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SUMMARY

Reverse-flow theorems in aerodynamics are shown to be based
on the same general concepts involved in many reciprocity the-
orems in the physical sciences. Reciprocal theorems for both
steady and unsteady motion are found as a logical consequence
of this approach. No resirictions on wing plan form or flight
Mach number are made beyond those required in linearized
compressible-flow analysis. A number of examples are listed,
tneluding general integral theorems for lifting, rolling, and
* pitching wings and for wings in nonuniform downwash fields.
Correspondence is also established between the buildup of circu-
lation with time of a wing starting impulsively from rest and
the buildup of lift of the same wing moving in the reverse
direction into a sharp-edged gust.

INTRODUCTION

Some of the most important results in the recent study
of wing theory have been achieved through the development
of reverse-flow relations. The theorems already obtained
are of outstanding practical utility and it appears obvious
that the fullest exploitation of the methods has yet to be
accomplished, either from a purely theoretical standpoint
or in the routine calculation of wing characteristics. Atten-
tion to such problems in aerodynamics was initiated by von
Kérmdn (ref. 1) who first announced the invariance of drag
with forward and reversed directions of flight for a nonlifting
symmetrical wing at supersonic speed. Subsequently,
advances in the theory were made by Munk, Hayes, Brown,
Harmon, and Flax (refs. 2 through 7). Up to the present
time, the most general results have been expressed by
Ursell and Ward (ref. 8) and by R. T. Jones (ref. 9) in his
attack on the study of wing shapes of minimum drag.
In the forms given in the two latter papers, the derived
equivalences could be termed reciprocal or reciprocity rela-

tions rather than reverse-flow relations; in fact, this change

in terminology divorces attention, momentarily, from the
purely aerodynamic aspects of the results and, in this way,
suggests a reorientation in terms of the various similar
relations appearing in other engineering fields. In the
theory of elasticity, for example, a reciprocity theorem for
small displacements of an elastic medium is so expressed
as to appear in formal agreement with the statement of the
result given by Ursell and Ward (see, e. g., ref. 10). This
theorem is attributed to B. Betti and was published in 1872.
A generalization was given by Lord Rayleigh in 1873, and

In various sections of his two volumes on the theory of sound
(ref. 11) discussions of ‘reciprocal relations in an elastic
medium and for acoustic sources are given. In 1886, von
Helmholtz (ref. 12) obtained, by means of variational
methods applied to Hamilton’s characteristic function, a
reciprocal theorem for small changes in the momenta and
coordinates of a general dynamical system in forward and
reversed motion. This result was commented on, in turn,
by Lamb (ref. 13) and an independent proof based upon
Lagrange’s generalized equations was given. The paper by
Lamb is of particular interest since it contains the essential
idea underlying the development of reverse-flow theorems
In wing theory. Thus, Lamb remarks, as had Lord Rayleigh
previously, that reciprocity relations between sound sources
do not apply directly in & moving atmosphere. He points
out, however, that the reciprocity can be restored if the
direction of the wind is also reversed. Further examples
of reciprocal theorems appear in the theories of electricity
and magnetism (in particular, reference should be made
to Maxwell’s discussion of the subject in ref. 14) and of optics.

The generality in the statement of reciprocity relations
appears, almost universally, to have held back their applica-
tion to problems for ‘which they are obviously, in retrospect,
particularly fitted. 'This generality is even more apparent
in some of the conclusions of Lord Rayleigh and von Helm-
boltz which apply to nonconservative systems.

The purpose of the present paper is twofold. First, a close
connection will be established between reverse-flow theorems
in subsonic and supersonic, steady-state wing theory and
known reciprocity relations between two solutions of the
equation governing the flow field. In this way, machinery
will be provided whereby extensions of existing results to the
case of unsteady motion follow directly. Second, a number
of particular problems in wing theory in steady and unsteady
flow will be considered. It will be shown that, provided
attention is limited to force and moment characteristics,
the complexity of many solutions involving nonuniform:
flow fields, control-surface deflections, and unsteady motion
can be reduced considerably. In some cases, previously
obtained solutions will be calculated. Comparison with
the original calculations will almost invariably highlight
the economy of- effort in obtaining the final result. The
utility of reverse-flow theorems is based on the fact that
they build from known solutions and thus avoid the necessity
of starting each problem anew.

I Bapersedes NACA TN 2700, “Rec!prodty Relations in Aerodynamics” by Max. A, Heaslet and John R. Spreiter, 1052,
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GENERAL- ANALYSIS

RECIPROCITY RELATIONS FOR A CLASS OF PARTIAL
DIFFERENTIAL EQUATIONS

. In this section, integral relations associated with linear
partial differential equations will be reviewed from the stand-
point of relating independent solutions. The subject
matter is precisely Green’s theorem and, in common with
the usual expression of the theorem, it is preferable to
treat the variables initially as abstract quantities. Consider,
therefore, a class of linear partial differential equations of
second order with independent variables X;, X3, . . . , X»
that may be thought of as rectangular coordinates in a
space of m dimensions. Denote differentiation of the
function ¢ (X, X3, . . X.,) with respect to the variables
X, and X, by the subscript notation

o?
(‘l’)b‘EaX gX

and consider the differential equation
Ly=>; ; Ay +By=0 (1)
f=1 jeml

where, for the purposes at hand, A,=A4;; are made inde-
pendent of X; and X, and B is a constant. Such equations
fall within the class of self-adjoint equations.

By Green’s theorem (see, e. g., ref. 15), it is possible to
relate two arbitrary functions ¥ and @ by the integral expres-
sion

f [ [lozen—vr@nav=— [ (10D —yDs1as @

where the left member is a volume integral over a prescribed
region in m-dimensional space and the right member is a
surface integral over the hypersurface S enclosing the given
region. Equation (2) certainly holds for any region in
which ¥ and @ and their first and second derivatives are
continuous. The directional derivaties D, are defined in
terms of the direction cosines 7, 7g, . . ., 7t 0f the normal to
the surface S with the stipulation that the normal is directed
into the given region. Thus, setting

é n;45=Nw,

where v;, vs, . . ., v are the direction cosines of a line termed
the ‘‘conormal,”’ the directional derivative is defined by the
expression

D=NZTnh=NWH=NF @

If, ﬁna.llﬁr, ¥ and Q are assumed to satisfy equation (1), the
left side of equation (2) vanishes and the resulting expression

f f QD ydS— f f vD,.2dS - 4

is a general reciprocity relation expressing the functional
dependence between two arbitrary solutions of equation (1).

An interesting interpretation of equation (4) has been
given by several writers (see, e. g., ref. 16, p. 46) and applies
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to the particular case when y and  are identified with the
perturbation velocity potential ¢ in the theory of incom-
pressible-fluid flow. The governing equation is Laplace’s
equation in three dimensions

@zt Oyt 00 =0 (6)

and the reciprocity relation takes the form, for two possible
solutions ¢ and ¢/,

ff¢%d8= f«p’%ds 6)

where the directional derivatives are now along the true
normals to the surface S enclosing a three-dimensional

volume. It is known that any actual state of motion of a
liquid for which a single-valued velocity potential exists can

be produced instantaneously by the application of a properly
chosen system of impulsive pressures. These impulsive
pressures are directly proportional to the velocity potential
plus an arbitrary constant which may, in the present case,
be associated with the pressure of the uniform stream.
Equation (6) is thus seen to represent summations of the
cross products of impulse and normal velocity in two possible
motions of a conservative system and is a special case of the
dynamical theorem (ref. 11, p. 98)

iprg/:
rel

where p,, ¢ and p,/, ¢, are gencralized components of
impulse and velocity in any two possible motions of a system
which starts from rest.

