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A VECTOR STUDY OF LINEARIZED SUPERSONIC FLOW
APPLICATIONS TO NONPLANAR PROBLEMS*

By Jomn C. MaRTIN

SUMMARY

A vector study of the partial-differential equation of steady
linearized supersonic flow is presented. General expressions,
which relate the velocity potential in the stream to the condilions
on the disturbing surfaces, are derived. In conmection with
these general expressions the concept of the finite part of an
integral is discussed.

A discussion of problems dealing with planar bodies is given
and the conditions for the solution to be unique are investigated.

Problems concerning nonplanar systems are investigated, and

methods are derived for the solution of some simple nonplanar
bodies. The surface pressure distribution and the damping in
roll are found for rolling tails consisting of four, six, and eight
rectangular fins for the Mach number range where the region of
inlerference between adjacent fins does not affect the fin tips.

INTRODUCTION

In the presentation of the theory of the flow of an idealized
incompressible fluid, vector methods can be used to reduce
greatly the mathematical manipulations involved. The
study of steady linearized supersonic low may also be aided
by the use of vector methods. Two types of approaches,
however, can be used. Perhaps the more obvious is to make
use of common vector methods as was done in reference 1.
The other vector method, which was introduced by Robinson
in reference 2 and is used in this report, appears to be more
suited to the study of the linearized partial-differential equa-
tion of steady supersonic flow. This method allows a deriva-
tion of a hyperbolic scalar potential and a hyperbolic vector
potential along lines analogous to the derivation sometimes
used (ref. 3, ch. VIII) in dealing with common scalar and
vector potentials.

The present report presents a vector derivation of many
general results which have been found by various methods
and are given in the published literature on the linearized
partial-differential equation of supersonic flow and also
presents some results which are not found in the literature.
The general results of Hadamard (ref. 4, p. 207), Puckett
(ref. 5), and Heaslet and Lomax (ref. 6) are found as special
cases of a general expression for a scalar potential, and the
results found by Robinson (ref. 2) are obtained by the use
of a vector potential. The derivation of the scalar potential
doubtlessly helps to clarify the concept of the finite part.of
an integral.

A discussion of problems dealing with planar bodies im-
- mersed in & supersonic flow is given, and the conditions
necessary for the solution to be unique are investigated.
Problems dealing with nonplanar systems are also dis-
cussed, and methods are derived for the solution of some
simple problems dealing with nonplanar bodies. The surface
pressure distribution, the spanwise loading, and the damping
in roll are found for rolling teils consisting of four, six, and
eight rectangular fins for the Mach number range where the
region of interference between adjacent fins does not affect
the fin tips. : '

SYMBOLS'

A hyperbolic vector potential

A aspect ratio of tail fin

a positive constant

Gy, G, Gy arbitrary constants

¢ chord

E F . arbitrary vector functions

I scalar function defined by equation (19)

G vector function associated with vector
function F ’

H vorticity vector

b/2 span of tail fin

i,j,k unit vectors in z-, y-, and z-directions,
respectively

M Mach number

n unit vector normal to element of area da

ny= —iﬂ‘llﬁ"'jvz"‘kl’s
ny/ =—i%/'+jv + kv’
ny*=—ig%*+ju*+kvs*

AC, pressure-difference coefficient

v/ rate of roll

Q function used in equation of surface of
. discontinuity ]

q part of velocity vector which is made up of

hyperbolic curl of vector potential

qg total perturbation velocity -

R=+y@—&'—Fy—n'—F(z—8)

i small constant

r=+@—£)*+6y—n)*+p(z—1)*

S " area of tail fin

So surface of discontinuity

1 Bupergedes NACA TN 2841, A Vector 8tudy of Linearized Supersonic Flow Applications to Non planar Problems’ by John O. Martin, 1952.
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S"Sf’n’g 3’_,1,'3,’" So  surfaces of integration
14 free-stream velocity
g, U1, 3 volumes of integratipn
1 1
z, Y, 2 Cartesian coordinates (z-axis parallel to
free-stream direction)
g=~1{*—1
T ., spanwise circulation

T. B, V T.E.
(2 f 40 da=> f AC, d:c)
L. E. L.E.

€ small positive quantity

£t Cartesian coordinates (f-axis parallel to
free-stream direction) ~

0,0 polar coordinates

A ¥ scalar functions

A given volume

1, V2, V3 direction cosines of outward normal to
element of area da

w', v, v -direction. cosines of normal (directed away

from point (z,7,2)) to surface S,

* * *
ViT, V2, Vs
, ares da used in equation (45)
o slope of deflected area
T area of integration
‘ﬁ) ¢O: d’l: ¢2: 11(’0 SC&I&I‘ potentia]s
G rolling-moment coefficient per fin,

Rolling moment per fin
oC,
O'p= > p(% 2)
p—0

1 b
5pV85

indicates integration over closed line or
surface

denotes finite part of integral

— X

THEORY

This report deals with the linearized partial-differential
equation of steady supersonic flow. This equation is given
by

_ﬁ’¢n+¢w+¢u=0 (1)

The potential is assumed to be continuous in the stream
direction, and the potential is assumed to be always finite.
Assuming the potential to be finite and continuous in the
stream direction has the effect of requiring the aerodynamic
lift and moment (calculated by use of the linearized pressure)
of finite bodies to be finite since the linearized pressure is
related to the derivative of the potential in the stream
direction. The expression “linearized pressure” refers to-the
pressure obtained by neglecting all powers of the perturbation-
velocity components above the first.

direction cosines of normal to element of
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VECTOR OPERATORS AND IDENTITIES

Certain operators, which are closely associated with the
linearized hyperbolic partial-differential equation of super-
sonic flow (the two-dimensional wave equation), are added
to the vector operators commonly used. The basic operators
have been used previously in references 2 and 7.

The gradient operator is defined by
.0 ,.0 [¢]
V=ts-+J a-l'k S5

The analogous hyperbolic gradient operator defined by
Robinson in reference 2 may be expressed as

Vhe—ift t] etk
The hyperbolic divergence of an arbitrary vector E is given by
Vh-E
Similarly, the hyperbolic curl of the vector E is given by

VhXE

The divergence of the gradient operator is sometimes denoted
by

ot , 0t O
V=V =sataptes

The analogous divergence of the hyperbolic gradient operator
is denoted by ‘

2 L o,
=V. =—fF
Vh=V-Vh=—f T atsta

The following identities are needed. Let E be & vector-and
¢ and A be scalar functions-of r, ¥, and z. Then, ’

Vy-VA=VA.Vy (2a)

VY E=yV.E+EVY (2b)
VX(VXE)=V(V-E)—V'E (2¢)
V-(VXE)=0 (2d)
Vhy-VA=VhA-VY (20)
Vh-yE=yVh-E+E-Vhy (2f)
VX (Vh X E)=Vh(V-E)—V*hE 2g)
VX (VX EYy=V (Vh-E)—V*hE (2h)
Vh-(VRXE)=0 (2i)

These identities can be proved by direct expansion.
The divergence theorem may be expressed as

' 56 E-nda— f V-E do ®)
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where n is the normal unit vector to the element of ares da.

The vector n is expressed mathematically as
n=iy+jvs+kv,

where »y, v, and »; are the direction cosines of the outward
drawn normal to the element of area da.

A theorem more general than the divergence theorem is
given by (this theorem follows from the results of ref. 8, p.
87)

é (Cin B4 Con By Cyv Ey)da

~[(aGtaSrrasy)a

where the subscripts =z, ¥, and z refer to components of the
vector E, and (4, (, and C; are arbitrary constants. Note
that if Cy=C=0Cy=1 the preceding equation reduces to
equation (3). If :

C=—g : .
Cr=Ci=1 '
the preceding equation reduces to
56( B*n Bt v Eyt-v Eda f(—gﬂ bE bbs' azf
or |
ﬁE-n» da= f Vh-E do @
where

ny=—if+jvat+kv;

If the divergence theorem as expressed by equation (3)
is applied to a volume throughout which

V-E=0
then the surface integral over the bounding surface is

SBE’-n da=0

provided that no surfaces exist inside the volume of integra-~
tion across which the normal component of E is discontinuous.
Similarly, if equation (4) is applied to a volume throughout
which

Vh-E=0

then the surface integral over the bounding surface is
éE-n,, da=0

provided that there are no surfaces inside the volume of
integration across which E.n, is discontinuous. It is in-
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teresting to note, however, that surfaces exist inside the
volume of integration across which E-n can be discontinuous
while at the same time E-n,remains continuous. It follows
that for such a surface n and n, must satisfy the relation
- n-n,=0 (5)
Let @ (x,y,2)=0 be the equation of such a surface. Then,
. 1
= 2 2 2 VQ
Y@+ 0+ Q:
and
n,,=—,T12— VRhQ
v QS + Qﬂ +Q¢2

where the subscripts indicate differentiation. Substituting
the preceding expressions for n and n, into equation (5) yields

. 2 aQ 2 2 bQ 2_
-9 (52) +(35) +(35) = ©
Any solution of equation (6) set equal to zero is the equation
of a surface across which V-E may be discontinuous while
Vy-E remains continuous. The fact that the Mach cone
from any arbitrary point satisfies equation (6) can be easily
verified. The equation of the envelope of the Mach cones from
an arbitrary line also satisfies equation (6) (vef. 9, p. 106).
FINITE PART OF INTEGRALS WHICH ARISE
IN STEADY S8UPERSONIC FLOW

In the following sections use is made of the concept of the
finite part of an infinite integral. This concept was intro-
duced by Hadamard (ref. 4) and has been used by a number
of other investigators. The concept of the finite part is,
however, sometimes confusing. This section was therefore
included in an attempt to give a realistic picture of the
finite-part concept and also to present the first steps of the
derivation of the scalar and vector potentials.

