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SUMDMARY

An attempt 13 made fo derelop a second approximation fo the
solution of problems of supersonic flow which can be solved by
csisting first-order theory. The method of attack adopted is an
iteration process using the linearized solution ag the first step.

For plane flow it is found that ¢ particular inlegral of the
rieration equakion can be written down at once in terms of the
first-order solution. The second-order problem 18 thereby
reduced to an equivalent first-order problem and can be readily
solved. Al the surface of an isolated body, the solution reduces
to the well-known result of Busemann. The plane case ig
constdered in some detail insofar as it gives insight into the
nature of the iteration process.

Again, for axtally symmetric flow the problem is reduced io a
first-order problem by the discorery of a particular integral.
For smooth bodies, the second-order solution can then be cal-
culated by the method of ron Kdrmdén and Moore. Bodies
with corners are also treated by a slight modification of the
method. The second-order sclution for cones represents a
considerable improrement over the linearized result. Second-
order theory also agrees well with sereral solutions for other
bodies of rerolution caleulated by the numerical method of
charucleristics.

For full three-dimensional flow, only a partial particular
integral has been found. As an example of a more general
problem, the solution 1is derived for an inclined cone. The
possibility of treating other inclined bodies of revolution and
three-dimenstional wings is discussed briefly.

INTRODUCTION

As the linearized theory of supersonic flow approaches full
development, the question arises whether more exact approx-
imations are practical. If viscous effects are large, refine-
ment of the perfect-fluid solution is impractical. If viscosity
is negligible, however, higher approximations are known to
vield a closer approach to reality. In intermediate cases,
an improved solution is desirable in order to assess the
relative effects of viscosity and nonlinearity.

The prototype of a higher-order solution for supersonic
flow is Busemann’s series for the surface pressure in plane
flow past an isolated body. This simple result is of con-
siderable value In analvzing supersonic airfoil sections.
Two terms of the series prove sufficient for almost sll require-
ments; the extension to third and fourth order is chiefly of
academic interest.

The aim of the present study is, therefore, to find a second
approximation, analogous to Busemann’s result, for super-

sonic flow past bodies which can be treated by existing
first-order theory. The natural method of attack, and
apparently the only practical one, is by means of an iteration
process, taking the usual linearized result as the first step.
Several writers have applied this procedure to two-dimen-
sional subsonic flow. In supersonic flow, as usual, the
solution is simpler, so that more general problems can be
solved.

This paper is based upon a thesis for the degree of doctor
of philosophy in seronautics written at the California
Institute of Technology under a National Research Council
predoctoral fellowship and under the guidance of Prof. P. A.
Lagerstrom (reference 1). It was published in revised form
as NACA TN 2200, 1951 (reference 2). The present version
has been further slightly revised, in particular to include ref-
erences to the recent literature.

ITERATION PROCEDURE
BASIC ASSUMPTIONS

The problem to be considered is that of steady three-
dimensional supersonic flow of a polytropic gas past one or
more slender bodies. As indicated in figure 1, the bodies

Fi:URE 1.—The problem.

are assumed either to be pointed or to extend upstream
indefinitely as cylinders parallel to the free-stream direction.
In either case, the origin of coordinates can be chosen so
that all varations in body shape are confined to the half-
space z>0. Wind axes are introduced, so that for £<0 the
flow is uniform and parallel to the z axis, with the free-stream
velocity U and Mach number 3. (For definitions of all
symbols, see the appendix.)

The bodies are slender, which means that at any point the
component of L” normal to the surface is small compared

1 fupersades NACA TN 2200, “A Study of Second-Order Supersonic-Flow Theory,” by Milton D. Van Dyke, 1951
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with U7 itself. The symbol e will be used throughout as a
measure of this smallness. Thus the ordinates of a body
will be written as ¢ times a function of order unity. Used
in this way, e serves to distinguish terms of various orders.

The aim of this investigation is to find a second approxima-
tion to the solution of problems for which the first-order
solution is available. The first-order, or linearized, solution
is defined as the result of keeping only linear perturbation
terms in the equation of motion.
solution is the result of retaining second-degree terms .in
perturbation quantities. In addition, however, certain of the
triple products are in some cases found to be as important
as one or more double products and are therefore also re-
tained in the equation. It may be noted that the second-
order solution will not generally consist simply of terms of
order ¢ and ¢, though this is the case for plane flow. For
example, the second-order solution for fiow past a body of
revolution will be found to contain terms as high as &ine.

The flow is assumed to be irrotational and isentropic.
This assumption is justified in the first- and second-order
solutions, since the resulting error is found to be at most of the
order of terms neglected elsewhere.

EXACT PERTURBATION EQUATION
Under the assumption of irrotational flow, there exists &
velocity potential @.  In Cartesian coordinates, the equation
of motion is (reference 3, equation (39)).
(—2)0 (62_'_972)9”_'_ (E—2.Q,—
2Qyﬂsﬂu— 22,20, — 291'9”:1:#: 0 (1 )

Here the local speed of sound ¢ is related to e, its value in
the uniform stream, by

02=Gw2—7; : Q492 +9— U (2)

where v is the adiabatic exponent. The subseript notation
is used to indicate differentiation.

A perturbation potential & is now introduced in the usual
way. For convenience, however, ® is normalized through

division by the free-stream velocity so that
a=U@+@) 3)

The perturbation velocity at any point is then the gradient
of ® multiplied by U. -

Introducing the perturbation potential into the equation
of motion gives, after some manipulation,

byt BB = 15 QB 024048 @t

Pyt Pus) +28: P00+ B Pie+ 20, +
P10, +28, 8,0, +28,(1 + 8.) 8+

2(1+<1>,)<1>,rb,,] @)

where g=+M?—1.,
SOLUTION BY ITERATION

The exact perturbation equation (equation (4)) is com-

pletely equivalent to the original nonlinear potential equa-

tion (equetion (1)). Simplifying assumptions must there-

Similarly, the second-order .
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fore be introduced in order to solve it. If it is assumed
that squares and products of the derivatives of & ean be
neglected, the right-hand side of cquation (4) disappears,
leaving the wave equation )

&,V +&,,V — g%,V =0 (5)

This equation is the basis of the linearized or first-order
perturbation theory, and its solution is designated by &®.

More exact solution of equation (4) by means of iteration
was first suggested by Prandtl (reference 4). The proeccdure
has been applied to plane subsonic flow by Gértler (refer-
ence 5), Hantsche and Wendt (references 6 and 7), Imai and
Oyama (references 8 to 10), and Kaplan (references 11 to
13). Schmieden and Kawalki (reference 14) applied the pro-
cedure to subsonic flow past an ellipsoid of revolution.  Most
of these writers have considered the stream funection rather
than the potential, which restricts the method to plane or
axially symmetric flows. The procedure is clearly deseribed
by Sauer (reference 3, p. 140} for the case of planc flow.

The linearized solution &%, subject to proper boundary
conditiong, is taken as the first approximation. Substi-
tuting this known solution into the right-hand side of
squation (4) gives

B, P 1B, D — B, D =Fy(z,y,2) (6)

where F; is & known function of the independent variables.
This is again a linear equation, the nonhomogeneous wave
equation. A sccond-order solution W%, subject to. proper
boundary conditions, can be sought by standard methods.
The procedure can be repeated by substituting ®® into the
right-hand side of equation (4) and solving again. Con-
tinuing this process yields 2 sequence of solutions &™
which, under proper conditions, perhaps converges to the
exact solution.

A significant feature of this procedure is that in each step
the left-hand side of the iteration equation js the same. As
8 consequence, the characteristic curves of each iteration
equation are just the Mach lines of the undisturbed flow.
However, in actuality the local Mach lines are usually
neither straight nor parallel; that is, the characteristics of
the original nonlinear equation are curved, in & manner which
is initially unknown and which depends upon the shape of
the body. Because of the fundamental role played by the
characteristics in the theory of hyperbolic equations (see,
e. g., reference 15, ch. 5; reference 16, ch. 2), it might be
anticipated that an iteration procedure should be chosen
such that in each step the approximate characteristics
would be successively revised so as to approach the actual
characteristics. For purely subsonic flow, the counterpart
of such & procedure is known to converge under proper
conditions (reference 15, p. 288-289). Convergence might
reasonably be anticipated also in the case of purely super-
sonic flow.

