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A GENERAL INTEGRAL FORM OF THE BOUNDARY-LAYER EQUATION FOR INCOMPRESSIBLE
FLOW WITH AN APPLICATION TO THE CALCULATION OF THE SEPARATION
POINT OF TURBULENT BOUNDARY LAYERS®

By NEear TeTteERrviN and CEra CHrao Lix

SUMMARY

A general integral form of the boundary-layer equation s
derived from the Prandil partial-differential boundary-layer
-equation. The general integral equation, valid for either
laminar or turbulent incompressible boundary-layer flow, con-
tains the Von Kdrmdn momentum eguation, the kinetic-energy
equation, and the Loitsianskii eguation as special cases.

In an attempt to obtain a practical method for the caleulation
of the development of the turbulent boundary layer, use s made
of the experimental finding that all the velocity profiles of the
turbulent boundary layer form essentially e single-parameter
family. The general equation is thereby changed to a simpler
one from which an equation for the space rate of change of the
shape parameter of the turbulent boundary layer can be obiained.

The resulting equation for the space rate of change of the
velocity-profile parameter 18 restricted by the assumption that
the velocity prafiles of the turbulent boundary layer can be
approzimated by power profiles. Two of the resulting equa-
tions are used to calculate the distribution of the profile shape
parameter over an airfoll for one erperimentally determined
pressure distribution. Although different assumptions were
tried for the shearing stress across the boundary layer, the calcu-
lated distribution of the profile shape parameter did not agree
exactly with the experimental distribution.

An examination is made of the effect of using the experi-
mentally determined single-parameter family of velocity profiles
tnstead of the power profiles on certain functions that occur in
the equation for the space rate of change of the velocity-profile
parameter. One calculation of the distribuiion of the profile
shape parameter over an airfoil 18 also made for the experi-
mentally determined pressure distribution by using the single-
parameter family of velocity profiles found from experiment.
A comparison of the results with those of a calculation made
with the same assumptions except for the use of power profiles
shows some difference near the separation point. It 18 believed,
however, that the apparent lack of reliability of the specific
equations used to make the caleulations 1is caused mainly by
the lack of precise knowledge concerning the surface shear and
the distribution of the shearing sfress across the turbulent
boundary layer. The present analysis emphasizes the need
for information concerning the shearing stresses in turbulent
boundary layers.

INTRODUCTION

An outstanding problem in serodynamic theory is to cel-

culate whether the flow will separate from the surface of a o

specific body and, if so, where the separation will oceur.
The councept of the boundary layer and the equations that
describe the flow in it, introduced by Prandtl (reference 1)
and first worked out in some detail by Blasius (reference 2),
reduce the problem to solving the Prandtl boundary-layer
equation when the flow is laminar. Because of the mathe-
matical difficulty of solving the equatiom, approximate
methods were developed for the calculation of the properties
of the lamivar boundary layer (reference 3). In some of
these methods, for example, the Pohlhausen method (refer-
ence 3) and the Wieghardt method (reference 4), a functional
form is chosen for the velocity distribution through the
boundary layer end is combined with either the Von Kfrmén
momentum equation alone (reference 5) or with both the
Von Kérmén momentum equation and the kinetic-energy
equation (reference 4). The result is the replacement of the
Prandtl partial-differential equation by one ordinery differ-
ential equation in the Pohlhausen method and by two ordi-
nary differential equations in the Wieghardt method. A
solution of the ordinary differential equation or equations
provides the boundary-layer velocity profiles along the body.
These and other approximate methods that use only the
Von Kérmén momentum equation, or the momentum and
kinetic-energy equations together, do not satisfy exactly the
Prandtl boundary-layer equation.

Because the flow in the boundary layer is more often
turbulent than laminar in cases encountered in engineering,
the problem of calculating the separation point is of even
more importance for turbulent than for laminar boundary
layers. In spite of the importance of the problem, however,
less progress has been made in the development of methods
for the celculation of the behavior of turbulent boundary
layers than for laminar boundary layers. The lack of
progress stems from the absence of an explicit independent
equation for the shearing stress that is accurate enough to
lead to & description of the flow when used with the Prandil
equation. .

The main attempts to obtain methods for the calculation
of the behavior of the incompressible turbulent boundary

L8upersedes NACA TN 2158, “A General Integral Form of the Boundary-Layer Equation for Incompresstble Flow with an Application to the Calculation of the Separation Point of Tur-

bulent Boundary Layers’ by Neal Tetervin and Chia Chiso Lin, 1850.
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layer in the presence of pressure gradients are those of
references 6 to 12. 'The results of these attempts are unsatis-
factory either because the assumptions upon which they rest
are incorrect or because the equations used to make cal-
culations were not derived from the boundary-layer equations.

The analysis of reference 6 is based on the assumption that
the velocity profile is a single-velued function of the ratio of
the pressure gradient to the skin friction, an assumption
shown to be incorrect by later investigators (for example, see
reference 12). In the analyses of references 7, 10, 11, and
12 the momentum equation is used, together with an auxil-
iary equation, to calculate the distribution of velocity pro-
files over a surface. In each of these four methods the
auxiliary equation is not derived from the boundary-layer
equations but is empirical.

In reference 8, the equation that gives the variation of
the mixing length across a pipe (reference 3) was used to
calculate the velocity profiles. The fact that the mixing-
length distribution across the boundary layer is not the
same as across pipes is shown in references 13 to 15.

Reference 9 does not provide a method for the calculation
of the distribution of turbulent velocity profiles along a
surface. It does, however, suggest that separation of the
turbulent boundary layer always occurs when the numerical
value of the nondimensional pressure gradient reaches an
empirical constant.

The purpose of the present 1nvest1gat1on is to begin w1th
the boundary-leyer equation for incompressible flow and
to proceed as closely to. a method for the calculation of the
behavior of the turbulent boundary layer as the present
knowledge of the turbulent boundary layer permits.

At first it might appear that the use of empirical auxiliary
equations in methods for the calculation of the behavior of
turbulent boundary layers can be avoided by developing
a method similar to the Pohlhausen method which requires
the solution of only the Von Kédrmén momentum equation.
For turbulent flow, however, in contrast with laminar flow,
the conditions on the behamor of the velocity profile at the
surface that can be obtained from the boundary-layer equa-
tion seem to be of little or no use for the determination of the
shape of the velacity profile across the boundary layer.
This difference between laminar and turbulent flow makes
inapplicable the Pohlhausen process in which & type of
function is chosen to represent the velocity profiles, the
function for the velocity profiles is combined with the Von
Kérmén momentum equation, and the resulting ordinary
differential equation for the space rate of change of the
profile shape parameter is solved.