The interpretation of equation (6) that leads to equation
(7) provides an indication of the close connection between
reciprocal theorems based upon the principles of least action
and the symmetric character of Green’s theorem for certain
second-order differential equations. In the subsequent
applications it will be convenient to proceed directly from
equation (4) and seek to establish reciprocal relations between
flow fields in wing theory. Such a process is well known
when ¢ or € is replaced by the elementary solution associated
with a unit source and, in this case, establishes a general
solution in terms of source and doublet distributions deter-
mined by arbitrary boundary conditions.- The present
objective is, however, different in that one wishes to get a
symmetrical dependence between two general solutions.
Moreover, the apparent symmetry of equation (4) must be
consistent with physical considerations so that, for example,
the velocity at point A induced by 2 single source at point B
is equal to the velocity at point B induced by a source at
point 4. If, in the two systems, the effective free streams or
flight directions are opposed, a fore and aft symmetry occurs
and the possibility of maintaining symmetry in the reciprocal
relations becomes feasible.

g 2/ qr )

REC]PROCAL THEOREMS IN WING THEORY
BREVERSE FLOW FOR SUBSONIC WINGS
Consider a thin wing at possibly a small angle of attack and
situated in the immediate vicinity of a flat surface #hich is
designated the zy plane. For sufficiently small thickness and
angle of attack, the perturbation velocity potential or any of
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the perturbation velocity components of the wing satisfy the
linearized partial differential equation of compressible flow.

ﬁzlr”zt'l‘ "I’W"I" ¥n=0 (8)

where g2=1—M?=1—(Uyfay)?, and Upa, are, respectively,
the flow velocity and speed of sound in the free stream.
Equation (8) applies in forward or reverse flow, provided the
corresponding free-stream Mach numbers M, and A are
equal. In figure (1) a lifting wing with plan form P is
indicated along with the vortex wakes as the configuration
would appear if the two flow fields were superimposed. It
will be assumed that the wing chord is finite and that the
profiles are closed.

.

FIGURE. 1.—View of wing in combined flow fleld.

It is proposed to apply the genersl reciprocity relation (4)
to these flow fields in a manner similar to the approach used
in developing the basic solutions of the differential equation
(seo, e. g., refs. 17 and 18). Thus, for subsonic flow, hemi-
spherical regions of large radius and lying first above and
then below the plane of the wing will be chosen as the
volumes of integration. The surface integrals will therefore
extend over a hemisphere with center at the wing and a flat
surface that lies immediately adjacent to the z=0 plane.
This latter surface is subsequently to be brought into coin-
cidence with the plane of the wing but must be considered
first in its displaced position since only then can the flow be
assumed free of possible singularities in perturbation veloci-
ties and their gradients. As in wing theory, in general, the
attenuation of the perturbation potential and its gradients
may be assumed of such a nature that the integrated con-
tributions of the wing and its wake over the hemispherical
surfaces vanish in the limit as the radius becomes infinitely
large. It remains, therefore, to consider the integrals over
the surfaces at z=0-+¢ and z=0—e. Denote these surfaces
as oy and oy, respectively, where the subscripts « and 7 specify
values above and below the z=0 plane. Equation (4) can
then be written as

f f ,;,%in dS= f f Vv % dS; ' n directed upward (92)
Ty Ty -

"~ that the first term on the left is zero.
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and .
f f ¥ % dS= f f v %‘b dS;  n directed downward (9b)
o g

where the primes denote conditions for the reversed flow.

In equations (9), ¥ is now replaced by the perturbation
velocity potential ¢(z,y,2) and ¢/ by the z or streamwise
component of perturbation velocity «(z,y,2z). By virtue of
the irrotationality of the flow, the gradients of u and w are
related by the expression

u_
2

w

3%

and equations (9) can both be written in the form

3 a5=f s

Integration by parts ovér either of the surfaces o, or o; gives

fm o’ ) dy— fuw'dS=ffu’wdS

At z=—o the potential ¢ for the forward flow vanishes and
at z=+-o the upwash %’ in the reversed flow vanishes so
, The remaining double
integrals have for their surfaces of integration the displaced
planes o, and ¢;. In order to obtain a concise form of the
reverse-flow theorem, it suffices to subtract the integrals ex-
tended over.o; from the integrals over o, and let the planes
approach coincidence with the plane of the wing. Since
waw’ and u,u’ are continuous everywhere except possibly
in the immediate vicinity of the wing, the integration region
can be restricted to planes slightly above and below the wing
but extending beyond the wing edges. Provided the singu-
larities at the edges can be disregarded, the analytical ex-
pression of the steady-state reverse-flow theorem of Ursell
and Ward (ref. 8) becomes ’

(10

— f f (%%'—uﬂu{)dé: f (u,’w,,—'u,'w;)d:S’ : (11).
P P

for either lifting surfaces or symmetrical wings where P is the
plan form of the ¥ing in the z=0 plane.

It remains to discuss the effect of edge singularities. In
the case of g lifting surface, square-root singularities in both
% and w can occur at the leading and trailing edges just on
and off the wing, respectively. In the combined flow fields,
the limiting process would then yield residue terms analogous
to the leading-edge thrust of a lifting .plate. If, however,

- the Kutta condition is imposed at the trailing edge for both

the flow in forward and reverse direction, a combination of
singularities does not occur and equation (11) is valid. If
the leading edge of a symmetrical wing is rounded so as to
produce & square-root singularity in w on the wing, a square-
root singularity in « occurs just off the wing and a term cor-
responding to the leading-edge drag (ref. 19) appears. If
the geometry of the wing is fixed in the forward and reverse
flow, however, the effect of these terms is canceled and equa-
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tion (11) still applies. It is important to point out that if
the Kutta condition is not satisfied, then the area of integra-
tion of equation (11) cannot be restricted to the plan form.

The two sides of equation (11) are expressed in terms of the
_ same coordinate system bus it is usually preferable to asso-
ciate with each of the two streams an z axis extending in the
stream direction. To this end introduce now the subscripts
1 and 2 to denote the forward and reverse flow and the two
coordinate systems. Thus, in general,

2172y (12)

where £ and 5 are arbitrary constants, and equation (11) then
becomes

n=—x1¢ h=—1n,

f [t (2,9 Wiy @1,91) — g, @0,91) Wi, (@1,90) Jdmadyn =

1

f f Tt (a2, ) — 0y )0, (¥ [dmdys  (13)
P ) )

In the case of a symmetrical nonlifting wing, the relations

U =U, Wy==—U

must apply and, in the case of a lifting surface, linearized
theory yields

Uyy=—Uy, Wy, =W,

It follows that in either case, equation (13) reduces to the
form

ff’ul (@1, y)ws @,y1) dendiy =ff’ua @2,y wi (@2, y)daodys  (14)
P, Py . )

where the velocity components can be evaluated on either
the upper or lower surface of the plan form. If, further-
more, the linearized pressure relation

P—Do=—pyUpl ' (15)

is used where p is local static pressure, p, is static pressure
in the free stream, and the wing profiles are assumed closed,
equation (14) becomes :

[[peayneuwindn=[ [ pemom@udad. oo
P P

If, instead of specifying boundary conditions in a single
plane, it is necessary to treat boundary conditions for a
system of planes, the expression of the reverse-flow theorem
is of the same general form as equation (11). Provided the
Kutta condition is imposed at the trailing edges of all lifting
surfaces, the relation becomes

[[ wosas={ 7yauds a7)
z p>

where the area of integration Z extends over both sides of
all the wing surfaces, V7, is the component of perturbation
velocity normal to and directed away from each wing, and
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the subscripts 1 and 2 refer to forward and reverse flow in
the two axial systems.

