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TEMPERATURE DISTRIBUTION IN INTERNALLY HEATED WALLS OF HEAT
EXCHANGERS COMPOSED OF NONCIRCULAR FLOW PASSAGES!?

By E. R. G. Eckerr and Georgn M. Low

SUMMARY

In the walls of heat exchangers composed of noncireular
passages, the temperature varies in the circumferential direction
because of local variations of the heat-transfer coefficients. A
prediction of the magnitude of this variation is necessary in order
to determine the region of highest temperature and in order to
determine the admissible operating temperatures.

A method for the determination of these temperature distri-
butions and of the heattransfer characteristics of a special type
of keat exchanger is developed. The heat exchanger is composed
of polygonal flow passages and the passage walls are uniformly
heated by internal heat sources. The coolant flow within the
passages 18 assumed fo be turbulent. The circumferential

" variation of the local heat-transfer coefficients is estimated from
Jlow measurements made by Nikurddse, postulating similarity
between velocity and temperature fields. Calculations of tem-
perature distributions based on these heal-transfer coefficients
are carried out and results for heat exchangers with triangular
and rectangular passages are presented.

INTRODUCTION

The conventional recuperative type of heat exchanger
consists of passages for two liquids or gases separated by a
heating surface. Heat from an outside source is carried with
a fluid flowing through one of the passages and is transferred
in the heat exchanger to a second fluid flowing through the
other passage. Very often such a heat exchanger is com-
posed of a large number of tubes, with the two liquids flowing
inside and over the cutside of the tubes, respectively.

The regenerative type of heat exchanger has passages for
one fluid only. During the heating period, heat from an
outside source is carried to the heat exchanger by a hot fluid
and is stored within the solid walls of the passages. This
heat is then given off to a cold fluid, which passes through
the heat exchanger during the cooling period.

In this report, a heat exchanger is considered that differs
from the regenerative type only by the fact that the heat is
generated by heat sources within the passage walls and is
transferred to a coclant flowing continuously through the
passages. The passage walls of this heat exchanger are
assumed to be flat plates assembled to form s honeycomb;
thus the flow passages formed in this manner have a polygonal
cross section. A cross-sectional view of a typical heat

1 Supersedes NACA TN 2257, “Temperature Distribution in Internally Heated Walls of Heat Exchangers Composed. of Nonclreular Flow Passages” by E. R. G. Eckert and George M.

Low, 1951,

exchanger of this type is shown in figure 1. The exchanger
is composed of a number of plates ¢, which form the coolant
passages b.

transfer there is expected to be poor. A theoretical inves-
tigation of the temperature distribution in such a hest
exchanger was made at the NACA Lewis Ia,bora,tory during
1950 and is presented herein.

The basis for this investigation is a knowledge of local

‘The flow of the coolant is normal to the cross
section shown. High temperatures may be anticipated near-
the corners ¢ of the passages, inasmuch as the rafe of heat

heat-transfer coefficients in passages of noncircular cross .

section. Some information is aveailable on the average

heat-transfer coefficients in such tubes (references 1 and 2).

The result of these investigations is essentially that the ex- -

pressions derived for the heat-transfer coefficients in circular
tubes apply for other cross sections as well, provided the
diameter is replaced by the hydraulic diameter. (The

hydraulic diameter is defined as four times the cross-sectional

flow area divided by the circumference of the passage.)

A knowledge of local heat-transfer coefficients in noncir-
cular passages is important not only in the present problem,
but also for several other engineering problems, such as the
determination of local temperatures in the walls of air-cooled

turbine blades. No information on loeal heat-transfer

coefficients was found in the available literature, however.
These values are therefore estimated from flow mesasure-

ments made by Nikuradse (reference 3) on the basis of the

similarity between temperature and velocity fields.