The concept of the finite part of double integrals as
defined by Hadamard and used in this report is different
from the concept of the finite part of double.integrals as
defined in reference 10. The essential difference between
these two definitions lies in the manner in which the singular
points along the Mach cone are treated.

In reference 3, page 183, a vector function is used in the
derivation of the common scalar and vector potentials.
The analogous vector function based on equation (1) is

. 1 1
where

B=y(@—£—Fly—n)*—F(z—35) -

The hyperbolic divergence of vector W with respect to
variables £, #, and ¢ is given by

2
VhW=5 Viho—p (—p* SE+I+ Y
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The preceding equation indicates that the hyperbolic diver-
gence of the vector W set equal to zero yields the partial-
differential equation of linearized supersonic flow. A
mathemsatical derivation of W can be obtained; however,
for the purposes of this report such a derivation is not
needed.

The result of applying equation (4) to the vector W is

1 1
?(R Vé—oV E)'"" da=f% Vihe do )

When ¢ satisfies equation (1) throughout the volume of
integration, the right-hand side of equation (7) is zero;

thus,
1 1
Sﬁ(ﬁ Vé— oV ﬁ>-n;, da=0 ®)

Vhe=0

Equatmn (7)) is apphed to a volume (denoted by )
enclosed in the forward Mach cone from the point (z,y,2).
This volume is bounded by the surface given by B=R’,
where R’ is a small constant, and an arbitrary surface 81
enclosed in the forward Mach cone from the point (2,3,2).
A cross section of the region of integration is shown in
figure 1. Ngte that this region is analogous to the region
that is sometimes used in calculating the potential function
satisfying Laplace’s equation (ref. 3, pp. 151-153). For
regions such as the one shown in figure 1, equation (7) may
be written as

[(RV¢ ¢VR>n,,da+r (qus qbVR)n,,da

when

= V%qb dv (9)

'0

(%, 52)

Frgure 1.—Cross section of the region of integration used in connection
with equation (9).
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where T represents the area of integration when RB=R’.
The integral over the area T may be reduced to

f o (\7¢. n,,+§-:2) da (10)

where 7 is given by

r=+/@—*+By—n)’+p(—5)

Since R’ is a constant, equation (10) cen be written as

5 fT(v¢.n,+E;—¢) da (11)

Equation (9) can now be Written as

f <V¢ n,,—l———) da,+f ("E Vé— ¢V "E) n, da

—f L vhg dv (12)

If ¢ is required to satisfy the linearized partial-differential
equation of steady supersonic flow, then

V*he=0

and equation (12) reduces to

_I%IT<V¢.M+B—:_?> da—l—fsl(% Vo—oV %)-n,, da=0 (13)

If R’ is made smaller and smaller the integrand of the integral
over the area 7'in equation (13) remains finite except-on the
small area close to the point (z,7,7). In anticipation of tak-
ing the limit of equation (13) as R’ approaches zero, the small
aren close to the point (z,y,2) is removed from the area 7.
The area T is divided into two parts. One part is the ares of
T which is downstream of the surface given by

E=zx—e¢

where eis small but larger than R’. This area is denoted by 7.
The remaining part of T (denoted by I”) is the area of T
which is upstream of the surface

E=zr—¢

A cross section of the region of integration with 7' divided
into ~ and 7" is shown in figure 2. Equation (13) can now be
expressed as .

L[ (ot 28) dotfy [, (G vimov )m dot

1 1
fSI (R Vo—o¢V R') Ny da=0 (14)

where E’ is smaller than e.

Since ¢ is continuous and therefore its values over = are
approximately constant for small values of ¢, the integral
over the area 7 can be written as

R,fwsn da+-B2E,2) ¢(x,y,z)f da W
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Fraure 2.—Cross section of the region of integration used in connection
with equation (14).

When the second integral of expression (15) is integrated,
equation (14) becomes

%‘;f Vé-ny da-t %ﬁw—2ﬂ'¢ (z,9,2)+

1 B 1 1 —
*R-,'fT’ <V¢-n,,+7> da+ fsl (ﬁ Vop—oV R) Ny, da=0

(16)

If R’ is made to approach zero, equation (16) applies even
to the limit where R’ is zero.

The limit of equation (16) as R’ approaches zero may be
written as

im [ 7| om da+ ZZBE0E 904y o)t

R—,f 12 d(l—l—fsl <‘R' Vo—¢V %) Ny da |=0 (17)

The integrands of the integrals over the areas r and 77 are
always finite and it can be shown that their first derivatives
with respect to R’ approach zero as R’ approaches zero; there-
fore, the product of 1/R’ and these integrals either approaches
zero in at least the order of R’ or approaches infinity as R’
.approaches zero. Thus it follows that the integrals over the
areas 7 and 77 have no finite terms remaining after the limit
(R’— 0) has been taken. The sum of the terms of equation
(17) must be zero; thus the singularities resulting from the
integrals over the areas r and 7” must cancel the singularities
which arise from the integral over the area S;.

From the preceding considerations it follows that one
method of evaluating the finite part of infinite integrals of the
type appearing in equation (17) is to evaluate the integral
when R’ is small but not zero and neglect the terms multi-

321006—65—064

R‘—'O

’

849

plied by powers of 1/R’. Other infinite integrals sometimes
arise, however, for which the finite part cannot be obtained
by neglecting powers of 1JR’. For example, if equation (17)
is differentiated with respect to one of the variables (z, v, or 2)
an equation containing the velocity component is obtained.
In some cases, when the point (z,y,2) lies on the surface S,
the infinite terms are of the order (In B’)/R’ and of the orders
(1/R")*. In these cases, the finite part of the infinite integrals
can be obtained by evaluating the integrals when R’ is small
and neglecting the terms multiplied by powers of 1/R" and
(In R")/R’.

The process of removing the infinite parts of an integral,
however, has been derived by Hadamard (ref. 4, book ITI,
ch. I). Hadamard used his methods of evaluating the finite
part of integrals in finding solutions to certain hyperbolic
equations including the linearized equation of steady super-
sonic flow. Perhaps a fact worth noting is that the integrals
of equation (17) are double integrals and when the methods
given by Hadamard are used the methods given for multiple
integrals should be used. In the past, the singular points
(points on the Mach cone where the derivative of
(@—E)*—p*y—n)'—B*(z—¢)* with respect to the variable
of integration is zero) have caused some confusion; as
Hadamard points out (ref. 4, p. 147), these singular points
must be removed from the area of integration before the
finite part is taken. Particular attention should be given to
paragraph 92 of reference 4 since the special type of integrals
discussed therein sometimes arises in dealing with planar
problems.

Robinson (ref. 2) has shown that when using Hadamard’s
methods the order of integration may be changed without
affecting the finite part and that it is permissible to differen-
tiate under the integral sign of a multiple integral without
considering the variable limits which lie along the boundary
where the integrand is singular, provided that only the finite
part is taken. Both Hadamard and Robinson have shown
that in differentiating an improper integral which has an
integrand that has a one-half power singularity along
variable limits the variable limits may be neglected provided
the finite part of the resulting integral is taken.

The term ‘“‘finite part’” is somewhat misleading since the
finite part of an integral can be infinite. In certain cases the
integral is infinite even after the terms which approach
infinity as R’ approaches zero have been neglected.

8 TO NONPLANAR PROBLEMS

SCALAR POTENTIAL

The preceding arguments show that the finite parts of
equation (17) can be equated to zero; thus,

! 1 1
. f27¢(z7y:2)+fsl <-RV¢—¢VR> - n,da=0
where the symbol f before the integral denotes that only the
finite part is to be taken. The preceding equation may be

solved for the value of the potential at the point (z,y,2);
the result of this operation is given by

1 (1 1 .
se, =g | (F76—4V%) mde @9

It should be remembered ‘that surfaces can exist inside the
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forward Mach cone from the point (z,z) across which
1 1 )
Al
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can be discontinuous and across which

(-Ili Vo—oV %) - n, remains continuous.

Equation (18) is an expression for the scalar potential at
the point (z,y,2) in terms of the potential and its derivatives
with respect to n, on the surface S). A more general
expression for the scalar potential than that given by

equation (18) can be obtained. If within the volume

enclosed by the forward Mach cone from the point (2,y,2)
and the surface S, equation (1) is not satisfied and V*h

operating upon ¢ yields
Vi (£,1,8) =1(€,m,8)

then equation (10) becomes

& fT(qu : n,,+5—j’?> da+ f Sl(%w—qw%) -mda
= [ 2Da o

Provided that f(£,9,¢) is always finite, the right-hand side of
equation (20) is finite; furthermore, the right-hand side of
equation (20) remains finite as R’ approaches zero. If in
equation (20) R’ is made to approach zero and only the finite
parts of the integrals are retained, then the resulting expres-
sion is

&(z,y,2)= 5o f (RV¢ qbVR) n,.da— 1 fj(g’—"’dv

Ay

(19)

where v; represents the volume v, when R’ is equal to zero.
Equation (21) is equation (58) of reference 4 where 8* has
been set equal to one. Note that the volume integral in
equation (21) has the appearance of the integral for the
potential resulting from a volume distribution of sources
in an incompressible flow.