, REVERSE FLOW FOR SUPERSONIC WINGS

The development of & reverse-flow theorem for supersonic
wings parallels closely the analysis for the subsonic case.
For either planar or multiplanar systems, the conormal in
equation (4) is, in fact, the normal so long as the surface of
integration is a plane parallel to the z axis. In the case of
the single wing, for example, equations (9) apply where the
surfaces ¢ are slightly removed from the plane of the wing
and where y satisfies the differential equation

(MOZ_' 1) ‘l’n‘“‘ 'I’w_ ‘l’u =0

In the limit as ¢ approaches the z=0 plane, the reversibility
theorem takes the form of equations (11) and (16), provided
the integration extends beyond the edges of the wing. It is
necessary to include these edges .for wings with subsonic
leading and trailing edges since singularities occur in the
perturbation components and.the solutions are not neces- °
sarily unique. For supersonic-type edges, the area of
integration can be confined to the plan form of the wing and
this is also true for subsonic edges, provided the Kutta con-
dition holds for all subsonic trailing edges in both the forward
and reverse flow. Equation (17) relates the two possible
flows in the case of multiplanar systems.

REVERSE UNSTEADY MOTION

In the case of unsteady motion at either subsonic or super-
sonic flight speed, the basic equation may be taken in the
form

Vo V—Vi— ¥1s=0 (18)
where t=ay’, a, is the speed of sound in the undisturbed
region of the field, ¢’ is time, and ¢ is the perturbation velocity
potential or any of the perturbation velocity components.
Equation (18) is the acoustic equation for small disturbances
in three space dimensions and holds for a system of Cartesian
coordinates fixed relative to the undisturbed air. In appli-
cations to wing theory, therefore, the wings move relative to
fixed axes.

In the derivation of & useful theorem it is convenient to
treat thin wings at small angles of attack and to assume that
the motion takes place in the zy plane. The visualization of
the time and geometry relations is relatively easy for two-
dimensionsal wings moving at & uniform speed, a8 indicated in
figure 2. 'The airfoil starts at time ¢’=0 and moves to the left
at a constant velocity U, so that the trace of the leading edge
in the 2t plane is 2= — Uyt’= — M4, and the trailing-edge trace
is x=2a— M. The lines z=-¢ and 2=2a--¢ are the traces
of the extremeties of the regions affected by the acoustic
waves set in motion at ¢’=0 by tbe leading and trailing edges.
In figure 2, the wing has traveled a time 7”=T/a, and the
boundary GOIldltIOD. determining the wing shape during the
motion will be fixed by prescribing the value of vertical
induced velocity w over the region ‘“‘swept out’” of the zt
plane by the wing. In order to determine & reciprocal theo-
rem, & second wing is assumed to start at the final position of
the first wing and to move with negative velocity until it has
réached the initial position of the first wing. With theso
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FIGURE 2.—T'wo-dimensional wing in z£ plane.

concepts in mind, it follows from equation (4) that the

relation
ff a“’ decdt ff—wdxdt

holds where ¢ and ¢’ are, respectively, the perturbation po-

(19)

tentials for the forward and reverse motions. The region of

integration is determined by the area occupied in the at
plane by the wing, and the Kutfa condition is assumed to
apply to the trailing edge when in subsonic flight.

If the left side of equation (19) is integrated by parts, the
general relation becomes

—_ f 'd:cdt—ff—— wdzdt ‘

If the motion of & three-dimensional wing is to be studied,
equations (19) and (20) must be modified to include an inte-
gration with respect to y.

Two further changes in equation (20) serve to simplify
applications. In the first place, asymmetry is restored to
the expression if two distinct systems of axes are used as in
equation (14); in the second place, the pressure relation

Qp

(20)

0
P—’PF—‘—PO#‘: (21)
where p, denotes undisturbed pressure, permits the introdue-
tion of pressure » in the integrands. The final expression

for the three-dimensional case is, therefore,
fffpl (@1, Y1y t)wa (21, 31, B dandiyndty

=fffpz (22, Yo, L) W1 (2, Y2, ta)d22dyodt,  (22)

where the two motions now follow the same path in reverse
directions but are referred to the two sets of oppositely
oriented axes satisfying the relations

y=—u+E n=—1+n a=a, h=—4+7 (23)

where £, 7, and 7 fix the relative positions of the two origins.
Figure 3 indicates one possible orientation of the axes.
Equation (22) reduces to a much simpler form, provided
further restrictions are imposed on the upwash functions
321000 —55——18
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F10URE 3.—Coordinate systems for three-dimensional wing In unsteady motion.

> Xy

Wy (21, Y1, i) and wy (25, ¥s, &). In order to fix the idea, con-
sider the case in which the wings have traveled a time 77,
(I"=T/ay) and a distance U,T"=M,T. Let the two sys-
tems of coordinate axes be placed such that #,=0 sets the
starting time of the forward motion and £%=0 sets the start-
ing time of the reverse motion; the two origins are further-
more oriented such that they are at opposite ends of the
root chord of the common plan form. Equation (22) then
becomes

7
\ dtzf f 1@, Y1, B)wa (2, Y1, 8 dydyy
Py ()

bl id
— JO dt; i (f D2, Yy 1)1 2y Yoy o) Azl
! 2

where the functions w; and ws have an implicit dependence
upon 7. If w, and w, remain constant for x;-+Myf=const.
or z;-}+ Mt =const., the expression

fpl (231, Y, Tr)'w?(xh Yy, 11)da71d'y1
P(T)

fPa(xa, Y3, D)wy(zs, ys, T)dzady, (24)
Py (T)

follows after taking & derivative with respect to I' of the
original equality. Equations (24) and (14) are now equiva-
lent in form, with 7' taking the role of an auxiliary param-
eter. In this way, certain classes of unsteady motions can be
treated simultaneously with steady motions.

In the applications to follow it will be convenient to intro-
duce into equation (24) upwash functions of the indicial
type; that is, functions that are zero up to a fixed time and,
after experiencing a finite discontinuity, remain constant
for all subsequent values of time. Such indicial or,step
variations can be assumed, say, for angle of attack, rate of
pitch, and rate of roll since they satisfy the requirements
underlying the derivation of equation (24). This choice of
functions will prove to be advantageous in that the integrals
of the responsive pressures will yield results relating the
wing tharacteristics. Theorems to be given later will speak
specifically of steady and indicial motions. Itis to be under-
stood, however, that the indicial results can be further
extended when the same wing is assumed to be executing
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identical motions in forward and reverse flight. Thus, by
means of Duhamel’s integral (see, e. g., vef. 20), if f(z) is
the response in the wing characteristic to a step variation
in w at time {=0, the response to an arbitrary variation
with time of w can be written

—5i [ 1 e—rwies (25)

If it is known, for example, that the lift per unit angle of
attack is the same at corresponding values of time for a
wing experiencing an indicial angle-of-attack change in
forward and reverse flight, it follows that the build-up of
lift is the same at corresponding values of time for all for-
ward and reverse motions, provided the time histories of
the motions are the same. The equivalence of lift would
thus be established, for instance, for oscillatory variations
in angle of attack.