An auxiliary equation for the calculation of the behavior
of the turbulent boundary layer can, however, be obtained
from the boundary-layer equation by making use of the
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experimentally verifiable fact (references 7, 10, 11, 14, and
15) that all velocity profiles of the turbulent boundary
layer form essentially a single-perameter family of curves.
In the present analysis the Loitsianskii equation (reference
16) is generalized by multiplying the Prandtl boundary-
la,yer equation not only by an arbitrary power of the velocity
in the boundary layer but also by an arbitrary power of the
distance from the surface. The resulting equation is then
integrated across the boundary layer and provides a general
integral form of the boundary-leyer eguation, valid for
either laminer or turbulent flow. This general integral
form of the boundary-layer equation reduees to the Loitsi-
anskii equation when the distance from the surface is raised
to the zeroeth power, to the Von Kdrmén momentum equa-
tion when both the distance from the surface and the velocity
are raised to the zeroeth power, and to the kinetic-energy
equation when the distance from the surface is raised-to the
zeroeth power and the velocity is raised to the first power.

When use is made of the assumption of a single-parameter
family of velocity profiles, the general integral form of the
boundary-layer equation becomes a general equation for
the rate of change along the surface of the velocity-profile
shape parameter. This equation for the rate of change of
the velocity-profile shape parameter is the desired ausiliary
equation.

The assumption of the smgle-pammeter family of velocity
profiles changes the problem from one of finding a solution
of a partial-differential equation, the Prandtl boundary-
layer equation, to one of finding a solution of two simul-
taneous ordinary differential equations, the equation for
the rate of change of the shape parameter and the Von
Kérmén momentum equation. The differential equation
for the rate of change of the shape parameter, however,
cannot result in a solution of the problem in the present
analysis because a knowledge of the shearing stress is lacking.
In the present analysis various assumptions are made for
the distribution of shearing stress through the boundary
layer, and the distribution of the shape parameter over the
surface of an eirfoil is then calculated. Because of the arbi-
trary assumptions for the shear distribution and the use of
a flat-plate skin-friction formuls, precise agreement between
the calculated and experimentally obtained distributions
of the shape parameter is not obtained.

“The problem of finding the shearing stress in the turbulent
boundary layer remains. It is believed, however, that, if
suitable approximations are found for the shear and surface
friction, the equations presented hercin should enable the
development of the turbulent boundary layer to be calcu-
lated with an accuracy sufficient for engineering purposes.

The present work wasbegun while Dr. Lin was temporarily at
the Langley Laboratory and was continued by correspondence,
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arbitrary positive integer in shear polyn mial
coefficients in polynomial forﬁlfg—‘i dat

exponent in expression for shear
reference chord
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exponent of « in derivation of general equation
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dN
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N'=im
n exponent of ¥ in derivation of general equation
P coefficient of w in equation for ¢ %,%
P exponent in equation for power profiles f={?
D static pressure

1 n— — fm+
—5 | v dy

EQUATION 1069
-
R,=GL p
To radius of body of revolution
S coefficient of ¢ in equation for # %
U velocity parallel to surface and at outer edge
of boundary layer
% velocity parallel to surface and inside bound- = _
ary layer, positive in direction of positive z
? velocity perpendicular to surface and inside
boundary layer, positive in direction of
positive ¥
o value of # at y=0
z coordinate pearallel to surface, positive in
direction from leading to trailing edge
Y coordinate perpendiculer to surface, positive
outward from surface
5 smallest value of ¥ for which the difference
U—u is negligible
&
§* displacement thickness ( [; 1—5n a"y)
=¥
=3
=¥
™4
]
8 momentum thickness'(ﬁ 1—5H dy)
_ddnm :
A'__‘l'(] dz
B viscosity
==
1 2 (1
) density
T shearing stress
To surface shearing stress
=_T0 '
¢= g
v=7t
_8dU
“TU d=

ANALYSIS
DERIVATION OF GENERAL EQUATION
The general equation is derived for the body ot revolution
because the equation for two-dimensional flow can be

obtained from this equation by letting the radius of & trans-
verse section of the body of revolution become infinite.
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The boundary-layer equation of motion for the body of
revolution, also valid for two-dimensional flow, from refer-
ence 3 is
_ldp 12
Uz Ty s dz s oy 1)
After multiplying through by 4™, making use of the equation
of continuity that is valid in the boundary layer of a body
of revolution (reference 3)

v u dry__
+by rodz
and noting that
gdU_ _dp
PY 2™ "z
equation (1) becomes
u™t! ou , dv , udro) v oumtt p  Jumt!
m+1 oz 1 oy " rodz ) m+1 Oz 'm—f—l oY
dU 107
=Y (U dz pby) {2)

After equation (2) is written in a form in which each term
vanishes at the outer edge of the boundary layer, each term
of the equation is multiplied by y* and integrated from y=0
to y=8. The result (see appendix A for detailed develop-
ment) is

§ dU

(n—l—])N%'—l—B(dN I)+Ud INOm -2 — M)

Lim+ )]+ S [V —n(J D) —n Q2
— 7o i m naT_O o
=—mt1) 55 [ sl (3)

Equation (3) is the general integral form of the boundary-
layer equation.

The Von Kérmén momentum equation is obtained from
equation (3) by letting m=0 and #=0, the equation for
kinetic energy is obtained by letting m=1 and n=0, and
the equation for moment of momentum is obtamed by
letting m=0 and n=1.

In the case m=n=0.

Ne=ﬁ"(1—j)f dy=0

or
N=1
Also,
&
Zo= [(G—1ydy=—s*
or - :
5*

It can be easily verified that all the integrals, except @,
involved in equation (3) have finite integrands as = ap-
proaches 0. The limit n@, however, approaches unity as
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n approaches 0; thus

nQB“:nﬁay“‘l(l — i dy

~[va=rn]- v g a—ray

The first term drops out if n=<0.
n—0, the result is

Then, by taking the limit.

lim nQo"=1

n-0

Hence, when m=n=0, equation (3) becomes

6 dU 8 dro_vo_ 7o o
U@ O T )
Equation (4) is the momentum equation for flow over a
body of revolution with flow through the surface. For two-
dimensional ﬂow, cquation (4) becomes
6 dU To

when the value of % from equation (4) is substituted info

equation (3), the result is

oGl Y+ G2 (N D)= (T~ M) +N (4 2))—

8dr,

L-NH} - nlJ— M)+N]——[nQ N(n+1)]

='.—%[(m+l)ﬁ f’“n'a—fdn+(n+1)N:| (6)

where. ___ . . o Lo

=T

£ 7o
The assumptions contained in equation (8) are the usual
boundary-layer assumptions. Equation (6) is wvalid for
both laminar and turbulent fow.

