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THE LINEARIZED CHARACTERISTICS '\IETHOD AND ITS APPLICATION TO PRACTICAL
NONLINEAR SUPERSONIC PROBLEMS!

By Axtoxio FErmt

SUMMARY

The method of characteristics has been linearized by assuming
that the flow field can be represented as a basic flow field determined
by nonlinearized methods and a linearized superposed flow field
that accounts for small changes of boundary conditions. The
method has been applied to two-dimensional rotational flow
where the basic flow 1s potential flow and to arially symmetric
problems where conical flows have been used as the basic flows.
In both cases the method allows the determination of the flow
field to be simplified and the numerical work to be reduced fo a
few caleulations. The caleulation of axially symmetric flow
can be simplified if tabulated values of some cocfficients of the
eonical flow are obtained. The method has also been applied to
slender bodies without symmetry and to some three-dimensional
wing problems where two-dimensional flow can be used as
the basic flow. Both problems were unsolved before in the
approximation of nonlinearized flow.

INTRODUCTION

The use of the method of characteristics for the solution of
supersonic-flow problems requires numerical procedures
which are lengthy and involved and which must be repeated
for each set of boundary conditions. The method has received
generel practical application only for two-dimensional or
axially symmetrical problems in steady flow and one-
dimensional or quasi-one-dimensional nonsteady flow, and
only very few cases of general three-dimensional flow have
yet been investigated.

Many problems have been investigated at present by
means of the linearized theory in which the disturbance-
velocity components (defined as the difference between the
local and the free-stream components of the velocity) are
considered and are small, so that terms of second order or
higher can be neglected. In the present report a simplifica-
tion is introduced in the equations of motion based on the
assumption that one of the wvelocity components or the
variation of the velocity components as a function of a given
parameter can be considered small, so that terms of second
or higher order in the quantities considered small can be
neglected. WWhen cne of the velocity components is assumed
to be small, the other two velocity components can be ex-
pressed in two parts, one of which is large and is a function
only of two coordinate positions, and the other of which

is small, of the same order as the third veloeity component,
and is & function of all three coordinates.

If the variations of velocity components as functions of a
given parameter are considered small, all three velocity
components can be expressed in two parts. One, large, is
independent of the parameter considered, and the other,
small, is & functipn of the parameter considered. Vhen the
velocity componenis are substituted into the differential
equations, the equations can be divided into two parts, and
the differentisl equations containing the velocity components
considered small become linear; therefore, superposition of
solutions is possible. With this assumption the flow field
can be represented for any condition by the superposition
on 2 nonlinear basie flow field of a linearized How perturbation.
The flow field, which represents the variation of the basic
flow due to the changes of the geometrical parameter con-
sidered, changes linearly with the parameter. Beeause of
the simplifieation, the superposed flow field is defined by
differential equations of hyperbolic type which have char-
acteristic surfaces equal to the characteristic surfaces of the
basic flow field and known coefficient; therefore, the super-
posed flow field can be obtained directly without the iteration
process along the characteristie net of the basic flow.

A particular application of the linearized characteristics
method has been discussed in references I, 2, and 3 in which
bodies of revolution at small angles of attack have been
considered. In the present report the basic concept of the
linearization is discussed and examples of application to two-
dimensional rotational flow, to conical flow, to axially sym-
metrie flow, and to some general three-dimensional problems
are discussed. From these examples, other applications of
the same method to supersonic steady- or nonsteady-flow
problems can be visualized. For example, the method can
also be applied to the determination of the flow field in super-
sonic compressors or turbines haying supersonic relative
velocity inside the passage. In this case, the two-dimensional
flow of the cascade of the blades at each radial station
or the axially symmetric flow can be assumed as the basic
flow. In the first case the radial component of the velocity
must be assumed to be small, whereas, in the second case,
the tangential component of the velocity must be assumed
to be smali.

t Supersedes N. ACZ& TN 2515, ‘“The Linearized Characterfstics Method and Its A pplication to Practical Nonlinesr Supersonic Problems' by Antonlo Fert], 1851,
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SYMBOLS

a, b, ¢, d, e coefficients of the varjables in the characteristic
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Subscripts:

0
1...n

equations (defined case by case)
speed of sound

coefficient (1;:;1 : (uou,.—!—vuv.))

coefficients defined by equations (20) and (25)

pressure coefficient

Mach number

ges constant or radius of hodograph diagram

entropy

velocity components along the 2-, -, and z-axes
in Cartesian coordinates or along 2- and y-axes
and perpendicular to the meridian 2y-plane
in cylindricel coordinates

velocity components in polar coordinates

tangentiel and normel velocity components in
front of the shock

intensity of the velocity vector

Mach angle

ratio of specific heats

inclination of the characteristic lines in the plane
2=Constant or §=Constant

coordinate of the meridian zy-plane in cylindrical
coordinates or of the ry-plane -in polar
coordinates

polar coordinates

inclination of the velocity vector with respect to
the z-axis .

components of the rotation elong the x-, -, and
z-axes

properties of the basic flow
properties of the superposed linearized flow fields

THE EQUATIONS OF THE LINEARIZED CHARACTERISTIC

SYSTEM

Consider, for example, a flow field defined by a velocity
vector V(u,p,w) the components of which can be expressed in

the form

N h
u=u0+§13a-nu'n
N
=002 Cn0n ¢ 1)
N
W= 0 W,
1 o

For constant stagnation enthalpy in the flow field, the rela-
tion between entropy and rotation states

curl v><V=% grad S @)

Assume that %, and #, are functions only of x and y; then, by
neglecting terms of the order of a,?, equation (2) becomes

2 2 Q) iz ()
g‘;‘-’—?ﬂ)E Tnln
TE e (o) KAt ) S
%’;—” Slanta
52 pmTas aal;" o R G )
Therefore, the entropy field can be expressed as
gg %§+§ a e v @
§§=Zf3a-%‘i" J

Assume that each coeflicient @; . . . @, is constant in the
entire region of the flow field where it is not zero and is small,
so that terms of the order of ¢,® or higher can be neglected.
In thisflow abasic flow field exists,represented by the velocity
vector Vo(uet) and by the entropy distribution S, on
which @ linearized flow is superposed, represented by a
summation of NV three-dimensional flow fields, each of which
is proportional to the corresponding coefficient a,. The
basic flow field is a two-dimensional flow if Cartesian coordi-
nates are used or an axially symmetric flow if cylindrical
coordinates are used and cen be determined by known
methods. In & similar way, a general three-dimensional
flow field can be assumed for basic flow if the flow field can
be obtained by simple analysis.

The equation of motion obtained from continuity, momen-
tum, and energy equations can be expressed in Cartesian
coordinates in the form

(bu bv)

u? , Ov
W) (1-a)tss z( g
ww [ du
at (E)_z+b:v a’ bz+by)— ®)
while, in cylindrical coordinates, the equation becomes
(1 j)-I- (1 ’)+y acp z) a? by+bx)

wu ou
¥ dp ar) @ y5¢+by)+ 70 ©
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By use of equations (1)}, expression (5) becomes

L5035 Cr R

W, , Vg Oy Uglof Dy | Dliy
o] 3ot e o) (et o)
U, 2uou.+qu bvo(2vgv,—[—vuA)
bz( ag

Qg , 0o\ UaloLln +uov,+vuu. -
0y+0x> at :I @
where
A.=T—-f,1 (UgUn+DoTs)
Qg

The basic flow is & two-dimensional flow, and the first part
of equation (7) must be zero; therefore, the second part of
the equation must also be equal to zero and, for each value

of n,
bv. Uy [ODs | Oy
bv l dr (1 (1 a:) Tad bz:+'by
aa"t;o (2’uduﬂ+‘uozA )_I_aUq (200034'03 A )+
O 0o\ UTodxtUol s+ Votla
(Ge+32) = )

Equation (8) is & differential equation of hyperbolic type
because ulto2>e,® and the characteristic surfaces are
cylindrical surfaces perpendicular to the plane z=Constant
with generatrices coincident with the characteristic lines of
the two-dimensionel flow. This can be seen from the fact

. .. O, OUy Ors , Uy
that the coefficients of the derivatives 32 0y and 5a +b_-y
of equation (8) are expressed as functions of the properties
of the basic flow and are the same as the coefficients of the

Uy, O ond 3—‘;“+%: which define the basic fow,

derivatives — oy b

and the coefficient of %w?,. is one (see, for example, reference 4,

page 282). Therefore, the disturbance flow field 17, (ux,7,%x)
can be obtained by the method of characteristics by moving
along the characteristics surfaces which are cylindrical. The
characteristic net, which for the general case must be drawn
in spatial coordinates, can be drawn in this case only once
for any value of @ and n and is equal to the net of the two-
dimensional flow. Equation (8) can be transformed for
E}uu buu
dz

? are known terms and are given from the two-

practical use.

an
Y t] Dd

dxmensmna.l flow field.