Unfortunately, an iteration procedure in which the
approximate characteristics are successively revised would,
except in the first step, involve equations with nonconstant
coefficients. This would greatly complicate the procedure.
Fortunately, it will be found that the scheme adopted here,
which makes no provision for such revision, nevertheless
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eives an improved solution nearly everywhere in the flow
field.
SECOND-ORDER ITERATION EQUATION

Henceforth, only the first two steps of the iteration process
will be considered in detail. In order to eliminate cumber-
some superscripts, it is therefore convenient to introduce a
simplified notation for the first two approximations. The
tirst-order perturbation potential will hereafter be denoted
by ¢, and the second-order potential® by ¢
o= i
! (7)

$=0?}
Introducing these quantities into the exact perturbation

equation (equation (4)) gives the following second-order
iteration equation for ¢:

¢"+ ¢u'—Bz¢::=A-"-[2 [‘Y—;—}; (2‘{’:"' 59:2+‘Pr’+ ‘P:z) (ﬂon_l" ‘Pnr+

o)+ 2¢:0:: + iaziqﬂ.r: + ‘Py’?’" + iaz"Pzz +
Yeygutnt 20a(1F et 20+ e or0m | 6

Since ¢ satisfies equation (5), the term (¢, + op+e.) in
the right-hand side of equation (8) can be replaced by
Me,., and the equation for ¢ becomes

S —1 .
¢w+¢u—ﬁl¢a=-‘-ﬂ [7 3 .1!'(2¢,+¢,2+§0,’+<p,2)tp=,+

2ot (P:z‘Pz;: + ?r’ﬁan + ‘Ps’?z:'l‘

Yougstnt 201 o) put 20-Ho) 000 |
%
Here the right-hand side contains not only double products
of perturbation quantities but also triple products. The
latter can be omitted for plane flow, since they contribute
terms of smaller order (equal to those found in the next
iteration). Otherwise, certain of the triple products should
be retained because their contribution is as great as that
of one or more of the double products and greater than any
contribution from a third approximation. It will be seen
later that triple products should be retained if they involve
only derivatives normal to the free stream. Triple products
which involve z derivitives can be neglected, so that the
iteration equation becomes

ﬁz‘f’:;:—‘fz{ [2+ ('Y_ l)JP]¢2¢H+2‘pB‘P:Zl+
2000+ 0020000t 002} (10)

¢u '+' ¢n_

Here the triple products which may be important are the
last three terms on the right-hand size.

The adiabatic exponent vy will be found to occur always in
the combination

Ne r tlﬁ )2-3-[ i (11)

t Here ¢ s regarded as being the complete second-order potential rather than (as fn ref-
erences 1 and 2) a small correction to be added to the first-order solution.

Introducing this expression in place of ¥ gives the final form
of the second-order iteration equation:

324’:: -‘FIQ(Ar_ l)ﬁ!‘Pt‘P::+2¢l¢:r+2‘Pz¢u+
Cr ‘P"+2¢y§9z¢n+ ‘P: Piz (12)

Gyt P

TTERATION EQUATION IN OTHER COORDINATES

In cylindrical coordinates, equation (9) becomes
¢rr+ g +¢“ —f° ¢‘zz—~‘-[q I:‘) (‘-\'_ 1)62‘P1‘P.::+ 2€9r‘Pzr + 2 ‘P:l'{"

@ree 95?’0
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e
(13)

The terms whose form is indicated at the end of the equation
are the triple products which will be found to be negligible.

For conical flows it is convenient to introduce nonorthogo-
nal conical coordinates (z, ¢, 8) where

gr
== (14)

If the body itself is conicsl, the perturbation potentials are
reduced to functions of two variables by introducing conieal
perturbation potentials (reference 17} so that

elz, 1, 9)=I;(t, 9) . (15)

with a corresponding definition for §. The derivatives are
given by

- - 2 _ - h
or=0—lo; L= ‘Pu on=L80u
— ’ — — —
‘Pr=B‘Pt ‘Frr=? P ou=gr—low > (16)
- — Bt _
Ce=2TLe Ci= TP o= —"T Pt
T J

with the same relations connecting ¢ and é. The iteration
equation (equation (13)) becomes

(1= Fut Bty fo (V1) (r—17) pu— 2t
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Here the grouping of terms corresponds to that in equa-
tion (13).

(17
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BOUNDARY CONDITIONS

Physical considerations suggest that the flow should satisfy
the following conditions:

Tangency condition: The resultant flow is tangent to the
surface of the body.

Upstream condition: All flow perturbations vanish every-
where upstream of the body.

These two requirements are sufficient to determine the
solution. The first imposes one condition along the time-
like surface of the body, and the second may be regarded as
imposing two conditions on a spacelike surface. This is the
case of mixed boundary conditions (reference 15, p. 172)
and leads to a determinate solution (sea reference 16, p. 85).

The tangency condition may be written formally as
grad Q-grad S=0 at S=0 (18)

where S=0 is the equation of the surface of the body. In
a more useful form it becomes, for the first- and second-order
problems,

[ (SIOPG) 1+ (Dz)
é.= (slope) (1+¢:)

(19a)
(19b)

(on the surface)

{on the surface)

Here ¢. means the cross-wind component of the normal
derivative of ¢ at the surface of the body. In plane flow
. is ¢,, and in axially symmetrie flow ¢, is ¢,. The slope of
the body is messured with respect to the free-stream
direction.

In first-order theory, the tangency condition is frequently
approximated by neglecting ¢, compared with 1 in equation
(19a), which causes only a second-order error. Correspond-
ingly, in the second-order tangency condition (equation
(19b)), ¢ can be replaced by its first-order counterpart ¢.
with only a third-order error... Thus the tangency condition
simplifies to

(204a)
(20b)

ec=slope  (on the surface)

¢.=(slope) (14 ¢2)

This approximation will not be made except for plane flow.
Another approximation in the tangency condition can be

made for planar bodies. A planar body is one whose entire
surface lies near to & plane parallel to the free stream, say
the plane y=0 (reference 17, p. 52). Thin flat wings are
planar bodies, whereas slender pointed bodies of revolution
are not. For a planar body the first-order tangency condi-
tion can be imposed at the plane rather than on the surface
of the body. Correspondingly, the second-order tangency
condition can also be imposed at the plane provided that the
difference in ¢, between the plane and the surface of the
body is accounted for approximately by retaining the second
term in its Taylor series expansion about y=0. Further-
more, to first order ¢, is ¢, for a planar body. Thus if the
surface of a planar body is given by y=Y(z,2}, the simplified
tangency condition is

Cy= Irz(l + ‘P:)
¢yt Y T :¢;

(on the surface)

at y=0 (21a)

Y:(1+¢:) aty=0  (21b)
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The term. containing ¢, in equation (21b) accounts for the
fact that to second order the cross-wind component ¢, may
not be vertical. Corresponding simplifications can be made
for any quasi-cylindrical body, which is a body whose entire
surface lies near to.a cylinder parallel to the free stream.

Finally, the approximaftion which led to equations (20)
may be adopted in addition to that just discussed for planar
systems, in which case the tangeney condition simplifies
further to

= Yx _
¢y= Y.(1+ ‘P:) _"17‘Pw + Y04

The upstream condition implies thut both ® and &, vanish
at the plane x=0, which completes the boundary conditions
required. For the first- and sccond-order problems the
upstream condition is therefore

(22a)
(22h)

at y=0
at y=0

at r=0 (230)

(23b)

p=p,=0
¢=¢,=0
DETERMINATION OF PRESSURE

When the potential field has been determined, the net
velocity ¢ at any point is given by

at t=0

. e=U+w)+o+u? (24)
where .
©®
T
9 {‘I’v
T e, ¢ (25)
P,
A
U )lg,

in Cartesian and cylindrical coordinates, respectively. DBe-
cause the flow is assumed to be isentropie, the pressurc
coefficient. is given by

a—?’ Po Mﬂ{[l"ﬂ M’(l—-——):l

where p, and p,, are the free-stream pressure and density.

It is the practice in linearized theory also to simplify the
pressure relation. Substituting equation (24} into equation
(26) and pranding gives

} 20y

G e TR Y
wow? 4wt v oitw v*4w
ot 135 'ﬁ( =) ()] e

All the terms shown here explicitly may give contributions of
second order; the remaining terms whose. form is merely
indicated are always of higher order. In linearized theory
only the first term is ordinarily retained. This is satisfaclory
for plane flow or flow past planar systems, since the contribu-
tion of the remaining terms is definitely of higher order.
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Fuitre 2.—Effect of using various pressure relutlons in first-order solution for 5° cone.

In fact, for plane flow past an isolated body it happens that
the next two terms cancel identically.

For slender bodies such as a cone, however, orders of
magnitude are not so clearly distinguished. Busemann
suggests (reference 18) that the second term, (*+w®)/L7,
is then sufficiently large compared with the first that it
should be retained also. This view is supported by Lighthill
ireference 19), who shows that the resulting solution is
rorrect up to the order of the quantities contributed by the
second term. Again, the third term, *u?* L™, which is also
the square of a perturbation quantity, is comparable with
the second at high Mach numbers (where Lighthill's order
estimates become invalid) and might logically be retained.
Having gone this far, it may be simpler to use the exact
refation. _

Each of these four possibilities for the first-order flow past
# 3° cone is compared with the exact solution (reference 20}
in figure 2.  The series (equation (27)) is seen to alternate in
this case. It converges so slowly, however, that at moderate
Mach numbers (say, near J/=+"2) where first-order theory
is most accurate, linearizing the pressure relation introduces
much greater errors than linearizing only the equation of
moation. Adding each of the quadratic terms in turn causes
changes nearly as great as the error due directly to non-
linearity in the equation.

The point of view to be adopted here is that calculating
the velocities and caleulating the pressure are two essentially

distinet operations. A certain degree of approximation may
be necessary in order to solve for the velocities, but the
pressure relation need not then be approximated to the same
extent simply for the sake of consistency. For it may happen
that the resulting errors (though of the same mathematical
order) are greater than those due to the original approxima-
tion. Indeed, this is evidently the case at moderate Mach
numbers in the first-order solution for & cone and will be
found true to a greater extent in the second-order solution.
Moreover, in the second-order solution so many terms of
equation (27) must be retained that it is usually simpler to
use the exact relation. For these reasons, the exact pressure
equation (equation (26)) will be used throughout except in
the case of plane flow.
ROLE OF A PARTICULAR INTEGRAL
The second-order iteration equation can be attacked by
stendard methods, and in the ease of plane flow a solution
can be found directly. For plane and axially symmetric
flows, however, it will be found that a particular integral of
the iteration equation can be written down at once in terms
of the first-order solution. This solves the problem because
the complete solution consists of a particular integral plus a
solution of the homogeneous equation, and the latter can be
obtained by existing methods. That is, the second-order
potential may be written as '
p=v¥+x (28)
where
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¢ is any particular integral of the nonhomogeneous iteration
cquation

x is the complementary function which serves to correct the
tangency condition

The problem for x is the usual first-order problem for which
methods of solution are assumed to be known.

