with the velocity.
Since the hydraulic resistance is the major- component of
the total shock-strut force, viscous damping canuot be
reasonably assumed, even though such an assumption
would greatly simplify the analysis. :

The hydraulic resistance can be readily derived by making
use of the well-known equation for the discharge through
an orifice, namely,

Q=Cadn (p —Pa)

where
Q  volumetricrate of dlscha.rge
C;  coefficient of discharge
A, netorifice area
»,  hydraulic pressuve in lower chamber
P,  aiv pressure in upper chamber
p mass deusity of hydraulic fluid
From cousiderations of continuity, the volumetric rate of
d.lsclmrge can also be expressed as the product of the tele-
scoping velocity § and the hydraulic area 4,

Q=Aé

Equating the preceding exﬁressioﬁs for the discharge per-
mits writing the following simple equation for the pressure
drop across the orifice

04,332

PP =oAL

The hydraulic resistance F, due to the telescoping of the
strut is given by the product of the differential pressure

REPORT 1154—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

y—Ds and the ares A, which is subjected to the hydraulic
pressure, as previously noted. Thus

pA}, . 2
ACAY °

Equation (2) can be made applicable to both the compres-

F=5 (@)

sion and elongation strokes by introducing the factor ]%[
to indicate the sign of the hydraulic resistance; thus

é pAh

B=T3] (G Ay

§2 (20)

The net orifice area .4, may be either & constant or, when a

. metering pin is used, can vary with strut stroke; that is,

A,=A,—A4,=A,(s), where A4, is the area of the opening in
the orifice plate and 4, is the area of the metering pin in the
plane of the orifice. At the present time there appears to be
some tendency to eliminate the metering pin and use a con-
stant orifice area, particularly for large airplanes, in which
case A,=A, In the general case, the orifice dischargo
coefficient might be expecled to vary somewhat during an
impact because of changes in the size and configuration of
the net orifice area, changes in the exit conditions on the
downstream face of the orifice due to variations in the amount

~ of hydraulic fluid above the orifice plate, changes in the entry

conditions due to variations in the length of the flow chamber
upstream of the orifice, and because of variations in the
Reynolds number of the flow, so that, in general, Cy=Cj(3, ).
Although the individual effects of these factors on the dis-
charge coeflicients for orifices in shock struts have not been
evaluated, there is some experimental evidence to indicate
appreciable variations of the discharge coefficient during
impact, particularly in the case of struts with metering pins.
It might be expected that such variations would be con-
siderably smaller for gears having a constant orifice area.

In order to evaluate the precision with which the orifico
discharge coefficient has to be known, a brief study is
presented in a subsequent section which ghows the effect of
the discharge coefficient on the calculated behavior of a
landing gear with & constant orifice area, under the assump-
tion that the discharge coefficient is constant during the
impact.

The foregoing discussion has been concerned primarily with
the compression stroke of the shock strut. Most struts
incorporate some form of pressure-operated rebound check
valve, sometimes called & snubber valve, which comes into
action afterthe maximum stroke has been attained and closes
off the main orifice as soon as the strut begins to elongate, so
that the fluid is forced to return to the lower chamber through
small passages. The action of the snubber valve introduces
greatly increased hydraulic resistance to dissipate the energy
stored in the strut in the form of air pressure and to prevent
excessive rebound. The product C;4, to be used in equation
(2a) during the elongation stroke is generally uncertain. The
exact area A, during elongation is usually somewhat difficult
to define from the geometry of the strut since in many cases
the number of connecting passages varies with stroke and the
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leakage area around the piston may be of the same order of
magnitude as the area of the return passages. Furthermore,

the magnitude of the orifice discharge coefficient, and even.

possibly the nature of the resistance, are questionable due to
the foaming state of the returning fluid. Fortunately, the
primary interest is in the compression process rather than
the clongation process since the maximum load always occurs
before the maximum strut stroke is reached.

Pneumatic force.—The air-pressure force in the upper
chamber is determined by the initial strut inflation pres-
sure, the area subjected to the air pressure (pneumatic area),
and the instantaneous compression ratio in accordance
with the polytropic law for compression of gases, namely

po"=Constant, or
= (22
- p“°< v )
where

p.  air pressure in upper chamber of shock strut

Da  Air pressure in upper chamber for fully extended strut
v air volume of shock strut

v air volume for fully extended strut

Since the instantaneous air volume is:equal to the difference
between the initial air volume and the product of the stroke

and pneumatic area 4, p,= pa0<

to the air pressure is simply the product of the pressure and
the pneumatic area:

(3)

In the preceding equations, the effective polytropic
exponent n depends on the rate of compression and the rate

of heat transfer from the air to the surrounding environment.

Low rates of compression would be expected to result in
values of 7 approaching the isothermal value of 1.0; whereas
higher values of 7, limited by the adiabatic value of 1.4,
would be expected for higher rates of compression. The
actual thermodynamic process is complicated by the violent
mixing of the highly turbulent efflux.of hydraulic fluid and
the air in the upper chamber during impact. On the one
hand, the dissipation of energy in the production of turbu-
lence generates heat; on the other hand, heat is absorbed by
the aeration and vaporization of the fluid. The effect of this
mixing phenomenon on the polytropic exponent or on the
equivalent air volume is not clear. A limited amount of
experimental data obtained in drop tests (refs. 3 and 4),
however, indicates that the effective polytropic exponent
may be in the neighborhood of 1.1 for practical cases. A
brief study of the importance of the air-compression process
and the effects which different values of » may have on the
caleulated behavior of the landing gear is presented in a
subsequent section.

Internal friction force.—In the literature on machine de-
sign the wide range of conditions under which frictional
resistance can occur between sliding surfaces is generally
classified in three major categories, namely, friction between
dry surfaces, friction between imperfectly lubricated surfaces,
and friction between perfectly lubricated surfaces. In the
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) The force due.
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case of dry friction, the resistance depends on the physical
characteristics of the sliding surfaces, is essentially propor-
tional to the normal force, and is approximately independent
of the surface area. The coefficient of friction x, defined as
the ratio of the frictional resistance to the mormal force, is
generally somewhat greater under conditions of rest (static
friction) than under conditions of sliding (kinetic friction).
Although the coefficient of kinetic friction generally de-
creases glightly with increasing velocity, it is usually con-
sidered, in first approximation, to be independent of velocity.
If, on the other hand, the surfaces are completely separated
by a fluid film of lubricant, perfect lubrication is said to exist.
Under these conditions the resistance to relative motion
depends primarily on the magnitude of the relative velocity,
the physical characteristics of the lubricant, the area, and
the film thickness, and is essentially independent of the
normal force and the characteristics of the sliding surfaces.
Perfect lubrication is rarely found in practice but is most
likely under conditions of high velocity and relatively small
normal pressurs, where the shape of the sliding surfaces is
conducive to the generation of fluid pressure by hydro-
dynamic action. In most practical applications involving
lubrication, a state of imperfect lubrication exists and the
resistance phenomenon is intermediate between that of dry
friction and perfect lubrication.

In the case of landing-gear shock struts, the conditions
under which internal friction is of concern usually involve
relatively high normal pressures and relatively small sliding
velocities. Moreover, the usual types of hydraulic fluid
used in shock struts have rather poor lubricating properties,
and the shape of the bearing surfaces is generally not con-
ducive to the generation of hydrodynamic pressures. It
would therefore appear that the lubrication of shock strut
bearings is, at best, imperfect; in fact, the conditions appear
to approach closely those for dry friction. In the present.
analysis, therefore, it is assumed, in first approximation, that
the internal friction between the bearings and the cylinder
walls follows laws similar to those for dry friction; that is,
the friction force is given by the product of the normal force
and a suitably chosen coefficient of friction.

With these assumptions the internal friction forces pro-
duced in the strut depend on the magnitude of the forces on
the axle, the inclination of the gear, the spacing of the bear-
ings, and the coefficient of friction between the bearings and
the cylinder walls. Figure 1(c) schematically illustrates the
balance of forces acting on the various components of the
landing gear. The total axial friction in the shock strut is
the sum of the friction forces contributed by each of the

. bearings:

F,=|—§T (s | F| | F)

where )

F, axial friction force

u  coefficient of friction for upper bearing (uttached to
inner c¢ylinder)

F, normal force on upper bearing (attached to mnel_'
cylinder)

pe  coefficient of friction for lower bearing (attached to

outer cylinder)
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F; normal force on lower bearing (a.ttached to outer
cylinder)

l%[ factor to indicate sign of friction force

During the interval prior to the beginning of shock-strut
motion the friction forces depend on the coefficients of static
friction; after the strut begins to telescope the coefficients of
kinetie friction apply.