In the equation, the terms in ugry,
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Assume, in the plane zy, polar components for 1" and ¢ for
the velocity, defined by

ue= TV cos ¢ :
) (9)
o= Vo sit ¢
and, because higher-order terms are neglected,
u, =V, €08 pp—. Vo 81N @
L w
D=V, sin @+ ¢ ¥ cOs &

where

V=Vi+ 0.V, -
} (11)

e=go+ 2> Gnox
If n is the normal to the projection of the streamline in the

plane z=Constant, the derivative % is expressed by

3§ oS v oS uw

on~  dx I_’[_by v - (2

By use of equations (4) and (1), equation (12) becomes

oS, vg-{-Ea.L,
( YRR bz Vo Vot
DSQ 'Uuizg_._u,._
+E ax ay ’Vo‘l‘EGuVa (13)

By cons1derm° only the lowest-order terms, equation (13)
becomes

3S bSn

O s O 0
%ﬁ (a Vot V.):[ s (14)
But, N
aS“(v. voV.)+aS°(u. —u, V)
== V3 aai%*’a}“ 7,)=0

because the right-hand term contains as a factor the variation
of entropy along the streamline of the basic flow; therefore,

20, . Gf 0S. [V 25,
5z 0y~ 7BV, one +A) RV, on, (9

where 71, is the normel to the streamline of the basic flowin the
plane zy.

After several transformations the following equations can
be obtained (see reference 2): In the plane z=Constant along
the characteristic line defined by

d
d_g'__"}\l:t'&n Bot+ew)

(16)
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the following equation is valid:

__d‘w,, L Sin ﬁu tan Bo_L_l_ deg ﬁ dlpn
dz Vo cos (Boted ' Jr
3
sin*f, 1 ds'+¢,.Bl+ 20=0 ()

€os (¢o+l30) +R dn,

and along the characteristic line of the second family defined
by

d
Th=Ny=tan (¢y— A1) (18)
the following equation is valid:
_dw, 1 s:nﬂotanB.J;dI,. lita, n g don
dz V, cos (pg—Bo) = dz Vo' °dz
__sin® o 1d8S, Va
o5 (oo Ba) 7R dng oD Fy =0 (19)

where B,, By, C;, and (; are coefficient functions of z, y, Vs,
d V dVe\ (dV,

on g ( ) ( ) along the charaéteristic lines of the
first and second families at each point and are independent of
172, @ny and w,, and, therefore, can be deterniined once for the
basic flow and used for any kind of disturbance flow in the
limits of the approximation accepted. The coefficients B,
B;, (1, and ()} are given by the following expressions:

- 1 [Sin" ﬁo dSo dVo) COS(QOQ BO)]
cos By cos (pot+Bo)L. vB dne Vo\dz J; sing,
(20a)
B _;_______,1__‘ B ____[_Sin4ﬂo_d_§o_n 1 dVo) g?i(‘Po‘l'ﬂo)
" c0s Bocos (vo—Bo) vR dny Vo\dz /i .sing,
(20b)
Cr= ) (tg. ZB°+2 sm2 ﬂo cos? 50)
_2d_.§'_q sin® B, 1 /d V) cos{pg— J
¥R dn, cos (‘Pn‘l‘ﬂo) Vo\ dz /acos(eo+Bo) cos’

1 72V,
Cr= T, ) (tan’ Bot 2 sin? Bo cos? 130)+
i d Vo) cos {po+ By} Q:I

1¢08 (po— Bo) cos?

[2,48 s
I dny cos (po— Bo)

( 2 sm’ﬁ)

where <%—°) is the derivative along the characteristic of the
]

(20d)

first family and (%?)2’ along the characteristic of the second

family.
In order to determine the value of w, at each point of the
characteristic net, the following relations can be used in the
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plane z=Constant:

f— Q_tg du )
_byT

S L (21)

and, if 8, is a streamline projection in the plane z=Constant,

dw _dwu , dw v 2V a2V aSa

30.=5: 7oy 7= Tttt 550z 77 22
In the approximation accepted,
oV oV,
Bz 25,
oS oS )
' Dz=2a" Az
therefore, .
7 2
1 ow, 1 0oV, 3S, d (24

Vo 08q Vo 0z ' 0z yRVE
where 8,18 the streamline of the basic flow.
Equation (24) permits the determination of the value of
w at each point of the plane z=Constant as a function of
the local variation of 17, in the z-direction. Therefore, by
means of a step-by-step procedure, all the flow field can be
determined by working in planes z=Constant where only
one characteristic net must be used, by means of equations

(17) and (19), and by determining the value of 35 L at cach

point of the net by means of equation (24). Thc calcula-

-tions are started from the flow field defined, or along a sur-

face which is not a characteristic surface, or along a charac-
teristic surface and a stream surface, The flow field at the
starting surface must be determined from the boundary
conditions. If the starting surface is a shock wave, the
flow at the shock surface must be obtained from the physical
properties of the shock wave related to the boundary con-
ditions considered. Relations between boundary conditions
and shock waves are presented in detail subsequently for the
problems considered.

Similar equations can be obtained by using C\lmdnral
coordinates in place of Cartesian coordinates.

Equations (17) and (19) remain the same. Only the first

term changes: g‘zg becomes ?%: and the coeflicients B, and

B, becomb_ .
— 1 sin 8o sin (¢o—8B¢} |
By = o5 o cos (et B9 Y +5;

e 1 singsin(etBo, f
BY'= o5 By cos (eo—F9) Yy ~5

25)
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Equation (24) for cylindrical coordinates becomes (see
reference 2, equation (8¢))

(aw.) _OV., ai 3S. wausinéf
- 0% Jemconstent Y 00 ' YRV y 08 '}

(26)

The use of the linearized characteristic system is simpler
in many cases than the complete characteristic system and
reduces in some practical applications the extent of the
numerical work required, especially if solutions of many
similar problems are required. 'The same concept can also
be easily applied in the field of nonsteady or relative motion
of flows,

The flow field around slender bodies without axial sym-
metry can be obtained by meens of linearized methods, and
some practieal three-dimensional problems not analyzed
before in the approximation of nonlinearized flow ecan be
analyzed by this method.

In the next sections some typical p0551b1e applications are
presented.