FIaTRE 1.—Cross section through typical heat exchanger composed of néneirenlar flow
passages.
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SYMBOLS

—
The following symbols are used in this report:

L 4

> Tege gonh

cross-sectional flow ares (sq ft)

ratio of wall area to flow area (dimensionless)

internal circumference of passage (ft)

C/D (dimensionless)

specific heat at constant pressure, Btu/(b) (°F)

hydraulic diameter, 4A4/C, (ft)

acceleration due to gravity (ft)/(sec?)

local heat-transfer coefficient, Btu/(sec} (sq ft) (°F)
c

average heat-transfer coefficient, éj; k dz,
Btu/(sec) (sq ft) (°F)

"hfh (dimensionless)

thermal conductivity of wall matenal
Btu/(sec) (ft) (°F)
thermal conductivity of coolant, Btu/(sec) (ft) (°F)
k/k, (dimensionless)
residual value (dlmenswnless)
Nusselt number, 2D/k;, (dimensionless)
coordinate normal to passage wall (ft)
n/D (dimensionless)

‘Prandtl number, v/«, (dimensionless)

pressure (1b}/(sq ft)

local rate of heat transfer, 26, Btu/(sec) (sq ft)
h* 8* (dimensionless)

radial coordinate (ft)

Reynolds number, wD/v, (dimensionless)

rate of internal heat generation, Btu/(sec) (cu ft)
wall thickness (ft)

8/D (dimensionless)

local total temperature of coolant, °F

bulk total temperature of coolant, °F

Tk/rD® (dimensionless)

local wall temperature, °F -
tk/rD? (dimensionless)

velocity components in z- and y-dlrectlon re-

spectively (ft/sec)
Cartesian coordinates . .
z/D (dimensionless)
y/D (dimensionless)
2/D (dimensionless)
thermal diffusivity, k./pge,, (sq It)/ (sec)

angle subtended by two adjacent sides of polygonal

passage (deg)
increment of length (ft)
A/D (dimensionless)
increment or difference -
turbulent diffusivity of heat (sq ft)/(sec)
turbulent diffusivity of momentum (sq ft)/(sec)
temperature difference, ¢-T5, °F
6k/rD? (dimensionless)
kinematic viscosity (sq ft)/(sec)
mass density (Ib) (sec?)/{ft*)
local wall shear stress (Ib)/(sq ft)

JERQNAUTICS
Subseripts:
¢ . conditions for equivalent circular tube
m —conditions at center of flow passage
n conditions normal to passage wall
8 conditions at wall surface
Superscrlpt

dimensionless quantity
ASSUMPTIONS

If this analysis were to be made without any simplifying
assumptions, the simultaneous solution of the equations of
motion of the coolant and of the heat flow in the coolant and
in the passage walls would be required. The following as-
sumptions are made in order to make these cquations
amenable to solution without seriously curtailing the results
of the analysis:

(1) The Pra.ndtl number of the coolant used in the heat

This condition is
Well fulfilled by gases and by water above a temperature of
200° F, excluding the neighborhood of the critical point.

2) The passages of the heat exchanger are long enough so
that in the eross section investigated the flow is fully devel-
oped, which means that the velocity profile does not change
its shape in the direction of the tube axis.

(3) The rate of heat generation in the walls of tho heat
exchanger is uniform. As a consequence of this condition,
the temperature within the coolant and the walls increases
linearly in a downstream direction provided the flow is ther-
mally developed. " For a fluid with a Prandtl number of 1,
the points of thermal and velocity development in a tube
practically coincide provided that the heating of the Lubt.
starts at the entrance section.

(4) The temperature gradient along the tube axis is as-
sumed small as compared with the gradients in any cross
section of the passage.

{5) The thermal conductivity of the solid material is large
as compared with the thermal conductivity of the coolant.
This condition is always fulfilled for metal walls regardless
of the type of coolant used provided that assumption (1)
applies and for nonmetallic walls if the coolent is a gas.
For the cese of nonmetallic walls and liquid coolants, the
applicability of the calculations presented in this report must
be checked in each individual case. Furthermore, the tem-
perature differences within the passage wall at any one cross
section are postulated to be small as compared with the
temperafure differences between the wall and the core of
the coolant. As a consequence of the assumption listed in
this paragraph, the heat transport within the coolant, normal
to the tube axis and parallel to the walls, is small as com-
pared with the heat conduction within the walls and may
therefore. be neglected. The heat transport within the
coolant, normal to the tube exis and normal to the walls,
is of course taken into account. .