FORM OF EQUATION (6} FOR SINGLE-PARAMETER FAMILY OF
VELOCITY PROFILES

Equation (6) is now to be placed in a form valid when the
velocity profiles form a single-parameter family of curves
{(f=f(n,H For this purpose the term I, of equation (6)
is modified in the following manner:

By definition,

Ian+1_f yi(i— fu+1)|:f ag.l___ﬁdy]dy

Because f depends only on y and f,
d(1—f) d(1—Hdy , d(l—f)dH

oz on ox' OH dr
From the definition of % .
On__nd8
oz 6dr
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then

f’a(l‘f)d _ 146 (7 d(1—f)
0

b(l—f)
oz 8dz)o " Oy dy

oH

dyT dm

or, after an integration by parts of the first term on the right-
hand side, the result is

va(l—f), _1do .
fretfay— m[y(l—f)—ﬁ (1—Ndy |
dH (v2f
dz bH

The expression for I;6*+* then becomes

I 3n+1__%_% 3(1 fm+1) dy_l_é gi nf(l _fm+1) dy+
%g-g -] [Ta—nay|ay-
S (Cyera—gme( [ Shay)ay
But
[Ty —frenay=daon
j: y"A—f")f dy=No+
and

f: v _fmﬂ)l:ﬁy(l —f) dy] dy=Jg+!
Then with

J;a Y= (L —f ™Y (J:%dy) dy—TIom+

the expression for I; can be written as

1de
¢ dz

dH

L= —M+N+N—I (M

Yhen the expression for I, from equation (7} is substituted
into equation (6) and equation (4) for g—g—: is used, the follow-

ing equation is obtained:
dH (dN 6 dU
05 (1) =7 3 -

N(H —m)]+—22, U.,[fn,(J— A)—N—

nH+1)(J—A)+Lm+1)+

(m+ I)J: f""q"a—n dn:l-l—
B/ —3)—N-+nQ] O

dN_dN dH

where —— dz —dH dz
is applicable both to two-dimensional flow and to flow over

a body of revolution.
In equation (8) all the integrals, except the one involving
the shear ratio g, are functions of H, m, and n only. For

bas been used. Equation (8) for ¢ &g

EQUATION 1071

the present no restrictive assumptions regarding the shear
are made. The form of the kinetic-energy equation for a

- single-parameter family of velocity profiles is obtained from

equation (8) by placing m=1 and n=0 and dividing by
N'(H)=K'(H). Thus,

og
g%H _ K(H—l) 8 dU (K-[-zf Taq )ﬂ._
= @r KI PUz

da: Udz

The symbol K represents the ratio of the kinetic-energy
]
thickness J; (1—7)f dy to the momentum thickness. Note

that in the derivation of equation (9) from equation (8), the
assumption of a single-parameter family of curves is not

restricted to the case %=O.

RESTRICTION OF GENERAL EQUATION TO POWER PROFILES

The data in figure 1 show that the power profiles defined
by f=1{7 are a good approximation to the “standard” profiles
derived by fairing experimental date (reference 10). Equa-
tion (8) can be further developed by using the assumption
that f=¢?. After some fairly lengthy calculations (see
appendix B), equation (8) becomes

dH —4P(P+1)(2P+1)[P(m+2)+n+1] g dU+
. d om+n+1 U dz

2p[p(m+2)+n+1]
pm-+n

{ep+n+

1
ptmt2)+n+1] [ e fear] Tt

2p(p+ 1) [p(m+2)+n+1] v,
p(m+1)+n

As a first a,pproximation the assumption has been made that

(10

f=1¢? even when U;SO

The occurrence of the arbitrary positive integers m and
in equations (8) and (10) requires an explanation. In order
to determine why m and n appear, equation (8) is written in
a different form. By making use of the definitions for A, I,
J, M, L, end @ and integrating by parts where necessary in
order to eliminate terms that contain 5, the result is

A fnI=—(n+1) f v f=( —é—g—f 2 )dq
—n( A1) (T — M)+ L(m 1)+ NEH —m)
~n+1) [ W g [<H+1>g§ [ fdntp—1 |dn

a2 —N—(mn+1) [ 70 2
a6 .
=t 0[] sdn+3E) o
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and
(T~ M)—N+n@=(m+1) [ vy~ 3L (1= [(sdn) dn

Equation (8) then becomes

o o | 6 dU 2f 2o [3f f B )]}
e [ T AN )+ Ir-r- @+ ["ran |+ B[ [*ran-1
i wgm( ¢ 9f _OF ’Tﬁf )
f f (f aH aﬂ d"l dn
By using the assumption of a single-parameter family of curves d1rect1y in the partial-differential equation (1), the
following ordinary differential equation is obtained:

r_srGulo 480 o g [ 17—t s [3 (o]

(1m

a’ of af waj" (12)
dH 21 bH
The concept of a single-parameter family of velocity pro- j
files is consistent with equation (1) and with particular L0 : B oy i e
functions for ro/pU? g, and f when the right-hand side of _ P
equation (12) is independent of . When the right-hand side 8 ;?f Za i
of equation (12) is independent of 5, the right-hand side of 1 ’j;‘f’/
equation (11) is independent of m and n. Equations (11) 6 / ]:/',/l"
and (12) are then identical. ' g v ]
To obtain an equationfor 8 C;if that does not contain elther 7/ P 7 H  Colculoted Experimental
m or n or both, the functions 7o/pl? g, and f must there- fdl[_ 2 - —
fore be such _that the_right-hand side of equation (12) is > i | #1710 o L—.—-—'—
independent of #; the solution of the equation for ¢ Tz then “1 N
provides & solution of equation (1). Note that the problem 0 4 | (e}
is to find a solution not of equation (1) alone but of equation ' o '
(1) and the independent relation for the shearing stress in |
turbulent boundary Iayers this relation is af present un- +o ﬁgﬁ’
known. ~
The nature of the approximation made in the present 8 - - 2% - T
analysis, in order to obtain a specific equation for 2o’ mey %/,}»7 | } '
. : . : dH . -6 i S
be clarified by noting that a specific equation for 7=is ob- | /l'/ / | L |
tained from equation (8) by choosing the functions 7,/pl7, 4 ,é /8%6 Co{waed Emd
g, and f and substituting an arbitrary positive integer for m | } —1 2057 O — :
and an arbitrary positive integer for n». The calculated Py 2277 o TR B
distribution of H over a body for arbitrarily chosen functions 4 : )
for 7o/pU? g, and f is then consistent with the momentum _ . )
. . . dH 0 - —
equation and one of the integral equations for e For | e
example, if m=1 and n=0, both the momentum and the 10 IR
kinetic-energy equations are satisfied but no other ones. ' _ ' /,fg(
If m=0 and n=1, only the momentum and the moment of PR
momentum equations are satisfied. In the present analysis & - v T
only the momentum, the kinetic-energy, and the moment of : e -
momentum equations—equations which have familiar phys- 6 za = e
ical meaning—are used. ' J%i i
As noted previously, equation (11) is independent of m ! ,}‘4"’
and n if the functions 7,/pU?, g, and f are such that the right- 4 /f A 2 j‘é5 ca"c’-go"‘?d Experimentol
hand side of equation (12) is independent of ». In this case A 2.701 o —————
2 solution of equation (1) results and the functions. r,/pl?, 2%
g, and f and the calculated distribution of H satisfy every lﬁ
particular equation obtainable from equation (11), (10), or [ : I - ~ fe)
(8) by assigning positive integers to m and n. _ 0 ! 2 3 7 7 s 6 7 & s
Note that m and 7 cannat both be made zero in equation (8) H=1.310, 1518, and 1.710,
(8) because dH—I—nI =0 for m=n=0._ If m and n are both f:?;’?.iﬁﬁi'ﬁd -

Fi6URE 1.—Comparison of experimental and power veloclty profilea.
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zero, equation (8) becomes 0=0. It is also noted that
equations (8) and (10) are valid both for flow over a body of
revolution and for two-dimensional flow.
For m=1 and n=0, equation (10) leads to the equation
for kinetic energy
dH 8 dU

0 - =—HEH-1) GH-1) 5 g+

(3H—1)(H+3H 1f e 2% dr) Tt

(H+1) BH—1) 4
4 U

(13)

where the relation for power profiles 2p+1=H has been
introduced. This form.of the energy equetion can also be
obtained from equation (9) by noting that, from the defini-
tion of K and the equation for power profiles,

K=2(2p+1) AH
' 3p+1 3H—1

A comparison of the values of K obtained from this formula
and obtained from the standard profiles is given in figure 2.