SOME TYPICAL APPLICATIONS OF THE LINEARIZED
CHARACTERISTICS METHOD

TWO-DIMENSIONAL ROTATIONAL FLOW FIELDS

Two-dimensional potential flow permits hedograph solu-
tions, and, therefore, any kind of two-dimensional super-
sonic potential-flow solution can be obtained in the hodograph
plane; the numerical solution in the physical plane then
requires only the construction of a characteristic net in
order to find the position in the physical plane of each
point of the hodograph plane. The solutions of problems
in which boundary conditions are given only along a stream-
line are very simple in the approximation of potential flow
because in this case the velocity is constant along a family
of characteristic lines (single-wave flow); however, similar
calculations for rotational flow are much more involved,
because a step-by-step procedure is required for the solution
on the hodograph plane as well as for the construction of
the characteristic net. By means of the linearized charac-
teristics method a rotational fiow field can be considered as &
modification of a potential flow field, and the linearized
superposed flow is the flow which takes into account the
effect of the presence of shock waves and the effect of rotation

in the flow.
Consider, for example, & two-dimensional profile which

produces & shock wave at the leading edge (fig. 1). If the
profile is curved, the shock is curved, and the flow behind
the shock is rotational. Assume that the flow field behind the
shock can be expressed as

U=Ug T v="0g+,
=+ o=@t @ 27)
S=Sl

where u, and z; are the velocity components defined by a
potential flow field, which in this case is a single-wave flow,

bl
R O'B G)A
%
(@A,
@)% %o
FIat ns 1.—Application of the linearized charactertstie system to two-dlmenstonal rotational

fiow,

.
(‘%) anng the characteristic lines of the first family is

zero, and u,, #, and S; represent the flow field that takes into__
account the reflections occurring at the shock and the effects
of the entropy gradient. The flow feld represented by V,
and ¢ can he immediately determmed and 1, and ¢, are
constant along the characteristic lines of the fifst family,
which are straight lines. The characteristic net of the flow
Va0 can be drawn in a short time. Then, along the charae-
teristic of the first family,

deIT,--—taandan-[—*—lidS;-[—«p;Bldxl—l- Cidz,=0

(28)
where .
B—— 1 e ﬂ_) cos (go—Bo)
' cos o cos (po+Be) Vo \ dx /2 sin B,
and '
Vs 1 €08 (¢o—Bo) ( '
Ci= dx /2 Va cos (ot Bo) c08’ Bo +" sin® 13 (30)
and, along the characteristic of the second family,
V dVi+tan Bo d‘FI‘l"" 50 dS:+
Vi dv, . 7 1
Ve Vo (tan B"+ sin? B, cos? B, =0 61

(29)

Equations (28)°and (31) can be simplified by introducingm .
the gradiants (Wo)s and (g0t B0)s along the r-axis defined as

o= )

e ):—[a“'“*ﬁ” (32)

-q

It can be seen from figure 1 that, at any point A of ordinate

¥4 on the characteristic line a, crossing the axis at A,, fhe
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variation (%—9) along the characteristic line of the second
2

family at A is

() ][ 1-

cot (ot Boja, 1
cot (fPo—ﬂo)Ao] _
sin® (eo+Bo)a,

(33)
because 8, and ¢, are the same at A and at A,. Therefore,
LdVo\ __a ey
Vo _EE)A_ 1—by. 34

where a and b are constants along each characteristic Iine
of the first family, Then equation (28) along the charac-
teristic line of the first farnily becomes

—‘%———-tan Bo d?l“l'%gg dS,—

08 (po—Bo) 1 ady +
1 §in (po+Be) cos Bo sin o 1—by

y—1 ady cos(go—F) .
( o s B,) T—by sin (00T Bs) o8 ,30 =0 (35
Therefore, if
Vo)
~sin? (¢o+ﬁo) Vo

__ (2ot Bo):
sin® (po+Bo)

the equation along the first characteristic line becomes

dIY tan Bo d<P1+-—"R— dS1+ e %d log (1—by)—

(36)

( + sm ) tan Bo V 3 dlog(l bi=0 (37)
and the equation along the second characteristic line becomes
dV’—I—tan Bo d;al-i-sm 3°de+ ’

I dVo

(t,a.n’ B °+2 sln’ Bo cos’ 8 ) 0 (38)

All the copfficients of equations (37) and (38) are constant
along characteristic lines of the first family and can be
caleulated at few points on the z-axis.

The coefficients of equations (37) and (28) are independent
of ¢; and V; therefore, with one calculation from points A
and C of the net of figure 1 the values of 17, and ¢, at a
point B can be obtained directly without the necessity of
an iteration process, with terms of the order of (Ax)? also
included in each step. Indeed, if all the quantities which
are variable along the characteristic lines are expressed in

Yalleot 50):.]40___”_

the form
aa—aa'l’( )A +gC:A; ——+0(az?)
(39
), =( %) +5a 2 Az 0(az)
then )

a,-—aA—[( ) Az+(°“) Ax]l-f—O(m:’) (40)

At point C equation
ve
tfi.[xl) agal) e ] (bS) bo- (ﬂlc(

+1 (%),
while at point B it has the form

)t BG4 ),

then, from equation (40},

. aV aV;
e

[t ()14
ey e o
But, .
ect(22) 0c]ae

[ 2«0_1
(32 +2) T oo

Consider now equations (37) and (38).
(37) has the form

bn+

Indeed,

agol) [ am) +(%2;[>ch] [ao+(g—2)cAr]+ 0(az?)
a,n
(6o

TS IETC TS, w.
and also
[ b«p,) (a<p1) :lac'l"aBA __I: (a.‘*’! ac+ac(-bzl—‘p") Ar--

) (a“") Az] Ar+0(AazY)

Therefore, equation (37) along the first characteristic line,
terms of the order of (2z—z¢)® being neglected, can be written
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in the form

(o1 e1c) tan Bt
bs.ls) l:(“’la'{—‘plc) _

)]( ) —0 42)

and equation (38) along the second characteristic line, terms
of the order of (xz—u4)° being neglected, can be written in
the form

v - I
(Via= Vo) 77—
‘Sla S 2 1
T X sin Boot3s (l
Vigt Vi, v—1
tan B Voe ( 2'sin? B

(Vig= Ve (T (or—en,) (1am oy tan o)+
At B
Sip—Sy , ., .
2T (i oy i o) +
IR 2 _y—1
}[’t—o_ (~tan Bt 5o B, cos* Bo):L+
Vi, s —1 ey "
,:'I_’i (‘tan- 5o+2 SiIl:Bo cos? 30) 545 (1 e} DA)=0

(43)

Because of the possibility of considering directly in the
calculations terms of the order of (Ar)? also, large sieps can
be used in the characteristic net and the effect of entropy
gradients can be easily evaluated after the basic character-
istic net and & few streamlines of the basie flow have been
determined and the coefficients of equations (39) and (40)
calculated at a few points on the axis.

All the coefficients are constant along each characteristic
line of the first family; therefore, in going from B to D, only
the terms containing S; and ¥ must be changed and the
caleulations are simplified to some extent with respect to the
rotational-flow charaecteristic calculations.

AXIALLY SYMMETRIC FLOW FIELDS

Far axially symmetric flow, the equation of linearized

characteristics becomes

1 4V, doy , sin® §, .S, iy Vip
‘r‘d_' ﬁod + 'YR ‘E"" 1B1+E,*°Cl"—0 (44)

along the characteristic line M ,=tan(8,—eo) and

1 dI’

; t nﬂod(pl'l‘m ﬁn dSE

i+ =0 (45)
along the line My==tan(g,—Bs) where By’, By, (', and (% are
defined by equations (25) and (20).