From considerations of the balance of moments it can be
seen from figure 1(c) that '

and .
= a8
Fo=Fy, (£241)
so that - ‘
lﬁ+#2] (4)

where

Fx =Fy, sin o—Fg, cos ¢ (4a)
and
Fy, force normal to strut applied at axle 1

Fy, vertical force applied at axle
Fy_ horizontal force applied at axle
¢  angle between strut axis and vertical
L axial distance between upper and lower bearings, {for
fully extended strut
ls axial distance between axle and lower bearing (attached
- to outer cylinder), for fully extended strut
The quantities Fy_, Fy , and Fg, are forces applied at the
axle and differ from the ground reactions by amounts equal
to the inertia forces corresponding to the respective accelera-
tion component of the lower mass. Since the inner cylinder
generally represents only a relatively small fraction of the
lower mass, the lower mass may reasonably be assumed to be
- concentrated at the axle. With this assumption, the rela-
tionships between the forces at the axle and the forces at the
ground are given by

W, .
Iy =<Fy +_g 22—W2> (FH ——2 %
The normal force at the axle can therefore be expressed in
terms of the ground reactions and the component accclera-
tions of the lower mass by

FNG=<FV‘+'Tg£2 52_W2) 3111 ‘P’_<FH,_%7_2' 95—2) cos ¢ (4b)

where
I'y, * vertical force applied to tire at ground
Fp, horizontal force applied to tire at ground
. effective mass below shock strut, assumed concentrated
g at axle
s horizontal acceleration of axle
vertical acceleration of axle

In the case of an inclined landing gear having infinite stiff-
ness in bending, the horizontdl displacement of the lower mass
zyisrelated to the vertical displacements of the upper and lower
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masses by the kinematic relationship z=(2,—2z)tan ‘g, as
previously noted. Double differentiation of this relation-

_ship gives Z;=(2,—2,) tan ¢. Substitution of this expression

into equation (4b) gives
. We. . .
FN¢=FV‘ sin ¢— Fy  cos ¢+—g— Z;8in p—Wysin ¢  (4c)

In equation (4c¢) the quantity 2, sin ¢ represents the ac-~
celeration of the lower mass normal to the strut axis when the
gear is rigid in bending. In the case of a gear flexible in
bending, the normal acceleration of the lower mass is not
completely determined by the vertical acceleration of the
upper mass and the angle of inclination of the gear. If it
should be necessary to take into account, in particular cases,
the effects of gear flexibility on the relationship between the
normal force on the axle and the ground reactions, the quan~
tity 2, sin ¢ in equation (4c) may be replaced by estimated
values of the actual normal acceleration of the lower mass as’
determined from consideration of the bending response of the
gear to the applied forces normal to the gear axis. The eflacts
of gear flexibility are not considered in more detail in the
present analysis. v

FORCES ON TIRE

Figure 2 (a) shows dynamic force-deflection characteris-
tics for.a 27-inch smooth-contour (type I) tire inflated to 32
pounds per square inch. These characteristics were deter-
mined from time-history measurements of vertical ground
force and tire deflection in landing-gear drop tests with a
nonrotating wheel at several vertical velocities. As can be
seen, the tire compresses along one curve and unloads along
another, the hysteresis loop indicating appreciable enorgy
dissipation in the tire. There is some question as to whether

-the amount of hysteresis would be as great if the tire were

rotating, as in a landing with forward speed. The force-
deflection. curve for a velocity of 11.63 feot per second is for
a severe impact in which tire bottoming occurs and shows
the sharp increase in force with deflection subsequont to
bottoming.

In figure 2 (b) the same force-deflection characteristics
are shown plotted on logarithmic coordinates. As can be
seen, the force exhibits an exponential variation with deflec~
tion. A systematized representation of the force-deflection
relationship can therefore be obtained by means of simple
equations having the form

7 s [ 23 y
va=mz2 =m (7) (5)
where :
Fy, . vertical force, applied to tire at ground
PR vertical dmplacement of lower mass from position at
. initial-contact (radiel deflection of tire)

d overall diameter of tire
m,r  constants corresponding to the various regimes of the

tire-deflection process
m’ combined constant, md"
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Ficore 2.—Dynamic force-deflection characteristics of tire.

1t may be noted from figure 2 that essentially the same
force-deflection curve holds during compression for all impact
velocities, up to the occurrence of tire bottoming, and that in
figure 2 (b) the slopes -of the curves in each of the severdl
regimes of the tire-deflection process are also independent of
velocity, except in the compression regime following tire
bottoming.

Figure 2 also shows simple approximations to the tire
characteristics which were obtained by fitting straight-line
segments (long-dashed lines) to the actual force-deflection
curves in figure 2 (a) for impacts at 8.86 and 11.63 feet per
second. These approximations, hereinafter referred to as
linear-segment approximations, are included in a study,
presented in a subsequent section, to evaluate the degree of
accuracy required for adequate representation of the tire
characteristics. The various representations of the tire
characteristics considered and the pertinent constants for
each regime of tire deflection are shown in figure 3.

EQUATIONS OF MOTION

The internal axial force Fs produced by the shock strut
was shown in a previous section to be equal to the sum of the

hydraulic, pneumatic, and friction forces, as given by
equation (1). Since these forces act along the axis of the
strut, which may be inclined to the vertical by an angle ¢,
the vertical component of the axial shock-strut force is given
by Fs cos 9. The vertical component of the force normal
to the shock strut is given by Fy, sin . These forces act
in conjuncfion with the lift force and weight to produce an
acceleration of the upper mass. The equation of motion
for the upper mass is
-, Wi ..
Fgcos ¢+FNa8111 o+ L—W=——3%, (6)
The vertical components of the axial and normal shock-
strut forces also act, in conjunction with the weight of the
lower mass, to produce a deformation of the tire and an
acceleration of the lower mass. The equation of motion
for the lower massis

Fycos ot P, sin o+ e 2 5a=Fy, (2) (1)

where the vertical ground reaction Fy, is expressed as a
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Ficure 3—Tire characteristics considered in solutions (logarithmic coordinates).

function of the tire deflection z;. The relationship between
Fy, and 2, has been discussed in the previous section on tire
characteristics.

By combining equations (6) and (7), the vertical ground |

force can be written in terms of the inertia reactions of the
upper and lower masses, the lift force, and the total weight.
The overall dynamic equilibrium is given by

(8)
MOTION PRIOR TO SHOCE-STRUT DEFLECTION

Conventional oleo-pneumatic shock struts are inflated
to some finite pressure in the fully extended position. Thus
the strut does not begin to deflect in an impact until sufficient
force is developed to overcome the initial preloading imposed
by the air pressure apd internal friction. Since the strut is
effectively rigid in compression, as well as in bending,,
prior to this instant, the system may be considered to have
only one degree of freedom during the initial stage of

the impact. The equations of motion for the one-degree-of-
freedom system are derived in order to permit determination
of the initial conditions required for the analysis of the
landing-gear behavior subsequent to the beginning of shock-
strut deflection. .

Since 2,=3;=2 during this first phase of the impact,
equation (8) may be written as

Fy, (2)= __22 5= W(K—1) (9)

where

KL"——'%;—V'

For the general case of an exponential relationship between
vertical ground force and tire deflection, equation (5) applies
and the equation of motion becomes

T stmar+ WEi—1)=0 (10)
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The shock strut begins to telescope when the sum of the inertia, weight, and lift forces becomes equal to the vertical

components of the axial and normal shock-strut forces. At this instant ¢,, Fs=F,

(FoytF,) 008 o+ Ty, sin p+ K W—W,

ot Fy, and equation (6) can be written as

where '
Iy, initial air-pressure preload force, po, 4,
F, static friction at instant ¢,

T

At the instant #,, s=0 and equation (4) becomes

T

where

Wi/g .

(11)

(11a)

Kn=[(F1+F2) lé;‘l‘#z]

and u; and pj are coefficients of static friction.

Since the strut is assumed essentially rigid in compression (and also rigid in bending), there is no kinematic displace-
ment of the lower mass in the horizontal direction up to the beginning of shock-strut deflection, so t.h&t 2:=0 and equation

(4b) becomes

(Fy Wz“ —Ws; Slnga—FE cos ¢

(11b)

Incorporating equations (11a), (11b), and (9) into equation (11) gives

Foy— (& K, sin p—co8 o) (Kz W—W))— Fg (+ K, cos o-+sin o)

&= W
1

In equation (12) wherever the - sign appears, the plus signs
apply when FNa.,.>0 and the minus signs apply when FNa.,.<0'

From equation (10) the vertical displacement of the system
at the instant ¢, is given in terms of the corresponding
ncceleration by

B {% [ wa —KL)_% z]} e

Integrating equation (10) and noting that z=0 provides
the relationship between the vertical velocity and the
vertical displacement of the system at the beginning of
shock-strut deflection

_\/z" W r+1

In view of the fact that the tire force-deflection curve is
essentially linear for small deflections, it may be reasonably
assumed that »=1 for the purpose of determining the time
after contact at which the strut begins to telescope. With
this assumption ¢, can be determined from the relationship

p =J"r dz_f’r 7 dz 7
o7 ‘ “/éoz—%[% 224 W(KL—I)z:l

(13)

2 T (R 1)2,] (14)

(K, gin ©—CO0S )

(12)

where the general expression for the variable z is obtained
from equation (14) without the subsecripts 7. Performing
the indicated integration gives

tf=\/—%’—; {sin“ 0(1—Ky)—sin i } (15)

where

O= £
\ 23 P Kol

The computation of ¢ can be greaﬂy simplified by use of
the following approximation which assumes a linear relation-
ship between velocity and time:

- 2z,
éo‘l‘ér

(158)

Equation (15a) should be a fairly good approximation in
view of the relatively short time interval between initial con-
tact and the beginning of shock-strut motion.

Equations (12), (13), and (14) permit the determination
of the vertical acceleration, displacement, and velocity, re-
spectively, of the system (upper and lower masses) at the
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beginning of shock-strut deflection. Equation (15) or (15a) permits calculation of the time interval between initial contact
and this instant. These equations provide the initial conditions required for the analysis of the behavior of the landing
gear as a system with two degrees of freedom after the shock strut begins to deflect.

If drag loads are considered, the solution of equation (12) requires knowledge of the horizontal ground force Fy e o0
the instant £,. Since the present analysis does not explicitly treat the determination of drag loads, values of F”z, have
to be-estimated, either from other analytical considerations, experimental data, or on the basis of experience.

MOTION SUBSEQUENT TO BEGINNING OF SHOCK-STRUT DEFLECTION

Once the sum of the inertia, weight, and lift forces becomes sufficiently large to overcome the preloading force in the
shock strut due to initial air pressure and internal friction, the shock strut can deflect and the system becomes one having
two degrees of freedom. Incorporating the expressions for the hydraulic, pneumatic, and friction forces (eqs. (2a), (3),
and (4)) into equation (6) permits the equation of motion for the upper mass to be written as follows:

W1 . —
T st i sy s (520 Aﬁ) il Pl [ et ) E et |} cos ook KTV — Wik iy sin =0 (10)
where
- _Z1—22
$ = os )
_21—2
" cose

and, since Fy = Fy (2), equation (4c) becomes

Fy,=Fy (2sin g—Fy,cos ¢+E 3, sin o— W, sin o

where Fy (z;) is determined from the force-deflection characteristics of the tire. For the usual type of pneumatic tire,

Fy (z)= mzz as previously noted.