The assumption has been made that ¢ is continuous
throughout the volume »,. It is also assumed that no
surfaces exist inside v; across which 0¢/0n; is discontinuous.
If equation (21) is applied to a volume 9;, which has surfaces
across which ¢ and/or the derivative of ¢ in the direction
of n, is discontinuous, these surfaces of discontinuity can

be removed from the volume of integration by allowing the-

arbitrary surface S) to envelop them (see fig. 3). For vol-
umes of integration where the surfaces of discontinuity
have been removed in this manner, the scalar potential
can be written as

L[ fem) gy L[ (128
Zw-fpl R 'dv+21rfso RA,bn'

Aqba ,R)d + fsl So(qus ¢VR) n,da

¢(:c,y,z)=

22)
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where S, denotes the surface of discontinuity, and A¢ is
the potential difference across the surface S;. The notation
0/on,’ is used to denote the operator

i

5”1 a£+1'2 b +V3 br

For the cases where no surface of discontinuity exists
inside the volume v, and ¢ and V¢ are zero on the surface
S1—S,, equation (22) reduces to

sy =—y- [, L8280 a0 29)

From equation (19)
Vihe (27,’1/,2) =f (a:,y,z) . (24)

Note that equation (23) is a solution of the partial-differential
equation (24).

For most problems in linearized supersonic flow, f(£,{)
is zero and ¢ is zero upstream of the disturbing body. For
such problems, the surface S;—S, can be taken to be located
upstream of the disturbing body where ¢ and V¢ are zero.
In this case, equation (22) reduces to

v d(@y,2)=5 f ( an"” Aqbbn R)da (26)

If the surface S, is confined to the =0 plane, equation (25)
reduces to equation (10) of reference 6. In this reference
the boundary conditions for airfoils are discussed.

COMPONENTS OF VECTOR FIELD

Let F be a vector which is finite and integrable in a given
volume (denoted by A) and is zero outside the volume A.
To each point in the volume associate the vector

Gy= [ TE28 a0 20

where v, denotes the part of the volume X\ enclosed in the
forward Mach cone from the point (z,,2).
From equations (24) and (26), it follows that each com-

ponent of G satisfies the relation
VﬂhGi (93;’1/:2) = _27,7F1 (CB,’_?/,Z) (27)

where the subscript 7 refers to any component of the vector
field.

Let ¥o(z,7,2) be 2 scalar and A(a;,y,z) be a vector defined
by the equations

2epo=Vh-G= [ Fgnp)Vhdv @9
and
4 1
27A=VXG= J;z F(¢,n,0) XV v dv (29)‘

Equation (2h) indicates that
VAX (VX G)=V(Vh-G)—VLG (30)
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.

Fraure 3.—A cross section of the region in the forward Mach cone
from the point (z,y,8) showing the surface S; enveloping a surface
of discontinuity S,.

Substituting the expressions for VX G, Vi-G, and VA @G
as given by equations (27), (28), and (29), respectively, into
equation (30) and solving for F yields

F(I) Y, 2)= —V‘I’o(fl?: Y, Z) —I—V’LXA(&?, Y, 2) (31)

Since F is an arbitrary vector, equation (31) indicates that
any finite integrable vector field can be expressed in terms
of the gradient of a scalar and the hyperbolic curl of a vector.
Equation (31) has the appearance of the Helmholtz theorem
(vef. 3, p. 187); however, since ¥, and A are found by inte-
gration only in the forward Mach cone from the point
(z,9,2), equation (31) hardly seems to be a statement of
the Helmholtz theorem as is commonly given. The result
given by equation (31) was obtained by Robinson in
reference 2. .
HYPERBOLIC YECTOR POTENTIAL

Equation (31) indicates that the perturbation velocity
vector can be divided into two parts. One part is the
gradient of a scalar function, and the other is the hyperbolic
curl of a vector function. The vector function is analogous
to the common vector potential (ref. 3, pp. 104 and 188);
therefore, the vector function is referred to as the hyperboli¢
vector potential. Thus, if g’ is the total perturbation
velocity vector, then

q'=V¢+VhX A (32)

where ¢ is the scalar potential and 4 is the hyperbolic vector

potential. The part of the velocity vector which is made up

of the hyperbolic curl of the vector potential is denoted by q.
By direct expansion it can be shown that

Vieq' =Vh-V$+Vh-(Vh X A)=V*h¢+Vh- (VR X A)=0 (33)
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Equation (33) indicates that the hyperbolic divergence of
the perturbation velocity vector is zero.
The vorticity vector is given by

‘8 TO NONPLANAR PROBLEMB

H=VXq’ (34)

Therefore, from equation (32),

=VX (VAX A)
or
H=Vh(v-4)—V*hd

From equations (2d) and (29), the divergence of the hyper-
bolic vector potential is zero; thus,
=—V?hA (35)

Bach component of equation (35) is a partial-differential
equation of the form of equation (24); thus, from equation
(23) each component of equation (35) has a solution given by

Az,y,2) 2177 LIHK%"’O do

(36)

where the subscript ¢ refers to any component of the vector
H. Since each component of A is given by equation (36),
then

37)

A(:c,y, Z) = ZITJ;IH(E"RJ] : g.) dv

The velocity vector resulting from the hyperbolic vector
potential is therefore given by

q=Vh><A=2—1ﬂ_-If th% dv (38)
o1
or )
27 — ——
u_zﬁﬂ_ ﬂl(y ﬂ)HzRa(z I)Hi dv (3 9&)
-7 — —_— —
v—gﬂ_ pl(z 5)H=R3("’ OH: 5, (39b)
210 o—DH,—(y— \
S S - - R

where the subscripts refer to the components of the vector
H. The results given by equations (39) were obtained by
Robinson in reference 2.

VORTEX SHEETS

If the vorticity is confined to a surface S;, equation (37)
becomes

1 H(-";',ﬂ,f) da

A@y,2)=5- | =R

(40)
Equation (40) is an expression for the hyperbolic vector
potential resulting from a surface of vorticity. Note that
if the vorticity is zero except on the surface S;, then equation
(35) reduces to
V*h4=0

By removing the surface S; from the volume of integration
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each component of 4 can be expressed as (from eq. (25))

1 bA
-Ai(m’y:z) ng R bn:

where the subscript ¢ refers to any component of the vector

A. Since each component of A4 is given by equation (41),
then

AAib ] )d

1 bA
Aeyo=g [ (A e

Note that if AA is zero, equation (42) reduces to

A(z,y,2)= A o4 da

s, B ony (43)

By comparing equations (40) and (43) it follows that, on the
surface S;,

- o4 -
H= Abn

(44)
Equation (44) indicates that across a surface of vorticity
. the derivative of the hyperbolic vector potential in the di-
rection of n,’ is discontinuous. Thus, a lifting surface can
be represented by a continuous hyperbolic vector potential,
while it can be shown that a thickness effect can be repre-
sented by a discontinuous hyperbolic vector potential.
Note the contrast with the scalar potential, which uses a
continuous potential to represent a thickness effect and a
discontinuous potential to represent a lifting surface.

FURTHER DEVELOPMENT OF SCALAR POTENTIAL

The scalar potential can be expressed in forms other than
those already presented. Equation (8) is applied to the
region bounded by the arbitrary surface S;, the forward
Mach cone from the point (%,7,2), and a second arbitrary
surface S; enclosed in the forward Mach cone from the point
(z,y,2) and upstream of the surface S;. A cross section of
such & region is shown in figure 4. The result of applying
equation (8) to this region is

1 bqb & 1 aqs
fsl( bn» )d +fsa< —¢' WR da=0

(45)
provided that ¢’ is a solution of equation (1). Note that the
scalar potential as given by equation (18) is independent of
¢’ so that ¢’ is arbitrary so long as it satisfies equation (1)
throughout the proper volume. .

If for a finite distance upstream ¢’ is zero and remains zero
for greater distances upstream, the surface S; may be chosen
in this region so that the integral over Sa in equation (45) is
zero; thus,

T (1 09" & 0 1
fs, Ron” WR:da 0. (46)

Equations (18) and (46) can be combined to yield

T& [R<b¢ i > (¢—¢") bn"‘R da
_(47)

¢(2,y,2)=

(41)

E)n’ >da “42) |
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(x5,2)

Froure 4.—Cross section of the region of integration used in connection
with thé potential function ¢’.

The only restrictions placed on ¢’ at this point are that it
satisfy equation (1) and be zero at a finite distance upstreum

In many cases ¢’ may be chosen so that aa;f bb ¢

is zero; therefore, in these cases, ¢ can be expl:essed as

¢ 0¢’
¢(a:)yiz) 2‘B'f81 R bﬂh > d

¢($,y,2)———f (d’ d") an R

(48a)
or
(48b)

Equations (48) are quite useful; however, remember that
they apply only when ¢’ can be chosen so that ¢’ does not
violate any of its restrictions.

Note that equations (48) can be applied to problems where
either ¢ or d¢/On, is given on the surface S;. The application
of these equations to most nonplanar problems of either type,
however, lead to quite unwieldy integral equations.

APPLICATIONS
 PLANAR PROBLEMS

Many problems in linearized supersonic flow deal with the
surface of discontinuity confined to a plane surface parallel
to the z-axis. In this section a general discussion of this
type of problem is given. The coordinates are located so
that the surface of discontinuity is in the =0 plane.