An alternative study of reverse-flow theorems for oscilla-
tory motions could be based upon the modified wave equation

Xz Xyt Xes T+ % =0

which results from setting. ¢==e'**X in equation (18). Such a
study would corroborate the conclusions drawn from equa-
tions (24) and (25).

APPLICATIONS

The results of the foregoing analysis may be employed to
determine a number of special theorems that are particularly
useful in the calculation of the aerodynamic characteristics
of twisted wings and of wings in nonuniform downwash fields.
The theorems apply equally to wings acting either alone or,
in certain cases, in combination with other wings or” with
cylindrical bodies having their generators alined with the 2
axis. Moreover, they apply not only to wings in steady
motion but also to wings performing unsteady motions of the
indicial type, or unsteady motions derivable therefrom. For
wings in more complex unsteady motions, however, it will
be necessary to refer to the more general results of equation
(22). Some problems of this nature will be d%cnbed at the
end of this section.

The applications to be included are exact within the frame-
work of linear theory and involve no further rectrictions on
the wing plan form or Mach number except in certain indi-
cated cases where it will be convenient to use results based
on slender-wing theory. The examples are intended to be
representative in nature.

REVERSAL THEOREMS—STEADY AND INDICIAL MOTIONS

Reversal theorems are defined here as relations between
the aerodynamic characteristics of identical wings executing
the same type of motions in forward and reverse flight. The
results presented in this section apply not only to single
wings in steady motion but also to combinations of wings, as
in cascades or multiplanes, performing either steady motion
or motions of the indicial type.

DRAG OF SYMMETRICAY, NONLIFTING WINGS

The drag of & symmetrical, sharp-edged wing in linear
theory may be determined by integrating over the plan form
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the produet of the pressure and the slope in the x direction
of the wing surface; when the wing has blunt edges with
slopes having square-root singularities, these singularities
yield an added contribution (ref. 19). In general, therefore,
the drag D of a symmetrical section is given by

D=D,+2 JIJ p (% as (26)

where D, is the drag attributable to the edges.

If the subscripts 1 and 2 refer to the same wing in forward
and reverse flow, respectively, and with the two systems of
axes introduced in equation (23), local slopes are related as
follows

dz (2,91, T)
’ (tvl

Equations (26) and (27), together with the reciprocal relation

(24), yield
dSl——2ij1 (Ih‘) S =

—(D.>1—2f f P
d&—2f f 7 (2) d8=D—0)  @3)

—2f fpz

Since the geometry of the wing is fixed, the edge contribu-~
tions are the same,

— dza(xZ:yR;T)’ @7

u

D)1=Do)s (29)
and, consequently,
D]_ =D2 (30)
which confirms the relation stated in reference 9.

THEOREM: The pressure drag in steady or indicial
motion of symmetrical nonlifting wings is the same in
forward and reverse flight.

LIFT ON FLAT-PLATE WINGS

The lift L of & wing may be determined by integrating the
differential pressure Ap=p;—p, ‘over the wing plan form,

thus .
I— f f ApdS
P

For flat-plate wings, the local angle of attack of the wing sur-
face is & constant

31)

ey (T, 71, T) =ey=const., (25,2, T) =ay=const. (32)

Application of equations (31), and (32), and (24) ylelds the

following:
Ll [ —lfA_’p 102 dS 1 '—fpraaldsz _Lﬂal

Ll/a1=Lz/t¥2 (33)

THEOREM: The lift per unit angle of attack of flat-
plate wings in steady or indicial motion is the same in
forward and reverse flight.

or
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This theorem generalizes the relation previously given by
Brown (ref. 5) for steady motion.

DAMPING IN ROLL OF FLAT-PLATE WINGS

The rolling moment L’ exerted on a wing, following the
usual sign convention, is given by

I'—— f f yApdS
P .

The local angle of attack due to rotation about the z axis is

(34)

.= PN — Pz’l/a_ _ 2_72,?/1
ag Uo ] a2 _—0 == Uo

where p’ is the angular velocity of roll, assumed constant.
Application of equations (34), (35), and (24) yields the
following:

’T " ’ ’ * ‘
P 1 P 1

o - L
= Uol:fylA@dsz— A PfyzApgng— T,
2 2

(35)

or

Ly [p/' =Ly [psy’

THEOREM: The rolling moment per unit angular
rolling velocity of flat-plate wings in steady or indicial
motion is the same in forward and reverse flight.

(36)

DAMPING IN PITCH OF FLAT-PLATE WINGS

Consider a wing, first, in forward flight and pitching with
o uniform angular velocity ¢; about a lateral axis; second,
in reverse flight and pitching with angular velocity ¢, about
another lateral axis. Place each wing in a coordinate system
such that the y axis coincides with the axis of rotation and
designate the distances to the moment axes by xz, with
proper subscripts, as shown in figure 4. In such a coordinate
system, the pitching moment A, exerted on a wing, following
the usual sign convention, is

M=— [ (—29ApdS @37)
P

FIGURE 4,—CoordInate systems and symbols used In discussion of reverse-flow theorems
for pitching wings,

The local angle-of-attack distributions due to rotations
about the ¥ axis are

259

a1==[g]1; 1, .az='(l;; ‘32—‘070 (E—=) (38)

Application of equations (37), (38)., and (24) yields the fol-
Jowing:

‘(%% (DL 1)z, +(E—20) L] =fq]lo Ljf (zor—2z)+(E—2o)]AP1dS 1=

—quz f(g——xl)ApldSl=—g,—2;ffngp,dSl=
P, Py ,

& g 210 psdSa— it (Moo +E—20) L
3

or
(M 1)z, +q(E —301)L1=(M 2)zpg+(E—T02) s (39)
1 q2 .

This equation indicates that the pitching moment due to
pitching velocity is, in general, not the same for wings in
forward and reverse flight. However, if zp=xp=%£, the
pitching moment per unit angular pitching velocity of flat-
plate wings in steady or indicial motion is invariant.

SPECIAL RECIPROCAL THEOREMS AND APPLICATIONS

In the following section, several special reciprocal theorems
will be derived and applications will be illustrated. Recipro-
cal theorems, in contrast to reversal theorems treated in the
preceding section, are defined here as relations between the
aerodynamic properties of wings in forward and reverse flight
that have dissimilar camber, twist, and thickness distribu-
tions but have the same plan forms. The motions may or
may not be similar, although it is assumed in this section
that both wings are in either steady motion or unsteady
motion of the indicial type. As noted in the preceding sec-
tion, the results apply equally to wings acting alone or in
combination.

"SYMMETRIC NONLIFTING WINGS—STEADY MOTION

The problems of paramount interest in the application of
the general relations are found from considerations of pres-
sure integrals over lifting surface; such problems will be
given -detailed treatment later. In the present section, a
brief indication is given of the manner in which useful results
can be derived for symmetric wings. The discussion will
be limited to steady-state, two-dimensionel, subsonic pres-

‘sure fields although fairly obvious extensions can be carried

out.