(6) The turbulent diffusivity of momentum ey and that of
heat ez are equal.
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FLOW IN TUBES WITH NONCIRCULAR CROSS SECTION

A thorough investigation of the flow through tubes with
noncireular eross sections was made by Nikuradse (refer-
ence 3). This investigation is used in the present report
as the basis for estimating local heat-transfer coefficients.

The flow of water through tubes of several different shapes,
as shown in figure 2, was investigated in reference 3. Three
of the tubes had friangular cross sections; an equilateral
triangle, an isosceles right triangle, and a right triangle with
the sides enclosing the 90° angle having a ratio of 1 to 2.32.
One tube had a trapezoidal cross section and two tubes were
circular with one and two grooves, respectively. In a second
report, Nikuradse investigated tubes with a rectangular cross
section; however, only & summary of this report is available
(reference 4). The hydraulic diameter of the passages varied
from 0.3 to 0.6 inch and the length-to-hydraulic-diameter
ratio varied from 100 to 200. The Reynolds number based
on the hydraulic diameter and the mean velocity ranged
from 77,000 to 120,000. Because it is known that the shape
of a turbulent velocity profile changes only slightly with
Reynolds number, the results of the calculations should be
applicable for a fairly large range of Reynolds number in
the turbulent region. The velocity profiles were measured
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FI1GTRE 2.—Cross sections of passages investigated in reference 3.

FIGTRE 3.—Veloclty contours In triangnlsr pessage a3 measured in reference 3. Reynolds
namber, 81,000,
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downstream end of the tube.
Results of reference 3 for the isosceles right triangle are
shown in figures 3 to 5. Similar results for all other cross

Z

FIGURE 4.—Secondary fiow In trisngular passege deduced from measurements of reference 3.

'y

7w /0y Sq Ft/sect

FroURE 5.—8hear stress distribution on circumference of friangular pessage as determined
in reference 3.
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sections can be found in the original report. In figure 3 the
lines of constant velocity are presented as contour lines.
These contours.are indented near the center of each side of
the passage. The conclusion of referonce 3 is that these
indentations indicate a secondary flow normal to the main
flow direction. A quelitative sketch of this secondary flow
is presented in figure 4. Prandtl (reference 5) has ascribed
the secondary flow to a turbulent mixing motion within the
fluid, which is more intense in the direction parallel to the
wall than normal to it. This secondary flow tends to equal-
ize the velocities and temperatures within any cross section
of a noncircular tube and is therefore favorable for the simi-
larity consideration thet will be used to deduce the tempera-
ture field from the measured velocity field. On the other
hand, because no quantitative knowledge of the secondary
flow exists, an eéxact theoretical calculation of the tempera-
ture field in noncircular passages is impossible. The local
wall shear stresses were computed by Nikuradse, using the
measured velocity profiles together with the assumption that
the Blasius pipe resistance law of the turbulent velocity
profile for circular tubes applies also for noncircular passages
on normals to the walls (fig. 5). A check by Nikuradse of
the calculated average shear stresses against the measured
pressure drop showed good agreement.

SIMILARITY BETWEEN VELOCITY AND TEMPERATURE
PROFILES FOR Pr=1

It is well known that the velocity and temperature profiles
in the boundary layer of a fluid with & Prandtl number of 1
are similar in shape-in the absence of & pressure gradient.
This similarity is immediately apparent from a comparison
of the momentum and energy equations of the boundary
layer for two-dimensional steady flow along a flat plate
(reference 6):

u%ﬂ -2 [p<v+éu> = 1)

bm s )= [ et I | )

where 7 represents the total temperature, the Prandtl num-
ber is equal to 1, and the specific heat is constant. The
effect; of internal friction on the temperature profile is taken
info account by basing equation (2) on the total temperature.

Because it is' assumed that the turbulent diffusivity of
momentum e, gnd of heat ez are equal, equations (1) and
(2) are similar. The solutions of the equations, namely,
the velocity and temperature profiles, are therefore also
similar, provided the boundary conditions are similar. The
boundary conditions for the velocity field on a flat plate are
that the velocity is 0 along the wall and has a constant value
outside the boundary layer. Similar boundary conditions
for the temperature field are that the temperature is constant
both along the wall and in the mein stream.