Slmﬂurlv, the equation of motion for the lower mass follows from equation (7):

B stz e (2

+ II N Il:(ﬂl“l‘#z)l +s :I} cos o+ FV (22) Fy,sin o—W;=0

(17)

The overall dynamic equilibrium equation is still, of course, as given by equation (8)

w
4

Any two of the preceding equations (egs. (16), (17), and
(8)) are sufficient to describe the behavior of the landing
gear subsequent to the beginning of shock-strut motion.
These equations may be used to calculate the behavior of a
given landing-gear configuration or to develop orifice and
metering-pin characteristics required to produce a specified
behavior for given impact conditions. They may also be
used as a basis for the calculation of dynamic loads in flexible
airplane structures either by (a) determining the landing-
gear forcing function -under the assumption that the upper
mass is o rigid body and then using this forcing function to
caleulate the response of the elastic system or (b) combining
the preceding equations with the equations representing the
additional degrees of freedom of the structure; the simul-
taneous solution of the equations for such a system would
then take into account the interaction between the deforma-
tion of the structure and the landing gear.

Bk 2 5o T (8= 1)+ Fr, (20 =0

SOLUTION OF EQUATIONS OF MOTION

In the general case the analysis of a landing gear involves
the solution of the equations of motion given in the section
entitled “Motion Subsequent to the Beginning of Shock-
Strut Deflection,” with the initial conditions taken as the
conditions of motion at the beginning of shock-strut deflec-
tion, as determined in accordance with the initial impact
conditions and the equations given in the section entitled
“Motion Prior to Shock-Strut Deflection.”

NUMERICAL INTEGRATION PROCEDURES

In view of the fact that the equations of motion for the
landing gear subsequent to the beginning of shock-strut
deflection are highly nonlinear, analytical solution of these
equations does not appear feasible. In the present roport,
therefore, finite-difference methods are resorted to for the

- step-by-step integration of the equations of motion. Al-
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though such numerical methods lack the generality of ana-
Iytical solutions and are especially time consuming if the
calculations are carried out manually, the increasing availa-
bility of automatic calculating machines largely overcomes
these objections.

Most-of the solutions presented in this report were obtained
with a procedure, hereinafter referred to as the “linear pro-
cedure,” which assumes changes in the motion variables to
be linear over finite time intervals. A few of the solutions
presented were obtained with a procedure, hereinafter referred
to as the “quadratic procedure,”’ which agsumes & quadratic
variation of displacement with time for successive intervals.
The generalized solutions for the simplified equations dis-
cussed in & subsequent section were obtained by means of
the Runge-Kutta procedure. The application of these
procedures is described in detail in appepdix A,

USE OF TIRE FORCE-DEFLECTION CHARACTERISTICS
In order to obtain solutions for particular cases, it is, of

course, necessary to have, in addition to information regard-

ing the physical characteristics of the landing gear, some
knowledge of the force-deflection characteristics of the tire.

If extensive date regarding the dynamic tire character-
istics, such as shown in figures 2 and 3, are available, an
accurate solution can be obtained which takes into account
the various breaks in the force-deflection curves (logarithmic
coordinates), as well as the effects of hysteresis. In view of
the fact that the constants m’ and r have the same values
throughout practically the entire tire compression process
regardless of the initial impact velocity or the maximum
load attained, these values of m’ and r, as determined from
the force-deflection curves, can be used in the calculation of
the motion subsequent to the beginning of shock-strut deflec-
tion until the first break in the force-deflection curve is
reached prior to the attainment of the maximum force. If
the conditions for the calculations are the same as those for
which force-deflection curves are available, the values of
m’ and r for each of the several regimes subsequent to the
first break can also be determined directly from the force-
deflection curves. In general, however, the conditions will

not be the same and interpolation will be necessary to-

estimate the values of m’ for the subsequent regimes.
Such interpolation is facilitated, particularly after the maxi-
mum force-deflection point has been -calculated, by the fact

thet each subsequent regime has a fixed value of 7, regardless_

of the initial impact conditions.

The use of the tire-deflection characteristics in the calcula-
tions is greatly simplified if hysteresis is neglected since, the
values of m’ and » which apply prior to the first break in the
force-defloction curves are then used throughout the entire
caleulation, except in the case of severe impacts where tire
bottoming occurs, in which cage new values of m’ and r are
employed in the tire-bottoming regime. A similar situation
exists with respect to the constants a’ and b when the linear
approximations which neglect hysteresis are used. These
simplifications would normally be employed when only the

1091

tire manufacturer’s static or so-called impact load-deflection
data are available, as is usually the case.

EFFECT OF DRAG LOADS

Although the present analysis permits taking into account
the effects of wheel spin-up drag loads on the behavior of the
landing gear, the determination of the drag-load time history
is not treated explicitly. Thus, if it is desired to consider the
effects of the drag load on the gear behavior, such as in the
case of a drop test in which drag loads are simulated by
reverse wheel rotation or in a landing with forward speed, it
is necessary to estimate the drag load, either by means of
other analytical considerations or by recourse to experimental
data. As a first approximation the instantaneous drag force
may be assumed to be equal to the vertical ground reaction
multiplied by a suitable- coefficient of friction wx; that is,
Fg,~=Fy_u, up to the instant when the wheel stops skidding,
after which the drag force may be assumed equal to zero.
(The current ground-loads requirements specify a skidding
coefficient of friction p=0.55; limited experimental evidence,
on the other hand, indicates that ¢ may be as high as 0.7 or
as low as 0.4.) In some cases experimental date indicate
that representation of the drag-load time history can be
simplified even further by assuming a linear variation of the
drag force with time during the period of wheel skidding.

The instant at which the wheel stops skidding can be
estimated from the simple impulse-momentum relationship

tyu ., I Va
fo ‘FHI dt=[.ljo FV' dt=—]?_,_9 '

where
I, polar moment of inertia of wheel assembly about axle
Vu, initial horizontal velocity
rs  radius of deflected tire
4w  time of wheel spin-up
When the drag force is expressed in terms of the vertical

t
force, the value of the integralﬂ Fy, dt canbe determined as

the step-by-step calculations proceed and the drag-force
term eliminated from the equations of motion after the re-
quired value .of the integral at the instant of spin-up is
reached. :

EVALUATION OF ANALYSIS BY COMPARISON OF CALCULATED
RESULTS WITH EXPERIMENTAL DATA

In order to evaluate the applicability of the foregoing
analytical treatment to actual landing gears, tests were
conducted in the Langley impact basin with a conventional
oleo-pneumatic landing gear originally designed for a small
military training airplane. A description of the test specimen
and apparatus used is given in appendix B.

In this section calculated results are compared with ex-
perimental data for & normal impact and a severe impact
with tire bottoming. The vertical velocities at the instant
of ground contact used in the calculations correspond to
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the vertical velocities measured in the tests. Equations
(12), (13), (14), and (15a) were used to calculate the values
of the variables at the instant of initial shock-strut deflection.
Numerical integration of equations (16) and (17) provided
the calculated results for the two-degree-of-freedom system
subsequent to the beginning of shock-strut deflection.

In these calculations the discharge coefficient for the orifice
and the polytropic exponent for the air-compression process
were assumed to have constant values throughout the impact.
Consideration of the shape of the orifice and examination
of data for rounded approach orifices in pipes suggested
a value of C; equal to 0.9. Evaluation of data for other
landing gears indicated that the air-compression process
could be represented fairly well by use of an average value
of the effective polytropic exponent n=1.12. In view of
the fact that the landing gear was mounted in a vertical
position and drag loads were absent in the tests, friction
forces in the shock strut were assumed to be negligible
in the calculations. Since the weight was fully balanced
by lift forces in the tests, the lift factor K, was taken equal to
1.0. The appropriate exact tire characteristics (see fig. 3)
were used for each case. )

NORMAL IMPACT

Figure 4 presents a .compa‘rison of calculated results with -

experimental data for an impact without tire bottoming at
a vertical velocity of 8.86 feet per second at the instant of
ground contact. The exact dynamic force-deflection charac-
teristics of the tire, including hysteresis, were used in the
calculations. These tire characteristics are shown by the
solid lines in figure 2 (2) and values for the tire constants
m’ and r are given in figure 3 (a). R

Calculated time histories of the total force on_the upper
mass and the acceleration of the lower mass are compared
with experimental data in figure 4 (2). Similar comparisons
for the upper-mass displacement, upper-mass velocity, lower-
" mass displacement, strut stroke, and strut telescoping
velocity are presented in figure 4 (b). As can be seen, the
agreement between the calculated and experimental results
is reasonably good throughout most of the time history.
Some of the minor discrepancies during the later stages of
the impact appear to be due to errors in measurement since
the deviations between the calculated and experimental
upper-mass accelerations (as represented by the force on
the upper mass) are incompatible with those for the upper-
mass displacements, whereas the calculated upper-mass dis-

placements are necessarily directly compatible with the -

calculated upper-mass accelerations. The maximum value
of the experimental acceleration of the lower mass may be
. somewhat high because of overshoot of the accelerometer.