The scalar potential at an arbitrary point (2,y,2) above the
§‘=O plane is (from eq. (47))

dt dy
(49)

o= [, 6o hbto—en B

In this case, the surface S, is the y=0 plane.
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If ¢/ (z,17,0) is chosen equal to ¢(z,y,0) the potential becomes
symmetric with respect to the {=0 plane. Thus, for z=a

¢ (a:,y,a) = d’, (:B:y) _a)
and

[ (a:,y,a) = ¢x, (33;?/, - a’)

For this case, equation (49) reduces to

sa,=—1 [ 2629 ¢ g, (50)

Equation (50) was given by Puckett in reference 5.

If ¢'(x,y;0) is chosen equal to —¢(z,y,0) the potential
becomes antisymmetric with respect to the =0 pla.ne In
this case,

$@,y,a)=—¢'(z,9,—a)
and
¢, (a:,y,a) = ¢l, (95,?/, _ a’)

Thus, equation (49) is reduced to

____Bgz s ¢(E)’7’0>

#(z,y,2)= e fsl_R"_- dt dn (51)
Note that for surface S; not confined to & plane parallel to the
z-nxis, & choice of ¢’ (x,y,2) at the surface S; to equal ¢(z,y,2)
at S, does not cause 04(2,,2) at the surface S; to equal

_0¢'(x,y,2)
Tﬁ,' at Sl.

S equal to —¢(z,,2) at S; does not cause
0¢(,,2)
) at Sl.

bn,,
Similarly, choosing ¢’(z,y,2) at the surface
9¢'(2,Y,2)
Th* at Sl to
equal
Provided the discontinuities are restricted to the {=0

plane, the scalar potential can also be expressed as follows
(from eq. (18)): .

s 2
sege=—g= [, | 2520 60,00 B2 | de an

(52)

for positive z. A comparison of equations (50) and (51) with
equation (52) shows that the two terms of the integrand of
equation (52) contribute equal amounts to the potential at
any point (z,,2).

Since the terms of the integrand of equation (52) contribute
equal amounts to the potential at the point (z,,2) as z
approaches zero, equation (52) must reduce to

_ 1 ¢:£2,0) #(z,y,0)
0)= 21rfs, 7 % dntT

#(z,y,

The preceding equation can also be obtained by examining
the limit of equation (52) as z approaches zero. If this
procedure is done the entire contribution of the second term
of the integrand of equation (52) is found to come from the
- point at the apex of the hyperbola formed by the intersection
of the Mach cone from the point (z,,2) and the =0 plane.
Note that if the integration is performed first with respect to
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7 then, when the methods of Hadamard are used, the point at
the apex of the hyperbols is a singular point :Lnd must be
removed from the area of integration by a process such as is
given in reference 4, page 147.

If ¢, is prescribed over the =0 plane, then the potential
is given uniquely by equation (50). Similarly, if the potential
is prescribed over the {=0 plane, then the derivative of ¢ with
respect to z is determined over the z=0 plane. This result
follows from equation (51) since prescribing ¢ over the 2=0
plane determines the potentials in the space above the z=0
plane; therefore, it also determines ¢, in the space above the
2=0 plane and the limit of ¢, as z approaches zero from the
positive direction.

The question that arises is whether ¢(z,y,2) is uniquely
determined in the space above the z=0 plane if ¢ is prescribed
over certain areas of the z=0 plane and ¢, is prescribed over
the remaining arees.. If the assumption is made that ¢ is
not determined uniquely, then at least two potential functions
satisfy the condition that either ¢ or ¢, is prescribed in all
regions on the z=0 plane and that ¢ is identically zero
upstream of a given point. Let ¢, and ¢; denote two poten-
tial functions which satisfy the same boundary conditions,
and let ¢, denote the potential function formed by taking the
difference between ¢; and ¢;. Mathematically, the potential
function ¢ is given by

o (93,'.1/, 2) =¢ (x:y: Z) — ¢ (50,?/, 2) (5 3)

Since ¢; and ¢; have the same values in certain regions in the
2=0 plane then ¢, is zero in these regions. Similarly, since
0¢1/0z and 0¢»/0z have the same values in the remaining
regions of the z=0 plane, then 0¢,/0z is zero in these remain-
ing regions. The potential function ¢, has the boundary
conditions that either ¢, or O¢y/0z is zero in all regions of the
=0 plane and that ¢ is identiceally zero upstream of a given
point.

Consider the case Where all the boundaries between the
regions are supersonic. (The slopes of the boundaries are
such that the component of the free stream perpendicular
to the boundary is always supersonic.), The potential
function ¢, can be evaluated by use of equation (50) or (51)
for points in areas which are far enough upstream to be
affected only by a region where ¢ or ¢, is prescribed. Forall
points in these areas ¢, is zero as indicated by equation (50)
or (51). It follows from equations (50) and (51) that ¢, is
also zero inside the volume above the z=0 plane, which is
affected by these areas alone. Thus, the volume where ¢,

18 identically zero has been moved downstream. The same

argument can be repeated until the complete 2=0 plane has
been covered. The preceding arguments cannot be applied
to cases where the regions have subsonic boundaries; however,
if it is permissible to distort the boundaries within a strip of
infinitesimal width these subsonic edges can be converted
into supersonic edges by replacing every element of the
subsonic boundaries by a broken line made up of supersonic
segments. Such a procedure is illustrated in figure 5. If
the assumption is made that the subsonic boundaries may be
distorted an infinitesimal amount, then ¢, is zero over the
z=0 plane and also in the space above the z=0 plane.
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(o)
(a) Subsonic element within (b) Broken line replacing
infinitezimal strip. line element.

Fiaure 5.—An illustration of a method of replacing & subsonic line
element with a broken line made up of supersonic segments.

Equation (53) now reduces to .
d’l(a:: ,Z)=q52§:l:,'y,2)

Sinece ¢; and ¢, are any two potential functions with the same
values in certain regions of the 3=0 plane and with the same
partial derivatives with respect to z in the remaining regions,
proof has been given that only one potential function exists
for which the potential is prescribed over certain areas in the
2=0 plane and the partial derivative with respect to z is
prescribed over the remaining areas.

The boundary conditions for a zero-thickness lifting airfoil
with a given local angle-of-attack distribution are not of the
type discussed in the preceding paragraph. The conditions
prescribed in the z=0 plane for this type of problem are:
The potential function ¢ is identically zero upstream of the
airfoil; ¢(z,y,0) is zero except on the plan form or in the
wake; the partial derivative of the potential with respect to
2, ¢, is given on the plan form; and ¢.(z,y,0) is zero in the
wake. The preceding boundary conditions do not specify
that ¢ or ¢, be prescribed in all regions on the 2=0 plane
since not ¢ but ¢, is given in the wake. For airfoils which
have trailing edges which are always supersonic, the require-
ment that ¢ be continuous in the stream direction necessi-
tates the potential in the wake to have the value of the
potential at the trailing edge of the airfoil. In this case, the
potential function is uniquely determined. Ior airfoils
which have subsonic trailing edges the Kutta-Joukowski
condition is generally applied to the trailing edges to deter-
mine ¢ uniquely. If the assumption is made that the trail-
ing edge can be distorted within a strip of infinitesimal width,
then the requirement that ¢ be continuous in the stream
direction can be used to determine ¢ uniquely. If the as-
sumption is made that the subsonic trailing edge is distorted
within the infinitesimal strip so that each segment of each
line element of the trailing edge is always supersonic (see
fig. 6), then ¢ is determined uniquely. It is well-known
that for airfoils with subsonic trailing edges there are an
infinite number of solutions which satisfy the boundary
conditions as stated at the beginning of this paragraph. The
preceding arguments however prove that there is but one
solution for an airfoil which has had its subsonic edge re-
placed by broken lines which are always supersonic. Note
that it has not been proved that the solution obtained by
distorting the subsonic trailing edges corresponds to the

REPORT 1143—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

Boundaries of .
infinitesimal strip-«:..

~-Subsonic
4 trailing edge

~~Distorted
trailing edge

(©
(a) Wing with subsonic edge.

(b) Line element at a break
in a subsonie trailing edge.
(¢) Possible distortion of a subsonic trailing edge at a break in
_ that edge.
Ticure 6.—Methods of distorting a subsonic trailing edge to determina
the potential function uniquely.

solution satisfying the Kutta-Joukowski condition, nor has
it been proved that the solution of the distorted trailing edge
is independent of the manner of distortion.

NONPLANAR PROBLEMS

The scalar potential resulting from the disturbances caused
by a nonplanar body can be found from equation (18)
provided that both ¢ and d¢/0n, are known on some surface
S;. Unfortunately, ¢ and 0¢/0n,; are not generally known
on & surface which fills the requiremient of the surface S;
therefore, equation (18) appears to have little value in the
calculation of the potential functions for nonplanar systems
in general. Certain properties of equation (18) are, however,
worth investigating.