If the geometry of a real symmetric airfoil is prescribed
the theoretical pressure distribution exists and is unique.
If, however, the pressure distribution is prescribed, a real
airfoil does not necessarily exist, but by means of reciprocal
relations it is possible to derive certain conditions of com-
patibility” that need to be imposed. Consider, therefore,
the two subsonic solutions - :

’;01(2?1)=U0/1/a§—-:l:1’; —a<lz<la

u(z1)=0,

and

Ua(s),  wa(Xa)
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The first solution has square-root singularities in w at each
end of the airfoil-and, correspondingly, singularities in % occur
just ahead of the point =—a and just behind z=a. On the
other hand, equation (14) certainly applies if wy is zero at
z=-ta. If the origins of the two systems of axes are at
the same position, it follows from equation (14) that u.(z)
must satisfy the relation

_ ([ we(x)dz
o= |- B “0)

This result is useful in the calculation of airfoil shapes in-
volving & change in pressure distribution from that of a known
reference profile. The restriction on 1w, at the nose and tail
implies that the derived and reference profiles have the same
slope and radius of curvature at those points. The restric-

tion on u;, as given in equation (40), can be interpreted as a

condition that must exist by virtue of the fact that the drag
of an airfoil in two-dimensional potential flow in zero.
As a second example, consider the solutions

—-ta:l Uo

U, .
—a<n<la
2a+jat—az,® <<

u (21) t2 2’ wl(xl)é

that represent velocity and slope of a thin ellipse of ;thickness
¢t and chord 2a¢. If wy is chosen as above, such that it van-
ishes at the nose and tail of the airfoil, if u; is the correspond-
ing velocity distribution, and if the two sets of axes are as
before, equation (14) yields

sdy g [ w@)ndn
I e W - s

From this result, together with the general closure condition,

¢ de 1 [e .
" L do—g- [ wlde=0 1)
a necessary condition for the clésure of the second airfoil is
- “’“————%:)_“’if“=o @@

As o final example, consider the solutions for —a<lz;<a

-~

210,
)= a—2x
'u'l( 1) 3_\/§a2 ( 1):
PV Y S
W) = 2t0, 2zl—ax;—a

3 'J§ a? Ry a*— 212 ’ ¢

representing velocity and slope of a thin Joukowsky type
airfoil. In this case, w4 vanishes at the tail and the down-
wash distribution e, for the reverse wing may have a square-
root singularity at the nose. The nose of the first wing is,
however, blunt and for equation (14) to apply the second
wing must have & cusped tail. Under these conditions,
equation (14) yields

2tU02 fa _ iig_
3+/3a? —a(a 21) dzs da:

__ 20, f“ 222 —ax;—a
—a

23
= d
PN B = s B A
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Making tile substitution z;=-—x; in this equation and inte-
grating the left side by parts, one has

Uo{[(2:c1——a)z2];—2fja z,(a:l)d:cl}

¢ 222+ axg—a®
= | et

For all real airfoils with cusped trailing edges, therefore, the
area A, can be expressed as

a 32 —a? «
A= f 224 ax—a® us(2,) dg

'\l a?— :1322 ‘ UO (4 3)

LIFT—STEADY AND INDICIAL MOTION

The reciprocal theorems offer considerable advantage in
the calculation of the lift of wings having a nonuniform
angle-of-attack distribution or of wings in & stream having
nonuniform flow directions. For these applications, it is
convenient to consider & special form of the reciprocal theo-
rem which relates the lift on a wing having arbitrary distri-
bution of local angle of attack to that of the flat-plate wing
of identical plan form in flight in the reverse direction.
Since the solution of this latter problem is often known or

*can be found relatively easily, the solution of the original

problem is facilitated in' many instances.

Lift, of arbitrarily cambered wings.—Consider two wings of
identical plan form in flight in opposite directions, as shown
in figure 5. Wing 1 is arbitrarily cambered and twisted and
wing 2 is flat.

;= (:cl,'yl,T) ) (13=00n8t. (44:)

F1aure 5.—Coordinate systems and symbols used in discussion of rolatlon botweon Uift of
arblitrarily cambered wings and loading on flat-piato wings.

Application of equations (44) and (24) yields the following:

ang = ffagApldS 1= falApgng
P P

2
s (225
Py

THEOREM: The lift in steady or indicial motion of a
wing having arbitrary twist and camber is equal to the
integral over the plan form of the product of thelocal angle
of attack and the loading per unit angle of attack at the
corresponding point of & flat-plate wing of identical plan
form in flight in the reverse direction.

or
(45)
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Equation (45) may be used to derive Munk’s integral for-
mulsa, for the lift of an arbitrarily curved airfoil in subsonic
flow. Consider airfoils 1 and 2 placed in their respective
coordinate systems, as indicated in figure 6. The angle-of-
attack distributions on the two airfoils are given by

dzl

ap=—=—
! dCBl

ag=const.

(46)

2

F1aURE 6.—S8ketch of arbitrarily cambered airfoil fllustrating symbols used in equations (46)
through (50).

The loading per unit angle of attack on airfoil 2 is

Ap:_ 440 __“"mi’:iﬂ" /___+°’I

@ B Vatz B VYa—z -
where g, is free-stream dynamic pressure (}p0Uc%). Substi-
tution into equation (47) yields the lift formula

‘.L1= —:4ﬁ—g-ofa dzl giildxl

dz,V a—z,

(47)

(48)

The corresponding formula for the lift of a tier of curved
airfoils may also be derived similarly from the expression
for the loading on an equivalent tier of flat airfoils. Con-
sider, for example, an unstaggered lattice of flat-plate
airfoils arranged vertically. If the gap distance between the
plates is &, the loading per unit angle of attack is

é&;@sach(;_a)‘/sinh m(a—zy)/Bh]

o B T \Bh sinh [r(a+x5)/8h]

The formula for the lift on one of a lattice of identically
cambered airfoils ? is therefore

— 40 <L“> f dﬁl‘/?inh [w(a+2)/Bh
Li=—p sech (g7 ) |_, @,V soh Ir(a—20)/BH] -
The load distribution per unit angle of attack for a two-
dimensional supersonic wing is

Ap2_44o
4 B (49)
and, from equation (47), the lift is
— A (¢ dz ’
L= B f—a dz, da: (50)

The extension of this result to include supersonic-edged wings
straight trailing edges leads to a result given originally by
Lagerstrom and Van Dyke (ref. 21). If, ag in figure 7, the

3 This result, as well as the detafled pressure distribution, has been derived by Mr. Paul
F. Byrd of the Ames Aeronautical Laboratory by means of a direct Inversion of the singular

ntegral equation relating the aerodynamic pressure and geometry of the airfofl. His work
hias also been used in deriving equations (80) and (81).
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F1aurE 7.—Sketch of supersonic-edged wing lllustrating symbols used in equations (51)
and (532).

sweep angle of the straightedge is A, the load distribution
per unit angle of attack of the reversed wing is

Ap, ~ 4gocosA

—_—— 51
oy [1—DMgcos® A (51)

and the lift is
L=l (22 anay
sec 2A— M ? dz, U7t
P,

A less obvious application yields the build-up of lift with
time of an arbitrarily cambered two-dimensional supersonic
airfoil starting impulsively from rest at a constant speed.
Rewriting equation (45), lift is

L1=__j:-za_MOszl(x2,11) Apa(xst) d¢3

MoT dx as

(55)

(53)

Figure 8 presents sketches showing the final positions of the

7

Xp ~=

<7

2g 2a 2a . 2a
O<T<ivn,  T# 7 < Wi M1

FiGoreE 8—Reglons In which different forms of equation (54) apply.

airfoils relative to each other for various values of 7. In
referance 22 the expressions for the loading in equation (53) .