In addition to the total force on the upper mass, figure
4 (a) presents calculated time histories of the hydraulic
and pneumatic components of the shock-strut force, as
determined from equations (2) and (3), respectively. It
can be seen that throughout most of the impact the force
developed in the shock strut arises primarily from the hy-
draulic resistance of the orifice. Toward the end of the
impact, however, because of the decreased -telescoping
velocities and fairly large strokes which correspond to high
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compression. ratios, the air-pressure force becomes larger
than the hydraulic force. '

IMPACT WITH TIRE BOTTOMING

Figure 5 presents a comparison of calculated and experi-
mental results for a severe impact (Vy,=11.63 ft per sec)
in which tire bottoming occurred. The tire force-deflection
characteristics used in the calculations are shown by the
solid lines in figure 3 (b). Region (1) of the tire force-
deflection curve has the same values of the tire constants
m’ and r as for the case previously discussed. Following
the occurrence of tire bottoming, however, different values
of m’ and r apply. These values are given in figure 3 (b).

It can be seen from figure 5 that the agreement between
the calculated and experimental results for this case is
similar to that for the comparison previously presented.

The calculated instant of tire bottoming is indicated in
figure 5. When tire bottoming occurs, the greatly increased
stiffness of the tire causes a marked increase in the shoock-
strut telescoping velocity, as is shown in the right-hand
portion of figure 5 (b). Since the strut is suddenly forced to
absorb energy at a much higher rate, an abrupt increase
in the hydraulic resistance takes place. The further increase
in shock-strut force immediately following the occurrence of
tire bottoming is evident from the left-hand portion of
figure 5 (2). The sudden increase in lower-mass acceleration
at the instant of tire bottoming can also be seen.

In this severe impact the hydraulic resistance of the orifice
represents an even greater proportion of the total shock-
strut force thap was indicated by the calculated results for
an initial vertical velocity of 8.86 feet per second previously
discussed. : .

The foregoing comparisons indicate that the analytical
treatment presented, in conjunction with reasonably straight-~
forward assumptions regarding the parameters involved in
the equations, provides a fairly accurate representation of
the behavior of a conventional oleo-pneumatic landing goar.

PARAMETER STUDIES

In the previous section comparisons of calculated results
with experimental data showed that the equations which'
have been developed provide a fairly good representation of
the behavior of the landing gear for the impact conditions
considered. In view of the fact that the equations are
somewhat complicated and require numerical values for
several parameters such as the tire force-deflection constahts
m’ and r, the orifice discharge coefficient G, and the poly-
tropic exponent n, which may not be readily or accurately
known in the case of practical engineering problems, it
appears desirable () to determine the relative accuracy
with which these various parameters have to be known and
(b) to investigate the extent to which the equations can be
simplified and still yield useful results. In order to accom-
plish these objectives, calculations have been made to
evaluate the effect of simplifying the force-deflection charac-
teristics of the tire, as well as to determine the effects which
different values of the orifice discharge coefficient and the
effective polytropic exponent have on the calculated behavior.
The results of these calculations are discussed in the present
section. The question of simplification of the equations of
motion is considered in more detail in a subsequent section,
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REPRESENTATION OF TIRE FORCE-DEFLECTION CHARACTERISTICS

In order to evaluate the degree of accuracy required for
adequate representation of the tire forcé-deflection charac-
teristics, comparisons are made of the calculated behavior
of the landing gear for normal impacts and impacts with
tire bottoming when the tire characteristics are represented
in various ways. First, the force-deflection characteristics
will be assumed to be exactly as shown by the solid-line
curves in figure 2 (b), including the various breaks in the
curve and the effects of hysteresis. These characteristics
are referred to hereinafter as the exact exponential tire
characteristics. The effects of simplifying the representa-
tion of the tire characteristics will then be investigated by
considering (a) the exponential characteristics without
hysteresis; that is, the tire will be assumed to deflect and
unload along the same exponential curve, (b) the linear-
segment approximations to the tire characteristics (long-
dashed lines), which also neglect hysteresis, and (c) errors
introduced by neglecting the effects of tire bottoming in the
case of severe impacts. The calculated results presented in
this study make use of the relationships between vertical
force on the tire and tire deflection, as shown in figures
3 (2) and 3 (b). )

Figure 6 presents a comparison of the calculated results
for a normal impact at a vertical velocity of 8.86 feet per
second, whereas fizure 7 permits comparison of the solutions

=3.01" ’ i .

~-2.5f
2
N
w=2.00
- 1.5

Upper-mass acceleration chto

Tire characteristics considered:

Exact exponenttal

-5 ———— Exponential (no hysleresis)
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=37 e Exponential (rigid strut)
'4
S ! 1 1 1 I 1 ]
0 04 08 12 16 20
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for a severe impact, involving tire bottoming, at a vertical
velocity of 11.63 feet per second.” In figures 6 and 7 the
golid-line curves represent solutions of the landing-gear
equations when the exact exponential relationships between
force and tire deflection are considered. Since these solu-
tions were previously shown to be in fairly good agreement
with experimental data (figs. 4 and 5), they are used as a

Dbasis for evaluating the results obtained when tire hysteresis
is neglected and the force-deflection characteristics are repre-
gented by either simplified exponential or linear-segment,
relationships.

As in the calculations previously described, the solutions
were obtained in two parts. During the first stage of the
impact the shock strut was considered to be rigid until
sufficient force was developed to overcome the initial air-
pressure force. The calculations for the landing-gear behav-
ior subsequent to this instant were based on the equations
which consider the gear to have two degrees of freedom.
Time histories of the upper-mass acceleration calculated on
the basis of a rigid shock strut are shown by the dotted
curves in figures 6 and 7. 'These solutions show the greatest
rate of increase of upper-mass acceleration possible with
the exponential tire force-deflection characteristics con-
sidered. Comparison of these solutions with those for the
two-degree-of-freedom system indicates the effect .of the
shock strut in attenuating the severity of the impact. .

-lOr

1
@
T

Lower-mass acceleration factor, 2, 17

, (@)

Time after contact, sec

(a) Time histories of upper-mass acceleration and lower-mass acceleration.

Figure 6 —Effect of tire characteristics on caloulated landing-gear behavior in normal impact. Vv,=8.86 feet per second; Ca=0.9; n=1.12,
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Figure 7.—Concluded.

Normal impact.—In the case of the normal impact at a
vertical velocity of 8.86 feet per second, figure 6 shows that
the solution obtained with the exponential force-deflection
variafion which neglects hysteresis and the solution with the
linear-segment approximation to the tire characteristics are
in fairly good agreement with the results of the calculation
based on the exponential representation of the exact tire
characteristics. The greatest differences between the solu-
tions are evident in the time histories of upper-mass and
lower-mass accelerations; considerably smaller differences are
obtained for the lower-order derivatives, as might be ex-
pected. With regard to the upper-mass acceleration, the
- three solutions are in very good agreement during the early
stages of the impact. In the case of the simplified exponen-
tial characteristics, neglect of the decreased slope of the-
force-deflection curve between the first break and the maxi-
mum (regime (@) in fig. 3 (2)) resulted in the calculation of a
somewhat higher value of the maximum upper-mass acceler-
ation than was obtained with the exact tire characteristics.
For the simplified exponential and linear-segment character-
istics, neglect of hysteresis resulted in the calculation. of
somewhat excessive values of upper-mass acceleration sub-
sequent to the attainment of the maximum vertical load.
It is of interest to note that the calculated results for the
exponential and linear-segment characteristics without hys-
teresis were generally in quite good agreement with each
other throughout the entire duration of the impact, although
the assumption of linear-segment tire force-deflection char-
acteristics did result in somewhat excessive values for the
maximum lower-mass acceleration. On the whole, . the
simplified tire force-deflection characteristics considered per-
mit calculated results to be obtained which represent the
behavior of the landing gear in normal impacts fairly well.

Impact with tire bottoming.—In the case of the severe
impact at a vertical velocity of 11.63 feet per second, the
effects of tire bottoming on the upper-mass acceleration, the

"lower-mass acceleration, and the strut telescoping velocity

are clearly indicated in figure 7 by the calculated results
based on the exact tire characteristics. As can be scen, the
linear-segment approximation to the tire deflection character-
istics which takes into account the effects of tire bottoming
resulted in a reasonably good representation of the landing-
gear behavior throughout most of the time history. On the
other hand, as might be expected, the calculations which
neglected the effects of bottoming on the tire force-deflection
characteristics did not reveal the marked increase in the
upper-mass acceleration due to- the increased stiffness of the
tire subsequent to the occurrence of bottoming. It is also
noted that the discrepancies in the calculated upper-mass
acceleration due to neglect of hysteresis in the later stages
of the impact are more pronounced in this case than in the
impact without tire bottoming previously considered, again
as might be expected.
EFFECT OF ORIFICE DISCHARGE CbEFFICIENT

In view of the fact that there is very little information
available regarding the magnitude of discharge coefficients
for orifices in landing gears, it appears desirable to evaluate
the effect which differences in the magnitude of the orifice
coefficient can have on the calculated results. Tigure 8
presents comparisons of calculated results for a range of
values of the orifice discharge coefficient C; between 1.0
and 0.7. The four solutions presented are for the same set
of initial conditions as the normal impact without tire
bottoming previously considered and are based on the
exponential tire force-deflection characteristics which neglect

hysteresis.
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(c) Time histories of shock-strut stroke and velocity. .

Fiaure 8.—Concluded.

These calculations show that a decrease in the orifice dis-
charge coefficient results in an approximately proportional
increase in the upper-mass acceleration. This vari-
ation is to be expected since the smaller coefficients cor-
respond to reduced effective orifice areas which result in
greater shock-strut forces due to increased hydraulic
resistance. As a result of the increased shock-strut force
acting downward on the lower mass, the maximum upward
acceleration of the lower mass is reduced with - decreasmg
values of the discharge coefficient. The increase in shock-
strut force with decreasing discharge coefficient also results
in & decrease in the strut stroke and telescoping velocity but
an increase in the lower-mass velocity and displacement,
as might be expected. However, since the increases in
lower-mass displacement and velocity are smaller than the
decreases in strut stroke and telescoping velocity, the upper-
mass displacement and velocity are reduced with decreasing
orifice discharge coefficient.