The role of the particular integral is to transfer the non-
homogeneity in the problem from the equation, where it is
troublesome, to the boundary conditions, where it can be
handled by existing theory. For linear partial differential
equations it is always possible in principle to transfer non-
homogeneities in this way from the equation to the boundary
conditions, and vice versa, by adding a suitable function to
the dependent variable (see reference 21, p. 236).

Since the particular solution ¢ will be found in terms of the
first-order solution, it will vanish upstream of the plane z=0.
Then the complementary function must also vanish there, so
that the upstream condition for x is

X(OJ Y, P—')=X:(0;y, Z)=0 (29)

From equation (19b}, the tungency condition for x is found

to be
Yot xe=(slope) (1 +¢:+x:)

or, in the case of a planar bodygiven by y= ¥ (z, 2), from equa-
tion (22b),

‘1"#"1" = :Y:(]- +‘P:) —'Y‘Prr+ Y;(”:

1t should be noted that, although ¢ is of the same magni-
tude as ¢, this is not necessarily true of either ¥ or x alone.

PLANE FLOW

The second-order solution for conditions at an isolated sur-
face in plane supersonic flow was given by Busemann (refer-
ences 22 and 23). By using the iteration procedure, the
solution will now be found throughout the flow field, includ-
ing the case when several bodies interact.

The solution for plane flow is of interest chiefly insofar as
it serves as a guide in more complicated problems. In par-
ticular, it provides insight into such details of the iteration
process as the question of its success and the effect of sharp
corners.

(on the surface) (30)

at y=0 {31)

PARTICULAR INTEGRAL FOR PLANE FLOW
The first-order equation for plane flow is

Pn—B0zz=0 (32)
The general solution is
o(@y)=h(z—By)+7(z+By) (33)
where & and j are functions determined by the first-order
boundary conditions. .

In the iteration equation, all triple products can be neg-
lected, and equation (12) becomes

byy— ﬁ’¢u=2]‘12 [(N_ I)ﬁzﬁas‘sz'l’ ¢y¢zv] (34)

It can be verified directly that a particular integral of this
equation is given in terms of the first-order solution by

b=, (1=F) o +5 ver | G8)
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To this must be added & solution x of the homogencous
equation (equation (82)), which has the form

x=H(z—By)+J(x+8y) (36)

where I and J are functions determined by the second-order
boundary condition.

For flow past & single boundary (such as one surface of an
airfoil) the first-order potential (equation (33)) contains
only one or the other of the functions & and 7. In this caso
yory=Boro:; 50 that the iteration equation reduces to

¢vv_lsz¢u=2]‘{252N¢:¢zs (37)

The particular integral may then be simplified to

N
¥=AM 5 Yo (38)
and the complementary function contuins only H or JJ,
according as the first-order solution contains only A or j.

FLOW PAST A CURVED WALL

As an example of the application of the particular solution,
consider fow past a wall which at some point beging to
deviate slightly from a planc (see fig. 3). The wall can he
represented by

y=Y(@)=eg(2) (39}

where ¢ is a parameter small compared with unity and g(z)
is a continuous function of order unity which vanishes for
zs0. . :
This is & planar body, so that the tangency condition is
given by equation (22a). Consequently, the first-order
problem is

Pw— Bez=0
oy(2,0)=¢g'(2) (40)
) #(0,y)=p:(0,)=0
where the prime indicates differentiation of g with respect to
its argument. The solution is

p=—75 9&—BY) (41)

Substituting this first-order solution into the right-hand
side of equation (37) gives the iteration equation

byy—B¢z=2M*NEg' (1—By)g’' (a—By) (42)

y
1i //y /B
|
|

Frovre 8.—Flow pest a curved wall.
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According to equations (38) and (38), the solution is

RVEA

$=y+x=—"55 ezy[g(r BYI*+H(z—By) (43)

‘Imposing the approximate second-order planar tangency
condition (equation (22b)) gives

20N

Hn=e{ 2502 (@l —g@e @) 4

so that

Hir)——e gg(.r) ey N —2)

e NPLE T )

The complete second-order perturbation potential is therefore

ﬁgu By)—e? {g(r By)g'(x—By+

AN

25~ VIEG—BDI+ MAN—2)

G2 [ ewra) wo)

The same result can be found by solving equation (42)
directly, using the impulse method (reference 15, p. 164).

Flow quantities at the surface of the wall can be related
to their values at the plane y=0 by expanding in Taylor
series and discarding termsin €. In this way the streamwise
velocity perturbation at the wall is found to be given by

=t g (47

The pressure coefficient at the wall can now be caleulated
from equation (27) which, upon replacing .V by its value from

equation (11), gives

2, 1)3f4—4p2
0=5 @@+ T e uy
This is the well-known result of Busemann (references 22

and 23). To second order, the surface pressure coefficient
depends only upon the local slope.

ROLE OF CHARACTERISTICS

[t was pointed out previously that because of the under-
lving significance of the characteristics for solutions of
hyperbolic equations, it might be expected that the approxi-
mate characteristics of the iteration equation would have to
be revised successively at each stage. However, an iteration
procedure was adopted which involves no such revision.
It is therefore pertinent to inquire in this simple example
what roles have been played by the actual and approximate
characteristics.

The flow past & single curved wall is given (until shock
waves form) by a simple wave or distributed Prandtl-Meyer
expansion. Of the two families of characteristies, those of
primary importance in a simple wave run downstream away
from the wall. We therefore confine attention to that family.

For the first-order equation, equation (32), the conven-
tional theory (e. g., reference 15, ch. 5; reference 16, ch. 2)
shows that the characteristics of the downstream femily
are the lines of slope

(49)

f-‘-t..l&
ol
| —

195

This means that to first order the actual charaeteristics are
approximated by the Mach lines of the undisturbed flow.

For the second-order solution, a closer approximation to
the characteristics could easily be found. Tt can be shown
that if the first-order streamwise perturbation velocity at any
point in the flow is 4, then the revised local values of
Mach number and 8 are gpproximately 2

AL =3f [1 482 (N—1) u—g;—‘:l (508)
po =y 1= 1+30V-1 | (50b)

Combining this result with the first-order solution (equetion
(41)) shows that the revised Mach lines have the slope

JI N

dy 114 g’(r—ﬁy)]

dr 8
However, because the iteration scheme adopted does not
allow for such revision, these are not actually the character-
istics of the second-order equation. Instead, the character-
isties of equation (42) are still the original Mach lines of the
undisturbed flow.

Physically, the characteristics are lines eslong which
discontinuities in velocity derivatives are propagated, and
this definition is completely equivalent to the mathematical
one (reference 15, p. 297). Therefore, in the second-order
solution given above, discontinuities in acceleration will
occur along the original characteristics rather than, as they
more properly should, along the revised characteristics.

Suppose, however, that no such discontinuities occur.
For flow past an isolated body the downstream character-
istics are also lines along which the wvelocity is constant,
provided that shock waves do not appear. Setting

(51)

dpy=ndx+¢,dy=0
it is seen that the velocity is constant if
dy_ b O
dx Prp D (53)

For the second approximation (equation (46)) the velocity
is constant along lines of slope

dy 1 1[“.\'
dr B8

& («—69) | (54)

which, according to equation (51), are the revised character-
istics. Consequently, although the characteristics have not
been revised in the mathematical sense, the solution behaves
physically &s if they had, so long as discontinuities do not
occur. The question of discontinuities will be considered in
the next section.

The connection between the original and revised character-
istics can be interpreted physically. The right-hand side of
the iteration equation may be regarded as representing the

1 As implied by the superseript, these are regarded as first-order values, because they are

determined {rom the Arst-order soluticn. From this point of view, M and 8 are zerc-order
quentities
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effect of a known distribution of supersonic sources through-
out the flow field. The influence of this source distribution
spreads downstream along both families of original character-
istics. The resulting velocity changes are just such that to
second order the velocitics become constant along the
revised rather than the original characteristics.

Finally, it is interesting to note that the second-order
potential is constant on lines which bisect the original and
revised characteristics. For, setting

do=¢.dr+¢,dy=0 (55)
¢ is found to be constant along lines of slope
M?N
dm 5[1 + g 9 e ﬂy)] (56)

FLOW PAST A CORNER AND A PARABOLIC BEND

A simple case in which discontinuities may occur is that of
flow past a sharp corner. The exact solution is known to
involve an oblique shock wave with attendant veloeity dis-
discontinuities for compression and a continuous Prandtl-
Meyer fan for expansion.

Denoting the tangent of the deflection angle by e, positive
for compression (see fig. 4), the function g(x) appearing in

equation (39) is
0 <0
g(z)——{ o (57)

v

FiouRe 4.—Flow past a corner.

From equation (46) the second-order perturbation potential
is found to be _

ﬁ]:f e (58)

¢———(x ﬁy)+ﬂ,(x By)—
to the right of the line =gy and zero to the left. Conse-
quently, in either compression (¢>-0) or expansion (e<0)
the second-order potential suffers a discontinuous drop along
the Mach line from the corner, of strength proportional to
the distance from the corner. Such a discontinuity cannot
be admitted, which indicates that the iteration process fails
in this region.