. are given. Over the intervals denoted by @, ®), and ® in

the sketch, these expressions are

Region @ A-a—Z:’=4HqZ )
. %z 49_’0 .nffgx +T
Region @® PO v arc os = s
- M1

T .z
ML §+arc smT>:l

. A 4
Region (@) _0%=——920—I
Mj—

o

Lift on a wing in a nonuniform downwash field.—The
reciprocal theorem of equation (45) can also provide a par-
ticularly good method of determining the lift on a wing in
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certain nonuniform downwash fields of known structure.
Such problems arise whenever a wing acts in the presence
of other wings, bodies, or propellers but is always of prime
concern in the determination of the lift on a tail acting in
the downwash field of a wing. In most problems, the down-
wash velocities at the position of the tail may be considered
to be constant in the longitudinal direction and to vary in
the spanwise direction, thus

ay=ey(yy,T), ay=const. (55)

el o () a5 ()
P,

where I, is the span load distribution associated with the
load distribution Ap,. Summarizing, the lift in steady or
indicial motion of a wing in a downwash field which varies
across the span is equal to the integral over the span of the
product of the local angle of attack and the span loading per
unit angle of attack at the corresponding spanwise station
of a flat-plate wing of identical plan form in flight in the
reverse direction. This statement generalizes the result

and

(56)

given recently by Alden and Schindel (ref. 23) for steady |

flow about wings having supersonic leading and trailing
edges and streamwise side edges.

As for example, consider the problem of determining the
lift on & wing at & geometrical angle of attack of zero resulting
from the presence of an infinite line vortex of strength I°
extending in the flight direction. The wing will be considered
to have such a plan form that its span loading when in
flight in the reverse direction is elliptic. The notation is as
shown in figure 9. For this problem, therefore, the span

F1aURE 9.—Vliew of wing and nelghboring vortex.

loading of the wing in reverse flight is given by

l2 —_ 2Lﬁ. 1 N y22

oy w8y ¥ 82 ‘
The local angle of attack of the original wing due to the
presence of the vortex is given by

‘ ar= T ‘\ ‘yl_B
. Y220, (- B+

(57)

(58)
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Substitution of equations (57) and (58) into equation (56)
yields the following formula for ‘the lift:

_ T L)—p
Ll—ﬂ'UovS‘ ag{ 8 +

VIVG D (o B

The lift on a wing in the vicinity of a number of such
vortices may be found by superposition.

Lift due to deflection of a portion of the wing surface.—
Let & portion P’ of the surface of wing 1 be deflected a con-
stant angle § and the remainder of the wing, be a flat plate
alined with the free-stream direction.” Let wing 2 be a
flat-plate wing inclined at an angle of attack «, thus

§on P’
o=

az=const. (60)

0 elsewhere
éubstitution of equation (60) into (45) yields the following

result:
Li_ Aps
?‘Lf (a)as:
2

The lift in steady or indicial motion per unit angular
deflection of a portion of the wing surface is thus equal to
the lift per unit angle of attack on the corresponding portion
of a flat-plate wing in flight in the reverse direction. This
generalizes a result given previously by Morikawsa and
Puckett (ref. 24) for steady flow about low-aspect-ratio wings.

This rule is very useful in the determination of the lift
resulting from the deflection of a flap or control surface.

(61)

~This is particularly true for supersonic speeds since the load-

ing on the related flat wing is often & constant over a large
portion of the area of integration. ‘ .

As a further. example, consider the case of a low-aspect-

“ratio wing having a straight trailing edge and mounted on

an infinite cylindrical body of revolution. The entire wing-
body combination is at zero angle of attack except for the
flaps on the rear of the wing that are deflected an angles. The
problem is to determine the lift on the entire wing-body
combination due to the deflection of the flaps. Slender-
wing-theory results of reference 25 are to be used. The
notation is indicated in figure 10.

X

FIGURE 10.—Vliew of liiting slender wing-body combinations.



RECIPROCITY RELATIONS IN AERODYNAMICS

The solution of this problem is particularly facilitated by
the fact that slender-wing theory indicates that the loading
on wing 2 is concentrated on the leading edge, as shown in
the figure. Therefore, the lift of wing 1 is found by inte-
grating the span loading curve of wing 2 over the portion of
the span between y=f and y=s¢. Thus .

EI[COTTiE I
Slap

The span loading on wing 2 is given by

b=t/ (1-%) (5-5) (63)

The lift due to the deflection of the flap is therefore

tomei] (-] (D)) +

%(1_[_:’_:) are sin 1_26/3)2+(a/3)4+

1—(afs)*
@ i L@ —2(afe)
oS = S ©

A plot of the results is shown in figure 11. The lift per unit
angle of flap deflection (L/5);1,, has been nondimensional-

1.0

I
== f/5 =00
/7
/-f/5=.25
8 o
/’ f/ -
_/ ,f g a/s
7 7
m
.
= 6 v
3 . \-f‘/S 3.50 \
\% /
4
~3
~ /<f/5 =75

0 .2 4 6 8 10
a/s

F1aure 11.—LIft of a slender wing-body combination resulfing from flap deflection.,
ized by dividing by the lift per unit angle of attack (L/o)w_s
of a slender wing-body combination of identical plan form.
From reference 25, (L/a)w—p is given by

Eaw-s=2ngs* (1-5) ()

ROLLING MOMENT—STEADY AND INDICIAL MOTION

The calculation of the rolling-moment characteristics of
wings having a nonuniform angle-of-attack distribution or

263

of wings in & streamn with nonuniform-flow directions can be
performed in many cases through use of the reciprocal
theorem in a manner analogous to that described for the
lift characteristics in the preceding section. In every case,
the rolling moment of the given wing will be related to the
lift on a rolling flat-plate wing. For the sake of simplicity,
all the present examples will be confined to the case where
the rolling moments are evaluated about the z axis, con-
sidered to lie in the plane of symmetry.

Rolling moment of arbitrarily cambered wings.—Consider
two wings of identical plan form in flight in opposite direc-
tions, as shown in figure 12. If the local angle-of-attack

F1aurs 12—Coordinate systems and symbols used in discussion of relation between rolling
moment of arbitrarily cambered wings and the loading on rolling flat-plate wings.

distribution of wing 1 is arbitrary and that of wing 2 varies
linearly with ¢ (which might be likened to either a wing with
linear twist distribution or to & flat-plate wing rolling about
the z axis with constant angular velocity p,’),

D 2,y2 {6 6)

Q== U
0

and the following relations can be written:

L/ =— g ylApldS1=gyzAPldsl= J};f 1% AP dS;=
. 1 ] 1 1
Uo _ Ap3 .
{J p 7 ’ds’—ﬂ o« () 0
2 2

THEOREM.: The rolling moment in steady or indicial
motion. of & wing having arbitrary twist and camber is
equal to the integral over the plan form of the product of
the local angle of attack and the loading per unit (py’/Up)
at the corresponding point of a rolling flat-plate wing of
identical plan form in flight in the reverse direction.

Applications of this theorem follow in a manner very
similar to that described previously for the- corresponding
theorem regarding lift. . :

Rolling moment on a wing in a nonuniform downwash
fleld.—Consider a wing placed in a flow field in which the
downwash velocities at the position of the wing are constant
in the longitudinal direction and vary in the spanwise direc-
tion. The related wing is again a flat-plate wing rolling with
an angular velocity p,” as described in the preceding section,
thus

ap=ay (931,?/1, T’)’ ]

ap=aoay (yl:T'){ a2=£§/f (68)
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The rolling moment of the first wing is then given by

SIRE R C AT

or, in words, the rolling moment in steady or indicial motion
of a wing in a downwash field which varies across the span is
equal to the integral over the span of the product of the local
angle of attack and the span loading per unit (p.’/T;) at the
corresponding spanwise station of a rolling flat-plate wing of
identical plan form in flight in the reverse direction.