The introduction of equations (44) and (45) simplifies
noticeably the numerieal calculations without affecting sensi-
bly the precision of the results. The practical use can be as
follows: A basic body shape is determined first by means of
characteristic calculations, and the characteristic net is then
obtained. The basic celculations must be extended in &
region in front of the shoek wave, determined with the usual
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procedure (for example, reference 3), and in a region inside
the body as shown in figure 2 in order to determine all the
fiow field necessary. Thus, a reduced number of points of
the characteristic net is chosen at which the superposed flow
field for each boundary condition different from the basic

shape will be determined. The number of points required =

depends on the magnitude of the superposed flow field; how-
ever, the'number is usually small, because for each step
between two points A and B the dlsturbance velocity can be
expressed in the form

=Pt G2) 0o H(G5) 52 @

where the term (ﬂ’-) 4zt is also included because, in the
d.r! 4 2 -

differential equations (44) and (45), the coefficients of the
differential equations are independent of the solution and’
are known at both points. If the entropy term S; is neg-

lected, by applying finite-difference methods the velocity ™

components at & given point g5 of the characteristic net can
be expressed from the values at two points £5 and g4 in the
forms

m-+L m—L

(V, l)ﬂ—(I Vet 71— (‘PL)H 1+n (‘PL)xs 14+n 47)

1+n

(I’I)ﬂ=( Vl)rs i%‘f‘(%)n%f_"‘(‘m)ﬂﬁa T (48)

1 . —_ . —_
(0de= = e 0 e~V (e B
T+n 1t '
onesd (49)

where (@1)a, (e1)s (T1)e 8nd (Vi)ys are functions of the
boundary conditions considered, while the coefficients I,
m, 1, p, ¢, and r are functions only of the basic flow field
and, therefore, must be determined only once for any
boundary condition considered. These coefficients are

I (I?o tan Bu)‘r"’( .[70. tan Bo)‘g.
2

M=(x s —24) [ VO)ss( B Vs +(V)es(B 1'):51

n=(rg—rg) (C)u+(C) ’5]% |

0
_(Va tan Bo)s+( Vo tan Bo)gs (50)
o _

g=(eg— L) [(Vole B )es+(V u)ABz’)n] 1

r=(eas— 2 (Cast (Ol

If the entropy terms in %% are considered, two more terms
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in (8)g and (S;) g must be considered in equations (47) and
(48) and two more terms in (Si)ss and (Si)w, in equation
(49). However, because these terms are small, they can
usuelly be neglected in practical calculations.

Because all the coefficients are determined only once, the
determination of (1) or (¢1)gs for cach boundary condition
is simple. Points at the boundary can be investigated by
means of equations (47), (48), and (49). Points on the shock
can be analyzed in a similar manner. A practieal caleulation
can be performed in the following way: The basic flow field
and the number of points in which the superposed flow field
will be considered having been determined, the new boundry
conditions (shape of the body) are placed in the character-
istic net (fig. 3). If A is the point where the basic body
departs from conical shape and OBC is the new boundary
condition, the flow field Letween the surface of the conical
body OB and the conical shock OE are known from cone
calculations; therefore, the values of 17 and ¢ at each point
Be, 1a, 2a, 32, and Ea of the basic characteristic net are
determined, and by difference the values of 1’ and ¢: can be
obtained. From al the flow at the point L of the boundary
can be determined from equation (48) where ¢, is known at
I, and the coefficients at L can be determined by linear
interpolation between b1 and ¢1. From the values of 7, and
o at al and L1, the corresponding values at bl are inter-
polated. Then all the values for the line b can be obtained.
For the determination of V', and ¢, &t a point ¥ on the shock
wave, the equations of the shock wave and equation (47)

5 ’

g4

mia A T8

FiuRE 2.—The basic characteriatic net for axially s§fn:_metrlc flow.

¥
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Fraure 3 —Practical appiication of the linearized characteristicssyatem to axially symmetric
flows.
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are valid. At the point F the values of ¢ and 17 are known,

r

and from the equations of the shock wave the value of %};

s function of ¢ can be determined. (The value of ¢ fixes
the deviation across the shock wave.) Therefore,

W=+ Pr=(Vae+(30) e (51)

Then, equation (47) applied between the points 4b and F

gives
ov ,
do >,a(¢’1)r
m-+L

(Vo 1500w Ty

(VI)F=(

(o)e B2

(52}

and the value of (¢:1)r can be determined.

The work required in the calculation of the flow field for the
basic body and the determination of the coefficients L, m, n,
p, q, and » can be reduced to a minimum if conical bodies are
assumed as basic bodies for the calculations, because in this
case the basic flow is available in tabulated values (reference
5) and the coefficients L, m, n, p, ¢, and r arc functions only
of the polar coordinate ¢.

For conical flow, the calculations can be performed in the
following way: From conical-flow calculations, the values of
v, and #, as functions of ¥ are known, where o, is the radial
component and v,, the normal component of the flow field
in polar coordinates referred to the limiting velocity (fig. 4).
The following expressions for 17, 84, and ¢, can be determined
from the cone calculations:

Vi=p,*4p,’ A
‘-[170’=1+;_2:f Sin? ﬁﬂ
co=v+7 a (53)
Dy
tan '}'-—-—ﬁ-‘r J

Therefore, Bo + ¢o and @—8o are known as functions of .
From a point A on the conical body, the characteristic line

Y

o Uk

X

Fioure £, —The busle net when conical flow [s assumed ss the basle flow for the linearized
characteristics method.



LINEARIZ

of the first family AC and of the second family AD can be
drawn. The line is defined by the expressions

Ye—Y._ tan(f+o)s+tan(f+o)x
ra—Tq _ 2 '
Yr—ya__tan(B—p)sttan(B—o)r
Xi—Xp 2 )

In order to construct a characteristic net that requires only a
smeall amount of calculation, the points of the net are chosen
along streight lines from O so that the conical property of
the flow can be utilized. The net can be constructed by
fixing the steps along the body.

When point B is chosen along AQ, the point E along AC
is determined by drawing BE parellel to AF. From E and
F (along OE and AD) the lines GE parallel to LF and FG
parallel to EH can be determined, and the point G can be
obtained. From G and H, point M can be obtained, and by
proceeding in a similar way, all the characteristic net can be
determined. The coeflicients of equations (50) are the same
for each point N, F, and E along the same radius. The
tabulated values are given only in the region between the
budy and the shock wave; howeyer, the caleulations can be
extended by means of conical calculations. For example,
from the following equations (see, for example, reference 4,
p. 243, and the following pages):

y r L3 t
(R-"‘t‘:l:_ vt 2(;(:‘ ¥ ]
= na=va k.

(rl)\‘p A i=(”l)ic cos Ay+(R— vr)'I'CFSin Ay } (55)
(2r)ep+as=(V2)s, SID AY—(R—7,)y, cos AY+(R)y,

(54)

and

{(where R is the radius of curvature of the streamline in the
hodograph plane}; therefore, the characteristic net can be
extended to the outside flow. For conical flow the coeffi-
cients By, By, (.. and C: can be determined as functions of
¥. For conical flow, coefficient By’ of equation (25) becomes

B/— 1 sin Bo sin (¢o—B0)
' " cos By o8 (@a+ Bo)
I dVy/dy\ cos(ga— 50)]
To dy \dzr/»» sin B,

and C; becomes

L dVesdey 1
=TIy dy (a’x M cos’Bo< 2'5“_!-2 sm’ﬁ )+

1 dVs/dyN cos(g—Be) 1
Ya dy 75)» cos (et Bo) cos?ﬁo( +2 )
but
(-_i_ag _sin ¥ sin(gg+ Bo—¥) (56)
dx/n y cos(go+ Bo)
and
(a’lll __sin ¢ sin(Y—potBo) (57)
dr/na y cos (ge— Bo)
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Therefore, -
,ve A2
a:[B' Vo W)M:L
— ., sin By sin{pe—Ba) |
~FiL i v e e
d¥s 1 sin (g—eotBo) coly
dy /y sin B sin (go+Bo—¥) (58a)
v fdr
s=[ 51 ()..,
— 1 sin Be sin (<P0+130)
" cos 5u[ Vo gn g sim G—mt B T
dV 1 sin (gotBo—¥)
20, 5 s s (e B9 {58b)
and .
C=Cr_ % N
1 dV,
) cos? Bu( i foty sul’B)
1 v—1 Sln(\b—‘Po L Bu)
cos® By (1 +2_3inz Bo/ sin (oot Bo—¥). ) (58¢)
dr
d=0 W)x,
1 dV, .« . y—1
20°), Lo (30 o )
sin (g4 Bo—¥)
m( NE=TNE remrwe] IICY
and
dVe 0. Dtoscoty
dy ‘_Yo 1 20,} (_588) '

(r—DA—Vd)

If equations (58) are used, the coefficients of equa.tlons (50)
can be expressed as follows: .