In the case of compression, the solution can be corrected
by analytically continuing the perturbation potential up-
stream until it can be joined confinuously to the free-stream
potential. (This is permissible since the line of discontinuity
is not actually a characteristic.) From the result of equation
(56) the juncture is seen to occur along the line from the
corner which bisects the upstream and downstream Mach
directions, as indicated in figure 5. The adjusted juncture

corresponds to & shock wave, for it is known that an oblique
shock bisects the Mach lines to a first approximation (refer-
ence 16, p. 354): In the case of expansion, this type of
correction cannot be justified since it would involve con-
tinuation of the free-stream potential across a true charac-
teristic. Instead, a Prandtl-Meyer fan must be inserted.

—>

FIGURE 5.~Mach Ilnes before and after adjustment of potential discontinuity.

Evidently the iteration process is successful except within
an angular region of order ¢ lying near the Mach line from the
corner. In particular, the pressure is given correctly every-
where on the surface of the wall.

It is enlightening to observe that the alternative method of
iteration, in which the characteristics are successively re-
vised, fails in the same region. The potential is double-
valued over & fan-shaped region in the case of compression
and is left undefined over a similar region in the case of ex-
pansion (see fig. 6). The same artificial corrections are
necessary to complete the solution.

Fieurk 6.—Second-order flow past a corner using revised charncteristics.
Consider next flow past a parabolic bend which is repre-
sented by
y=—;— ex? 220 . (59)

From equation (46} the second-order perturbation potential
is found to be

_ MAN+1)—3

Ggr @Yy e'y(x—py)*

(60)

The potential and also the velocities are continuous, so that
the previous difficulties do not occur. The acceleration is
discontinuous across the original characteristic z=gy, which
in this case happens to be also a revised characteristic.
However, a new complication arises. It is known that, in
the exact solution for the compressive case, the character-
istics form an envelope, as shown in figure 7. Inside the
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cusp the potential is triple-valued (reference 16, p. 111), so
that a shock wave must be inserted. This envelope must
also arise in the second approximation since the character-
istics are no longer parallel. However, the second-order
potential given by equation (60) is single-valued, so that it
cannot predict the formation of an envelope. Again the
iteration process fails in a part of the flow field.

It can be seen that the alternative iteration process, using
revised characteristics, will produce an envelope.

CONYERGENCE FOR PLANE FLOW

The examples just considered indicate that the success of
the iteration procedure should be carefully investigated. A
step of an iteration process may be considered successful if,
in some sense, it significantly improves the solution. In

/

—————
e an

o

- — ~—I

F1GURE 7.—First- and second-order flow past a paraholle bend.

particular, one is interested in the success of the second-
order solution.

It should be noted that a divergent process may be suc-
vessful for many steps and that, on the other hand, con-
vergence does not necessarily imply success. In practice,
however, one would expect a convergent process to be suc-
cessful. As used here, success is & subjective notion, not
amenable to analysis. Consequently, only the convergence
of the iteration procedure can be considered in any detail.

Unfortunately, proofs of sufficient conditions for converg-
ence have not been obtained, even in the case of plane flow.
However, the preceding examples suggest certain conjectures
regarding convergence. These will be stated and some argu-
ments for their plausibility will be advanced.

For flow past a slightly curved plane wall represented by
y=eg(x), the solution obtained by iteration using the revised
characteristics is conjectured to converge in any bounded
region adjacent to the wall, provided that

(a) e is sufficiently small,

(b) g(x) is continuously differentiable.

If g(z) has only a piecewise continuous derivative, the
convergence holds except possibly in fan-shaped regions
springing from each corner, which lie near the original
Mach line and subtend an angle of order e

For the iteration process actually adopted, in which the
characteristics are not revised, the first n steps are conjec-
tured to form part of a convergent process, provided that

ta) eis sufficiently smell,

(b’) g(x) has continuous derivatives up to (n—1) st order
if the potential is required, nth order if the velocities are
required.
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If condition (b’) is satisfied only piecewise, the result holds
except possibly in fan-shaped regions springing from each
corner.

In the first case, condition (a) is necessary in order to
insure that the solution be unique, as is clear from the exam-
ple of the parabolic wall. The preceding examples salso
show that condition (b} is necessary. '

If the sufficiency of these two conditions is assumed, their
connection with condition (b’) in the second case can be
illustrated by analogy with a mathematical model which
retains the essential difference between the two iteration
processes; namely, that the correct characteristics are not
used in the method actually adopted.! Consider the firsi-
order problem given by equation (40):

‘{"w_¢z.:=0
gy (2, 0)=¢eg(2) (61)
¢ (Or y)=‘P=(01 y)=0

where we have taken 8=1 for convenience. The solution
(equation (41)) is

p=—eg(r—y) (82)

Now we attempt to solve this problem using characteristics
which differ from the true characteristics by 0(¢). Thus
we consider the equivalent problem

‘Pw—'(l —E) Cr==¢€Px
ey (2, 0)=eg’ (x) (63)
‘9(07 y)=€’t(07 y)=0

and solve by iteration. In the first approximation the
right-hand side is neglected, so that the differential equation
becomes

ﬁnm —(1— 5) ‘P-:rm =0 (64)

which has the solution, subject to the boundary conditions,

e =—eg(z—/1—ey) (65)

Substituting this into the right-hand side of equation (63)
gives the iteration equation for the second approximation:

o —(1—Qen®=—¢g" (1—1—ey) (66)

Using the impulse method (reference 15, p. 164) gives the
solution, subject to the boundary conditions, as

e =—ega—T=en) + 3 dyg' c—T—ey)  (67)
Baut this is just the Taylor series expansion, correct to 0(¢),
of the true solution (equation (62)). Subsequent iterations
add additional terms to the Taylor series expansion. Hence,
despite the use of slightly incorrect characteristics, the itera-
tion process converges to the correct solution. The connec-
tion between conditions (b) and (b’) is thus seen to be that
the exisience of sufficiently many continuous derivatives
compensates for the fact that the wrong characteristics
are used.

& This model was suggested by Prof. C. R. DePrima of the California Institute of
Technology.
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AXIALLY SYMMETRIC FLOW

Before discussing the general solution for bodies of revolu-
tion, it is convenient to consider the simple problem of a
cone. In this case the second-order solution can be found
directly. The results will be useful in indicating which
triple products should be retained in the general case.

FLOW PAST A CONE

Consider flow past a slender cone of semivertex angle
tan~! ¢, as shown in figure 8. The flow is conical and axially
symunetrie, so that the iteration equation is given by equation

|
|
|

FicuRE 8.—Flow past a cons,

(17) with 6 derivatives omitted. Including the boundary
conditions from equations (19a) and (23a), the first-order
problem is

a-mz +E0=0 (68a)
=¢(l-+o—te") at {=g8e¢ (68b)
) p=p =0 at = (68c)

The differential equation can be solved by using the inte-
grating factor t/\/l—-t’ Imposing the upstream condition
(equation (68c)) gives the well-known result

p=—2A(sech™ t—J/1—8) ' (69)

which is understood to vanish except within the downstream
Mach cone, where ¢=1. The tangency condition (equation
(68b)) is satisfied by putting

a
€

A_ _ ceo
A T—B% 4 ¢? sech! (Be)

(70)

At the Mach cone ((=1), all velocity perturbations vanish,
so that the first-order solution predicts no deflection of the
shock wave from the Mach cone (see reference 16, p. 403).

Substituting the first-order solution into the iteration
(equation (17)) gives

sech™! 1
Vi— +2 o

(1o +E0 A=Mz[‘>(N 1)

BzA'\'l'_‘tg]

(71a)
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and from equations (19b) and (23b) the corresponding
boundary conditions are :
at {=Pe

Bé'=e(1+o—1id") (71b)

$=¢'=0 ati=o (71c)
Equation (71a) can again be solved using the integrating
factor t/+/1—#. The various integrals encountered can be
treated by integrating by parts one or more times. Imposing
the upstream condition (equation (71c¢)), the complete

conical second-order perturbation potential is found to be
$=—B (sech~t {— T+ AM" [(sech Ly

(N+1)yT—F sech =1 — 52A(1 ’]+0[e (sech™! Y]

(72)

From equation (16), the streamwise and radial velocity
perturbations are

Y —Bsech! A0 [:(sech‘1 52—

U
BA ‘1 — l (732)

9 v1—tsech='t

t LB

sech 1t

Vi—
=BY lz:t—’—!—A?M? I:__

1 —f2
N+t +(N 1)tsech2t| Lgeg (2+t2)t31 {

(73b)

The constant B must be adjusted so as to satisfy the tangency
condition (equation (71b)). In actual computation it is
easier to adjust B numerically in exactly this fashion rather
than to calculate it from the cumbersome expression which
could be written down. The pressure coefficient at any
point can then be calculated from equation (26).

The last term in the bracket in equation (71a) is the triple
product 8%.25,, which is retained in the iteration equation
(equation (17)). Its retention is now justified by noting
that its contribution—the last term in equation (72)—is of
the same order as other terms near the surface of the cone
(t=8¢). Actually, it contributes a second term, which has
been neglected since it is at most of order &fsech™'ge. It
can also be verified that the other triple products, whose
form is indicated at the end of equation (17), are in tact
negligible since they contribute at most terms of order
é(sech™ Be)%. Consideration of a further iteration indicates
that a third approximation would add terms of order
(sech™! B¢)%, which is greater than the terms just neglected.