It is therefore evident that similarity between veloclt.y
and temperature profiles in the boundary layer over a flat

JRONATUTICS

plate exists in an exact mathematical sense. The same is
not true, however, for fully developed pipe flow. The bal-
ance of the forces and of the heat energy on a stationary
annular volume element with a radius R, thickness dR, and
length (in the direction of the tube axis) dz, leads to the
following equations for fully developed flow in a circular

tube:
190 o] d
RoR| Reoten 5p =7 )

1290 0 oT
B30 [Rp(a-l- €n) %?]= PU S~ 4)

where the heat-conduction term in the z-dircction is negleeted
in equation (4). It is apparent that equations (3) and (4)
are not similar, even if the viscosity and diffusivity terms in
the two equations are equal. The following type of analysis
can be made, however:

The turbulent diffusivity of momentum ey can be cal-
culated from equation (3), provided that the velocity profile _
u=f(R) and the pressure drop dp/dz arc experimentally
kmown. If it is again assumed that ey and ey are cqual, the
temperature profile can then be calculated from equation (4).
Such an analysis, based on constant property values and with
internal friction neglected, was carried out by Latzko (refer-
ence 7). The results of this analysis were used to calculate
the relation between the temperatures and the velocities for
hydrodynamically and thermally developed flow of & fluid with
Pr=1. Figure 6 represents a plot of the local temperature-
difference ratio (T—t,)/(Tr—t,) against the local veloc-
ity ratio w/u,. It can be seen that this relation is very
nearly linear. This linearity means that the velocity and
temperature profiles are similar as far as practicality is con-
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FioURE 6.—Reélation between local temperatures and Jocal velocities in fully doveloped tur-
balent region of elrcular tube. Based on reference 7.
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FIGURE 7. Local heat-transfer coefficlents In corners of noncfreular pessages.

cerned, even though they are not-similar in a strict mathe-
matical sense. Most of the recent theoretical investigations
of turbulent heat transfer are therefore based on the assump-
tion of similarity between these profiles for a fluid with a
Prandtl number of 1.

It is known that the fully developed turbulent velocity
profile in a circular tube is such that the essential part of the
velocity change from 0 &t the wall to & maximum value at the
center occurs in & narrow strip around the periphery of the
tube. The investigations of references 3 and 4 show that this
condition is also true for tubes of polygonal cross section, as
Iong as the included angles between two adjacent passage
walls are not very small. Nikuradse furthershows that thelaw
for the velocity variation on & normel to the wall established
for turbulent flow in circular tubes holds also for the non-
circular passages in this region of essential velocity variation.
It can therefore be expected that the similarity between
temperature and velocity profiles will also be fulfilled reason-
ably well on normals to the walls for noncircular tubes and
fluids with & Prandtl number of 1, although a balance of forces
and energies similar to equations (3) and (4) shows that the
similarity cannot exist exactly in regions very close to the
COTIETS.

An immediate result of the similarity between velocity and
temperature profiles is the fact that the local wall shear stress
determined by the velocity gradient at the wall is propor-
tional to the local heat-transfer coefficient determined by the
temperature gradient at the wall. (The same result can be

obtained from Reynolds’ analogy.) The proportionality of
these values, together with the knowledge that the average
heat-transfer coefficients for circuler and noncircular tubes
with the same hydraulic diameter are equal, can be used to
obtain local heat-transfer coefficients in noncircular tubes
from the wall-shearstress date of references 3 and 4. A

generalization of this result is possible because, for a given ;

Reynolds number, the shear stress distribution in the vicinity

of a corner of the passage depends primarily on the conditions

near that corner and not on the shape of the passage.
The local heat-transfer coefficients, as presented in figure 7,
were obtained by correlating the results of references 3 and 4.

In this figure the ratio 2* of the locel heat-transfer coefficient _:
to the mean value is plotted against the dimensionless _ _

distance from the corner z*. The included angle of two
adjacent passage walls is the parameter for the curves. Some
of these corner angles were represented on more than one of

the cross sections investigated in reference 3, and for these

angles the curves of A* against z* agree reasonably well.

The application of figure 7 can best be explained with the

aid of an example.