These comparisons show that the magmtude of the orifice
coefficient has an important effect on the behavior of the
landing gear and indicates that a fairly accurate determi-
nation of the numerical value of this parameter is necessary
to obtain good results. .

EFFECT OF AIR.COMPRESSION PROCESS

Since the nature of the air-compression process in a shock
strut is not well-defined and different investigators have
assumed values for the polytropic exponent ranging any-
where between the extremes of 1.4 (adiabatic) and 1.0

(isothermal), it appeared desirable to evaluate the im-
portance of the air-compression process and to determine the
extent to which different values of the polytropic exponent
can influence the calculated results. Consequently, solutions
have been obtained for three different values of the poly-
tropic exponent; namely, n=1.3, 1.12, and 0.

The value n=1.3 corresponds to a very rapid compression
in which apn adiabatic process is almost attained. The
value n=1.12 corresponds to a relatively slow compression
in which the process is virtually isothermal. The value
7.=0 is completely fictitious since it implies constant air
pressure within the strut throughout the impact. The
assumption =0 has been considered since it makes one of
the terms in the equations of motion a constant and permits
simplification of the ecalculations. The three solutions
presented are for the same set of initial conditions as the
normal impact without tire bottoming previously con-
sidered and are based on the exponential tire force-deflection
characteristics which neglect hysteresis.

Figure 9 shows that the air pressure contributes only o
relatively small portion of the total shock-strut force through-
out most of the impact since the compression ratio is rela-
tively small until the later stages of the impact. Toward
the end of the impact, however, the air-pressure force
becomes a large part of the total force since the compression
ratio becomes large, whereas the hydraulic resistance de-
creases rapidly as the strut telescoping velocity is reduced
to zero.
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As a result, the calculations show that the magnitude of
the polytropic exponent has only & very small effect on the
behavior of the landing gear throughout most of the impact.
For the practical range of polytropic exponents, variations
in the air-compression process result in only minor differ-
ences in landing-gear behavior, even during the very latest
stages of the impact. The assumption of constant air
pressure in the strut throughout the impact (n=0), however,
does lead to the calculation of excessive values of stroke and
of the time to reach the maximum stroke. The time history
of the shock-strut force calculated on the basis of this
assumption is, on the other hand, in quite good agreement
with the results for the practical range of air-compression
processes.

On the whole it appears that the bebavior of the landing
gear is relatively insensitive to variations in the air-
compression process. The foregoing results suggest that, in
maeny cases, fairly reasonable approximations for the landing-
gear force-time variation might be obtained even if the air-
pressure term in the equations of motion were completely
neglected.

SIMPLIFICATION OF EQUATIONS OF MOTION

The preceding studies have indicated that variations in the
tire force-deflection characteristics and in the air-compression
process individually have only a relatively minor effect on the
calculated behavior of the landing gear. These results sug-
gest that the equations of motion for the landing gear might

be simplified by completely neglecting the internal air- '

pressure forces in the shock strut and by considering the tire
force-deflection characteristics to be linear. With these as-
sumptions, the equations of motion for the upper mass,
lower mass, and complete system (eqs. (16), (17), and (8)) can

be written as follows for the case where the wing lift is equal
to the weight and the internal friction is neglected:

Wl — 21+ A (21— 22+ We=0
W, . . .ag
——g—z,—A(zl—zg) +az,4+b—We=0 r— (18)
W‘ ’1+— Bt azatb=0 )
where
A_ 8 pAhs
131 2(CeAn) 080
and
¢ slope of linear approximation to tire force-deflection
characteristics

b wvalue of force corresponding to zero tire deflection, as
determined from the linear-segment approximation to
the tire force-deflection characteristics

The motion variables at the begmnmg of shock-strut. de-
flection can be readily determined in o manner similar to
that employed in the more general treatment previously dis-
cussed. For the simplified equations the variables at the
instant ¢, are given by

=1 )
r— WI g
T (14T
2= p 1+ W, L‘ (19)
. ag
2= Z —_T Z,—
0 i W J
In most cases the term % z,* is small in comparison with Z¢*

so that 2,.=2,.
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The values determined from equations (19) are used as
initial conditions in the solution of equations (18).

The fact that the lower mass is a relatively small fraction of
the total mass suggests that the system might be simplified
oven further without greatly modifying the calculated results
by assuming the lower mass to be equal to zero. With this
assumption f,=0 and the initial values of the variables in
equations (18) correspond to the conditions at initial contact.

EVALUATION OF SIMPLIFICATION
In order to evaluate the applicability of these simplifica-

tions, the behavior of the landing gear has been calculated in

accordance with equations (18) for an impact with an initial
vertical velocity of 8.86 feet per second. A similar calcula-
tion has been made with the assumption We=0. These
results are compared in figure 10 with the more exact solu-
tions previously presented in figure 4, which include con-
sideration of the air-compression springing and the exact
exponential tire characteristics. A time history of the lower-
mass acceleration is not presented for the case where W, is
assumed equal to zero since the values of Zi/g have no
significance in this case. :

Figure 10 shows that the two simplified solutions are in
quite good agreement with each other, as might be expected,
and are also in fairly good agreement with the more exact
results. Neglecting the air-pressure forces and assuming a
linear tire force-deflection variation resulted in the calcula-
tion of slightly lower values for the maximum upper-mass
acceleration and somewhat higher values for the maximum
stroke than were obtained with the more exact equations.

The effect of neglecting the lower mass was primarily to
reduce the lower-mass displacement (tire deflection), as a
result of the elimination of the lower-mass inertia reaction.
On the whole, it appears that the assumptions considered
permit appreciable simplification of the equations of motion
without greatly impairing the validity of the caleulated results.

GENERALIZED TREATMENT
Equations and solutions.—By writing the simplified equa-
tious of motion in terms of dimensiouless variables, general-
ized solutiouns can be obtained for a wide range of landing-gear
and impact parameters which may be wuseful in pre-
liminary design. If W; is taken equal to zero and it is
further assumed that the tire force-deflection curve is
represented by a single straight line through the origin

(6=0 throughout the impact), equatiouns (18) reduce to
I—? 21+ A(21—22=0

A(21—29)*—az:=0 20)

—I% 21+t az.=0

where E; A, and @ are constants, as previously defined, and

any two of the foregoing equations are sufficient to describe
completely the behavior of thesystem. With this representa-
tion of the system, the shock strut begius to deflect at the in-
stant of initial contact (#;=0). Thus, the initial conditiouns
for equations (20) are the initial impact conditions; namely,
210=220=O and\é 1= f;'go= éq.
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As can be seen, with the cquations in this form, the solution
v—?: A, a, and the

initial conditions 2, and 2. However, since z=0 in all
cases, the number of variable parameters is reduced to four.
In view of the fact that these parameters are independent of
oue another and each may take on a large range of values, a
great many solutions and & large number of graphs would be
required to cover the entire range of landing-gear and impact
parameters with the equations in the form of equatious (20).

The number of independent parameters which have to be
considered may be greatly decreased by the introduction of
generalized dimensionless variables and the corresponding
transformations of equations (20). In this case, generalized
variables can be obtained which permit transformation of the
equations of motion to a form which does not involve any
constants, With the equations in this form, there is only
one variable parameter, namely, the initial velocity param-
eter. To determine the generalized variables which satisfy
the aforementioned requirements, let

depends on five parameters, namely,

U=za
and
9=18
Thus, .
'u/=d—u=:2g
6 B
and
'u”=du,=é a
do "B

Substituting these new variables permits equations (20)
to be written as

(5 ) o
ug’)’—(%ﬁ) =0 [ (208)

144 a/ﬁs —

ul + Wl/g U= O J

The number of independent parameters will be reduced
if all the combined constants in equations (20a) are set
equal to one another, that is, let

an
Ag

_a/f®
W1/g

From this relationship, it can be seen that

a «
TAF

e
Wijg

Thus the generalized variables become

wen(ig)  wmn )

_du_ . [A’fa _du; . [AYa
W=V =20~ "\ Wi

321005—56——70

and

1 i05
and
w-gsen ()

i

With these new variables equations (20) can be written as?

where

(' —w')?+w''=0
(' —ug" ) —u3=0
u’ +up=0

(21)

where any two of these equations are sufficient to describe
the behavior of the system. |

Inasmuch as equations (21) do not involve any constants,
their solutions are completely determined by the initial val-
ues of the variables. Since the displacements at initial
contact u, and u,, are equal to zero and the initial velocities
U’ and us’ are equal, the only parameter is the initial

dimensionless velocity
. [A®
U’ =2y —\ Wfl

where 1 =u;) =us,’.
Generalized solutions of equations (21) are presented in
figure 11 for values of %y’ corresponding to & wide range of

~ landing-gear and impact parameters. Parts (a) to (e) of

figure 11 show the variations of the dimensionless variables
during the impact; parts (f) and (g) show the maximum
values of the more important variables as functions of uy'.
Part (h) shows the shock-strut effectiveness 5, and the
landing-gear effectiveness 7. -The shock-strut effective-
ness, sometimes called “efficiency’ and, in Europe, “plani-
metric ratio,” is defined as

Omazx
0 ul” da’

Ns="""77
U o Omer

where oc=u;—u; is the dimensionless shock-strut stroke,
Since 7, represents the ratio of the energy actually absorbed
by the shock strut to the maximum energy which the strut
could possibly absorb for any combination of maximum
acceleration (or load) and maximum stroke, it serves as a
measure of the extent to which a given combination of
maximum load and stroke has been utilized to absorb the
energy of an impact. A similar measure of the energy
absorption effectiveness of the landing gear as a whole is
given by 7., which is defined by

Ylmax
o 'll«]" d'u1

Nig= 77
Ut oy Wpor

2 Equations (21) may be reduced to a single equation in one variable by differentiating the
Iast equation and substituting for us’ fn the firstequation. ‘This gives (uy'4-ty")4u’ =0,

By Introducing the new varlable w=uy/, this equation may be reduced to ths second-
order equation (t0-}-10'")?-+w'=0, subject to the initial conditions we=uy’ and wy'=0,
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The generalized results presented in figure 113 can be
used to estimate the performance of a given landing gear of
known configuration for particular impact conditions or to
choose the dimensions for a landing gear when the impact
conditions and desired performance are specified.