The second-order result for surface pressure coefficient is
compared in figure 9 with the exact solution (reference 20}
for cones of 5°, 10°, 15° and 20° semivertex angles. Also
shown for comparison are the first-order results based upon
the exact isentropic expression (equation (26)) for the pres-

Y

5 —(N+ n-3

1o
80
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FuivBE 8.—Comparison of varions solutions for pressare on a cone

sure coefficient. The second-order solution is seen to provide
a much better approximation throughout the range of
Meach numbers up to the point at which the Mach angle
equals the cone angle, beyond which the perturbation solu-
tions have no physical meaning.

SHOCK-WAVE POSITION FOR CONE

The solution for plane flow fails near the Mach wave from
a corner, which suggests that the second-order solution for
the cone may likewise fail near the Mach cone from the
vertex. In the plane case, nevertheless, a first approxima-

tion to the shock-wave position (and hence to the entropy
change) can be calculated from the velocity perturbations
near the Mach wave. We now consider whether this is
true also for the cone.

It was noted before that first-order theory predicts no
disturbance at the Mach cone and hence no shock wave.
According to second-order theory the velocity perturbations
just behind the Mach cone are (equations (73))

_(.5.)‘__1%. (%):_l.:—zMWe* (74)
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so that the perturbation is normal to the Mach cone. Here
A (equation (70)) has been approximated by &. From
equation (50b) the cotangent of the revised Mach angle
just behind the Mach cone is found to be

BP=8[1—2MN(N—1)¢] (75)

The upward stream inclination there is approximately
(0/T Y41, 50 that the Mach lines have the slope

dr_1 .
PRy (1+2MN39 . (76)
Now if this can be taken to be the slope also of the revised
characteristics just behind the shock wave, then the slope
of the shock wave differs from that of the original Mach

cone by
_ 11 MN? e4‘__('11-}-1)"211“

B B T4p
This problem has been treated rigorously by Lighthill (refer-
ences 24 and 25) and by Broderick (reference 26), who find
that actually

tan A

€t 77

=§_(’Y+1)’Ms_¢4 .

1
tan A-—-E 3 B¢

(78)
which is one and oue-half times the preceding result. The
discrepancy means that the second-order solution fails near
the Mach cone. The nature of this failure and the proper
method of remedying it have recently been studied by Light-
hill (reference 25).

The entropy increase through a weak oblique shock wave
is proportional to the cube of its inclination away from the
Mach lines. Consequently, the entropy rise through the
shock wave from a cone is 0(e?), as noted by Lighthill
(reference 24).

PARTICULAR INTEGRAL FOR AXIALLY SYMMETRIC FLOW

Consider flow past a body of revolution which is either
a slender pointed body with nose at the origin or one which
extends indefinitely upstream with constant radius a for
+<0 (see fig. 10). The latter shape corresponds to the
external flow past a sharp-edged, open-nosed body with
supersonic flow at the lip. With slight modification the
subsequent development can be applied to internal flow as

|

)

7eR(z)--<

- ——y

F16URE 10.—Flow past badies of revolution.

well. The meridian curve can be represented in the first

case by
r=R(z)=eg(z) ~ z=0 (702)
and in f;lxe sccond by -
~R@)={ z=0 (79b)
FEME= a+eg(x) z20

Here ¢ is again a parameter small compared with unity, and
g(z) is & continuous function of order unity.
The first-order problem is

?rr+%_ﬂz¢u=o (80‘1)
¢z, R)=R'(z) [1 + oz, R)] (80b}
¢(0,7)=¢0,7)=0 (80¢)
The solution is known to be (reference 27)
_ [ fle)dk
Aan==) G-
cosh-lr:—'—b- o T : e '

— J; 7 f(z—Br coshu)du @1)

The sccond form is useful for carrying out differentiation,
after which the first form can be restored. The derivatives
which will be required are

cosh-1 222 ’ b !
¢s=_J; ™ E f'(z—Br cosh u)du=— A \(z_gzcigﬂzrs'
(82a)

I—b
osh~1 g~
: ¢,=ﬂfc : f'(x—Br cosh u) cosh  du=
¢

18 (z—§f(HdE
rh Jz—gP—prt

In carrying out the differentiation the fact has been used
that f(b)=0 for a body with finite slope. With coordinates
as shown in figure 10, the lower limit of integration b is 0
for the pointed body and —ga for the semi-infinite body.
The function f(z) may be interpreted physically (aside from
a numerical factor) as the strength of a supersonic line source
along the z axis. It is determined by the tangency condition
(equation (80b)) which gives the following integral equation
of the Volterra type for f:

fz—an(:) (z—8f(Odt  __ e
o e—9'—FRz)

z—~B R(x)
R R ! 1 - _———— —_————1
@ (x)[ I

The second-order iteration equation is found from equa-
tion (13) to be

~-(82b)

) ¢rr+%’ — 2= Mz[z(N_1)52¢:‘Pn+2€°r€9xr+¢r,§0rr+ . |

O(Pzz?:z; ‘Pr"sz; ‘Pz‘Pr‘Pzr)} (84)
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‘The solution for the cone suggests that the terms indicated
at the end of the equation are negligible.

It will now be shown that & particular integra! of this
equation is given in terms of the first-order solution by

Yz, ) =] ole +Nr¢r)—éwr“:| ' (85)

The first group of terms contributes the first two terms on the
right-hand side of equation (84), as can be verified by direct
substitution. The last term in equation (85) accounts for
the term ¢, %, as follows:

br- r br br2)< ¢ )_
s 3
oren—B ‘Pr( r?zzﬁ"rr'[‘?’r‘x’f"z—‘) Tor ) (86)

-where repeated use has been made of the fact that ¢ satisfies
equation (80a). The last group of terms consists of triple
products involving z derivatives, which have already been
neglected in equation (84), so that the result is proved.

The complementary function x is a solution of equation

{80} and can be written as
.: —b
— ’o F(:r— grcosh u)du

(87)

e [__FOdE
=) e

Using equations (82) the second-order tangency condition
{equation (19b)) is found to be .

z~f R (I E)F '(&)d E
_ r—8R F’

which is again a Volterra integral equation.
METHODS OF SOLVING INTEGRAL EQUATION

Discovery of & particular integral for bodies of revolution
reduces the second-order problem to the same form as the
first-order problem; namely, the solution of & Volterra in-
tegral equation. Various methods of attacking this problem
are listed by Hayes (reference 17, p. 140).

An indirect method consists in assuming that the unknown
source strengths in equations (81) and (87) can be represented
by a few terms of & polynomial, for example,

f@)=Cz+C2 4 . . . +Cuz" (89)

The resulting solutions were introduced in & more formal
manner by Hayves (reference 17, p. 38), who has discussed
their properties in detail. The first term alone gives the po-
tential for the cone, (equation (69)). Additional terms give
the solution for simple families of shapes. However, the
method is not suitable for bodies having discontinuities in
slope or curvature. Consequently, a more direct procedure
is desirable.

von Kdrmén first introduced an esymptotic solution of the
integral equation (equation (83)) which has come to be

known as the slender-body approximation (reference 27).
For slender bodies, the source strength f(r) appearing in
equation (81) is found to be approximately proportional to
the rate of change of cross-sectional area. Thus

f@) m o A R = RO () 90)

)

&

i

+

FiavRE 11.—Equivalence of polygonal source and sum of confeal sources.

Lighthill has shown (reference 19) that if R(z) and its first
two derivatives are of order ¢ and R’ is continuous, this de-
termination of f(z) is correct to the order of terms retained
in the first-order solution. For purposes of the second-order
solution, it can be shown that f(z) may be determined in this
way only if the first four derivatives of R are of order e and
R is contmuous. This means that the body must have
continuous curvature, which is a severe limitation. More-
over, the slender-body approximation is found generally to
cause unnecessary loss of accuracy even though the mathe-
matical order estimate of the error is small. Consequently
this approximation should be avoided if possible.

The most satisfactory way of solving the integral equations
is to use a step-by-step numerical procedure. In first-order
theory the usual method, introduced by von Kérmén and
Moore (reference 28), is to assume that the unknown source
distribution can be approximated by a polygonal graph.
This is equivalent to superimposing a number of conical
source lines of different strengths, each shifted downstream
with respect to its predecessor, 2s indicated in figure 11.
The latter viewpoint is more convenient for computation.
The strengths of the source lines are determined in suceession
by satisfying the tangency condition at a series of points on
the surface of the body. The details of this prodedure are
clearly. explained in reference 3, page 77

For purposes of a second-order solution, this procedure
must be modified in one respect. Unless the source distri-
bution f(z) actually has corners, it must not be approximated
by a polygon. The resson is that a corner corresponds
locally to adding a conical source line which would, according
to the solution for the cone, produce false second-order dis-
continuities in velocity and pressure across the Mach cone
from the corner. Irstead, the procedure must be carried out
using source lines of quadratic strength. The source strength
f(z) can then be approximated smoothly so that false pressure
jumps do not occur. A single source line of this type repre-
sents the flow past & slender pointed body with a cusped nose
(see fig. 12), as is clear from the slender-body approxi-
mation (equation (90)). .
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METHOD OF SOLUTION FOR SMOOTH BODIES

The second-order solution will be described first for bodies
having continuous slope. Modifications for treating sharp
corners will be discussed in the next section.