Suppose it is desired to find the distribu-

tion of &* over the short leg of an isosceles right triangle, as

shown in figure 8. The two ends of the curve can imme-

diately be transposed from figure 7. The remainder of the

curve is then extrapolated so thet the area under the curve
divided by length AB is equal to 1. This procedure gives a
reasonably good approximation as long as the maximum
value of A* is not considerably greater than 1.
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DIMENSIONLESS VARIABLES

With the distribution of the local heat-transfer coefficient
around the circumference of the passages established, the
only problem remaining to be solved is the calculation of the
heat-conduction process within the passage walls. Before
this problem is taken up, an investigation is made to deter-
mine the diménsionless moduli on which the temperature
distribution in s heat exchanger of the. type under considera-
tion depends. : This investigation may be useful as a basis
for experimental investigations. None of the simplifying
assumptions, as summarized previously, is necessary for the
development in this section of the report.

The heat conduction within the solid walls of & heat ex-
changer with internal heat generation is described by Pois-
son’s equation .

2% |, % | o%
)—l-r ¢

bx’+by”+bz )

The number of parameters for this equation can be reduced

by the use of the following dimensionless values:

tk * T * 1/ E 3 2

= *=p V=p =7 ©)

With these values, equation (5) can be rewritten

o%* | d%* | ot '
Y - o 2+32 3T 1=0 . @

The temperature field that results under the influence of the
internal heat generation in the solid walls depends on how
the heat is transferred from the wall surfaces to the coolant.
The heat must-be conducted within the solid material to the
surface and from there into the coolant. Along the surface,
therefore, the following boundary condition exists:

#(50),=4(3a), ®

where n represents the direction normal to the surface. In
terms of dimensionless variables, this equation becomes

" bt*)

on*

oT*
5 ), ®)

FiovRE 8—Determinatfon of local heat-transfer coefficlents in triengular heat-exchanger
passage,

BERONAUTICS

The heat transfor within the coolant by conduction and
convection is governed by an energy equation similar to
equation (4) and the flow of the coolant is determined by a
momentum equation (similar to equation (3)) and the cor-
responding continuity equation. Textbooks on heat transfer
(for example, reference 8) show that the dimensionless tein-
perature described by the energy equation of the coolant
depends, for low-velocity flow and constant property values,
on the Reynolds number Re and the Prandtl number Pr. At
high velocities and variable property values, there is an
additional influence of the Mach number and other dimen-
sionless expressions characterizing the temperature depend-
ency on.the property velues. By neglecting the last-
mentioned influences and summarizing all the factors that
influence the heat flow in the solid matecrial and in the
coolant, a functional relation of the following type can be
deduced:

6*=f(Re, Pr, k*, x*, y*, 2z%) (10)

where the temperature difference 6* is introduced because
only temperature differentials appear in the equations. The
function_f as expressed by this equation depends on the
geometric configuration of the heat-exchanger passages.
When it can be assumed that the heat-transfor process from
the walls to the coolant is not influenced by the temperature
distribution within the wall, the number of factors influene-
ing the problem can be considerably reduced. This assump-
tion is made throughout the calculations in this report and
seems reasonable as long as previously mentioned assump-
tion (5) holds. In this case equation (8) can be replaced by

k (%); _ht,—T)

where k& is a known function of the flow parameters. By
introducing the ratio 2* of the local heat-transfer coeflicient
to the value averaged over the circumferenca of the pussage
and the Nusselt number Nu=RD/k, bascd on this average
value, and by changing to the temperature differcnce §,
equation (11) can be transformed to

(&)~
on*
The dimensionless temperature within the solid walls of the

heat exchanger is determined by equations (7) and (12) and
can be presented as a function of the following kind:

ﬂ*=f(N_u%;;a:“, y*, z"‘)

1y

k* 0, (12)

(13)

This dimensionless temperature difference depends only on
the dimensionless local coordinates and on the parameter

*
Nu%—,; Temperature distributions and heat-transfer char-

acteristics for any given geometric configuration are therofore
presented as a one-parameter family of curves.
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CALCULATION OF TEMPERATURE DISTRIBUTIONS WITHIN
’ PASSAGE WALLS