Rolling moment due to deflection of a portion of the wing
surface.—Let a portion P’ of the surface of a wing be de-
flected a constant angle 5 and the remainder of the wing be &
flat-plate alined with the free-stream direction. The related
wing is a flat-plate wing rolling with angular velocity p,’

s on P’

0 elsewhere

Substitution from equation (70) into (67) yields the following

result:
G o

Thus, the rolling moment in steady or indicial motion due
to a given angular deflection of a portion of the wing surface is
equal to the lift per unit (p,'/U;) on the corresponding portion
of a rolling flat-plate wing of identical plan form in flight in
the reverse direction. .

As an example, consider a wing-body combination con-

sisting of a low-aspect-ratio wing having a straight trailing

edge mounted on an infinite circular cylinder, as shown in .

figure 13. The body is at zero angle of attack, the right wing

Uo

F1GURE 13.—8ketch {llustrating symbols used in discussion of rolling moment resulting
from differential deflection of wings of slender wing-body combination.

P’ is deflected an angle §, and the left wing P’/ is deflected —s.
The problem is to determine by means of slender-wing theory
the rolling moment exerted on the entire wing-body com-
bination. The notation is indicated in figure 13.

0 on body (72)

-4 on right wing, P’

{—6 on left wing, P’/ ,
_DPaYs

oy = =

Uy

Since slender-wing theory indicates that the loading on wing

2 is concentrated on the leading edge, the rolling moment of
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wing 1 can be found by integrating the span loading on wing

2.
ANCoALE

r__ Ap? —
L= f o (—Pz, /Uo) dSs=
Y )

'l g o [l
sJwem =2 [ (5777 s
where, from reference 26,
b
24/ Us

.=9108’[(1 +§ arc cos ﬁ%)(y+.‘;_1>m+

2 WP +a?)(8*—a?)
2 (v wrocom Gt e s

(73)
The resulting expression for the rolling moment is
B2 A
L =4ge55° {F@, k)[ <1—-—+R4>(1 +2are cos %)—

2R®

A a—B [+EG 0 [ 5 (3-2R+ 5 )1+

]szzs °R |

2 2R 2
;&I‘CCOST_’_——IF +§_‘R(1 1+R2l

R* 2 2
3 A—F) (1+; are cos T +R>} (74)
where -
R=as
i o= arcmnﬁ__i__
k=+1—R?

A plot of the results is shown in figure 14. The rolling
moment has been nondimensionalized by dividing by the
value corresponding to that of the wing alone (R=0).

PITCHING MOMENT—S8TEADY AND INDICIAL MOTION

A number of useful relations regarding the pitching-
moment characteristics of wings may be found through
application of the reciprocal theorem. Since the general

"procedure is closely analogous to that of the preceding sec-

tions, the following discussion will be brief.
Pitching moment of arbitrarily cambered wing.—Consider
the problem of determining the pitching moment A, about
the origin of wing 1 possessing an arbitrary distribution of
camber. The related wing in flight in the reverse direction,
wing 2, is a flat-plate wing of identical plan form pitching
about the moment axis of wing 1, as indicated in figure 15,
thus
qe%1__ ga(wa—§)

Q= UO U (7 5)

ay=ay (@, Y 1),
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R e
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FIGURE 14.—Rolling moment of slender wing-bedy combinatfon resulting from differentlal
deflection of wings.

FIauRE 15—Coordinate systems and symbols used in discussion of relation between pitching
moment on arbitrarily cambered wings and the loading on pitching flat-plate wings.

The pitching moment of wing 1 is given by
M= '—ffxlAZhdS 1=ffa2 (-qu/%o) as,
P 1 P 1
— Aps
'f f o (Qe/ Uo) dSs (76)
Py

THEOREM: The pitching moment in steady or indicial
motion of a wing having arbitrary twist and camber is
equal to the integral over the plan form of the product
of the local angle of attack and the loading per umnit
(q2/Us) at the corresponding point of a flat-plate wing
of identical plan form in flight in the reverse direction
and pitching about the moment axis of the first wing.
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The necessity for pitching wing 2 about the moment axis

‘of wing 1 may be removed by considering wing 2 to be

re-expressed in terms of two component wings having angle-
of-attack distributions given by

_ qa(Zar—Togr) _ @a(Ta—8)
= agn._———

U, _ U,

Wing 2/ is thus pitching with angular velocity g about an
axis at ;. =zp. and wing 2’/ is a flat-plate wing at a con-
stant angle of attack. The pitching moment on wing 1 is

then given by
M1=ffd1 (’Az'h—,“ dSzr'l‘ffal
g2/ Us
_Pal qu

_ 802 g6t o Aper 4
_ ff“l (qal P dSu+ z,:)f f o ( aw)ds,u (78)
P2' Pg'l -

Applications of pitching-moment theorem.—The applica-
tion of equation (76) or (78) to problems analogous to those
discussed in the preceding section can be carried out in a
straightforward manner. Consider, first, unstaggered lat-
tices on airfoils such that the airfoils in lattice 1 have arbi-
trary camber distributions and those in lattice 2 are flat

o ==const.

(77

Apgn

221, dSy

plates pitching about their midchord positions. The angles
of attack in the two lattice systems are :
d
al(xl,z1)=—£, ag(a_;,,zz)=q’7“;’ (79)

and the load distribution on each airfoil in lattice 2 is, in
subsonic steady flow,

Aps(z)=qo (%?) arc cos [sech (;_Z) cosh (%%’)] (80)

where 2a is chord length. Xquation (76) yields, for pitch-
ing moment of the first airfoil about its midchord point,
the result

M= ALk [ DB s I:sech (;—Z—) cosh (%)] dz; (81)

w -—a d:c],

A second example, illustrating unsteady effects, is the fol-
lowing: Let wing 1 be a flat-plate wing, then o is constant,
and equation (78) simplifies to

M, L,

M _ _pLe
a _qi’/UO-‘_(zm ‘E)

ger

82)

where Ly’ is the lift on wing 2/ pitching about z.’=2y’, and
Ly is the lift on an inclined flat-plate wing. Equation (82)
may be expressed in terms of conventional stability deriva-
tives as follows:

(Cu i =(CsJu {22 ) Cr e (83)
An application of this result to unsteady-flow problems is
indicated in figure 16 obtained from indicial-lift and pitching-
moment results of reference 27. This figure shows the
growth of lift and pitching moment on triangular wings with
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Mo=2 R
| e
2.0 -
1.5 —<C
~,
/ \_-(CL")?_' |
1.0
Cnahi=C o~ oo
5
1
0
-5
‘/—(cmu)|
]
105 5 .0 13 50 25

Chord lengths traveled
FIGURE 18.—~Indlclal 1ift and pitching moment on triangular wings with supersonic edges.

supersonic edges at a Mach number of 2 following indicial
angle~of-attack and pitching-velocity changes. In these
results, the rotation and moment axes are always at the
leading edge or apex, therefore, z’=0 and £=c,. It may

be seen that the three curves are related in the simple linear

manner indicated by equation (83).