The procedure is indicated in figure 13. The axis is
divided into intervals by choosing points with abscissas
£, at each of which a source line is to begin. Good accuracy
is usually obtained if the interval length is not greater than
8 times the local radius. The tangency condition will be
imposed on the surface of the body at the points P,, which
lie on the Mach lines from the points £,.

—>

FiGURE 12.—Body formed by source Hne of quadiatic strength.
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Fioure 18.—Method of solation for smooth bodles.

For pointed bodies, the first-order solution is started with
& conical source from the origin which gives the proper
conical tip. This potential and the derivatives which are
required are

Co 1 h
—_— -1 1—¢ =_Z0_ -
Po= Ol)x (Se(.'h t— t) 900 T -\/1—_.{2
- BC, 1
= (), sech™'¢ e
“o, 0 Po_. z t\/I— 7
Vit G _1. [ O
S
where
Crm e —_
0 v1—B%2+¢? sech™! Be J

Here (Y, is the same as the A of equations (69) to (73), ¢
being the tangent of the semivertex angle of the conical
tip. No such term is required for the semi-infinite body.
The subsequent procedure is the same for either body.
Quadratic source lines are started from each of the points
&, &, and so forth. For the pointed body £ also lies at the
origin, while for the semi-infinite bedy it is at —ga. For
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the nth such source line, the potential and its derivatives
are given by
\

ea=—0C4 (I_‘Eu)z[<1+‘— r,)sech"‘-r,__\/__,.n‘]
x,=—2C, (z— &) (sech Lry—vy/1—142)
n, —50 (x—&) ‘1 —'rn sech~!r )
on_=—2C, sech~' 1, ﬁ (92)
— '\"‘_1_7:
sanz,—2ﬁC,. —_Tn
_—520( +sech"1 )
where
T = Br . —
" 1_55

The constants (', are determined successively by imposing
the first-order tangency condition in turn at each of the
points P,;;. From equation (80b), the condition is

n n

Z (Pgr=R’ (1 +E (0,') at Pg.{.]_ (93)
where the summation begins with n=0 for the pointed body
and 2=1 for the semi-infinite body. In this way, values
of the complete first-order potential ¢ and its first and second
derivatives are calculated at each of the points on the body.

The velocities due to the particular sccond-order integral

¥ can then be calculated at the same points. Differentiating
equation (85) gives

\0:::]1[2 I:((a "|"Nr‘Pr)‘Px+ ¢:(¢:+Nr.¢xr) _% r‘Pr"P:r:l

¥ =AM? (ﬁa + Nr‘Pr)ﬂ’zr + ¢:[(N+ l)ﬂar +NT‘Prr] '—"1' ‘Pr’(ﬁpr +3r¢rr)
4
(94)

Finally, the second-order complementary function x is
determined by repeating the procedure used for ¢, finding
new constants such that the second-order tangency condition
is satisfied. According to equation (19b), the condition is

Vet 3 xn =R (1 44+ 30 00,)

The second derivatives of x need not be calculated.

The complete second-order perturbation velocities are
found as the sums of the contributions from ¢ and x. Then
the pressure coefficient can be calculated at each point P,
from equation (26).

at P,+1 (95)

TREATMENT OF BODIES WITH CORNERS

Suppose that the meridian curve of the body has & sharp
corner, which for convenience may be assumed to lic on the
Mach cone from the origin, as indicated in figure 14. Then
the method of solution must be modified for two reasons.
In the first place, the intervals between source lines would
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have to be chosen extremely small in order to obtain an
accurate first-order solution behind the corner. This diffi-
culty can be overcome by adding a new solution which eauses
a sharp deflection of the streamlines. In the second place.
even if the first-order solution is determined exactly, the
second-order solution does not yield the Busemann result
just behind the corner, as it should since the flow is locally

plane. This defect is remedied by properly canceling a
r
T o T=z/d
//
I .
v 7 ¥
pd a
S I S/
\\\
\\
\\
~

First'RE 14.— Body with corner.

discontinuity which arises in the second-order solution at
the corner.

These two modifications require special solutions of the
first-order equation which along the Mach cone from the
origin have discontinuities in velocity in the first case, and a
discontinuity in potential in the second case. Such solutions
can be found by approximating to equation (83) in the vicin-
ity of the Mach cone. Imposing the condition that there z
is only slightly less than SR and keeping only leading terms
in the difference »—pBR leads to an Abel integral equation
for the source strength. Inverting the integral equation
shows that a potential having discontinuous nth derivatives
results from a source distribution along the axis which is

praportional to rr-i Setting f(:r)=:r""% in equation (81)
gives
. r—8r El-%de _
S
ta=prr ! (1—ptar
28r . r—Br
' / (1+ 26r )

This integral represents the analytical continuation of the
livpergeometric function, so that, except for a constant
factor,

(96)

1 1 Ir— ﬂr) (97)

e=(r— ﬂr)‘\/r F 3 it li—5g
where a is the radius at the corner. The potential is under-
stood to vanish except within the downstream Mach cone
from the origin. The hypergeometric functions occurring
here can g2ll be expressed in terms of complete elliptic
integrals with real moduli.

In the first-order solution, & sharp deffection of the stream-
lines at a corner is produced by adding a multiple of the
potential which has discontinuous frst derivatives. This is
found by setting n=1, which gives

¢=—§r\/ (1+t)\ (K E) ]

2

-V TRE

28 2 1-+¢ -
aEECEen |

11 fa 1 (98)
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Here t is the conical variable introduced in equation (14),
and X and E are the complete elliptic integrals of the first
and second kinds with modulus k=[(1—#)/(1+£)]¥2.

From the tangency condition (equation (80b)), it can be
shown that in order to anccount for the corner the solution
given by equation (98) should be multiplied by

(R =R +(ed
BL Ry

Here R, and R, are the stopes of the meridian curve just
ghead of and behind the corner and (g.); 1s the value of o,
ahead of the corner. The first-order solution can thereafter
be continued as described in the previous section.

The second difficuity noted before was that the second-
order solution is found to be incorreet just behind the corner.
The proper method of treating this diffieulty is to solve the
case when the corner has been slightly rounded and then
pass to the limit of & sharp corner. However, the following
simpler procedure is found to give exactly the same result.

The particular solution ¥ caleulated from equation (85)
is discontinuous along the Mach wave springing from the
corner. If the discontinuity vanished at the corner, the
solution could subsequently be revised as in the case of
plane flow (see fig. 5). However, there is a finite jump in ¢
directly at the corner, which cannot be eallowed. Conse-
quently, the correction potential x must involve an equal
and opposite jump. A potential having such a discontinuity
is obtained by setting n=0 in equation (97). Then

N

{ E~EK)

2—¢
[z E— [

(99)

~SVVrek
Xx=—%i‘-\a 1{\/:(K E) L

Xr—_—_ /E lt\/_(lE IL)

Adding a suitable multiple of this potential cancels the dis-
continuity in ¢¥. The second-order solution can then be
continued as described in the preceding section. It can be
verified that the pressure jump at the corner has then the
correct second-order value.

It is instructive to analyze the behavior of a corner from
another viewpoint. It was pointed ouf before that the right-

(100)
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hand side of the iteration equation can be considered to
represent the effects of a known distribution of sources
throughout the flow field. In the case of a slightly rounded
corner, this source distribution will be weak except between
the Mach lines from the corner. As the corner shrinks to a
point, the source intensity will increase in that region in
such a way that the total strength remains constant. In
the limit, the source distribution will behave like a Dirac
delts function elong the Mach line from the corner. The
particular integral for plane flow (equation (35)) takes
account of this impulsive function so that the correct solu-
tion is automatically obtained. In tho case of axially sym-
metric flow, however, it is clear that the particular integral
given by equation (85) misses the contribution of the im-
pulse. It is therefore necessary to correct this shortcoming
by adding the step-function potential given by equation

(100).
COMPARISON WITH NUMERICAL SOLUTIONS

The accuracy of the second-order solution for bodies of
revolution can be evaluated by comparison with examples
calculated using the numerical method of characteristics.

The first body to be considered is a circular-are ogive of
12}4-caliber radius of curvature followed by a ecylinder,
which has a helf angle of 16.26° at the tip. The second-

o P

_____ First order|
— — — Second order

Me thod of characteristics:
—Inferpolofed from reference 29
2¢l- uvSauer’s method, vorticity neglectfed

L o Gudlertey’s method, vorticity neglected Yreference 30
o Sauers method, vorticity included
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FieurE 16.—Pressure distribution on smooth hody of revolution at M=8.24.
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Frouek 16.—Pressure distribution on body of revolution with corner at M=2.076. .

order solution has been calculated for this body at & Mach
number of 3.24. This represents a severe test of the method
because the Mach angle is then only 10 percent greater
than the tip cone angle. Intervals were chosen such thai
the points P, lay at 0.1, 0.25, 0.5, 1, 2, and 3.5 calibers.
The pressure distributions calculated by first- and second-
order theory are compared in figure 15 with the results of
various computations by the numerical method of character-
istics. Of the latter, the result obtained from the interpola-
tion chart given by Rossow in reference 29 is believed to be
more accurate than the earlier German computations which
were taken from the summary report of reference 30. Ex-
cept near the tip, the second-order solution agrees very
closely with the numerical results.

The_second body to be considered consists of & cone of 10°
gemi-vertex angle followed by a cylinder. The character-
istics solution for this body at a Mach number of 2.075 has
been given by Liepmann and Lapin in reference 31. The
first~ and second-order solutions were ealculated beyond the
corner using the modifications discussed in the preceding
section. Figure 16 shows the shape of the body, the loca-
tion of source lines, and the pressure distributions caleulated
by first-order theory, second-order theory, and the method
Again, the second-order results agree well
with the characteristics solution.