The problem of evaluating the potential on the upper sur-
faces of a long rectangular body is discussed. The assump-
tion is made that the body extends upstream to infinity and
that the sides are parallel to the free-stream direction except
for small local variations which cause small disturbances in
the stream. Figure 7 (a) shows the forward Mach cone from
a point on the upper surface of such a rectangular body.
This figure also shows that there is a certain part of the sur-
face of the rectangular body in the forward Mach cone from
the point (z,7,2) that cannot possibly affect the potential at
the point (z,7,2). If the surface S; in equation (18) is
taken to be the surface of the rectangular body, then equation
(18) indicates that the values of ¢ and d¢/On, in the region
which cannot possibly affect the potential at the point
(z,y,2) should be used in evaluating the potential at the
point (z,,2z). The only possible explanation of this con-
sideration is that the integral of ¢ and 0¢/0n, caused by the
disturbances in the “blind spot’” add to zero. This con-
sideration can be shown mathematically as follows. Let
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denote the potential function resulting from the disturbances
inside the blind spot. From equation (46), it follows that

1 d¢y 2 1
fsl Ron,* —¥o dons B da=0 (54)
Equation (54) indicates that the potential at the point
(z,9,2) can be evaluated by applying equdtion (18) to the
surface of the rectangular body regardless of the blind spots.
The same argument holds for other bodies with blind spots.
The preceding arguments can be clarified by a simple
illustration of the effect of a blind spot. Consider an infinite
rectangular body such as shown in figure 7 where the only
disturbances are caused by a small deflected area with a
constant slope ¢ with respect to the free-stream direction
located on the lower surface of the body. The leading edge
of the deflected area is chosen perpendicular to the free-
stream direction so that the potential in the region not
affected by the vertical sides is of & two-dimensional nature.
TFigure 7 (b) illustrates such & disturbing surface.
The disturbance potential in the two-dimensional region is
given by

~¢ (x,z)=¢rV[:c—a:,;-ﬁ (z2—2))]

where the lower surface of the body lies in the z=z, plane
and the leading edge of the deflected area i3 in the z==z.
plane,

Forward Mach cone

e

Inlersection of the forward -
Mach cone with the
rectongular body

(9)

(a) The forward Mach cone from a point on the upper surface of a
rectangular body.

Ticore 7.—Rectangular body parallel to free-stream direction.

- Deflected area

PR AR
PR

_‘;,“f .

Wy
| 7-"'.‘;":
— x 2
. (b) _ S .
(b) Bottom view of rectangular body with deflected area on the lower

surfate,
Figure 7.—Continued.
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- Forward Mach cone

oz A%, 2)
Ve g
/
4
/ “-- Deflected area
X B Intersection of the forward Mach
[ 1 ) conas with the side of the body
(c) Side view of rectangular body and the forward Mach cone from the
point (z,y,2).

Figure 7.—Concluded.

A point on the upper surface which has only the two-
dimensional flow in its forward Mach cone is illustrated in
figure 7 (¢). The disturbance potential for this point is
(from eq. (18)) given by

6(@,9,9) o J‘[UV l BV (E— Rﬂ;g) (z— zz)] dt dy

Upon performing the indicated integrations the preceding
expression becomes

_ eV [’-'C'—Zg
(f)(x,y,Z)— Zﬁ

Ble—zg] | oVIz—2—p(z—22)]
28

which reduces to
¢ (z,y,2)=0

This result is a demonstration that the disturbances in blind
spots do not contribute to the potential.

The scelar potential resulting from the disturbance pro-
duced by a nonplanar body can also be obtained by use of
equations (47) and (48) provided that the necessary values
of ¢, 9¢/om,, ¢', and 04’/On, are known. In dealing with

planar bodies ¢’ could be chosen so that

$—9'=0

and thus equation (47) is reduced to equation (50).
larly, ¢" could also be chosen so that

09 09"
bn,, bn;,

Simi-

and thus equation (47) is reduced to equation (51). Un-
fortunately, for nonplanar bodies, choosing ¢’ equal to ¢
does not make 0¢'/0n,* known as was the case for planar
problems and, similarly, choosing 9¢’/0n,* equal to —d¢/On,
does not make ¢’ known. Certain problems exist in which
¢’ can be chosen so that ¢ can be written as a simple integral.

INTERSECTING PLANES

Many problems concerning nonplanar bodies deal with
disturbanges produced by two intersecting planes parallel
to the free-stream direction. In this section, methods of
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solutions for two planes intersecting at various angles are
‘given. The component of velocity normal to the surface is
assumed to be known.

Perhaps the simplest case of two intersecting planes occurs
when the planes intersect at right angles. It is desired to
find the potential in space resulting from the disturbances
produced by the two intersecting planes. This type of
problem could represent an isolated cruciform tail with

supersonic leading edges undergoing various motions.

Problems of this type have been solved in references 11 and 12.
The axes are chosen so that y=0 and 2=0 are the disturbing
planes (see fig. 8). When y and z are positive, equation
(18) becomes
1 1 9¢(£,0%,8) By’ ¢($,0+,§)

s R o7 da 27 R da—

1 1 b¢(£:ﬂ:0+) Bz’ ¢(‘§y77)0+)
2% s, B o¢ da 2% f& i3 da (55)

¢(33,’.¢I,z)——

The surface S; has been taken to be the disturbing surface;"

thus, S; is the part of the y=0 plane (z positive) bounded
by the 2z=0 line in the y=0 plane and the forward Mach
cone from the point (z, y, 2). Similarly, S; is the part of the
2=0 plane (y positive) bounded by the y=0 line in the z=0
plane and the trace of the forward Mach cone from the point
(z, 9, 2) (see fig. 9).

The assumption is made that and b¢(£é?0+)
known and that ¢(£0%,¢) and ¢(£,9,0%) are unknown. The
integrals containing ¢(£,0+,¢) and ¢ (£,9,0%) canbe eliminated by
several applications of equation (46). Equation (46) is
applied to the volume on the left-hand side of the y=0 plane

0¢(£,01,0)
o7

g
P4
I T ’;’/.”I’L— -
n /
/
Oisturbing . .
surface -
(=0 plane) ‘,-7;

Ut
\\

Disturbing surface /
- (2=0 p'one) /

) / 29

Figure 8.—Two disturbing éurfacee intersecting at right angles.

enclosed by the forward Mach cone from the point (z,,2),
the y=0 plane, the z=0 plane, and an arbitrary surface
upstream of the disturbance (see fig. 10). The result of
applying equation (46) to this volume is

1 [ 134,00, B ¢(£0%,0)
2rJss B, o¢ da 27 B da+

1 10¢’(£07,¢) By ¢'(£07,0)
i | o5 e+ EY o B da=0 (58)

The surface S; has been taken to be the y=0 plane (z posi-
tive) and the 2=0 plane (y negative); thus, S; is the part of
the 2=0 plane in the forward Mach cone from the point
(a:,y,z) (see fig. 10). Adding equations (55) and (56) yields

09(£,0%,8) - btﬁ'(f, YY)
27rfsaR o7 ]da

¢(a:,y,z)

2.
. fsa%[¢(E,0+,s“)—-d>’($,0',{)]da,-—

b¢(£)"7;0+)

1 ot

27 Js, R da—
2 s +) b¢,(5177;0+)

_B_z ¢(E)7710 1 bf

27 Js, RP da 27 J 85 R da—
B_gz 7 ¢,(Ero+’ $)

o s B da (87)

=

?

Mach cone
from the
point (x,4,2)

A : = Disturbing
T darfoce (2= O plane)

Fiavre 9.—Regions of integration for equation (55).
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The potential function ¢’ (£,5,t) is chosen so that
¢’ (¢, —a,f)=¢(%0,0)

where a is positive. In this case,
9/(£,07,8)__ D9(£,0%,)
oy oY)

and equation (57) reduces to

1 dg(E0+) 4, 1L

1 a¢(£)77)0+) d

VA== o F ™ on or) s B~ o¢
¢(£)77)0 )d 1 1 ad’ (5,1],0+) da—
21r R3 " or )8R ot
Bzz ¢,(E)7l)0+)
2_71' SB——‘Rs da (58)

Since ¢’(£,9,¢) is related to ¢(£,9,¢) the only unknown in the
preceding equation is ¢(%,9,0t). The region of integration
S; becomes the part of the z=0 plane (z negative) in the
forward Mach cone from the point (z,9,2) obtained by re-
flecting the disturbing surface in the z=0 plane (z positive)
through the z=0 plane (see fig. 10).

The problem being considered is one in which the normal
derivatives of the potential function are known on two planes
parallel to the z-axis and are intersecting at right angles.
The point (z,7,z) has been restricted to positive values of
y and z. For the present, consider the problem of finding
the potential above the z=0 plane when the derivative of

Reflection of the
disturbung surface
. Inthe 2 =0 plones
%, through the y = O panes

NN

Fiaure 10.—Regions of integration for equation (56).
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the potential function with respect to z is known on the 2=0
plane, the derivative of the potential function with respect
to y is discontinuous across the y=0 plane, and the potential
is zero a finite distance upstream of & given point. From
equation (22), the potential for this problem is given by

¢($,y,2)—"’_‘ S R M da,
' 1 [ 104,01 B2/ (£,9,0%)
S5)s B oF da— o )s B da (59)

where S; is the part of the y=0 plane above the z=0 line
inside the forward Mach cone from the point (z,7,2), and S;
is the part of the z=0 plane inside the forward Mach cone
from the point (2,y,2). For positive values of y and z,
equation (59) reduces to equation (58) if ¢’(£,7,0%) is assumed
to be the true value of ¢(£,7,0*) when 7 is negative. Since
in the original problem ¢(,7,¢) was not defined when 5 was
negative, nothing is violated if it is now defined as being
¢’ (£9,$) in the region where 7 is negative and { is positive.
The problem in which the normal derivative of the potential
function is known on two planes parallel to the z-axis and
intersecting at right angles has, therefore, been changed to
the problem in which the derivative of the potential has a
known discontinuity across the y=0 plane (z positive) and
the normal derivative of the potential is known on the z=0
plane. Note that the potential function still remains unde-
fined below the z=0 plane.