Applicability of solutions,—To illustrate the applicability
of the generalized solutions, the curves of figure 11 have
been applied to the previously considered case of the normal
impact at an initial vertical velocity of 8.86 feet per second
for comparison with the more exact solution presented in
figure 4. In order to make use of the generalized solutions

3 Althongh time-history solutions are presented for values of uo’ assmall a30.5, 1t will be
noted that volues of ,,,,) omes, 7, 80d g, are not given for values of uy’<1.5. It can be
séen from the time histories that the characteristicos of the solution in the later stages of the im-
pact ehange as ug’ becomes small; In particular, ) increases and the curve of u1,,,, a8 a func-
tion of uy’ appears to reach a minimum at some value of #’S1.5. Furthermore, the later
stages of the solutlons greatly stretch out In time and appear to be almost asymptotic in
chameter, Several different analytical, numerfeal, and analogue methods were applied in an

attempt to study this phase of the problem further but the extremely elow rate of change of
the variables in this region pravented successiul completion of the solutions.

~

it is first necessary to approximate the tire force-deflection
characteristics by a simple linear variation. Two such
linear approximations which might be considered suitable
for this purpose are shown in figure 12. Linear approxi-
mation I is a straight line through the origin having a slope
a=18.5X10° pounds per foot (¢’=ad=41.6X10° 1b). This
value of @ and the other pertinent landing-gear and impact
parameters result in & value of the initial dimensionless
velocity parameter 1,'=2.57. Linear approximation II is
a straight line with slope ¢=21.3X10°® pounds per foot
(@’=47.9X10% Ib) which does not pass through the origin
but intersects the displacement axis at a value of

zg(rv _0)=0.0508 foot. With this value of @, 4, =2.39.
g

Since the solutions of figure 11 have been calculated only
for integral values of u,’, curves for the foregoing values of
4y’ were graphically interpolated by cross plotting. These
results were then converted to dimensional values by multi-
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plying the dimensionless wvariables by the appropriate
constants. The results obtained are compared in figure 13
with the more exact solution presented in figure 4. The

values based on linear approximation I have been plotted

exactly as determined from the generalized solutions. The

results for linear approximation IT, however, have been-

dlsplaced relative to the origin of coordmates as mdlcated
in the following discussion.

The assumption of linear approximation IT implies that
the system must move a distance equal to Zg(r -0) after

initial contact (at constant velocity since the wing lift is
taken equel to the weight) before any finite ground reaction
can develop. The derivation of the equations of motion,
on the other hand, assumes that the ground reaction in-
creases linearly with deflection from the instant of initial
contact. As a result, the equations of motion do not apply

until after the system has attained & displacement equal to

zg(p oy which occurs at a time after imitial contact

(FVE

v, ), In other words, the equations of motion
Yo

apply to a coordinate system ftransformed so that the tire"

force-deflection relationship passes through the origin; that
is, & coordinate system displaced by z,(},v -0 relative to
9.

-

the coordinate system originating at the point of initial

contact. It therefore follows that the upper-mass and

lower-mass displacements determined from the generalized

solutions for the case of linear approximation II must be

increased by a constant amount equal to z,(,r _0),'in this
! 4

case 0.0508 foot, and all results must be displaced in
(“' ve~9

Vo

fime by a constant increment At== » in this case

9%=0.0057 second, relative to the instant of initial
contact. Thése corrections have been incorporated in plot-

ting the curves for linear approximation II shown in figure 13.
As can be seen, the results obtained by application of the
generalized solutions, particularly by the method employing
linear approximation IT, are in fairly good agreement with the
more exact solution. The discrepancies which eoxist are
attributable to the neglect of the shock-strut preloading and
springing provided by the air-pressure force, neglect of the
lower mass, and to differences between the very simple tire
force-deflection relationships assumed and the exact tire
characteristics. On the whole, it appears that the general-
ized results offer a means for rapidly estimating the behavior
of the landing gear within reasonable limits of accuracy and
may therefore be useful for preliminary design purposes.
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SUMMARY OF RESULTS AND CONCLUSIONS

A theoretical study has been made of the behavior of the
conventional type of oleo-pneumatic landing gear during the
process of Janding impact. The basic analysis is presented
in a general form and treats the motions of the landing gear
prior to and subsequent to the beginning of shock-strut
deflection. In the first phase of the impact the landing gear
is treated as a single-degree-of-freedom system in order to
determine the conditions of motion at the instant of initial
shock-strut deflection, after which instant the landing gear is
considered as a system with two degrees of freedom. The
equations for the two-degree-of-freedom system consider
such factors as the hydraulic (velocity square) resistance of
the orifice, the forces due to air compression and internal
friction in the shock strut, the nonlinear force-deflection
characteristics of the tire, the wing lift, the inclination of the
landing gear, and the effects of wheel spin-up drag loads.

The applicability of the analysis to actual landing gears
has been investigated for the particular case of a vertical
landing gear in the absence of drag loads by comparing
calculated results with experimental drop-test data for corre-
sponding impact conditions, for both a normal impact and a
severe impact involving tire bottoming.

Studies have also been made to determine the effects of
variations in such parameters as the dynamic force-deflection

characteristics of the tire, the orifice discharge coefficient, and
the effective polytropic exponent for the air-compregsion
process, which might not be known accurately in practical
design problems.

In addition to the more exact treatment an investigation
has also been made to determine the extent to which the
basic equations of motion can be simplified and still yield
useful results. QGeneralized solutions of the simplified
equations obtained are presented for a wide range of landing-
gear and impact parameters.

On the basis of the foregoing studies the following con-
clusions are-indicated:

1. The behavior of the landing gear as calculated from the
basic equations of motion was found to be in good agreement
with experimental drop-test data for the case of a vertical
landing gear in the absence of drag loads, for both a normal
impact and a severe impact involving tire bottoming.

2. A study of the effects of variations in the force-deflection
characteristics of the tire indicates that

a. In the case of & normel impact without tire bottoming,
reasonable variations in the force-deflection charactaristics
of the tire have only a relatively small effect on the calculated
behavior of the landing gear. Approximating the rather
complicated force-deflection characteristics of the actual tire
by simplified exponential or linear-segment variations appears
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Ficurs 11.—Continued.

to be adequate for practical purposes. Tire hysteresis was
found to be relatively unimportant.

b. In the case of a severe impact involving tire bottoming,
the use of simplified exponential and linear-segment approxi-
mations to the actual tire force-deflection characteristics
which neglect the effects of tire bottoming, although adequate
up to the instant of bottoming, fails to indicate the pro-
nounced increase in landing-gear load which results from
bottoming of the tire. The use of exponential or linear-
segment approximations to the tire characteristics which
take into account the increased stiffness of the tire that re-
sults from bottoming, however, yields good results.

3. A study of the importance of the discharge coefficient
of the orifice indicates that the magnitude of the discharge
coefficient has a marked effect on the calculated behavior of
the landing gear; a decrease in the discharge coefficient (or
the product of the discharge coefficient and the net orifice
area) résults in an approximately proportional increase in
the maximum upper-mass acceleration.

4. A study of the importance of the air-compression process
in the shock strut indicates that the air springing is of only
minor significance throughout most of the impact, and that
variations in the effective polyfropic exponént n between the
isothermal ‘'value of 1.0 and the near-adiabatic value of 1.3
have only a secondary effect on the calculated behavior of

the landing gear. Even the assumption of constant air
pressure in the strut equal to the initial pressure (n=0)
yields fairly good results, which may be adequate for many
practical purposes.

5. An investigation of the extent to which the equations of
motion for the landing gear can be simplified and still yield
acceptable calculated results indicates that, for many prac-
tical purposes, the air-pressure force in the shock strut can
be completely neglected, the tire force-deflection relationship
can be assumed to be linear, and the lower or unsprung mass
can be taken equal to zero.

6. Generalization of the equafions of motion for the
simplified system described in the preceding paragraph
shows that the behavior of this system is completely deter-
mined by the magnitude of one parameter, namely, the
dimensionless initial-velocity parameter. Solution of these
generalized equations in terms of dimensionless variables
permits compact representation of the behavior of the system

. for a wide range of landing-gear and impact phrameters,

which may be useful for rapidly estimating landing-gear
performance in preliminary design.

LaNeLEY AERONATUTICAL LLABORATORY,
NarroNan Apvisory CoMMITTEE FOR AERONAUTICS,
Lawerey Freup, Va., May 1, 1952.
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APPENDIX A
NUMERICAL INTEGRATION PROCEDURES

As previously noted, most of the specific solutions presented
in this report were obtained with a numerical integration
procedure, termed the ‘linear procedure,” which assumes
changes in the variables to be linear over finite time intervals.
With this procedure a time interval ¢=0.001 second was
used in order to obtain the desired accuracy for the particular
cases considered. A few of the specific solutions presented
were obtained by means of & procedure, termed the “quad-
ratic procedure,” which assumes a quadratic variation of
displacement with time for successive intervals. This pro-
cedure, although requiring somewhat more computing time
per interval, may permit an increase in the interval size for
a given accuracy, in some cases allowing a reduction in the
total computing time required. In the case of the more
exact equations of motion the accuracy of the quadratic pro-
cedure with a time interval of 0.002 second appears to be
equal to that of the linear procedure with an interval of
0.001 second. Although the accuracy naturally decreases
with increasing interval size, the loss in aceuracy for pro-
portionate increases in interval size appears to be smaller for
the quadratic than for the linear procedure. In the case of
the simplified equations of motion reasonably satisfactory
results were obtained in test computations with the quadratic
procedure for intervals as large as 0.01 second; whereas the
linear procedure was considered questionable for intervals
larger than 0.002 second. ’

The generalized solutions presented, because of the
relatively simple form of the equations of motion, were
obtained with the well-known Runge-Kutta procedure.
A study of the allowable interval size resulted in the use of
an interval A@=0.08, which corresponds to a time interval of
about 0.005 second for the landing gear under consideration.