If ¢, is independent of = and varies only in the spanwise
direction, that is, if ey=ay(y;), the pitching moment on
wing 1 is given by the following equation, analogous to
equation (56) for lift:

Mi= " a (o) dyetaa—0) [ e (22) dye ™ (59

If a portion P’ of the surface of wing 1 is deflected a con-

stant angle & and the remainder of the wing is a flat plate

alined with the free-stream direction, the following relations

hold:
son P .
a1={

0 elsewhere

d

an

ﬂ;[‘=f f ( Apq

) q2[U,
Py

B8t ramt) [[ (=) ase @5
P
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RECIPROCAL RELATIONS INYOLYING MOTION INTO A GUST

All previous applications that have been considered were
derived from equation (24). In the present section, the
more general equation (22) will be used to develop two the-
orems which relate the build-up of lift on a wing entering
a gust and the build-up of circulation on the same wing
moving indicially but in the opposite direction. The rela-
tions to be obtained hold for the Mach number range for

" which the wave equation applies. Under the special assump-

tions of incompressible flow, the results in two dimensions
establish a direct connection between the circulation function
calculated by Wagner (ref. 28) and the gust lift curve cal-
culated by Kiissner (ref. 29) and von Kérmfin and Sears
(ref. 30). A proof of the connection between these functions
for two-dimensional incompressible flow has been given by
Sears (ref. 31).

TWO-DIMENSIONAL FLOW

A flat plate is assumed to be moving in two modes of
motion: In the motion associated with the z3,2,t;, axes, the
wing starts at time zero (4=0) and moves at a constant
velocity U, and at a constant angle of attack; the motion
associated with the z;,z,t;, axes starts at time zero (t,=0)
with the wing movingin the opposite direction at a velocity
U, and entering a sharp-edged gust. The gust exists for
all z, less than zero and has a vertical velocity w,=—ea, Us.
The two wings, therefore, have angles of attack as follows:

aa(ts, ) =ay=const. for—Mt<le,<20—Mols, >0
—‘Mot1<x1<0 0 é tl é 2(14/.2‘4-0
oy (7, 1) =ag=const. fo
. "—Mot1<x1<2a—Mot1 2ar/Mo Sh

The two-dimensional form of equation (22) yields

T — Mot >
an; dtlﬁa—l:’:tlAp'(xl’ tl)d$1= poaoaxL A _?’;(M). dS

Oty
(86)
where the region A is bounded by the lines =0, z;=2¢—
Mg, =T, and 2;=—2Mt;. The integral on the right can be

rewritten as a line integral by means of the identity
—fP cos (2, n)d8=f oL as
¢
and equation (86) becomes

agJ;TL,(tl)dt1=poaq;a¢fA¢2 cos (ta, ’n)d3
g

¢

where the line integral extends around the boundary of the
region A. Since Ap; vanishes on the lines a=—My; and
=0, the equation becomes

T 20 20—
azfo L:(ﬂ)dt1=Poaoazﬁ&_MoTAsoz(%; —EM‘O?} dz,

Differentiation with respect to 7'yields
oL (T) =P0an:A‘P2(2a—MoT, )
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CIPROCITY RELATIONS IN AERODYNAMICS

The discontmulty in ¢; is evaluated at the trailing edge at
time 7 and is therefore equal to the circulation I'; of the aar—
foil at time 7. The equality thus becomes
LD_ 5, 2D (87)

{4 g

THEOREM: The circulation per unit angle of attack
of a flat plate moving indicially with a velocity U, is
proportional to the lift per unit «, of the plate entering
a sharp-edged gust havmg a uniform vertical velocity
equal to We=—0;Up.

In figure 17, the time variation of thése variables, as well
as the lift of the indicial wing, is indicated for low speed and
for flight Mach numbers equal to 0.8 and 1.46 as determined
from references 22 and 27.

37
27 —Cla g sl
“la_L e 1 €t
/c/ I, Cy —
T Iy Iq —
/ / /e
/ ;9
0 5 10 150 5 10 150 5 10 15
Half-chords traveled Half-chords traveled Half-chords traveled
Mo=0 My=0.8 " ' M, =146

F16URE 17.—Qrowth of ¢;, and ¢y, with chord lengths traveled.
c

THREE-DIMENSIONAL FLOW

The extension of the above results to three dimensions
follows directly. The origin of the z,, 9, z;, t; axes is assumed
to be initially at the foremost point of the wing in reverse
motion. The two wings have, respectively, angles of attack
ay=const. over the reverse moving plan form for all values
of time and a,=const. over the region occupied simultane-

ously by the forward moving wing and the gust. Equation
(22) gives
T
azj; dtlff Apg(xl, U1, tl)d:vldy1=
Pt)
potec [ [ [ 2220 gogyar, (s9)

The integral on the right can be rewritten as a two-dimen-
sional surface integral by means of the identity

—”P cos (; n)ds_ff

and equation (88) becomes

dzdydt

T
QQJ; L‘(tl)dh:poarod‘ ff Agpg cos (tz, 'n)ng

where the integral on the right extends over the boundary of

the volume in z;, ¥,, & space occupied by the wing and the -

gust. 'The value of Agp; must, of course, vanish on. the lead-
ing edge of the wing and at ,=0. In order to fix the limits
of integration, suppose the wing is symmetrical about its
longitudinal axis and let the leading edge of the forward
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wing be given by the equation
T1=f(Fy)— M or yi=Fs(x:+Mt) .

For the reverse wing and its coordinate system, this edge,
which is now the trailing edge, is

By=c—Mh—f(Lys) or ya=cs(c,—z—Meh)

where ¢, is the root chord. The reverse-flow integrals of
equation (88) then become

T & #(6p—22)
L(t)dti= f dz f
QZJ; E)dt= potoas 6= M,T 2 —se—zp)

Atpg [32, Ya, Cr_x2;4{(i y?)] dy2

where 8(z;) is the local half-span of the wing. Differentia-
tionl with respect to T yields

s(MqsT)
aLiDy= ooy [0 e o, 2T, 00 T-LEW | gy, |
(89)

The discontinuity in ¢ is thus to be integrated spanwise at
the rearmost point of the indicial wing; this follows from the
relation

Apy l:myy)T_f(j:liﬁ):l=A¢i(xyy)t); T_f(ﬂﬂz‘ih)<t<T

which fixes the vorticity in the wake of the wing once it is
shed from. the trailing edge.

It remains to mention the nature of the limits +s(A,T).
As shown in figure 18, the.span width of the vortex wake at
the trailing edge is, during the early stages of the motion,
dependent on the local span width of the wing. The width
28(M,T) of wake is, in fact, equal to the maximum width of
the portion of the first wing that lies within the gust. After

22

FIGORE 18,—Sketch fllustrating nature of integration limits in equation (89).
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sufficient time has passed for the vortex wake of the indicial
wing to.develop its full span width at the trailing edge,
8(M,T) becomes 8, or semispan of the wing. From equation
(89) one may conclude the following:

THEOREM: The lift per unit ey, of a flat-plate wing en-
tering a sharp-edged gust having a uniform vertical
velocity equal to w,=—c,U, is proportional, at each
instant of time, to the spanwise integral at the trailing
edge of the vorticity shed-by the same wing moving
indicially in the reverse direction with a velocity U,.

As a direct example, this theorem has been used to confirm,
from a knowledge of the indicial solution, the sharp-edged-
gust lift of the rectangular-plan-form supersonic wing given
by Miles in reference 32.

AMES ABRONAUTICAL LLABORATORY,
NaTioNaL ApvisorY COMMITTEE FOR AERONAUTICS,
Movrrerr FieLp, Carir., Feb. 19, 1958.
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