~ Since the potential function is undefined below the z=0
plane, it can now be defined so that the resulting potential
function is symmetric with respect to the z=0 plane. De-
fining the potential below the 2=0 plane so that

(;()(E,‘I],a') = ¢(Er77: —a)

yields the desired symmetry. The result of applying equa-
tion (46) to the region below the z=0 plane inside the forward
Mach cone from the point (z,7,2) is

1 1 b¢(§; 7, 0+) 622 ]j‘ ¢’(E: 7 O+)
2w B ot Tor Js, ® et
i_ 1 04(%,9,01) Bz’ $(£,7,0%) 1
2a-fssR bg‘ da 27 Js R® da+
1 1o¢(¢, 0+, £, _

where S; is the part of the y=0 plane (z negative) inside the
forward Mach cone from the point (z,7,2). In applying
equation (46) to the region below the z=0 plane, the surface
St had to be folded over the part of the y=0 plane (z nega-
tive) across which 0¢/0n was discontinuous in order to be
able to apply equation (46) to this region. Equations (58)
and (60) can be combined to yield

1 1 b¢(£; 0+ g.) 1 1 bd’(E; 7, 0+)
#(z,y, z)—-—- g R_5n——d 7J S8R ot da—

l 1 0¢(£,7,07) da— 1 1 2¢(¢ 07, 2) da
e ot 7J SR oy
(61)
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Equation (61) contains only integrals of known expressions,
and it is, therefore, the solution to the problem of two planes
intersecting at right angles parallel:to the z-axis where the
‘normal derivative of the potential function is known on both
planes. Figure 11 shows the cross section of the distribution
of velocity normal to the surfaces for a problem as repre-
sented by equation (55) and its solution as given by equation

(61). Note that 9%}’_’—0—) (n negative) in S; is the reflection

of 26 (Em0%) | in S; (y positive) across the n=0 plane and

o¢
that —2—2 a¢(£’ T84 in S (¢ negative) is the reflection of b¢(£ 0 *8)
in S, (g‘ pomtwe) across the {=0 plane. This COIldlthIl

suggests that the result given by equation (61) could also be
obtained by utilizing the concept of reflecting surfaces.
The mathematical derivation required for finding solutions
to problems consisting of two planes parallel to the z-axis
intersecting at various angles can be reduced by making use
of the concept of the reﬂectmg surfaces. For this reason, the
result given by equation (61) is obtained by use of reﬂectmg

r'4

¥

(0)

©

' (a) Original problem (equation (55)).

. (b) Solution to problem as given by equation (61).
F1GURE 11.—A cross section of the distribution of the velocity com-~
ponent normal to the z=0 and the y=0 planes represented by

equations (55) and (61).

.when 7 is positive.
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surfaces. The potential function can be separated into two
parts, ¢, and ¢, satisfying the following boundary conditions
on the digturbing surfaces:

0¢1(£,7,0%)  04(£,7,0%)
o¢ d¢ -

34"1(5, :g‘)
ey} =0

O¢u(§,n,01)
ot

0a(£,07,8) _0¢(£,0%,0)
oY) <2

A cross section of these boundary conditions is shown in
figure 12. Only the potential function ¢, is treated in detail
since the boundery conditions for ¢, and ¢; are of the same
type. The normal derivative of ¢; is zero on the =0
plane; thus, the 7=0 plane can be considered as a reflecting

plane. The potential function ¢, is, therefore, the potential
resulting from a distribution of i%ﬁ—l which is symmetric

with respect to the =0 line and has the value of %(%’;—’-@
Figure 13 illustrates such a distribution.
The problem of finding ¢, has been reduced to a planar
problem which can be solved by use of equation (50).
Equation (50) was obtained by defining the potential
below the z=0 plane so that the total potential function was
symmetric with respect to the z=0 plane. This result
caused the derivative of the potential funection with respect
to z to be antisymmetric with respect to the z=0 plane.
Figure 14 illustrates the distribution of the normal derivative
of the function across the z=0 plane. The problem of
evaluating the potential function ¢, has been reduced to a
planar problem. Similarly, the problem of evaluating the
potential function ¢; can be reduced to a planar problem.
Figure 15 illustrates such & procedure. The original poten-
tial function is the sum of ¢, and ¢;. Equation (81) follows
from the preceding results for ¢, and ¢;. The addition of

- ¢y and ¢y is illustrated by figure 16.

The concept of reflecting surfaces is now utilized to find the
potential resulting from two disturbing surfaces parallel to
the z-axis and intersecting at an angle of 45°. The axis is
chosen so that the z-axis lies along the intersection of the
disturbing surfaces and ‘one of the disturbing surfaces lies
in the z=0 plane (see fig. 17). The potential function ¢ is
divided into two parts, ¢; and ¢;. The boundary conditions
on ¢; and ¢; are similar to the corresponding potential fune-
tions used for the disturbing surfaces intersecting at 90°.
Figure 18 illustrates the boundary conditions for ¢, and ¢,.
The surfaces on which the normal derivative of ¢, is zero
can be considered as a reflecting surface. This consideration
leads to the same distribution of the normal derivative of
¢; on the 7==0 plane as is given on the {=0 plane. Figure
19 illustrates such a distribution.. The problem of finding
¢, for two disturbing surfaces intersecting at 45° has been
reduced to a problem of two surfaces intersecting at 90°.
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F1raure 12.—A cross section of the distribution of velocity normal to the disturbing surfaces for the potential functions ¢, ¢;, and .
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Fieure 13.—The reduction of ¢, to a planar problem.
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Fiaure 14.—The normal derivative of the potential function across the z=0 plane obtained by applying equation (50) to a planar problem.

The solution of ¢, can be obtained from equation (61).
Figure 20 shows the surfaces across which the normal deriva-
tive of ¢, is discontinuous. Since ¢; and ¢; have the same
type of boundary conditions, then ¢, has a solution as illu-
trated in figure 21. The original potential function ¢ is the
sum of ¢; and ¢s; therefore, ¢ can be found by considering
surfaces of discontinuity as illustrated in figure 22. The
potential function ¢ can be evaluated by use of equation
(22), because no surfaces across which ¢ is discontinuous
exist and the values of A(Q¢/On,) are known across all sur-
faces of discontinuity.

Another simple case of two disturbing surfaces parallel to
the 2-axis occurs when the surfaces intersect at an angle of
60°. The potential function ¢ is divided into two parts,
¢1 and ¢;. The boundary conditions on ¢, and ¢, are similar
to the corresponding functions used previously. Figure 23
shows a cross section of these boundary conditions. By use
of a reflecting surface, the function ¢; can be represented by
the boundary conditions as shown in figure 24. The func-
tion ¢, is undefined for 240° of the total angle around the
z-axis. The function ¢, is defined as shown in figure 25.

Since no surfaces exist across which ¢, is discontinuous, the
function ¢, can be evaluated by usmg equation (22). Slm1-
larly, ¢: can be defined #s shown in figure 26. The sum of
¢ and ¢, is illustrated by figure 27. The potential function
¢ can be found by using equation (22).

In the preceding paragraphs, methods have been found
for determining the potential resulting from two plane dis-
turbing surfaces parallel to the stream direction intersecting
at certain angles. The same method can be used to find
methods for determining the potential resultmg from two
plane disturbing surfaces intersecting at various other angles,

ROLLING TAILS WITH MULTIPLE RECTANGULAR FINS

The methods derived in the preceding section are used to
find the surface veloclty potential, the pressure distribution,
and the demping in roll of rolling tails consmtmg of four
six, and eight rectangular fins. For comparison, these same
quantities are also presented for the planar tail configura-
tions consisting of one and two recta.ngula.r fins. An illus-
tration of the tails treated is shown in figure 28. The,
analysis is limited to tail configurations having surfaces of
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_Figure 15—An illustration of the reduction of ¢, to & planar problem.
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F1gure 16.—An illustration of the addition of ¢ and ¢,

vanishingly small thickness®and of zero camber. The
investigation is also limited to the range of Mach numbers
for which the region of interference between the adjacent
fins does not affect the fin tips (see fig. 29).

TAIL CONSISTING OF ONE FIN

The pressure distribution and the velocity potential on
the surface of rolling tails made up of one and two rectangular
fins can be obtained from the results of reference 13. The
pressure and potential for the tail consisting of only one fin
can be found by transforming the axis of roll of the tail
"copsisting of two rectangular fins.

The tail consisting of one fin is divided into regions as
shown in figure 29 (a). The velocity potential on the sur-

face facing the negative y-direction is given for the various

regions as follows:
b
= /? (z z)_
z

For region I,
o(z, 2)=?;r—p [%

%) \/ 3—2) (s+2—3 ] (;sza) ‘

pxz

For region 11,

4"(3: z>_ (6 2b)
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Frgure 17.—Position of coordinate axes for disturbing surfaces

intersecting at 45°.
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2

For region ITI,

#(@,2)~22| Z sin \/5—‘°”+ (32+2)4/2 2(5-2)| 620

For region N.(note that the potential in region IV is the
potential in region I plus the potential in region IIT minus
the potential in region IT),

. T~
; <ﬁ+z> VG-
_—z b) \/<2—z> ( ﬁ rza:ﬁz

(62d)

The pressure-difference coefficient is given for the various
regions as follows:

2.

Y Y

Fraurs 18.—A oross section of the velocity distribution on the disturbing surfaces for the functions ¢; and ¢, for the

disturbing surfaces intersecting at 45°.

-

[ Y

Fiaurs 19.—Reflection of the normal derivative of ¢; on the y=0 plane.
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Froure 20.—A cross section of the surfaces of discontinuity which ean be used to evaluate the potential function ¢, for
two surfaces Intersecting at 45°.