LINEAR PROCEDURE

In this step-by-step procedure the variations in dis-
placement, velocity, and acceleration are assumed to be
linear over each finite time interval e. The method, as
used, involves one stage of iteration. Linear extrapolation
of the velocity at the end of any interval is used to obtain

estimated values of velocity and displacement for the next

interval. These values are then used to calculate values of
the acceleration in accordance with the equations of motion.
Integration of the acceleration provides improved values of
the velocity and, if desired, the displacement and accelera-
tion. In this procedure all integrations are performed by
application of the trapezoidal rule.

The following derivation illustrates the application of the
linear procedure to the equations of motion for the landing
gear, which apply subsequent to the beginning of shock-strut
deflection at time f. In the example presented internal
friction forces are neglected in order to simplify the deriva-
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. tion.

However, the same general procedure can be used if
these, or other complicating effects, are included in the
equations.

For the case under consideration the equations of motion
(egs. (16), (17), and (8)) can be written as follows:

W,
g
Wer 1 . }
? ZZ—A(Z1—ZQ)2—B[1—0(21—22)] “+FV‘(22)—'W2=0
(A2)

(A3)

51+A(é‘1-—ig)’—]-B[1—0’(21—22)]““+D=0 (A].)

Lo st 22 204 Py e+ B=0

where

4-3 p A}
[3] 2(CeAn)cose

B=p,,A4,cosp
__4a

DoCO08¢
D=KL W'—- Wl
) E=W(E.,—1)

Solving equation (A3) for 2, gives

B tF—-G2—BFy (2] (Ad)

where

W
=W; (1—Kyp)g

W
-

£
H=y;

1

Integrating equation (A4) with respect to ¢ between the
limits # and ¢ and noting that 3, =2, =2, gives
=it Fr—Gi—i)—H [ Fy,dir  (A5)

where 7= ({—*%).
Integrating again and noting that 2 =2z, =2, gives

2=+ et it G H [ [ By @) dr dr
' (A8)
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Substituting for z, and z; in equation (A2) gives

2 (4] 0+ @G~ Fr—E [ o oar | +

B{t—0[a+@etir—ed+ B —a [ 7y, (2D ar a- ]}

The motion of the landing gear subsequent to the beginning
of shock-strut deflection is determined by means of a step-
by-step solution of equation (A7). This numerical procedure
yields time histories of the lower-mass motion variables
23, 3, and 3,, from which the motion variables for the upper
mass £, ;, and z; can be calculated by means of equations
(A4), (A5), and (AS6).

The initial conditions for the step-by-step procedure are

21n-l:u 225-0 2r
z.ln_o 22._0= 23 (As)
éln-0=ézn-0=é"

where z, Z, and 2, are the conditions of motion at the
beginning of shock-strut deflection as determined from the
solution for the one-degree-of-freedom system.

LEstimated values of the lower-mass velocity at the end of
the first time increment e following the beginning of shock-
strut deflection can be obtained from the expression

2y, =2 te2, (A9)
or, as a first approximation,
é;ﬂ-l=éf
The corresponding displacement is given by
oy =g (i, +4) (A10)

After the initial conditions and the conditions at the end
of the first time increment are established, & step-by-step
calculation of the motion can be obtained by routine opera-
tions as indicated by the following general procedure which
applies at any time r=ne after the beginning of the process.
The operations indicated are based on integration by apph—
cation of the trapezoidal rule:

é;;;:z.?n—l—l_(é?n—l_ 2 n—2) 2y 1+ (22“_ +22u_2) (All)

62 - -
5 (Bsy g+ 2a, )
(A12)

€ ,. . .
Z;n = zgu—-l+§ (32“__1 ‘i— z;n)—_— zau—l_l-e z’n-—l

With the estimated values 2, and 2f_ the acceleration of
the lower mass can be determined by substitution in the

. z’:+1
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—Fy, 0+ Ws) (A7)
appropriate integrodifferential equation for the system,
equation (A7) in the present case. Thus

22,=f(é;:,,) Z;,,) T‘n) (A13)
In equation (A7) the integral expressions can also be evalu-
ated by application of the trapezoidal rule. For example,
when Fy_(z)=mz],

ne
J; zadr z% (27422 + . . . 225 "+2,)
n—-1)
= " e.s‘erdT—l-i (22 _ r+22 r) (A14)
0 2 n—1 n
ne *ne (n-1e '(n—l)e
f f oidr dr = f f oidr drt
0 Jo 0 0
€ (n—-1)e ne ,
: ( ﬁ o drt fo z,fdf> (A15)

An improved value for the velocity is obtained from the
expression

fa,=ds, 5 (Bs, 152, (A16)
This value is used in the calculation of the estimated velocity
and displacement 2, , for the next interval.-

If desired, improved values of the displacement and
acceleration for the nth interval subsequent to the beginning
of shock-strut deflection can be obtained as follows:

€ ,. .
225= Zzn—l+§ (zzn—l-l_ zzn)

2
22._1+EZ.'3”_1+£4' (ézn—l—l-é?n) (A17)

and

52“=f(7;gn, 22., Tn) (A].S)
where f(2:,, 23, 7) i3 an appropriate equation for the system,
such as equation (A7).

With the values of 2, 2, , and 2, , the motion variables for
the upper mass 2, 7,, and 2z, can be calculated separately
from equations (A4), (A5), and (A6), as previously noted.

In setting up the numerical procedure used in obtaining the
solutions presented in this report, an evaluation of the errors
introduced by the procedure indicated that it would not be
necessary to calculate the improved values of the displace-
ment z;, (eq. (A17)) or theacceleration 2, (eq. (A18)). How-
ever, improved values of the velocity 2,, were calculated by
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means of equation (A16) for the purpose of determining
estimated values of the velocity z; and the displacement 2,
(eqs. (Al1l) and (Al2)) for the increment immediately
following. :

In order to illustrate the application of the method, a
tabular computing procedure for the solution of the system
represented by equations (A1), (A2), and (A3) is presented in
table I.

QUADRATIC PROCEDURE

In this step-by-step procedure a quadratic variation of
displacement is assumed over successive equal finite time
intervals for the purpose of extrapolating values of the

motion variables from one interval to the next. With this
assumption the displacement variation over two successive
equal time intervals is completely determined by the three
values of displacement at the beginning and end of each of
the two intervals. By writing the quadratic variation in
difference form, the velocity and acceleration at the midpoint
of the double interval can be expressed in terms of the three
displacement values previously mentioned. Substituting for
the velocity and acceleration in the differential equations for
the system yields difference equations of motion in terms of
successive displacement values which can be evaluated
interval by interval.

TABLE 1
LINEAR PROCEDURE

Row Quantity Equation Procedure t

© R [P ---
® ' 5, gyt (Brpmgt B1y) ®»

® 2, Zrpstg (a5 @pte®»

© | m@) | Detemined from tire foree
(©) |NZICALE Equation (A14) ©.+510+04]

® [ [ Pr(syar ar Equation (A15) ©ot5 [@+®]

® —2—" Equatioﬁ (AD - Given bjf equation (A7).

@ &, BpsF g (BramaH 520 @55 [O+Osle

L (rat Bas) b1t g (Brant52,) O+ [O+®sle

® B 45 (Bpyt5a,) O+% [O+®sk

® ﬁ Equation (A4) Given by equation (A4).
@ &, Equation (A5) Given by equation (Ab).
@ 2, Equation (A6) " Given by equation (A6).

t O, denotes value for previous time interval.
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The following derivation. shows how the procedure can be
applied to the determination of the behavior of the landing
gear subsequent to the beginning of shock-strut deflection at e
time . In order to simplify the derivation, internal friction ' —]
forces are again neglected in setting-up the equations of /
motion.

The assumption of & quadratic variation of displacement
with time (constant acceleration) over two successive inter-
vals, each of duration e, permits expressing the velocity and z Zn-1 Z D+
acceleration at the midpoints of the double interval (see
sketch) in terms of the displacement values at the beginning,
midpoint, and end of the double interval by the equations

(see ref. 5, p. 16):
Zxt1—Zpn-1

2= P (A19)
and | l '\
. 92 +2 0 € 2¢ it (e ne (nH)e
- w1 Ly, n-—1 al-ly
Bamtt T (A20) T

€

where 2,, 2, and 2, are the velocity, acceleration, and displacement at the end of the nth interval (r=ne) after the
beginning of shock-strut deformation and z,.; and 2,4, are the displacements at the end of intervals n—1 and n41,
respectively.

Substituting the difference relations for z;, 2z, #;, and 3 into equations (A1) and (A3) permits writing the equations
of motion for the landing gear in difference form as follows:

% (2rgp—221,+21,_,) +4A;‘-’(Zlu+1— L P z’.+1+zfn—1)2+B [1—0(21,—2a,)] "+ D=0 (A21)
and
zln+1— 231,‘ zlﬂ 1 6I(";‘!zﬂ+l 223 +z?n l) —HG [FV‘(ZQ") +E] ~ (A22)

where the constants are as defined in the prewous section,
Substituting for z;_, . in equation (A21) gives

ntl
=t [ W WA Bt WM )~ AT an+1+gAvn+1)] (423)
where
anp1=2Ws23,— W2y, —g€’[Fy (23,)+E]
Bui1=2Wszs, +(W1i—Wa)z,,_,+2Wi(21,—21,_,)—8"[Fy (22,) T E]
and
Yas= 20 (B[1—O(21,— 23,)]*+D)

Equations (A22) and (A23) are essentially extrapolation formulas which permit the determination of values for the
upper-mass and lower-mass displacements to come from the values of displacement already calculated. These equations
thus permit step-by-step calculation of the displacements as the impact progresses, starting with the initial conditions,
from which the upper-mass and lower-mass velocities and accelerations can be determined by means of equations (A19)
and (A20).