1, h
m=z ($es— Vas) (au+azﬁ)

=% (Yes—VYus) (CutCes)
q =Z (Ys—¥p) (bat+by)

r=3 Vo= o) datde)

o

Because the coefficients a, b, ¢, and d are functions only
of ¢ and of the free-stream Mach number 3, they need to be
calculated only once for different values of 3/ and given in
tabulated form; therefore, the calculation of any flow field
for which the ba.sm flow can be considered a conical flow can

be reduced to the solution of a few linear equations with

known coefficients.

S ——————
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In order to try the method, the flow around an ogive, as
shown in figure 5, has been determined at A4=3.016 by the
method of characteristics and by the method of linearized
characteristics. In figure 5 the usual characteristic net is
shown, while in figure 6 the linearized characteristic net and
the basic body are presented. As a first basic body the
cone chosen is the cone tangent to the apex having a cone
angle of 12.5°. The cone chosen is not the most convenient
because the values of ¢; at the end of the ogive are large,
and a better approximation would be obtained if & cone of
smaller cone angle would be considered as the basic body. A
cone somewhat different from the ogive considered has
been chosen in order to have some information on the
approximation of the method for sensible variations of the
shape of the body from the basic body.

Downstream of the characteristic line AB, the velocity
components V; and ¢, would become large because at the
surface of the body the component ¢ is quite different from
the component ¢, of the basic flow; therefore, the flow deter-
mination in the region downstream of the line AB has been
considered as & new problem, defined by the flow along AB

ERONAUTICS

this region a new basic flow has been considered. Again, a
conical flow field has been assumed as the basic flow. From
the values of ¢ and V' 2t B and A, and from the order of
magnitude of ¢ downstream along the body, a conical flow
field that would give a small disturbance component in this
region has been selected. The cone chosen for the second
part is & 5° cone at A{=3.077. The cone is entirely contained
within the body considered in the region used in the caleula-
tions as shown in figure 6, and the most convenient region of
the conical flow field is used for the calculations.

In order to pass from one basic body shape to the other,
the components V), and ¢, along the characteristic line AB for
the second basic body must be determined. This operatign
can be performed by determining the value of 17/ V)" and
e’ +e’ at the points &, b, and n of figure 6 for the first basic
body, by interpolating the values at the points &, b/, and n’
between characteristies 1 and 2 along the characteristic of
the other family, and then by determining the new value of
T/ and ¢,/ for the second basic body along AB from the
expressions

I'rlli:T,'_ I'C-”

_and from the streamline that represents the body shape. In o' '=o—uy’
4 —
3t
¥y er
l L
1 1 ] 1 L . | - 1 1 J
0 | 2 3 4 5 6 7 8 9 10
X
Fiourx 6.—The shape ofthe body analyzed and the net used for the characteristics method for M =3.018,
2r
B
Y
L]
‘ -
’
J/
First basic. body”” Second basic body-’
1 1 A 1 . i | i !
0 1 2 3 q 5 6 7 8 9

F1auRE 6.—The characteriatic net for Inearized characteristic calculations, First busle body, 12.5° cane at M =3.016; seenmd basfc body, 5° cona at M=3.077.
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and

LT
=’ To'

where 17/ and ¢,’’ are the values of 1" and ¢ for the second
basic body at the position considered and V' and ¢, the
values for the first basic body.

The calculations by linearized characteristics required the
solution of 11 linear equations of the type of equation (47),
{48), or (49} with one unknown and the interpolation of four
points, which can be done in a very short time (of the order
of 1 bour) when the net is drawn and the coefficients of the
equations are determined. The pressure distribution ob-
teined is presented in figure 7 and is compared with the pres-
sure distribution obtained from the exact method.

For the back part of the body where the flow differs slightly
from parallel flow, a cylindrical body with uniform flow at
different Mach numbers can be considered as the basic body.
In each region of the flow the Mach number for the basic
flow is constant; however, the component 4 can be approxi-
mated conveniently by changing the basic-flow Mach
number.

When the body has a tail, & conical solution as proposed in
reference 6 for flow ingide a tube can be assumed as the basic
body. In this case, each streamline of the conical solution
can be considered as the shape of the basic body (fig. 8}, and
the flow field cen be obtained from conical-flow celculations
which can be determined easily in the hodograph plane. By
changing the strength of the final shock of the conical solu-

16 T T T T T
Characteristics method
) o Lineorized charocteristics
i2 < method
-y N
08 : 2
G y
'04 \ 111} l
& nﬂﬂfﬂw
] e \‘\ 0
L
=045 1 2 3 4 5 6 7 8 .

Fiayex 7.—Comparison between results of the calculation by the characteristics method
and by the linearized characteristics method obtained at M=3.018.

f
[

FicTre §.—Conical flow for tail of axially symmetric body. Injtial M=3.2.
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tion, different ratios between meximum cross-sectional arca
and tail area can be obtained. Any part of the streamline
can be assumed as the basic body shape.

The present method does not require the existence of a
linearized solution snd, therefore, can be applied elso at
high Mach numbers. This method permits obtaining the

shape of the shock wave and taking into account entropy -

variations. High precision can be obtained by using several
basic flow fields for the different regions of the body con-
sidered. Because of the simplicity of the calculations, the

systematic. calculations and tabulation of coefficients of

equations (58) for different cones and different Mach num-
bers would be of great practical interest.

Tabulated values can be obtained also in the foIlowmg '

way: For each cone OC of cone angle ¢, considered, a super-
posed flow must be calculated as shown, for example, in
figure 9{a). The values of V) and ¢,.for this superposed
flow are obtained at given points of the characteristic net.
Because of the linearization of equations, if the superposed
flow changes in intensity, the values of 1] and « at every
point change proportionately. Because of the conical prop-

erty, if the point A (fig. 9 (b)) moves along OC, the flow

field changes in scale; therefore, the effect on a point E due  ~

to the superposed flow field Ag; starting at A is equal to the
effect of a linearized flow field starting at A’ and of mtensn;y
Ap gt a correspondmg point B’ defined by

Tz Zar_ Ys
Tx ZTa Y= N

- Therefore, when the flow field for the disturbance AB is

determined, the effect of any disturbance of the type of the
disturbance AB in the entire flow field can be obtained.
Then any body shape can be considered as a superposition
of flow fields of the type of flow corresponding to the dis-
turbance A¢ placed along the basic cone. From the simple
ealeulation of the flow for the shape AB, the velocity can be

3

A?l[ —[ T T Br
A A

|
/
/
L, i,g.
/ I’f / [
/ G
o/ |

0 XA 4&-&! XEI X

(s) Disturbance distribution.
(b} Posltion of the disturbance.

F16CRE 8.—Determination of lnearized ﬂ%: of constant Intensity superposed oo confca
W, - -
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determined by means of the equation
V=V,+ EIV,.

where n is the number of the superposed flows that affect
the point considered.

Consider, for example, figure 10. Several linearized fow
disturbances must be superposed on the basic conical flow
field, First, a superposed conical flow at O that can be
obtained from conical-low calculations must be considered.
At A, a superposed disturbance must be added in order to
satisfy the boundary conditions at A. If the calculations
have been performed for the disturbance at 8, and for
Ag =1, the velocity at A can be obtained from

Va=(Voya+- (V) a4+ (Vi)a

where (Vo). is the velocity of the basic flow at A, (V7), is
the velocity disturbance at A due to the conical flow super-
posed at O, and (173), is proportional to

¢2,=0a— (@) at (@1} 4]

and can be obtained from

(Vi R~V

where & is determined by

Zag_Za_Ya . e

e —m——

In a similar way V; is determined at the points B, C, and
so forth. At B another linearized flow field having velocity
components V3 and ¢; must be considered where

(iﬂx)a= [ [(‘Po)s'i" (%)B‘I‘ (%)B]

and

(Va=(Vi), (202
. : (ﬂol)a
where b is defined by

Tay, T Yo

0

F1o0oRE 10.—Application of the linearired charactoristies method having constant
disturbance superposed on & eonical basie fow.