The equation of moment of momentum for power profiles
is obtained from equation (10) by letting m=0 and n=1;
it is

dH _HEH+1)H*—1) 8 dU

ey ) Tzt

E—v| E+@+n [ 3L r@-ng a9

In this equation the term involving the shear distribution
may be rewritten as follows:

f [y di’——f gds

It then involves the mean shear inside the boundary layer.

ATTEMPTS TO DERIVE A RELATION GOVERNING THE CHANGE OF THE
‘ FORM PARAMETER

In most of the recent anelyses of the development of a

turbulent boundary layer, an empiricel relation governing

the change of the form parameter H is usually introduced.

20
\ = Fower velocity profiles
1.9 \ — —o— ——Experimental velocify profiles| |
18 N
X

L7 R

N

} ]
16 A

\\\
\.

/5 “I~al =
Mo Tz 74 16 18 20 22 27 26 28

H
FIGURE 2—Values of K for experimental and power veloclty profiles.
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It is clear that equation (10) sutomatically furnishes such
relations if the shear distribution is known. In this section,
three attempts are described to establish such a relation,
These attempts are based on the following simple assump-
tions for the shear distribution: i

(a) The shear distribution depends only on — 9{—: which

is equal to the Pohlhausen parameter multiplied by a factor

(reference 3).
(b} The shear is constant across the boundary layer.

(¢) The shear distribution depends only on the form -

parameter of the veloeity distribution.

The first two assumptmns are used either with the energy
equation in the forms given by equations (9) and (13) or
with equation (14) for the moment of momentum. The
last assumption is used with equations (13) and (14) jointly.

(a) Shear distribution depending only on the Pohlhausen
parameter.—The first assumption follows the original idea
of the method of Von Kérmén and Pohlhausen in using
polynomial approximations together with the boundary
conditions obtained by successive differentiation of the
equations of motion (reference 3). Fediaevsky (reference 8)

appears to have been the first to introduce it into the inves-

tigation of turbulent boundary layers. Vhen the shear
stress through the turbulent boundary layer is assumed to

be & polynomial of fifth degree in ;’=% satisfying the follow-
ing boundary conditions:

at y=0
' _ a'r_dpl o%r
ST Sy dz opt |
at y=2=6 _ ’ .
or *r

the following expression is obtained:

=1—P+E+NMNI+32+NM¢] (15)

The shear distribution g is a function of ¢ and A, where

8 dpi_
To dl‘

6 U 8 ,pU
erz @ Ta

The particular boundary conditions at y=0 restrict this

development to the cese ﬁ_o

From the shear distribution (equation (15)} the caleulation

may be made of the coefficients P and S. The attempt to
calculate P and S by using the standard profiles together

with equations (9) and (15) was, however, unsuccessful for

two reasons. TFirst, the ratio §/¢, which must be known,
could not be accurately determined from the standard pro-
files. Second, for reasonable values of §/8, the calculated
values of P were positive for values of H for which P should
be negativd.

The calculation of the part of P independent of the shear

profile was then made both for the standard profiles and the

power profiles by making use of the kinetic-energy equations
(equations (9) and (13), respectively); the comparison is
shown in figure 8. The closeness of the results suggests
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that it is permissible to use power profiles as an approximation

for calculating P and S. From equations (13) and (15),
- 96(8H—1)

P=—HEH-1) H—1- @ErsE+n@ETe] ¢
and
B 240(3EH —1)
S=(@3H _1)[H“ HT5HHFDHETY) (17)

The funetions' P and S, given by equations (16) and (17),
respectively, are shown in figure 4.
The fact that the equation
¢ tziI=Pw—l- S¢
where P and § are obtained from equations (16) and (17),
respectively, does not predict the bebavior of the turbulent
boundery layer is shown as follows: _Let w=0; then, for

H greafter than approximately 1.5, (:;H should be negative.
Because S from equation (17) is positive for H>1.2, it

follows that %Ig is positive. This conclusion is incorrect;

Or

\\J ;;'—-1—;” for' p'ower' prof‘lcs : |
= — o, == p for' cmenmenfaf profiles
. P~ : .
tq PP
. \'\\ﬁc
S = .
8 T
N -
; T °
-re—¥ o 1 -
» IHENE AR
. - . : ':'\\ \
. o M P \
-1 61— , =
61 T E T
-20 - — \\Q
-24 — - - - \‘\
0\

Lo 2 /4 L6 /8 1{ 20 Z'.'Zé 24 . 26 28

FIGURE 3.—Valnes of P from energy equation. For power profiles, Pm—H(H—1)(8H—1};
for experimental profiles, P=K(H l) : Coe

<
4 1
1|
0 —
3
§- ”
DA i
.8 ) \\
-2 Y
Y
-16
7.0 12 14 16 78 g 20 22 2% 26 2z

Fi1auRrE 4.—Values of P from equation (16} and values of S from equation (17}.

ERONAUTICS

therefore, the function for S (equation (17)) is inconsistent

with the known behavior of turbulent boundary layers.
To show that the function for P (equation (16)) iz in-

consistent with the known behavior of turbulent-boundary

layers, let H~1.4. By making % positive and large, ‘2{;-’
becomes positive and large because P given by equation

(16) is positive. For positive values of %g: however, it is

known that 724 should be negative. The function for P

dz
(equation (16)) is therefore inconsistent with the known
behavior of turbulent boundary layers.