.. SERIES EXPANSION WITH RESPECT TO THICKNESS

An alternative method of solving the exact perturbation
equation (equation (4)) by successive approximations is to
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assume that the solution can be expanded in powers of the
thickness parameter e. Thus the exact perturbation poten-
tial is written as
(1) 2 @) @

P=Pet+ P32+ P +Pe- ... (101)
Substituting into equation (4) and equating like powers of ¢
vields a sequence of equations
(n (m (1)
q’uu‘i‘ u—52¢z=0

ww @O O 102)

(qi,+c1> ——ﬁ % —2111“[(N-—l)ﬁzcbsza—l-cb,@ﬂ—i—@,@w

which can be solved in succession. The first is again the
usual linearized equation. This method was applied to plane
subsonic flow in references 6 and 12.

Schmieden and Kawalki first pointed out (reference 14)
that the power series assumed here does not always exist,
even for plane flow. In general, terms of the form e*In®e
appesr, beginning with, elne in the third-order solution for
plane flow and in the second-order solution for axially sym-
metric flow. Furthermore, for a body of revolution only
even powers of ¢ arise. Consequently, it is necessary to
.assume a more general series of the form

(1) 2)

<I>—<I>e+<bez+<1>e"’+‘1’e‘ In e-[-fI’e‘-[— (103a)

for plane flow and of the form

W@ ® @ (® ©
=0+ Petln e+ Pet+ Pt ln? e Pefln e Pett .
(103b)
for axially symmetric flow.

On the basis of this assumption, BrodencL has developed
2 second-order solution for supersonic flow past slender
pointed bodies of revolution (reference 32). The analysis
is rather lengthy, since the simplification resulting from the
discovery of s particular integral does not appear. The
results are limited to shapes for which the cross-sectional
area is given by an analytic function, or at any rate has its
first four derivatives small of order ¢ and the first two con-
tinuous. This is a severe limitation since, for example,
the two bodies discussed in the previous section are not
admissible.

Broderick’s method yields the slender-body counterpart
of the present second-order theory. Just as the usuel first-
order slender-body results can be derived as asymptotic
forms of linearized solutions, so Broderick’s second-order
slender-body results can be obtained by expanding the
present second-order solution in powers of ¢ and [n # for
small ¢ and retaining secondary as well as Jeading terms.
The logarithmic térms arise from the series

1 3

sech™ 1t_ln——-—t’——— BH— ..

T (0<t<1)

(104)
The expansion will now be carried out for the case of flow
past a cone.
It is clear from equation (70} that the constant A in the
first-order solution (equation (69)) is given approximately by

A=d+. .. (105)

1w
-
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Substituting this value into equations (73a) and (73b),
expanding in powers of ¢ and In £, and imposing the tangency
condition (equation (71b)) shows that

et [(2.—112—1)&1 %—Mﬂ(NH)—% +---(106)

Then according to equation (73), the velocity perturbations
on the surface of the cone are

bitn 2 [ (0 2 A 2y

C Be
M?N-[-%—l-]—f- : (1072)

LIS S T (107b)
Replacing &N by its value from equation (11), the approxi-
mate pressure relation of equation (27) gives for the pressure
coefficient on the surface of the cone

=g(2zn 52;_ 1-)+

2 14
64[3,32(17%) —(5M2—1)in 33 +(7+1)%§—

3
o ¢(n5) ]

This is Broderick’s result (reference 32, equation (81)).

This series is compared in figure 17 with the original form
of the second-order solution which uses the exact pressure
relation. For the most slender cone, the expansion in series
causes only a moderate loss in accuracy. For more practical
thicknesses, however, the expansion reduces the accuracy to
such an extent that for the come of 20° semivertex angle
Broderick's solution is inferior to the first-order result (with
the exact pressure relation). The reason must be that the
iteration process itself converges more rapidly then do the
subsequent expansions which are required to reduce it to the
slender-body series form. Hence terminating all expansions
at terms of the order of those retained in the iteration process
results in an unnecessary loss of accuracy.

By, 1
'{‘zﬂf "["é]'["

(108)

THREE-DIMENSIONAL FLOW

PARTIAL PARTICULAR INTEGRAL

It might be hoped that a particular integral, which so
greatly simplifies the iteration for plane and axially sym-
metric flows, could be found for the general three-dimensional -
case. The various methods of existing first-order theory
could then be applied immediately to the problems of second-
order flow past such shapes as inelined bodies of revolution
and three-dimensional wings.

A part of such a particular integral is found at once, being
common to the two special cases. Consider the three-
dimensionasl iteration equation (equation (12)), which may be
written

ﬁgqf)‘,, = (2-2\‘T 250:99.:::_ 232‘:"':‘?.:: +2 CyPzy +2‘Pz¢u+'
e ot 2¢40:0nt 0:302:) (109)
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FiGUuRE 17.—Eflect of expanding In serles upon second-order pressure on & cone,

It can be readily verified that except for the term in N and
the triple products (the last three terms) a particular integral

is given by
Ya=M 25’9’:
which appears in both equations (35) and (85).
The iteration equation is thereby reduced to

by + Per— ﬂg¢xx= A (213,N (224 + 9’#’("#1« +-2 CyP1Pye + Sazzﬁﬂn)
(111)

(110)

It has not been possible to find a particular integral of this
equation in terms of the first-order potential. The solutions
for plane and axially symmetric flow do not appear to suggest
a generalization. On the other hand, there is no assurance
that such an integral cannot be found. When the triple
products are negligible, the right-hand side of equation (111)
vanishes for y=—1 (N=0). However, investigation of the
provious solutions indicates that the idea of here taking
=—1 is not legitimate.
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In the absence of & complete particular integral, the re-
duced iteration equation (equation {111)) must be attacked
by more conventionsl methods. In principle, it is always
possible to find a particular integral of a linear nonhomoge-
neous equation with the aid of the fundamental solution
associated with the differential operator. For the ibree-
dimensional wave operator which occurs here, the funda-
mental solution is

1

By — )y +(z— )1

which can be interpreted as the potential at any point
(z, ¥, ) Iying inside the downstream Mach cone from & unit
supersonic source at (£, 4, {). With the aid of Green's
formule, it can be shown that a particular integral of

—; 112
Vx5 — (112)

is given by
. F(g n, $)dgdndt
wev o=z | | | ey Y

where the integration extends throughout that portion of
the forward Mach cone from the point (x, ¥, 2) within which
Fis defined.

In practice, the integration indicated in equation (114) is
generally not feasible. For example, even the simplification
of axial symmetry reduces equation (114) only to a double
integral of F(z,r) multiplied by a complete elliptic integral
of complicated argument. Avoiding such integrals by dis-
covery of the particuler solution clearly represents a great
simplification in this case.®

In the following sections, one example of a three-dimen-
sionsal solution will be given, and the possibility of treating
other shapes will be discussed thereafter.

FLOW PAST AN INCLINED CONE

The problem of a cone at an angle of attack illustrates the
use of separation of variables to reduce the three-dimensional
iteration equation fo tractable form.

Two alternative coordinate systems are suitable for bodies
of revolution at an angle of atiack. In wind axes the body
is inclined, while in body axes the stream impinges #n the
body obliquely. The latter system is simpler for first~order
problems and is probably better for the second-order solution
also. However, wind axes will be used here, since otherwise
the iteration equations must be rederived.

To simplify the solution, it will be assumed that the angle
of attack « is so small that its square can be neglected. This
will give & solution nonlinear in the body thickness but linear
in &, and will therefore yield the initial slope of the lift curve
correct to second order. The coordinate system is indicated
in figure 18.%

§ Comparing the two methods would lead to the evaiuation of definite Integrals Involving
omplete elliptic integrals, which might be of some interest.

¢ In previous versions of this work (references 1 and 2) an oblique transformation was ap-
plied which effectively unyaws the axig of the body. However, this additional iransforma-~
tion has been found to complicate rather than simplify the analysfs, and has been nm.[tted
here.
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To this approsimation the surface of the cone is given by
r=R(x, 8)=[e—a(l1ed cos 8z
t=T(6)=Be—a(l-€* cos f]

(1158)
(115b)

The first-order equation for the conical perturbation poten-
tial is given by the left-hand side of equation (17):

(1— t’)¢.,+‘°‘+"“ (118)

The solution required here is the sum of potentials for a coni-
cgl line source and dipole (reference 3, p. 74) and has the
form

i—g
o=—A sech“lt—{l—f')—{-(_'-’(‘ lt 7rz—t sech™! t)a cos @
(117)

FiGTRE 18.—Inelined cone In wind exes.

From equations (16) and (19a) the tangency condition is
found to be

Beoi=[e—a(l+€%) cos 6](1+—ta) ati=T (118)

Substituting from equation (117) and expressing values on
the cone in terms of their values at {=f8e by means of Taylor
expansions, it is found that

e?