For region I,
AC,=—= [z sm‘l\/ (2 ) ‘/ =2z z——+ﬁ ]
(63a)
For region II,
_4pz
AC,="= BV (63b)
For region ITI,
AC',,=£31%7|:2 sin““/—ﬁf+—‘/z(%——z)'| )
For region 1V, ’
b
A s(—:
AC,=—E [z sin Y =2~ >+z sinty /B2
w2 (63d)
VeG)-VG—2) (-3 —]

TAIL CONSISTING OF TWO FINS

The tail consisting of two fins (fig. 29 (b)) has the same
potent.lal and pressure distribution as a recta.ngulur rolling
wing and can, therefore, be obtained from the results of
reference 13. For each tail consisting of two fins divided
into regions as shown in figure 29 (b) the pressure and poten-
tial in regions I and IT are the same as the pressure and po-
tentials in the corresponding regions for tails consisting of
one fin.

TAIL CONSISTING OF FOUR FINS

Each fin of the tail consisting of four fins is divided into
regions as shown in figure 29 (¢c). The pressure and poten-
tials in regions I and II are the same as the pressure and
potentials in the corresponding regions for tails consisting of
either one or two fins. The regions ITI and IV are affected
by the interaction between adjacent fins. The potential in
region IV is made up of a combination of the potentials of
regions I, II, and III. Thus, the only real problem is the-
determination of the potential in region III.

The potentiel in region III is not affected by the tip and
is, therefore, the same potential as would be obtained if the
fins were infinitely long. With the coordinate axes chosen
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as shown in figure 28 (¢) the point (z,y,z) is restricted to
values of % which are negative while the values of z are
restricted to positive values. Note that for a tail with
finitely long fins, the potential at a point (z,7,2) in the
region of interaction is independent of the disturbances
produced at points located so that their projection on the
yz-plane does not lie in the second quadrant. The general
method previously derived for finding the potential resulting
from two plane surfaces intersecting at right angles can thus

I8 TO NONPLANAR PROBLEMS 863

be used to find the potential in the part of the region of
interaction which is not affected by the tip.

The velocity component normal to the fin in the z=0
plane is given by

&s (-'5,1/,0+) =—pY
and the velocity component normal to the fin in the y=0
plane is given by )
’ ¢y(2,07,2)=pz

FigurB 21.—A cross section of the surfaces of discontinuity which can be used to evaluate the potential function ¢; for
two planes intersecting at 45°.
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Figure 22.—The addition of ¢; and ¢; to obt_ain the potential function ¢ for two surfaces intersecting at 45°.
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FIGURE 23.—A cross section of the boundary conditions of the functions ¢; and ¢ for two disturbing surfaces intersecting at 60°,

2

z

Ficure 24.—The reflection of ¢; through one surface.

&y

Figure 25.—A method of defining ¢; so as to eliminate discontinuities in the potential function.
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Fiaurs 26.—A method of defining ¢: 80 as to eliminate discontinuities in the potential function.

F1aure 27.—The addition of ¢; and ¢s.
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(¢) Four fins. (d) Six fins.
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Frcure 28.—Types of tails treated.

Figure 30 illustrates this type of normal-velocity distribution,
and figure 31 illustrates a cross section of the surfaces of
normal-velocity discontinuity, which previous results show
can be used to obtain the potential in the part of the region
of interaction which is not affected by the tips.

Note that in figure 32 the discontinuity in the normal
velocity across the z=0 plane is the same type as the dis-
continuity in the y=0 plane. Thus, if the potential resulting
from this type of discontinuity (see fig. 32) is known, then
the potential resulting from any combination of discontinu-
ities of this type can be found. The potential for this type
of distribution is denoted by ¢. By the use of cylindrical
coordinates, as shown in figure 32, the potential at the point
(z,0,6) can be expressed in terms of ¢, by

80,000 = 00— 85,00 ) (64)

Equation (64) follows from figures 31 and 32.
The potential function ¢, was evaluated by use of equation

REPORT 1143—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

z z
N N
\ I 7/ \\ I
% \
\\// \\
JI 7\ ”‘]I \,
N T N
T AN
z X
(a) (b) x
z Lz
AN N\ /’
/ .
\\ I V4 \\ I ~~Mach line from
\\ // \\ // adjacent fin
T X o AT
4 \\ // \\
// LI \ . /IO \
, /
(c) § (d) x
z
4-—Mach line from
/ adjacent fin
NI,
O 4 |,%Moch line from
NE root section
1 />‘ v
A TE
/// s \::II . \
PRI I : — ——Mach lines
(e) u
(a) One fin. (b) Two fins,
(¢) Four fins. (d) Six fins.
(e) Eight fins.
Figure 29.—Regions of similar disturbances for tails consisting of
rectangular fins,
(50) and is given as follows: '
For 06 g'g,
¢o($,p,0)=—;%i I:xw/-’c’—ﬁ’p*-l-
B2p%(1—2 cos? Oln — P2
. z-+~aT— 825
2zBp cos @ sin™! Bp cos 9

T sart)

z cot 0 .
=Dl

28%p? cos 0 sin 6 tan™!
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TFor Eéﬂéw,

¢o(x,p,0)=—w%, [zJP:ﬁ’—ﬁ+

2 201 __ 2 - Be
B%p*(1—2 cos 0)1nx+m+
Bpcos b
xz_ﬁzpz Qin’ >

From equations (64) and (65), the potential function in the
region of interaction, which is not affected by the tips, is

2zBp cos 8 sin~!

282%p? sin 6 cos 6 tan~™*

given by the following equation for %gogm.
¢(371P:0)='—£'§ {2ﬁ2P2(1_2 cos* 0)111 ‘_'_ﬁ_p—“l"
8 2+ +a'—B2p?

 _Bpcost

1,/3: —pB%p? sin?

228p l:cos ] sm‘1

sin 4 sin™!

Bp sin 6 )]
V23— p2p* cos® 4

96%p* cos 0 sin 6 <tan“1 —”l—cigl-
~zi—g%p?

(66)

tan—! _|__[_a: tan )

T y

Fieure 30.—A. cross section of the normal-velocity distribution on two
plene surfaces representing the region of interaction for a rolling
tail with four fins.

867
The potential in region IIT of the fin surface is a special
(0—— of the preceding equation. Thus, the potential

in region ITT is given (in Cartesian coordinates) by

. 1Bz
B a:smlx

¢'($30 :Z)— BZID-

) O

From equation (67) the pressure-difference coefficient is

found to be

AQ,=3PZ gin-182

V8 z (68)

z

Figure 31.—A cross section of the velocity discontinuity distribution
used to find the potential in part of the region of interaction for
a tail of four fins,

Fraume 32.—A cross section of the velocity discontinuity distribution
associated with the function ¢, for a tail with four fins.
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As previously stated, the potential in region I'V (see fig. 29)
is & combination of the potentials in regions I, T, and III.
Assume that the fins are infinitely long. In this case only
two regions (II and ITI) exist since regions I and IV are
affected by the tip. The effect of the tip can be taken into
account by adding a potential which has zero normal velocity
on the fin and the negative of the pressure of the infinite fin
in the plane of the fin outboard of the tip. The value of
such a potential on the fin is given by the difference between
the potential of region I and the potential of region II. (This
potential is only the effect of the tip on a semi-infinite rolling
wing.) Thus, the potential in region IV is the potential in
region IIT plus the difference between the potential of region
I and the potential of region II. Mathematically, the po-
tential in region IV is given by

,2 :1:. B (%-— z)
¢(m,0",z)=?p- -—%z- cos™! B—:—l——;— sin™!}/ ——= —

ol

From equation (69) the pressure—dlﬁerence coefficient is
given by

[ ﬁ .é.._z)
8p _1 B2 . .‘/ 2
AC, "=V Z cos 1—$—+z sin™! —5

N canremres]

TAIL CONSISTING OF SIX FINS

The pressure and potentials on the surface of the tail con-
sisting of six fins can be obtained in & manner similar to that
used for the tail consisting of four fins. The pressure and
potentials in regions I and IT (fig. 29 (d)) are the same as the
pressure and potentials in the corresponding regions for tails
consisting of one, two, or four fins. Regions ITT and IV are
affected by the interaction between adjacent fins. The po-
tential in region IV is made up of a combination of the po-
tential in regions I, IT, and I11; therefore, the main problem,
as for the case of four fins, is' the determination of the poten-
tial in region ITT.

The potential in region IIT is the same as the potential for
o toil consisting of six infinitely long fins. The induced ve-
locities normal to two of the planes of the fins are illustrated
in figure 33. For two plane surfaces parallel to the stream

B2
3)=

(69)

(70)

direction and intersecting at an angle of 60°, the potential .

in region III can be obtained by & distribution of discontinui-
ties in velocity as illustrated in figure 34. Note that the
potential in region ITI can be made up of a combination of
the potentials from a velocity discontinuity as shown in
figure 35. The potential from this type of discontinuity is
denoted by ¢,. By use of cylindrical coordinates as shown
in figure 35, the potential at the point (:c p,0) can be expressed
in terms of ¢ by

#(z,0,6)=0 (:c,p,e——g)—% (z,p,e—g)—% (x,p,a+§) (71)
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Equation (71) follows from figures 34 and 35.
The potential function ¢, was evaluated by use of equation
(50) and is given by the following equation for 0 S0<n:

_00_502(9,_._3,, sin 6)

%(x7pyo)=—"pp B

From equations (71) and (72) the potential function in the
region of interaction, which is not affected by the tips, is
5w,

6’

[V3(1—2 cos? )42 cos fsin 8]  (73)

(72)

given by the following equation for = S =
¢(33,P,0)="2—

The potential in region IIT of the fin surface is & special
case (6———%) of equation (73). The potential in this region is
given (in Cartesian coordinates) by

‘ qb(a:,O‘,z)=”——z;“‘/§ (74)

Fraurs 33.—A cross gection of the velocity distribution normal to the
planes of two fins of a rolling tail consisting of six fins.

z

Ficure 34.—A cross section of the velocity discontinuity distribution
used to find the potential in part of the region of interaotion for
a tail of six fins.