In order to determine whether functions for P and S that
do not result in obviously incorrect conclusions can be
obtained by making the shear polynomial satlisfy a greater
number of boundary conditions at the outer edge of the
boundary layer, the shear polynomial is generalized by
writing

g= (1—r)4[+A:+A(A+1) rﬁ]+m1 DAL+ AL
(18)

The boundary conditions at the surface that are satisfied by
equatlon (18) are

_ g=1 . or

T="Tg
u_, . or_dpy
v or oy dx
o’ | o b—L‘--—O
a;ﬂ r Y
At y=3s ‘the conditions that are satisfied are
£=0
og_
3¢="
oy
_ o0
aA—l
ag-A—gl_O

In order to evaluate the integral f P2 d;‘ in equation (13)

the termg is wrltten as

§
-g—§=gz+7\ga
where
er=Q1—* [A+AA+ 18] —AQ—p*! [1 + Ar+ %*i) ;::l
and, for A2 1,
H=(1—A+240— AL+ AU — )
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By using the expression for g;, the equation obtained for S is

- 1075

- {2911 Alp 1, A(A+1)(p+1)
S=28p 0 ~ D A r—D G AT I A A R 9
By using the expression for g, the equation for P is found to be
o 2p Al(p+1) 1 A(p+1)
P=—2@p+1)Gpt+ ”’{3p+_1 @A =D G0 LI A g AT, @
where ¢=0 8s required by equation (18). To keep the

To avoid positive values for S obtained from equation (19)
for H<3, it is found that A must be 1 in the expression for
& It is also found that, to avoid positive vealues for P in
equation (20) for H >0, A must be «in the expression for
8. The values for S and P then become

S— BH—-1)(H—1)(H—3)
H+5

P=—HH-1)(3H—-1)

@1)

(22)
The expression for P (equation (22)) is the same as the

coefficient of T ZE’ in equation (13);letting A—  makes the

coefficient of \ in equation (18) become zero. The shea:

profile then contributes nothing to the coefficient of-ﬁ C;U

in equation (13).

Equations (21) and (22) for S and P, respectively, were
tested by making a computation of H and 6 for the pressure
distribution given in table I of reference 10. The computa-

. tion began at %=0.075 with the values given in table I of
reference 10. The equations used are

dH  BH-1H-1)H-3)
0 o =—HH—1)(3H—1)o+ o

and
%=—(H-|—2)w+¢

The equation for g—g is the Von Kérmén momentum equation.

The equation for ¢ was obtained from reference 17 and is

0.006535
o= — Raus

The calculated distribution of H along z was far from the
experimental curve.

In en attempt to reduce the sensitivity of the equation for
] %E to the shear distribution, the moment of momentum
equation (equation (14)), in which the shear appears in the
coefficient of ¢ only a3 a mean value, is used. Yhen the
generalized expression (equation (18)) is used for the shear
distribution g, the result obtained is

dH _HEH-1XH+1)* | 3HH+1P
d:c 2 " (A+2)(A+3)

b [a-SEL),

@t

(23)

coeficient of w negative for all positive values of H, A must
equal = in the coefficient of w. The shear distribution is
then independent of the pressure gradient. To make the

coefficient of ¢ negative for values of H near 3, A must have

the smallest value that it can take; therefore, let A=1 in

the coefficient of ¢. Equation (23) then becomes

g dH_—HE—1)H+1)  (E—1)H=3)
o= () 4 4]

dz 2 (24)

A calculation for the example in table I of reference 10 with
equation (24) resulted in a computed curve for H that was
far from the experimental curve.

(b) Assumption of constant shear across the boundary
layer.—All the computations of H have led to values of H
much larger than the experimental values. Therefore, in
order to reduce the caleulated velues of H it is necessary to .
increase S. In order to increase S, the assumption of con-
stant shear across the boundary layer is made. For constant
shear it can be shown that

f j’ a’j‘——l

by letting g=(1—¢)® and taking the limit of the integral
as B—0. Equation (14), after the assumption of constant
shear is introduced, becomes

gdH —HH+1)(H*—1)
oz _ w
dz 2

~(H—1)¢+(H*—~1)¢

In order to make %=0 at H=1.286 for %=0, the coef-
ficient of ¢ was arbitrarily changed to H®—1.286%
equation then becomes

pOH _—HEH+)(E—1)

dzx 9 —(H*—1.653)¢p++(H*—1)¢ (25)

This equation was used for the computation of H with
¢¥=0, and the results for the example given in table I of
reference 10 are shown in figure 5.

The assumption of constant shear across the boundary
layer was also combined with the kinetic-energy equaiion.
When the power profiles and the assumption of constant
shear are used in equation (13), the kinetic-energy equation
becomes

dH

65 = —HEH—1)(8H—1)o

2 (H—l)g?,H—l)qs_l_

(H+1)BH—1)
4

The_
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The function —H(H—1)(8H—1) is shown in figure 3 and 24 - N
. H—1)3H—1 f
the function = )( )i sin figure 6. When the stand- " ,f ]
)
22 - r’ ]
!
i/

ard profiles are substlbuted for the power profiles and the
assumption of constant shear is made, the hnehc-energy

equation (equation (9)) becomes "

dH_KH-1) K-—-2, 6 K-—1
Ex_ V-G 124 b— K 4
K(H b ; -ig shown in figure 3 and the

where the funetion ———=

funetion —%—,—2 is shown in figure 6. The results of:'th_é_sé
calculations of H (with ¢y=0) are shown in figure 7. In this

case, the use of power profiles makes the result somewhat

different from that obtained by using the standard profiles.
(¢) Determination of § by the simultaneous use of the
energy and moment of momentum equations.—It seems

obvious that, if equations (13) and. (14) were exact, the
coefficients of w, ¢, and ¢ in equation (13) would be equal to

the coefficients of &, ¢, and ¢ in equation (14). - The ratio of
the coefficients of w is )

_HHAH)EH—1) .. .

2 _(H¥ye
—HEH-1(BH—1) 26H=1)
The curve of 2((3 g 1)1) is given in figure 8 and is seen to be

close to unity.
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FIGURE 7. —Comparison of experimental values of /T and values of I calculated by kinvtle
energy equation with constant shear across boundary layer.

The ratio of the coefficients of ¥ is

4H—1)  _4H-1)
B+DGH-1) 3H—1

4(H-1) .
The curve of SE=T
are far from unity for small values of H but become cqual

is also given in figure 8. The values

ta unity for H=3.
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Equating the coefficients of ¢ results in

@[ B+@+ [ s Ear|

—eE-n[E+ES T % ur]
0T
E@—1)E+1) f r 3 ap-SEZL [ T € 4¢
—HY(3—H) (26)
Now let '
f t L Gr—a bHLH
and

Ik ¢ £ de—j+qHHE
When the shear distribution is assumed to depend only on
H, the integrals in equation (26) are functions of A alone.
Because equation (26) is then an identity, the coefficients
of the various powers of H can be equated to zero. The
resulting equations are:

For H®
—-a—%=0

for H*

—a—b+3j—£=0
for H?