Since the calculation of the displacements z and 2 at any instant by means of equations (A22) and (A23) requires
values for the displacements at two previous instants, the routine application of these equations can begin only at the
end of the second interval (r=2¢) following the beginning of shock-strut deflection. Before the displacements at the end
of the second interval can be calculated, however, it is necessary to determine the displacements at the end of the first
interval. These values can be obtained from the conditions of motion at the instant of initial shock-strut deflection by
applying equations (A19) and (A20) to the instant i=t.
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At the instant of initial shock-strut deflection

zu-o z’n-o 2s

21, 0= 22,0 2r (A24)

21 g™ B2p0g= 2
Application of the difference equations (A19) and (A20)

to the instant t{=¢ (that is, n=0) gives the {following
equations:

~

. Zrml ™ Zpm—1l
2=
2¢
. (A25)
e Zpe1—2Z:F Znm
T 62

Since the landing gear is considered as a oﬁe—degree-of—
freedom system from initial contact up to the instant {=t,
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the foregoing application of the difference equations results
in identical values for the upper-mass displacement and
lower-mass displacement at the end of the first interval.
Simultaneous solution of equations (A25) gives the following

.expression for the displacement at the end of the first interval:

23, 121, z,-l—ez,+ (A26)

With the values for 2, and 2,.;, equationy (A22) and

" (A23) permit the step-by-step calculation of the upper-mass

and lower-mass displacements subsequent to the first interval
following the beginning of shock-strut deflection. The
corresponding velocities and accelerations of the upper and
lower masses can be determined from the calculated displace-
ments by means of equations (A19) and (A20), as previously
noted.

A tabular computing procedure illustrating the application
of the method is presented in table II.

TABLE II

QUADRATIC PROCEDURE
Row Quantity Equation Procedure
© R o SO RS
® Zr, L o ey OM
@ 21,  feemmmm e (OM
® Zo Equation (A23) Given by equation (A23).
@ 21, Equation (A22) Given by equation (A22).
s 2y T @"' @n

® s, T e
® 2241 2"" + 2201 @ﬂ@l

2, 3 ] .

. L2 WPt ©—Q),
@ 2, —Hgg——l 2¢

f
-2 —

z Zlayr :; L ® 2(3“'@1’

1t O denotes value for previous time interval.
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RUNGE-KUTTA PROCEDURE

In this step-by-step procedure the differences in the de-
pendent variables over any given interval of the independent
variable are calculated from a definite set of formulas, the
same set of formulas being used for all increments. Thus the
values of the variables at the end .of any given interval are
completely determined by the values at the ead of the pre-
ceding interval. Unfortunately, however, unless the equa-
tions to be integrated are relatively simple, the method can
become quite lengthy.

The following derivation illustrates the application of the
Runge-Kutta method to the generalized equations of motion
(eqs. (21)) for the simplified system considered in the section-
on generalized results. Since these equations can be readily
reduced to the first order, they can be integrated by the
step-by-step application of the general equatious given on
pages 301 and 302 of reference 6 for first-order simultaneous
differential equations.

The generalized equations for the simplified system pre-
viously discussed (eqs. (21)) are

(Ux'—ua')2+ull'= 0
()’ — P —u,=0

w' +1u,=0

Inasmuch 28 any two of these equations are sufficient to
describe the behavior of the system, only the last two equa-
tions are employed in this procedure. These equations can
be reduced to a first-order system by introducing the new
variable -
w=1u,’ (A27)

so that
w'=u," (A28)
and the equations of motion become
(w—uyP—uy=0
} A29)
w 4u=0

Solving equatiouns (A29) for v’ and w’, respecbiveiy, gives
U =w—~uty (A30)
w=—1y ' (A31)

" Applying the general procedure presented in the reference
previously cited to the simultaneous equations (A27), (A30),
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and (A31) gives

Mi=ts, s, _ = (ki 2k b2k bR )
0=, —0n 1= (h+ 22y +L) - (432)
Bttty — s, =g (mu-t 2mat-2mst ) |

where
k1=w1_ 1A0

k2=<w;,_1+l—21- Af
k3=<w,,_1+l§) Al

ky=(w,_ 1+ 1) A0

L=—us,_ A
b= (1, + ) 20

la=—<‘"/2u_1+%> Af

li=— (ts,_,+ms) AD

M= (Wa1—~ftla, ;) Ad=1us]_AB
%=[<w,_1+%>—\/ua,_l+%1 Af
ﬂta=[<w._1+%>j\/wn_l+."—;— A6

my= [(wi-l‘i‘la)——\/’ua,_l'l‘ mz] A6

With this procedure, u;, w, and u; can be calculated in
step-by-step fashion from the values for the preceding inter-
val, the procedure beginning with the initial conditions.
From these values, %', w’/, and 43’ can be calculated by
means of equations (A27), (A28), and (A30), respectively.




APPENDIX B

SOURCE OF EXPERII\!IENTAi DATA

Following is a brief description of the apparatus and test
specimen used in obtaining the experimental data presented
in this report.

EQUIPMENT

The basic piece of equipment employed in the tests is the
carriage of the Langley impact basin (ref. 7) which provides
means for effecting the controlled descent of the test speci-
men. In these tests.the impact-basin carriage was used in
much the same manner as a conventional stationary landing-
gear test jig (see ref. 8). In order to simulate mechanically
the wing lift forces which sustain an airplane during landing
the pneumatic cylinder and cam system incorporated in the
carriage was used. to apply a constant lift force to the dropping
mass and landing gear during impact. The lift force in these
tests was equal to the total dropping weight of 2,542 pounds.

TEST SPECIMEN

The landing gear used in the tests was originally designed
for a small military training airplane having a gross weight of
approximately 5,000 pounds. The gear is of conventional
cantilever construction and incorporates a standard type of
oleo-pneumatic shock strut. The wheel is fitted with a 27-
inch type I (smooth-contour) tire, inflated to 32 pounds per
square inch. The weight of the landing gear is 150 pounds.
The weight of the lower mass (unsprung weight) is 131
pounds.

In the present investigation the gear was somewhat modi-
fied in that the metering pin was removed and the original
orifice plate was replaced with one having a smaller orifice
diameter. Figure 14 shows the internal arrangement of the
shock strut and presents details of the orifice. Other perti-
nent dimensions are presented in table III. The strut was
filled with specification AN-VV-0-366B hydrsulic fluid.
The inflation pressure with the strut fully extended was 43.5
pounds per square inch. In these tests the landing gear was
mounted with the shock-strut axis vertical. Figure 15
is a photograph of the landing gear installed for testing.

TABLE III

IMPORTANT CHARACTERISTICS OF LANDING GEAR
USED IN TESTS

INSTRUMENTATION

A variety of time-history instrumentation was used during
the tests. The vertical acceleration of the upper mass was
measured by means of an oil-damped electrical strain-gago
accelerometer having a range of 4+8¢ and a natural frequency
of 85 cycles per second. A low-frequency (18.5 cycles per
second) NACA air-damped optical-recording accelerometer,
having & range of -——1g to 6g, was used as a stand-by instru-
ment and as a check against the strain-gage accelerometer.
Another oil-damped strain-gage accelerometer, having a
range of +12¢ and a natural frequency of 260 cycles per
second, was used to determine the vertical acceleration of the
lower mass. The vertical displacement of the lower mass
(tire deflection) and the shock-strut stroke were measured
separately by means of variable-resistance slide-wire poten-
tiometers. The vertical displacement of the upper mass was
determined by addition of the strut-stroke and tire-deflection
measurements. The vertical velocity of the landing gear at

the instant of ground contact was determined from the output

of an elemental electromagnetic voltage generator. A time
history of the vertical velocity of the upper mass was ob-

“tained by mechanically integrating the vertical acceleration

of the upper mass subsequent to the instant of ground con-
tact. Electrical differentiation of the current output of the
strut-stroke circuit provided time-history measurements
of the shock-strut telescoping velocity. The instant of
ground contact was determined by means of a micro-
switch, recessed into the ground platform, which closed
a circuit as long as the tire was in contact with the platform.

The electrical output of the instruments was recorded on a
14-channel oscillograph. The galvanometers were damped
to approximately 0.7 critical damping and had natural {re-
quencies high enough to produce virtually uniform response
up to frequencies commensurate with those of the measuring
instrumentation. = A typical oscillograph record is shown in
figure 16.

It is believed that the measurements obtained in the tests
are accurate within the following limits:

Measurement Aceuraoy
Upper-mass acceleration, g_ . miaana- +0.2
Force on upper mass, 1b_ o e + 600
Lower-mass acceleration, £ - .o m———— +0.3
Vertical velocity at ground contact, fps_ .o aia.l +0.1
Upper-mass velocity daring impaet, fps_ .- __._ 40.5
Upper-mass displacement, ft____ . +0.05
Lower-mass displacement, ft_ .. ... +0.03
Shock-strut stroke, ft. . caeeae +0. 03
Shock-strut telescoping veloeity, fps_ . ____________ +0.6

Time after contact, sec_ . __ L. +0. 003
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Freure 14.—Shock strut of landing gear tested at Langley impact basin.
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Frgure 15.—View of landing gear and instrumentation.
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