A= T=pii+ e sech-1e (1192)
1+e2
Af—F -1
2 z\l T (52\/1 — 8% sech. BE)
C=Be(1+€?) (119b)

(14265 1—pB%* B%?sech B¢

According to equation (110), a partial particular integral
of the second-order iteration equation is, in conical form,

Vo=2M(o—tp)=AM?[ A sech~? t(sech™ {—/1—8) —

0[3-‘ 1—8 sech t_, 1—tt=

t (sech™! t)’]a cos 6} =

“'o'l‘il’;_a cos @ (120)

There remains to solve the reduced iteration equation given
by equation (111), which becomes

(1— t2)¢:t+¢‘+‘¢“ AJ.[{A(._.‘VSECL‘{T 814 '_t _

40(N se—+ch“ i Nt——B’A\ 'a cos 6:'

(121)
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This is reduced to two total differential equations by setii ~ € - - -
d M BE+8)~ 135 Gt F)=F+ @ +0)—
o, )=o)+ :(t)a cos 8 (122 — -
o D=8l+90 "1 Gt R+ (126b)

Here ¢, is associated with the axial component of the free
stream, and @ with the cross flow. The first of these is
known from the previous solution for the symmetrical cone
(equation (72)). The equation for the cross-flow term &, is
sech™¢

=+

r 31
(-3 +20 =

Ni_ga M)
t5

Setting

—__——._

LACH? ( N

(123)

$1 () =tw(?)

reduces this to a linear first-order equation in w which can be
integrated to find that

p(

(124)

T —f2
o= tsech"t)-}-AC’M2 [31\7 l_t_t_+

Nt @ech 1145 prd T (125)

The tangency condition separates into the two conditions

B+ 3 )=¢[1 +Fo—t¥)HB—18)] at i=Be (126a)

The first of these is the previous rclation (equation (71b))
which determined the constant B in equation (72). Simi-
larly, the second of these determines the constant D in
equation (125).
SERIES PXPANSIONS FOR PRESSURE AND NORMAL FORCE ON ENCLINE D
CONE

Numerica.l results bave been calculated only for the case
in which the solution is expanded in powers of ¢ and /n ¢ (the
slender-body approximation). Carrying out the expansion,
the constant D is found to be

D=28¢ [1 20260 %—<3MSN+%) et .. ] (127)

Then calculating the velocity components from equation
(117) and the pressure from equation (27) gives, on the
surface of the cone,

Cp=(Cp)o—4e [1——5 (M"’ln———-— JII’-{-I)] acos g+ .

(128)
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Here ((})e is the value for zero angle of attack, given by
equation (108). Integrating gives the normal-force coeffi-
eient, based on cross-sectional area:

SRy L

oy=normal foree_,, [l—-e (3t 2~S
3 P U ¥ (area) Be
(129)

This result has been obtained also by Lighthill (reference 33},
who has calculated the lift on bodies of revolution having
analytic meridian curves by assuming a series expansion for
the veloeity potential.

Stone (reference 34) has developed a solution for inclined
cones which js linearized with respeet to «, but otherwise
exact. Kopal (reference 35) has published tables of the
numerical results of Stone’s theory. A comparison of equa-
tion (129} with this exact theory and with Tsien's first-order
solution (reference 36) is shown in figure 19 for 5 and 10°
cones. The earlier discussion of series expansions suggests
that the agreement might improve if the solution were not
expanded in series.

SHOCE-WAVYE POSITION FOR INCLINED COXNE7

Just behind the Mach cone the velocity components are
Yy _1/7eN  _oypara .__
(%)_~3 (U),-Fz‘”‘\ 4(1—8Bacost) (130)

For simplicity, using equations (119), A and ¢ have here
been approximated by e?and 28 Comparing equations (74)
and (77), it is seen that if these were the velocities just
behind the shock wave, then the difference between the
shock-wave angle and the Mach angle would be
—ﬁJI’N’ 4(1—8Ba cos 8)

A—sin~t (131)

M

Hence the ratio of the angular rotation of the shock wave
to that of the cone would be

EiSﬁQJFA’\”e* (132a)

Recently Lighthill has derived a simple expression for the

shock-wave position for any conical body lying inside

the Mach cone (reference 25). From his results it is found

that the preceding relation is incorrect, the correct expression
being again one and one-half times as large, so that

';( 2 B_[ﬁ 4. 11'2 2\"'! £ ‘)b

=3(v+41) —ﬁ—ze=121 52V % (132b)

For moderate cone angles this latter result agrees well with

the exact values calculated by Kopal (reference 35) from

Stone’s theory. Again the discrepaney indicates failure of the

second-order solution near the Mach cone.

EXTENSIONS OF THE THEORY

Two important classes of problems heve only been touched
upon here. One is wings; the other, inclined bodies of
revolution. The problem of inclined bodies has recently

“Thesze relations were given incorrectly in references 1 and 2.
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been studied further in reference 37. The iteration equations
were there rederived in body rather than wind axes, which
simplifies the tangency condition. Again only a partial
particular integral could be found.

The possibility of discovering particular integrals of the
iteration equation might be investigated more systematically.
If none can be found for general three-dimensional flow,
special eases such as conical flow should be studied.

TREATMENT OF WINGS

One of the most useful applications of first-order theory is
to thin flat wings. For conical wings, the reduced iteration
problem can be transformed, by the standard conical theory
(reference 18}, into the problem of solving Poisson’s equation
inside & circle. This cese has recently been studied by
Moore (reference 38), who has ecalculated results for the
nonlifting wing of triangular plan form lying inside the Mach
cone and of symmetrical wedge section. Although the two
extremes of the plane airfoil and the slender cone show that
compressive pressures are reinforced in the second approxi-
mation; Moore caleulates a reduction for an intermediate
sweptback case.

Two difficulties can be anticipated. First, if the wing has
subsonic edges, infinite velocities arise there, so that the
assumption of small perturbations is violated. It is known
that in first-order theory this is no essential objection,
since the pressure is found correctly except in the immediate
neighborhood of the singularity, and the integrated values of
lift and moment are correct to first order. Schmieden and
Kdwalki (reference 14) and Kaplan (reference 13) have
indicated that this result extends to the second approximation
for subsonic flow, so that probably no reel difficulty exists.

Secondly, if the wing has supersonic edges, the failure of
the iteration process along Mach lines from the apex can be
expected to affect the surface pressures. Again it is possible
that integrated values will be correct to second order.
Otherwise, it may be possible to adjust the solution in those
regions, in & manner similar to that shown in figure 5.

HIGHER APPROXIMATIONS

It scems unlikely that third or higher approximation
would ever be justified. Other neglected factors, chiefly
viscosity and heat conduection, should ordinarily be considered
first. However, the Busemann second-order result has been
extended to third and even fourth order (reference 39),
and various writers have considered the third approximation
for plane subsonic flow (references 7, 9, and 11). If a third
approximation should be considered worthwhile, the iteration
could be repeated. Again the cases of flow past a curved
wall and & cone would serve as helpful examples.

APPLICATION TO SUBSONIC FLOW

The iteration equation and the particular integrals are in
no way restricted to supersonic flow. The particular solution
for plane flow might profitably be compared with the sub-
sonic solutions of references 5 to 4.

Recently Kaplan has shown (reference 40} that the par-
ticular integral for plane flow (equation (35)) can be derived
formelly, using complex variable theory, and has similerly
obtained the third-order particular integral. The latter is
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not applicable to supersonic flow except in special cases which | subsonic speed. In this case, the integral equation can be
are free of shock waves, treated by the methods used for the airship problem.
The particular integral for plane flow has recently been
applied to several subsonic problems by Harder and Klunker
(references 41 and 42). AMES AERONAUTICAL LABORATORY
The particular solution for axially symmetric flow makes NaTtronNaL Apvisory COMMITTEE FOR AERONAUTICS
possible a second-order solution for bodies of revolution at Morrerr F1eLD, CaLiFoRNIA, April 2, 1852
APPENDIX
SYMBOLS £ abscissa of origin of nth source line
a constant reference radius for body of revolu- | ¢ local density .
tion Ta conical variable referred to 2=§, as origin
b abscissa at which source distribution for body rather than z=0 . _
of revolution begins @ first-order (linearized) perturbation potential,
A,B,0,D constants determined by boundary conditions same as
¢ local speed of sound ¢ second-order perturbation potential, same
C. constant coefficients of series as @
Cx normal-force coefficient & exact pertubation potential
c, pressure coefficient o nth-order perturbation potential
E complete elliptic integral of the second kind | % nth term in series expansion of perturbation
with modulus k=[(1—2)/(1+£)]¥* ~ potential . .
f(@), F(z) source-distribution functions for body of | x complementary function for second-order iter-
revolution ation equation
Fu(z,y,2)  kpoown right-hand side of (n+1) st-order iter- | ¥ particular integral of second-order iteration
ation equation ' eq.uatlon _ ' .
&) continuous function of order unity which | ¥« partial particular solution for three-dimen-
vanishes for 2=0 sional flow
h,j, H,J arbitrary functions of one variable (See equation (110).) _
K complete elliptic integral of the first kind with | @ complete velocity potential
modulus k=[(1—£)/(1+)]V/? @ auxiliary variable
(See equation (124).)
M free-stream Mach number (E)
Ca SUPERSCRIPTS
2
N y+1i M e o T (n) . result of nth-order solution
2 B - . .
. — value in conical form
? local static pressure ) (Ses equation (15).}
P, points on body of revolution at which tan-
gency condition is imposed SUBSCRIPTS
q local speed of flow 0 associated with axial flow
r radius in cylindrical coordinates 1 associated with cross flow
R radius of meridian curve of body of revolution | « - free-stream conditions
S function defining surface of body 2 value just ahead of corner
cal variabl gr b value just behind corner
t conical variable —:i:') ¢ differentiation in direction of cross-wind com-
T value of ¢ on surface of body ponent of normal to body surface
u, 9, W perturbation velocity components in Cartes- REFERENCES
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