5 9. I

a— —G—§J+3q—§—3

for H®

et b—c—% g+38l=—1

d;‘——

fe7 -

Equation (14), the moment of momentum equation, becomes

16

dH HE—1YH+1)
0 ——= w—
dx 2

E-V)EHE-1T+22H+15H) , 1y, (27)

and equation (13), the Sjergy equation, becomes
02 _EE-1)GE-1)0—
(H—1)(BH— 1)(7—[—22]51’-[—15H2)qS L(H+1)(3H—1)¥,
32 25

The variation of H with  for the initis] values and the pres-
sure distribution given in teble I of reference 10 was computed
by using & modified form of equation (28).
dH

E_O at values of H in agreement with experiment when

w=0, the coefficient of ¢ in equation (28) was replaced by

(H—Hy SH—Hy(1+22H + 155
32

where
H=H,(Hs)

The variation of Hywith Rs was calculated from the equation
logm H0= 0.6990—0.1980 logm Ra—0.0lSQ (].Ogm Rﬂ)2

which was derived to represent & faired curve throﬁgh the

In order that _
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- for H*
b-{-c—%l=0
for H®
c=0
The results obtained are:
428
128
18¢
b=—12g
c=0
56 e
I="128
—_32
=-138
40
l=—178
Therefore,
J‘ _7= 45H
s+
and
T+4H-+5H?
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experimental data (see fig. 9); the data were obtained from
reference 18 and from British results that are not generally
available. The result of a computation of H for ¢y=0 and
with equation (28) modified as follows

02 gEH—1)(H—T)o—

dz
(H—H,)(3H— Ho)(7—|-22H+15H’)
32
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(H +DHEH-1)
1 1

(29)

is given in figure 10.
Assumptions (b) and (c) lead to somewhat better results
than assumption (a) although they are still not as satisfac-
tory as those obtained from the purely empirical relations

introduced in references 10 and 12. It is clear that this

difference is caused partly by the inaccuracy of the simple

assumptions about the shear distribution and can be im-

proved by using better descriptions. However, in view of
the limited present knowledge of the shear distribution, it
does not seem worth while to make more complicated
assumptions.
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Fi6URE 0.—Variation of Ay with Re.
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It may be noted that the final equations obtained for the
change of the form parameter by the three assumptions are
all of the form

0 22— P 0+SEH) ¢

where w=% C‘%{ and ¢=;}—};- This form is used in refer-
ence 12, but a different form is used in reference 10.
INVESTIGATION OF ENERGY EQUATION
Since none‘of the thrée assumptions for the shear distribu-
tion results in a dependable equation for %, an investigation

is made to determine whether a result common to the three

agsumptions—namely that the coefficient of_p?}, in the cqua-

tions for %% is a funection of H alone—is very far from true

by using experimental date and the kinetic-energy equation
without any assumption for the shear.

If no assumptions other than the boundary-layer assump-
tions are made and if in equation (6) n=0 and m=1, the
result is

e——-—¢(K+2 f 12 Ldy)+aH-DE+H1-E)  (30)
If the assumption of a single-parameter family of curves is

2.6 [
——O0—— Experimental
e Quiculoted /
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F16URE 10,—Comparison of experimental values of IT with values calcalated by cquation (29).

P=—H(H-1)(3H~1); S=— (H"H"“g’—m’(""”"""“m gm0,
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made (f=f(3,H)), then K=K(H), and equation (30} becomes

K+2J‘&Nfag
dH o 72" 1—K
37; _¢ KI + K/ K+'[’ Kr
or, for ¥=0,
0 gy (e (31)
where
o —(H—DE
HE=—"%
E=—2

e=grs (1— 2], 7 )

If the assumption is made that g=g(n,H), then f=f(g,H)
1

and f f dg is a function of H only. Therefore, {==£8(H).
0

Equation (31) then becomes

dH

05 =k(E) £+ &(H)] .32

fdg

under the assumption that f=f(g, H), reference 12 is used.
Equation (7) of reference 12 may be written as

02— gk, (B [5—2.065(H < 1.4)]

In order to obtain an estimate of the quantity 1——

(33)

where

ky(H)=esE-18

Note that Garner’s equation (equation (33)) has the form
the kinetic-energy equation takes when the assumptions
that f=f(n,H) and that g=g(y, H) are used in the Linetic-
energy equation. The kinetic-energy equetion (equation
(31)) can also be placed in the form of equetion (32) when
the more general assumption that g=g Foln,H)+F.(0,H)
is made for the shear distribution. For the purpose of
f dg, the

quantity £+&(H) in equation (32) is assumed to be identical
with the quantity £—2.065(H—1.4) in equaton (33).
Then

obtaining an estimate of the value of 1——

&HH)=—2.065(H—1.4)
and for H=1.5, for example,
£(H)=—0.2065

thereforas,

1y 2t -
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or
2 1
l_fﬁ, f dg=—0.1032

Therefore 1—2 f dg is the difference between two quanti-

ties, each of whlch is much larger than their difference. It
follows that, in order to determine &(H) for values of H not
close to separation with any accuracy, f and g must be
known with relatively good accuracy.

It may be noted that the moment of momentum equation
is also sensitive to g. ‘This sensitivity can be seen by writing
the coefficient of ¢ in equation (14) as

(1) [(H—i—l) (1— fo 1ga’;)—1:|

When it is noted that the integral L "¢ d is of the order of

unity and that H Les between 1.2 and 2.6, the sensitivity of
the coefficient of ¢ to g becomes clear.

In an attempt to determine whether & is determmed
mainly by H, all the data that were used in reference-10 were
used to compute § by making use of equation (32} in the
form

dH
Tz d:r

The surface-friction coefficient ¢ was calculated by the
formula (from reference 17)

0.006535
b=—pw R‘us

and k(H) was calculated by the expression obtained from the
moment of momenium equation

The values of & plotted against H are given in figure 11.
The effort to determine whether £, is a function mainly of H
is inconclusive. At least part of the scatter occurs because

%H— and % were obtained from curves faired through ex-
perimental points. In addition, the calculation of & requires
dH
6T
the subtraction of ¢ from PREY an operatlon which further

decreases the accuracy of the calculated values of &.
DISCUSSION
Although equation (8) is valid whenever the‘bound.'ary-
that

result after additional assumptions are made do not lead to

layer assumptions are valid, the equations for %
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good agreement with experiment. The first of the additional
assumptions made is that all veloecity proﬁles of the turbulent
boundary layer belong to a single-parameter family of curves.
The experimental data of references 7, 10, 11, 14, and 15
substantiate this assumption.

The second assumption is that the single-parameter family
of curves can be approximated by power profiles. The data
in figure 1, in which velocity profiles are compared, and also
the data in figures 2 and 3, in which K and P are compared,
show this assumption to be good, at least for H<(1.8.

From the data in figures 1 to 3, it is inferred that power
profiles can be substituted for the standard velocity profiles
without greatly affecting the calculated distribution of H
against z for H<1.8. To.test-this inference, the kinetic-
energy equation was used with the agsumption of constant
shear across the boundary layer; the result is shown in
figure 7. As expected from the data of figures 1 to 3, the
effect of the substitution of power profiles for the standard
profiles is noticeable only for H>1.8. It thus appears that

the inaccuracy of the equations for (le that were tested is

caused mainly by the surface-friction law that was used
and by the assumed shear distributions rather than by the use
of the power profiles.

ERONAUTICS .

The data of references 12 and 15 show skin frictions that
increase strongly in the region upstream of the separation
point before dropping to zero at the separation point. On
the other hand, the skin-friction data presented in reference
14 indicate that the skin friction falls monotonically to zero
as the separation point is reached. In the present analysis
a skin-friction law obtained from experiments on flai plates
is used. Tt is thercfore probable that part of the inaccuracy
in the equations used to calculate H is caused by the use of a
relation for the skin friction, that does not give correct values
when there are pressure gradients along the surface.