A VECTOR BTUDY OF LINEARIZED SUPERSONIC FLOW APPLICATIONS TO NONPLANAR PROBLEMS

From equation (74) the pressure-difference coefficient in
region ITT is found to be zero.

The potential in region IV is a combination of the poten-
tials in regions I, IT, and III; this can be shown in the same
way as the potential in region IV of the tail consisting of
four fins was shown to be a combination of potentials from
other regions. Specifically, the potential in region IV for
the tail consisting of six fins is the potential in region III
plus the difference between the potentials of region I and of
region II. Mathematically, the potential in region IV is
given by

: %_Zl_b%/(%"z)(”%"%] (75)

From equation (75) the pressure-difference coefficient is
given by

-
sV TG 5)

(76)

TAIL CONSISTING OF EIGHT FINS
The pressure and potential on the surface of the tail
consisting of eight fins can be found by utilizing the potential
functions ¢, used in finding the pressure and potentials on
the surface of the tail consisting of four and six fins. The
pressure and potentials in regions I and IT are the same as
the pressure and potentials for the corresponding regions of
the other tails. The potentials in regions IIT, IV, V, and
VI (see fig. 29(e)) are affected by the interaction between
adjacent fins. Since the potentials in regions V and VI are
combinations of the potentials in the remaining regions, the
main problem is to find the potentials in regions ITI and IV.
The potentials in regions ITT and IV are the same as the
potential for a tail of eight infinitely long fins. The induced
velocity normal to two of the planes of the fins is illustrated
in figure 36. From the results for two plane surfaces inter-
secting at an angle of 45°, the potentials in regions IIT and
IV can be obtained by a distribution of discontinuities in
velocity as illustrated in figure 37. The potential resulting
from the distribution of discontinuities in velocity as illus-
trated in figure 37 can be obtained from a distribution of

Freurs 35.—A cross section of the velocity discontinuity distribution
associated with the function ¢ for a tail of six fins, ’

869

discontinuities as possessed by the potential function ¢,
used in connection with the four-finned tail. The potential
function ¢, used in conmection with the four-finned tail
was evaluated only in the region affected by the root
sections of the fins. For the case of the eight-finned
tail, interaction occurs between adjacent fins in regions
which are not affected by the root sections of the fins.
The potential function ¢, of the four-finned tail in the region
not affected by the root section must be known. In this
region, the potential functions ¢, for the four- and six-finned
tails are the same.

From figures 32 and 37 the potential function in the region
of fin interaction which is affected by the root sections of

the fins is, for géﬂé—i—rv

¢(x‘,P,0)=—¢o(x,p,0)+¢o <$’p’g—%>—

Bo <$;P,5—%>+¢o (a:,p,ﬂ-l-%) (77)
P4

Fraure 36.—A cross section of the normal velocity induced on the
planes of two fins of a rolling tail consisting of eight fins.
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Fraure 37.—A cross section of the velocity discontinuities which oan
be used to obtain the potential in the region of interaction between
adjacent fins for a tail consisting of eight fins.
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where ¢, is given by equations (65).
The potential in the part of the region of interaction which is affected by the root section is (from egs. (65) and (77)),

T 3
for §§0§—4—:

Bp cos <0—1> .
qb(:c,p,0)=—2pp —z cos fsin™! /_SB_pf_O:_ai_z__Tz cos (0 )sm‘l 2 sin 0 sin~! —= Bp su: 0
8 A[z2—B%p? sin? § \/z, Bty s (0 ) 23— B*p? cos? §

el

z|cot <0——)|
Bx

At

The potential in region I is & special case <0=%> of equation (78). Setting 0=g in equation (78) yields (in Cartesian
coordinates)

993 (1—2 cos® 6) |:tan"‘

- 2pz _ - _ T
¢(z,0 ,z)=-;ﬁ— (a: sin~! ——a: 2sin™! W—l—ﬁz tan 14@) (79)
From- equation (79) the pressure-difference coefficient is found to be given by
) 8pz in-1 Bz i Bz
AC, ﬁV = V2 sin 1/—__-2_932————13’%; (80)

By inspection of figures 35 and 37 the potential function in the region of fin interaction, which is not affected by the

root sections of the fins, is, for %g 0 é%r,

¢ (x:p:0)=¢0 ($JP)0)+¢0 (xybxa_lr')_‘#ﬂ (z;Pia—I>'—¢0 (z)pya _§f> ‘ (81)

where ¢, is given by equation (72). 'Substituting equation (72) into equation (81) yields (remember that ¢o 18 zero

upstrea.m of the Mach cone from the y-axis), for = S 053:

& (2,0,0) e [( ‘/_> GTcoso:l—l-pp cosBsmB—Ep—(l 2 gin? §)—

. Bp , .
0;1f:c<——(em §—cos 6) . .
PP (cosf+sinb) V2 P2 os 0{0’ i :c<'ﬁp sfn ’ . } (82)
642 a:——:/é—(smﬂ—cosﬂ),lfa:>~/_(mn0 cosG) 8 z—Bp sin 0; if >Pp sin §

The potential in region IV is a special case (0=%> of equation (82). Setting 0=g in equation (82) yields (in Cartesian
coordinates) )

’

#(z, 07, z)=%3E [(1—v2)z+82] : (83)
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From equation (83) the pressure-difference coefficient is found to be given by

_4pz, :

The potential in region V is the potential in region IV plus the difference between the potential in region I and the
potential in region IT; thus, from equations (62a), (62b), and (83), the potential in region V is found to be given by

) ,
T I RS ORI = =] B

From equation (85) the pressure-difference coefficient is found to be given by

=_8_P|:1f_z_ '-1‘/@ b\t 2] ’ (86)
AG=—Tpv 52 2 +\_/2 Z>(z 713 _

The potential in region VI is the potential in region III plus the difference between the potential in region I and the
potential in region IT; thus, from equations (62a), (62b), and (79), the potential in region VI is found to be given by

b
—,xg_z—ﬂzz,-l-xz sin~! _ﬂ (5:;:—2) —

202 Bz . -
,¢Fx,0”, z)=—£3—|i——a: cos™! 7 2 sin~? +82 tan™!

gz
{5 NEIC )

From equation (87), the pressure-difference coefficient in region VI is found to be given by

' (b
8 - . i P\ge
AOﬂ:_,rﬁpV[z cos 1_5?2_]_2‘/5 Sm—lJ%f%ﬁ"'z“—z gin™! _@—l-—\/ %-—z)(z—g—l—% :I (88

DISCUSSION OF RESULTS FOR ROLLING TAILS

Ilustrative plots of the chordwise and spanwise pressure distributions across one fin for tails with various numbers of
fins are shown in figure 38. Figure 39 shows illustrative plots of the spanwise loadings on one fin for tails made up of
various numbers of fins. : )

The potential function ¢, used in finding the pressures and potentials for the tails consisting of four, six, and eight fins
could be used in finding pressures and potentials for tails consisting of any even number of fins provided that the region of
interaction between adjacent fins does not affect the tip. The restriction on the region of interaction causes the range of
validity to decrease as the number of fins is increased. The range of validity could be extended, however, by use of a pressure
or potential cancellation method such as given in references 14 and 15.

From the potential, the damping in roll per fin was calculated. Table I presents the results of these calculations. Figure
40 presents the variation of the damping in roll per fin with 48 for tails made up of various numbers of fins. For & given
Mach number (8 constant), figure 40 shows the variation of the damping with aspect ratio. Figure 41 presents the variation
of the damping in roll per fin with Mach number for tails consisting of various numbers of fins with a fin aspect ratio of 1.5.

LanGLBY ABRONAUTICAL LABORATORY,
NarioNaL Apvisory COMMITTEE FOR AERONAUTICS,
Lanarey Frerp, Va., October 26, 1951.
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Figure 38.—Chordwise and spanwise pressuré distributions on & fin of aspect ratio 1.5 at a Mach number of +2 for tails
consisting of rectangular fins.
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~ (b) Tail of two fins.
Fiaure 38.—Continued.
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Ficure 38.—Continued.
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(d) Tail of six fins.
Fraure 38.—Continued.
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Figurr 38.—Concluded.
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Fiaure 39.—Spanwise loading on & fin of aspect ratio 1.5 at a Mach
number of /2 for tails consisting of rectangular fins,
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Fieure 40.—The damping in roll per fin for tails consisting of rectangular fins.
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F1aurE 41,—An illustrative variation of Ci,, per fin with Mach number for tails consisting of rectangular fins with a fin aspect ratio of 1.5.
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TABLE I
) : DAMPING-IN-ROLL COEFFICIENT PER FIN

Number BCy, per fin y Valid for
14 4AB—24 A28 32 A3G
1 e ‘ A8x1
1+ 8A8— A8 A1 6443 , 1
2 - B Apz3
1 .
4 A,ﬁa[ (1+8Ap—48A252+64A:5=)] Apz1
2 2
8 voll . ‘/3192 (1+84p—48421-+64.4") | apz 2
8 [ 4 (1+845— 48A231+64A35a)] Apzy3 .
i pri] e T192 z
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