ERONAUTICS

Because of the rapidity of caleulation, the variation of uny
geometrical parameter can be investigated in practical appli-
cations without the necessity of a large amount of numerical
work.

CONICAL FLOW FIELD WITHOUT AXIAL SYMMETRY

The calculation of slender bodies without axial symmetry
requires the determination of conical flow without axial
symmetry, which can be done by means of the lincarized
characteristic method. The basic problem of the de-
termination of conical flow consists in determining the shape
of the conical shock wave produced by the body. When the
shape of the shock is determined, the flow field around the
body edn be obtained by means of numerical caleulations
(see, for example, reference 4). Because the relation be-
tween the shape of the body and the shape of the shock wave
is not known a priori, the method of linearized characteristics

~can be particularly useful for flow determination of this kind.

An approximate shape of the shock wave is assumed as the
basic solution and the flow field inside the shock is de-
termined; then a linearized flow field is superposed in order Lo
satisfy the boundary conditions at the body. The calcula-
tions are simple if the basic flow can be determined analyt-
ically or numerically without a large amount of calculation.
For example, for slender bodies the basic flow can be the
axially symmetric flow for which values are available in
tebulated form. Consider a conical shock wave which ecan
be defined in polar coordinates as

-‘bt=(\l’0)c+$(¢u): cos M’I"Z.:: (¥m), sin mé (GO)

where all the values of ¥, and ¢, are small so that terms of
the order of ¢,* can be neglected. Such a shock wave is
approximately of circular cross section, as is found for slender
conical bodies. If the flow is assumed to have a syminetry
plane, the seeond summation of equation (60) is equal Lo zero.
" The velocity componenis in the radial direetion (o), in
the tangential direction (¢r);, and in the direction normal to
the shock (¢y); in front of the shock wave are (sce fig, 11)

(vr:)l=1'r!‘. cos ¥,
(owh=—V,sin ¢, cos & . (61)
(o), =—V; sin ¢, sin a

where all the veloeity components are referred to the limiting
velocity and « is the angle of the dihedral between the plane

- normal to the shock wave and the plane containing the ref-

erence axis. Across the shock wave the following relations
are valid:
-

(PN)I('DN)Q‘:Z% [1 _(9r)12;(”r)12]
—r—1

RS

(oa) ;_.7—1 (1—V2 cos® ¢,— V¥ sin? ¢, sin? a) | [(62)
METT N V. sin ¢, cos a

(1— 12 cos? y,— V7% sin? ¢, sin? «)

(”r)x;(-vr)z

(”r‘)l‘—"‘("J r)2
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If the velocity components behind the shock oy, 24, and w of
the flow field in polar coordinates are considered at each
point l{’:=ﬂ(‘ﬂ,+2\0x, cos né (fig. 11),

(¢, )p,=v,=V] cos ¥, (63a)

("-'l)f =_'Y—1 (1—.[ 2 cos? ¢,— V¥ €in? ¢, smz a)
* +}' 18111 lpl

Visin ¢, sin’ & : (63b)

(w)y,=—V1sin ¢, sin a cos a-}

y— . sin &
7_1_1(1—4 12 cos? §,—V* sin? ¢, sin? a)m
(63c)
but
_dy ny, sin né
tan a—a—sinvdg >3 sny

Therefore, the velocity components behind the conical shock
wave of equation (60), if terms of the order of ¢,? are neg-
lected, are

(J?r)i.= Vi cos (\I’o)n'_ Visin (‘{’D)c Z ('[’:)s cos nb

y—11— "1!

_ cos? (Yohs
(Pl)‘, 7_!_1

V) sin (Yo)e

1—V7? cos? (o)
W)E(%). cosnf F

y +1 COS(%).( Vi—

{ w)+.=l:V;

Then, the velocity components behind the shock defined by
equation (60) can be expressed as:

(.l’r)i = (Uro)“,‘i' E (‘x"l):(vr)z CcOoSs nez
(Ul)*=(jvln)‘+2(¢l)l(ul)l cos né (65)
(w)y =33 (Ya)sWan sin 16 5

_2 osz ‘po i
( 11511124,0. ) Zn(x#,),smne ]

- (64)

where v,, o, (2)4, (Pa) s, a0d w, are independent of 6, v, and
tn, correspond to the flow field for circular comcal shock

Yo, 8Bd (£}, (0x)x and (w). at the circular cone y= Vo, are

independent of n and are defined by

[(Ur)ll'h,.=_VI sin 'Po,—(l?no)‘u T
*cos? o,
(oe)elop, =2 Fcos (@.( P are)-(32), |
[)alp, = (;m :
J

(66)

and
(av . _v,o—i—v,.ﬁ cot ¥,
o a - -v.o:
dg ¥o

It can be shown that the flow field defined as in equations

(85) satisfies the boundary at a surface of a conical body -

defined by
Y= kl’uc+2\"nc cos nb 67)

if the terms ¢,, are small and quantities of the order of

¥ao or higher are negligible with respect to terms of the order

of ¥.. At the surface of the body the velocity must be
tangent to the surface of the body; therefore, at each point A

of the body
(_) d,pc —mb.c sin n@
A sin \(/c de s '(pc

and, therefore, the boundary conditions can be expressed in
the approximation considered as

o
_ (2n)eo=(Vxy) *oc+(§;;2), > (¥n), cOs RO+

Z [(vl)l]io (‘lbl)l cos né
—(Z Va (Wa)yy 80 R0) (2 duon sin ne)

sin Ipc

where the subscript ¥, indicates quantities at the surface

of the basie circular body and ¢, indicates quantities at the
surface of the conical body considered where the parameters
(). are given by equation (60) and define the shape of the
shock. Because each term of the right-side summstion is
of the order of (¢.)?, the boundary conditions are

(20, =0

() (2 2)elvo, =

RE I

Equations (68) show that the basic flow defined by the

components r,, and ¢, is the flow corresponding to a circular

cone of angle Yo, 'and permits relation of the equation of the
conical shock to the equation of the conical body. The

coefficients (2,)}x, (Pa)e, and (w). for different values of n

can be determined for a-given free-stream Mach number and
value of (Yode or (¥o),; therefore, from equations (60),
(65), (67), and (68), the flow field around any conical body
of the type given by equation (67) can be obtained when the
terms (J.)c are smafl.

The determination of the quantities {v,)s, (0.)s, and (W)x

as functions of ¢ can be obtained from the following equation

¥z 2

/
Y ad i \ Axis

F1GurE 11.—Confeal coordinate system.
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(see reference 3):

p,(z ”"+w')+v,.cot¢+°”'(1 ”")

w wﬂ. bw Ota \__
éin\#bﬂ(l—? T smg&be) 0 (69)

Equation (69}, because of expressions (65), gives

[(ér), a(”n)n] ( Uny
R

ag
7—1 Vgt Ux COb Y __nfw,
(2:)n (1+ B _vrovuo ~sm v (70}
—a3

Because of the approximation considered, the entropy
remains constant in each meridian plane outside of & vorticose
layer of infinitesimal thickness around the body (see reference
3). Indecd,

a® 28 ov, Ova

;1??6_ Ve sm;b bn,b U355 P35 + o, sin ¢+ v,w cos ¢
(1)
and
pusin p O (72)
" oY o9

From equation (71) there results %‘g— of the order of

(¥a),; therefore, where v,0, %‘3—:

is of the order of ¢, and

can be neglected. Then

@ 9§._0 .
TR DY
v, c)w

. w Oy,
=TT oy

+sm Y o8

+o,0,—wicoty (73)

or, in the approximation considered,

bv,
Y

is the radius of the hodograph diagrem in

(74)

Then u,-l-r E) ‘b

the plane #=Constant (see reference 4) and (v.), and
(v.)» can be obtained from a step-by-step calculation from
Y=y to y=yy, by means of the equations

[(vu)n] y—a¢= [(f"n):] ¢ COS (_A‘lb) + [Rn '—<”r)n}\" sin (—A‘lb) }

[(vr)n] p-ay= [(vu)s] ¥ sin ( —A‘p) - [Ru - (Dr)u] y COS ('_A")[’) + (Rﬂ)i
(73)

where R, ai station ¢ is obtained from equation (70) and

b(vu).]