The assumptions for the shear distribution that wers made

to obtain a specific equation for %,1—3 were

(a) The shear distribution depends onlv on the retio of the
pressure gradient to the skin friction = %—p—l or ——%:

(b) The shear is constant across the boundary layer

(c) The shear distribution depends only on the form parem-
eter of the velocity distribution
Because nione of these simple assumptions is derived from a
knowledge of the details of the turbulent flow, it is not likely
that any of them are valid. When it is recalled that the
coefficient of ¢ in both the kinetic-energy and the moment of
momentum equations is sensitive to the shear distribution,

it is not surprising that a reliable equation for % was nol
found.

In order to obtain a reliable equation for %ﬁ—l from cquation

(8) it thus scems necessary to calculate the surface shear and
the shear distribution across the boundary layer more accu-
rately than in the present analysis. Efforts should therefore
be made to understand the mechanies of turbulent shear
flow sufficiently well to provide an independent relation for
the shearing stress that will predict the behavior of turbulent
boundary layers when used with the Prandtl boundary-layer
equation (equation (1)). '

CONCLUDING REMARKS

A general integral form of the boundary-layer equation is
derived from the Prandtl partial-differential boundary-layer
equation. The general integral equation, valid for either
laminar or turbulent incompressible boundary-layer flow,
contains the Von Kérmén momentum equation, the kinetic-
energy equation, and the Loitsianskii equation as special
cases.

In an attempt to obtain a practical method for the caleula-
tion of the development of the turbulent boundary layer, use
is made of the experimental finding that all the velocity
profiles of the turbulent boundary layer form essentially a
single-parameter family. The general equation is thercby
changed to a simpler one from which an equation for the space
rate of change of the shape parameter of the turbulent
boundary layer can be obtained.
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The resulting equation for the space rate of change of the
. velocity-profile perameter is restricted by the assumption
that the velocity profiles of the turbulent boundary layer can
be approximated by power profiles. Two of the resulting
equations are used to calculate the distribution of the
profile shape parameter over an airfoil for one experimentally
determined pressure distribution. Although different as-
sumptions were tried for the shearing stress across the bound-
ary layer, the calculated distribution of the profile shape
parameter did not agree exactly with the experimental
distribution.

An examination is'made of the effect of using the experi-
mentally determined single-parameter family of velocity
profiles instead of the power profiles on certain functions
that occur in the equation for the space rate of change of the
velocity-profile parameter. One calculation of the distribu-
tion of the profile shape parameter over an airfoil is also made

. EQUATION 1081

for the experimentally determined pressure distribution by
using the single-parameter family of velocity profiles found
from experiment. A comparison of the results with those of
a calculation made with the same assumptions except for the
use of power profiles shows some difference near the separa-
tion point. It is believed, however, that the apparent lack
of reliability of the specific equations used to make the caleu-
lations is caused meainly by the lack of precise knowledge
concerning the surface shear and the "distribution of the _
sheering stress across the turbulent boundary layer. The
present analysis emphasmes the need for information concern-
ing the shearing stresses in-turbulent boundary layers.

LisNGLEY AERONAUTICAL LABORATORY,
NaTioxal Apvisory COMMITTEE FOR AERONATUTICS,
LaxeLEY Fiewp, Vai., May 22, 1950.

APPENDIX A
DETAILED DEVELOPMENT OF EQUATION (3)

Equation (2) can be written so that terms of the form
B+ =+l gppear explicitly; therefore, each term will

;-anish at the outer edge’ of the boundary layer. The
resulting equatjon is
_1 i mil__TTm+l _9_ A+l T TmE ]
[ T e T [
1 duUmt 1 JrU=H
m+1 dr 'm+1 dy
1 (@wrh—Umtudr,, 1 ul™"'dr
m+1 7q dr "m+1 ry, dzx
mrr QU | U= 0T
—wrr o4 (a1)
or, after simplification,
“m+1 m+I - Tl gymEl —
m+1[b:r (st - T )u]
1@ dry e om dT_W"30 (o
m+1 - r @*U—ulm) dz  p Oy @2)

Equation (A2) is now multiplied through by y* and inte-
grated with respect to'y from y=0 to y=3§. The resulting
equation is

m—t—lf
m+1f

1 _1_ _‘h n(f7m+1l__4m+ —
m-+1rodz f’y w umudy

U dr
V" 5y

(U""“—u”"“)u dy—

(Um+1_,um+1) pdy—

f y*urU —ulU™ dy= f dy

213637—53——68

or, after simplification and substitution of the formula for

the differentiation of a definite integral

8 a - d H -
[y o @ —umsyudy= | @ —umtudy

the following equation results: }

d +2 mt1
—arTdsV f [ (L) 7 =
&
m- lf
1 U”‘“dro mtL
m + 1 7y f [ (l? Cr dy

du o
[ 7 f [(t) U]y dy= f vy g

(Um.+1 um-+1) r dy—

. By integration by parts,

(D’m+1 ,um-[-l)v d'y__ﬂ'f ([ -1 um-!-l).vy n—1 dy

IR
and equation (A3) becomes
R P P
“m¥1ldz U T

m+ 1f (Um-[—l_,u_m+1) vyu—l d,y_

S Atk COME.
m+1 7o % U dy—

au 1 o)
v G @) —Hlv =i 35a

(Ad4)
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The velocity » can be eliminated from the term
8 ;
f(Um+1__u'n+1),vyn—l dy
. 0

by the following development:

The velocity » may be written as

[

or, by use of the equation of continuity,

_ v ou 1 dro
=) 5 W~ 7o dxf wdy+vo

(U — d v
=f g “)dy— dw+: d;“f U—wd —%%y-l-vo

of1—
f[<;%%oa]yh
D (1 8 iy-D oy,

_— a<1 U)

s—dy+o,

Udrg

U
dy +d l"l_f dy—y (d::+r ar +

u dro

Fo dz

or, after terms are collected and f is substituted for »/U,
the result is .

o=U [T D ayt (42N [7 a—pay—y ] +o

The term f U=t —ym+) py*—1dy can now be written as
0

fa (Um+1_um+l)vyu'—1 dy=fa (Um+1_um+1) yu—l

v [ R ay+ (G E D) [Ca-nay- v [0}y

or
rb (Un+1_um+1)0yu—1 dy
JO

=vma "y —geen] [P20D gy T ay+ (42
S o [Cyma—gee| f (A—fHdy—y | dy+

_UOUm+'1f yu—-l(l _fm+l)dy
0

RONAUTICS . . . : —

N:OW Iet .
fy" 11— fm+1)|:f b(l
j; y (1 —-fm+1)[ﬁ (1 —f)dy:l dy=dJ g+

[a yn (1 _fm+1) dy= Afgntl
JO

rly] dy=1I6"*

and
(]
f yn—l(l _fm+!) dy=Q8u
0 .
L .
The term'.f (U=t —ym+py*—t dy now becomes
0

J: (U””"'—u”"“)'vy"“dy=_U""f’Ile"+1-{-

dU+rU Z;;o Un+i(J — M) g7+ 4 o Um +1 Qg
Now let
[Tyra—prensay=ne
0
and ‘

L "(—fyrdy=Lov

Eqﬁation {A4) can then be written as

_mil-l az (U””"Vﬂ""'l)-l' U"“Ixf’"ﬂ'l'
mmﬁﬁxwwMW%ﬁwww
1 U drq n n dU I U‘ L PYL i
m+1 .rg. d:cNg TrUT dz Lomri= ff 4y

. (A5)
After% Um+2Ngrt1 is expanded and terms are collected,

equation (A3} becomes

de dN
o+ )N oo (Sh—nL )+

22U (Nmt2)—n (-3~ L(m+ 1]+ -
aT
”"’[N n(J =Dl —nQp=—(m+1) -7 [ s
where
Y.
=%



APPENDIX B

SIMPLIFICATION OF TERMS IN EQUATION (8) FOR POWER PROFILES

CALCTLATION OF %+nl

-The definition of N§**t ig

i ]
No= [Ca—per frrdy

therefore,
5f&
N[ g frmdn
and
=" [a—ry Z—smtnr | vman
orT

\T LI a .
= -t dy
The deﬁmtIon of g™ is
8. v bf _
4+l — + Bt n
Ig “—_ﬁ Q- (L SH dy)y tdy.

therefore,

I =fum (1—s/") (J:% d n) 7% dy

tnI= (" i —nt 2+ nrdn+
n L (1 — ) ( L %czn)ﬂn-ldq ®B1)
By integration by parts, )
n [ a—re ([ shan)rrdn=
~ [ Zmmrnrp3L " Fydn Jaan

When equation (B") is substituted into equatlon (B1), the
following equation is obtained:

N tnr=mt0) [ v (3L Sk faf dn

Use is now made of the power-law assumption

v ()

if___ 1—2p°
H 2(p+1)@2p+1)

Then

- (B2)

Then
?log ¢

¢
IDL 5

and
af »aaéd faf
1—2p o l[log e 2 M
{°@+1)2(2pﬂ)‘” + [ PES) <p+1)*]}

I: 1—2p% ;,pig'-" log 5]
2(?-1-1) @pt+1) 2

After a Iengthy manipulation, %-{-TLI is found to be
IN o _mtl G+ @) pmtn)
dH 2 p*tp(m+2)+r+1]?

where use has been made of the following equation:

& _(pt1)(2p+1)
g p
CALGULATION OF N

The definition of N§**+!is
N5“+‘=f A—f+) fy=dy
0

Yhen f=¢? is used, the equation for IV is

s (" p{m+1)
N=(3) P tatill@IatD

]_\7: (m_[_ 1) (P + l)n-i-l(z:p_l_ 1)n+1
p*pm+2)+n+1](@+n+ 1)

CALCULATION OF J

From the definition of Jo=t1,

Jorti= fo E(1 — =) [f: (1 —f)dy:[ y*~ldy

or

When f=¢?, the equation for J is

—Idi'

5—:!+1
p+1

g ( g)u-u J;l 1—

or, after a lengthy manipulation,

J=(P+ 1)";?£+1)“+1 (m41)
{ (p+14n) [pm+r+2(p+1]+p(m+1)+14n
n+1)p+1+n)p(m+I)+n+1][pim+1)+p+1+40]
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CALCULATION OF M

From the definition of Jfg"+!
Mo = [ —eyyray
0

When f= {7, the equation for Af is

(p+1*2p410
P (n+1)[pm+1)+n+1]

CALCULATION OF L
From the definition of Lg*+! S

Af=(m+1)

3
Lori= [ -y fydy
0 . -
When 7= t?, the equation for L is

(p+1)n+1(2p+1)u+1
p*(p+n+1L)(pm+n+1)
’V(H—m)—n(.r—-u)(E+l)+(m+1)L
n‘H+nI

L=(m—1)

CALCULATION OF

From the expressmns for J and M, the expression for
J—Mis

J— M= EBRD 1)

(p+1+n) [pm+n+2 @+ 1+ [p(m+1)+1+n]
D@ F1+n)pm+)+atpmID+p+i+n

(p+ 1)ﬂ+l(2p_|_1)n+1 )
p*(n+1)[p(m+1)+n+1}]

After a lengthy simplification, the result is

—(m+1)(p+1)* 2p+1)**!
p*p+14+n)[p(m+1)+p+1+n]

2_71. (m+1)(p41)**12p+1)" 1+
p*(p+1+n)[p(m+1)+p+1+n]

where H=2p+1 was used. The expression obtained for
NH—m)+(m+1)L is

NH—m)yF+(m+1)L

_(m+1)+1)"*2p+ )" 2p(pm+m+n)
p"(@+n+1)[p(m+2)+ntllpm+n+1)

and the expression obtained for

NEH—m)—n(J—M)H+1)+{m+1)L

(m+1)

J—M=

or
—n(J—ADHA+1)=

is
NH—-m)—(J—-M)H+1)+(m+1)L

2(m +)(p+1)**2p+ 1) n(pmtn+ 1)+ p(pm+m-+n)]
p*p+1+n) [p(m+2)+n+1](pm-+n+1)

N [N
SNLcaaVUNGL Al VasUa d U

AERONAUTICS

Ao, WAL

By substitution and simplification

NH—m)—n(J—ANH+ 1)+ (m+1)L
dN
m‘!‘ﬂ]

_—4p(p+1)2p+1)[p(m+2)+n+1]
pm-4n+41

Tt can also be shown that

. 814
—N+n—2)—m+1) [ vrSLis

Tt

dN
m-l- nf

“pm+n[2’("‘+2)+"+11{2P+1+lp(m+2)+n+1]_

og
g—pm+n hat -3 d
L Tl
EVALUATION OF =N+n (J=M)4nQ

From the results for N and J—2\/

—(m+1) (p+ )" @p+ D
P+ 2)FaF1l

—N+4n(J )=

For ¢, the development is
s

Qen= r (1 __fﬂ+l)yu—1 dy
Jo

and with f=¢?, the following expression is obtained for n 0:

m+1 (p+1)*@Cp+1)*

= Pl D) B

Then, by substitution and simplification, for n#0,

—(m+1)(p+1)*+'2p+ 1) (pm+n)
p'p(m+2)+n+1][p(m+1)+n
(B3)

If use is made of the previously derived result that n@=1
for n=0, the following equation is obtained for n=0:

T N4,

—N4n(J—3)+nQ=

If n is placed equal to zero in equation (B3), equation {B4)
results; therefore, equation (B3) is valid for n=0 as well as
n#0.

Then, for all values of =z,

—N+n(J—A)+n@__ 2(P+1)P[P(m+2)+n+1]
dN pm+1)+n
m—}-ﬂ]

e
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