""" SR S P [CPR (76)
can be calculated from the values of (v.)s, (ba)s, and (w),

at .

The value of [(#)4¢_ay can be obtained from

o
nlg—ap= v—(5) A
[)ely-as=luls—( ) ¥ (77)
and (%%E)w can be obtained from equation (71) where
S=28,+8,5 ¢ cos nb ’ (78)

and S, is independent of ¥ and can be determined [rom
the equations of the shock from the expression

S'—(d’ l!/s) ¥og

where ¥s is the inclination of the shock. Then

¥ ., OW,
- '.:.% Si=p,,8in¢ —%—+v,o(v,),+g,n(pl),+

;W SIN Y+ 0x W COS Y (79)

while, if the quantity S; is neglected and the flow is con-
sidered potential flow,

[

sin ¢ - (80)

wﬂ=_

The method presented has been applied to the determina-
tion, for the condition of zero angle of attack, of the flow
field around a cone having an elliptical cross scction with
axes in tho ratio of about 1 to 3, for which experimenial
data were available at M=1.8, and for a cone of elliptical
cross section of ratio 1 to 1.88. The calculations have
been performed in the following way: The bodies are
shown in figures 12 (a) and 12 (b). The value of ¢ at
6=0° is ecqual to 6.3°, while the value of ¢ at 6=00° is
equal to 18.4%. -
The angle ¢ can be expressed as

Vo=t ¥, €OS 20+ s, cos 404y, cos 66
Y, €OS 86+ 4y, cos 106 (81)

but

2, tan xb.c

tan ye=tan o, +— cos’\o

therefore, by determmmg the value of ¢ at six points, the
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following values have been obtained: If yo,=10°,

Yo=—5.07°
Yrp=1.94°
Yoo =—0.84°
¥, =0.43°
¥s,=—0.16°

Therefore, a 10° cone at zero angle of attack is assumed as
the basic body. Reference 5 gives tabulated values for a
10° cone at M{,;=1.816 and the calculations have been per-
formed at this Mach number. The table gives

Yo, =34.45°

The entropy variations S; are small and are neglected.
Then,
(0,)ug=—0.0145

(10)55=0.0255

(La}ng=1.285

A
1
- 90‘
L
— o°
. =|I X -90.'
{a)
3 1
L
| 90°
/MJ};/ J_;s" o°
\
l L

h

(b}
(s} Blliptical cone with axisratloof 1 to 3.
(by Elliptical cone with axis ratio of 1 to L.88.

FisUxx 12.—The elliptical cones analyzed.
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The values of (9,), (va)a, 8nd (). between ¢y, and y¥q, have

been determined by means of equations (70), (75), and (80).
Then ¥y, ¥z, and Y5 have been determined from equations |

(68) where

Oty
( oY )'ﬁoc= _Q(D’q) fop —2X0.6000 .

The values of ¥, obtained are
Yy =—0.24°
¥ =5.1°X 10 _ -
Yy =—L.7°X 107
Yy =T.4°X 107
Peg=—3°X 1077

As is shown from the analysis of the values of ¢, and ¥, the
shock is very close to a circular shock wave even for large
departure of the body from the circular ecross section, and
the effect of the terms corresponding to n=6, 8, and 10 is
very small. The velocity components &t the surface of the
body are obtained from equations (65) at ¥ =y, and the pres-
sure distribution presented in figure 13 is obtained. In the
same figure, the pressure distributions obtained by using the
same calculated values of (r.)., (0x)«, and (W), for M=1.81
around an elliptical cone with a cross section having axesin
the ratio of 1 to 1.88 are also shown. The conical body
having an ellipse of axis ratio 1 to 3 has the same cross-
sectional ares as & circular cone of Y,=11°. Its pressure
drag obtained from this calculation is Cp=0.099 in compari-
son with 0.12 for the circular cone. The conical body having
as cross section an ellipse with axes in the ratio of 1 to 1.88
has & drag coefficient of 0.103, while the equivalent circular
cone of Y,=10° 30" has (5 =0.115. Therefore, those calcu-
Iations indicate that conical bodies of circular cross section
have larger drag than cones of elliptical cross section.

16
A so
12 b b
e :
=T )
¢, 08 ——— o

{
—— Calculated values

04 —o— Experimental values |

-50°

0 30 60 90
Polar angle, degrees

FIGURE 13.—Pressure distributlon around the conical bodies at M =1.81.
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The results obtained agrec well with the experimental re-
sults, also, if the body shape chosen requires large velues for
the angle (Ya)e. With the same flow fields (#:)a, (va)a, 8nd
(w) s, any other conical shape having two planes of symmetry
represented by equation (81) when o is 10° can be obtained
al M=1.816. If the flow has only one plane of symmetry,
only the terms in cos 8, cos 36, and so forth, must be con-
sidered; whereas, if no symmetry exists, terms in sin n¢ and
cos nf must, be u)ns1dered

REPORT

The flow fields defined by (©,), (#a)s, and (1), can be ob-

tained and given in tabulated form without a large amount of
numerical work as for circular cones, and, therefore, the de-
termination of conical bodies can be performed without
difficulty in a very short time.

When the shock shape is somewhat different from a cone.

having circular cross section, the basic flow field must be
different from the axially symmetric. However, if the basic
conical-flow components are expressed in the form

0= vra"f' vrbf ()
R e ()
w=w,f"(f)

the basic low can still be obtained by solving numerically
the equations of motion in two meridian planes, and, there-
fore, the basic flow can be determined exactly. For conical
flow the linearized method can, then, have wide application
to any form of boundary conditions.

FLOW FIELDS AROUND SLENDER BODIES WITHOUT SYMMETRY

Yhen the conical flow is determined, the method of charac-
teristics can be applied to the determination of slender
bodies. The equations used are similar to the equations for
circular bodies at angles of attuck and can be directly de-
rived from those equations (reference 2).

Few values of # are required for the detecmination of the
flow field, and one set of calculations can be used for several
bodies having the same basie body; therefore, the method can
be of inferest for practical applications.

QUASI-TWO-DIMENSIONAL FLOW FIELDS

In many general three-dimensional flow fields of practical
interest the flow is not {oo different from a two-dimensional
flow, and, therefore, the velocity field and entropy field can be
expressed as in equations (1) and (2) with good practical
approximation. Flow fields of this kind are found, for ex-
ample, in wings having plan forms which can be considered
close to the two-dimensional type with some twist or a varia-
tion of thickness distribution along the span.
this kind can be considered also in some problems in which
interference between a wing and a two-dimensional tail
(downwash effects) or between a two-dimensional wing and a
body is considered. In all these problems of practical in-

terest for the airplane design, the component w in the direc- |

tion of the span of the wing can be considered small; therefore,
equations (1) can be used and the components 4, and #, de-
pending on the three-dimensional effect can also be considered
small.

'1dTI

Flow fields of

1102—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Equation (17) expressed along the characteristic line of the
first family A=tan (By+ @} in the plane z=Constant is

' 7
7 S—tan g S22 D0 o 5 4 e,
dw, 1 tan B sin B,

~dz Vg cos (zo+Bo) ®2)

~while along the second characteristic line a=tan{g,— ﬂo) the

following equation is valid:

gin? ﬁo dS;

'YR dJ: Bﬂ+ 02

dw1 1 tan B¢ sin By
- ~dz Vycos (op—Bq)

where By, B,, (), and C; are defined by equations (20).
Along each streamline s,

dw1 aTl _a_Sl_ aaz_ (84)‘
ds, 0z ' 0z BT, '

Equations (82), (83), and (84) permit the determination of
the flow field by relatively sunple procedures.

Consider, for example, a wing having twist, variable profile
distribution, and variable chord, as shown in ﬁguro 14. The
wing can be analyzed by means of the linearized character-
istics method in the following way: First, the root and tip
profiles are considered. Section a and section b have differ-
ent relative thicknesses and chords.

(83)

X
Fs
@
¥
3
i
] /
1 7 /
i
1 }‘77{7-‘ — -
i 2—«’ — 8
_V o] X 4 A
() '
Ko x
1
1
v
\
MY
7] A
i
\
\
!
{c) ‘

(a) Wing plan form.
{b) Wing cross section at & plane 7= Constant.
(¢) Bhock-wave caleulation at the leading edge.

Fiaune 14.—Determination of tha flow around a three-flimensional suporaonio wing



LINEARIZED CHARACTERISTICS METHOD

If the variation from & to b is linear, the properties of &
two-dimensional cross section at any station ¢ can be obtained
by means of linear interpolation between the corresponding
values at a and b.

The profiles 2 and b are analyzed by means of two-
dimensional-flow theory and the characteristic net, and the
values of the coeffivients By, B,, (, and (% are determined
from two-dimensional considerations. If entropy effects are
neglected or incorporated in the linearized flow, the coeffi-
eients By, B,, €, and (. can bhe determined as for the case
of two-dimensionel potential flow at each point of the axis
(equations (29), (30), and (34)) and are constant slong char-
acteristic lines of the first family. Then the linearized flow
is defined as the flow that considers the three-dimensional
effects and the entropy distribution. Therefore,

n=1y(2,y,2) + @ (z,,2) |
r=ty(2,2,2) +az,(2,9,2) (85)
w=quwy (_.I,y,Z) ;

where u, and r; are the potential-low solutions in the plane
z=Constant and satisfy the boundary conditions in the
plane z=Constant, u, and r; are the components due to the
presence of w; (and of the variation of entropy), and @ can
be a coefficient, for example, proportionel to the twist dis-
tribution or to the thickness variation. Because 1, and &
are functions of z, ¥, and 2z, while for the basic flow they have

. . . . . ou
heen determined from two-dimensional considerations, b~:

and b_rg are not zero; therefore, equation (22) becomes

ow_dwu,dw? ol

ST oy 7T it 5
or

owy_ 0V,

ar’;_ bSl ag’
S AR e o (86)

where aa—"_" is the variation of the velocity component for the

hasic flow.

When w; is considered small, in all the flow field the terms
2ue Qu and 20w O
ﬂ: a-c a..

equations along the characteristic lines, and, therefore, equa-
tions (82) and (83) are still valid.

At each plane z=Constant, the characteristic net is known;
therefore, the intersections of the shock wave for the total
flow with & plane y=Constant can be determined from char-
acteristic caleulations. If O is a point at the leading edge
of the wing (fg. 14 (b)), the'shock wave at O can be obtained
from shock-wave considerations and from the boundary con-
ditions because & at O is known, and at O the shoek is two-
dimensional. Therefore, the velocity components u; and r,

can still be neglected in the differential

at O ate zero, while g—:’ is given by equation (86).

plane z=x, is assumed to be close to the plane z=u, the
characteristic lines BA and CA can be drawn in any meridian
plane considered for the basic flow.

If the’
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At the point O, ¥, is zero and, in the neighborhood of O
along the shock L, the velocity can be expressed as

(V=2 aL @7

Now, along the shock wave the direction of the velocity be-.
hind the shock is related to the intensity from the equations
of the shock wave; therefore, the direction (pl—%L along

the shock and the shape of the shock as & function of %
are determined when % along the shock is known. '
If the velocity 17 at a point A of the body is

v bT

(88)

then the veloeity at C and B ean be determined as a functon

of % from equations (82} and (83),. because the value of wy ”

at-A is given from equation 86 and is known, and the value

of -g; can be obteined from the value of w; at A in several

planes z=Constant.

If in equations (82) and (83) the values of 17, S;, and
at B and C are expressed by means of equation (87) and of the
equations of the shock waves which give the coefficients of
the expressions )

017 oV, dL

Dz oL dz

B¢ Op OV

oz 0V, oz

28,28, oT;

dr OV; Oz
then equations (82) and (83) give two relations between
oV oV ot 1!
Fre dﬁf’ and, therefore, 5— 5 land =+ >L ! can be determined.

The equation of the shock wave can relate u as a function
of ¢, or V, as a function of ¢ without the necessity of the
component w, because the component w is proportional to the
inclination n of the tangent to the shock with the plane
z=Constant, and V7 and ¢ are functions of Af; cos », hut

2 .
Af, cos =241 1——%— =11 in the approximation considered

here (fig. 14 (¢)}. The components % and ¢ at B and the
position of B having been determined, in each meridian
plane 2z=Constant, the intersection of the shoek in
the plane y=Constant is obtained and w at B is determined.
Then & point D is interpolated in each meridien plane and
the point ¥ is obtained. Then point F is determined. In
order to obtain (w)r, the streamline DF’ for the basic flow

must be drawn and (———) interpolated between F’ and E.

In g similar way, 8]l the flow field can be obtained. The line
TT’ defining the plan form in figure 14 (2) musé be outside of
the Mach conoid from T. Because few points along each
profile are required, the largest amount of work for such a
calculation is represented by the construction of a basic
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characteristic net which permits obtaining points which
simplify the determination of'w. By changing the value of
the coeflicient e, different thickness distributions or different
twiste can be considered. The new distributions must be
obtained by changing proportionately the variation of thick-
ness or twist with respect to the basic wing and by varying in
proportion the velue of a.

CONCLUDING REMARKS

The method of characteristics for supersonic flow has been
simplified by assuming that one of the velocity components
or the cffect on the velocity components due to variation
.of one physical parmater is small, so that the square of the
velocity components considered small can be neglected.
By means of this simplification, the flow field can be repre-
sented as the superposition on a basic fiow field (which is not
linear and must be determined by the method of character-
isties) of linearized flow fields which are defined by a differ-
ential equation with variable, but known, coefficients.

The calculations of these linearized flow fields can be per-
formed along the characteristic net of the basic flow field.
The method has been applied (2) to the two-dimensional flow
with entropy gradient, which has been transformed to a basic
potential flow on which a linearized flow due to the entropy
gradient is superposed, (b) to axially symmetric problems
where conical or cylindrical flows are considered as the
basic flow, (¢) to the determination of the flow field around
cones or slender bodies without axial symmetry, and (d) to
particular three-dimensional flows which can be simulated
as a basic two-dimensional flow on which three-dimensional
linearized flows are superposed. Application (b) permits
obtaining in a simple way the flow field around bodies of
revolution without using linearized theory and indicates the

AERONATUTICS

possibility of using tabulated values for such determinations.
Application (¢) permits the determination of flow felds
not yet determined by the method of characteristics. Any
such conical flows can be determined by using tabulated
values that can be obtained as for cones of circular cross
section at small angles of attack. The application in (d)
can be of interest for wings of approximately two-dimensional
form having twist or thickness variation along the span and
for interference problems.

ILANGLEY AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
Laxcrey Fieup, Va., July 24, 1961.
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