The problem of calculating temperature distributionswithin

the passage walls can be classified in two general categories, |

depending on. the relative thickness of these walls. If the
dimensionless wall thickness &* (see fig. 8) is smell as com-
pared with the length of a wall AB, the temperature differ-
ences in the direction normel to the wall surface are small as
compared with the temperature difference in the direction z*
parallel to the surface. Only the temperature differences in
this parallel direction need therefore be considered: Here-
inafter this special case of the problem is referred to as the
“one-dimensional problem.” On the other hand, if s* be-
comes large, the heat flow in both the z*and s* directions must
be considered. This second and more general problem is
referred to as the “ftwo-dimensional problem.”
One-dimensional problem.—(Consider a thin plate of
thickness ¢ that is a section of the heat-exchanger passage
walls. Heat is generated uniformly throughout the plate
atarater. Thelocal plate (or wall) temperature ¢ is assumed
to be varying in the z-direction only. The bulk temperature

of the coolantis 7% and the thermal conductivities of the wall

and coolant are £ and &, respectively. The local coefficients
of heat transfer to the coolant above and below the plate are
denoted by % and %', as shown in the following sketch:

h Tac
I

A

dz
1

The heat balance for an element of volume with the
dimensions dz end ¢ and of unit depth is

Q+ Q=0+ &+ (14)

where
Q=—rlks— Tz

dt , d%
Q’ = ——ks '(E-I-EP d.":)

Q—=rsdzx
@t Q' =(h+1)(E—T5)da
With the preceding values of ¢, equation (14) becomes

a4 h+h

d v (t TB)+—=0

(18)

Equation (15) ean be expressed in ferms of dimensionless
variables as

389
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az¢*  A*h'™*
dz*® kT

———Nug*+1=0 (16)

This equation expresses the dimensionless wall temperature

6% as g function of the dimensionless coordinate z* and a
single parameter (A*--A'*)Nufs*k*. For any given geo-

metric configuration (which_ determines A* and A’* as func-
tions of z*), the dimensionless wall temperature is & function
only of the average Nusselt number Nu, the dimensionless

wall thickness s*, and the ratio of the thermal conduc-
tivities k*.

In general, equation (16) must be solved by numerical
means inasmuch as A* and k’* are experimentally determmed
functions of #*. Several numerical methods of solution can
be applied and two of these are considered here. The relaxa-
tion method (see, for example, reference 2, pp. 365-379, or
reference 9) has the advantage that it is easy to apply and
that computational errors are immediately apparent. A

second method of solution, based on the Runge-Kutta

method (reference 10} is presented in the appendix. This
method is preferable when results of high accuracy are
desired. It is less convenient, however, than the relaxation

method because computational errors are much more difficult

to detect.

For the purpose of solving equation (16) by the relaxation . .
method, the equation is first expressed in finite-difference

form. Consider a grid, or net of points, placed into the wall,
any two adjacent points being separated by a small but
finite distance A*, as indicated in the following sketch:

o o o ) o o s*
1 0 2 1

e S

The second derivative of #* at an arbitrary point 0 can be
expressed in terms of the temperatures 6* at this point and
the two adjacent points as follows:

A de‘) 6" —0.*
1 W QF.‘ A d:ﬂ A*
d6*
s (@) (@)

(6:*+6,"—26,%) an

A*Z

With this value for the second- derivative, equation (16)
becomes

31*-{— 35 - 00 [2 +_r£ (h*"i"h’*)oA*z]'l‘A*z_ 0 (18) )

The relaxation method, used for solving this equation, is
subsequently discussed.
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Two-dimensional problem.—Consider a slab of homogene-
ous solid material with unit thickness, as shown in the
following diagram:

______}_Q_yl__..}
T |
dy| —» 1@ | —> |
_:L_ Q$ Q.Z'l I

T qy }

sy

fe-ctzd

Heat is again generated within the material at & uniform
rate . 'The heat balance for an element of volume with the
dimensions dx and ¢y and of unit depth is

e+ Q&+ =a'+ Q' (19)

A constant flow of heat through the slab normal to the
plane of the preceding sketch does not influence this heat
balance. Local deviations from this constant flow of heat
are neglected.

The individual terms in equation (19) are

o
Q;=-—chya—; R

—kd (a +bx"’ )

2
Qy=—F dm%

b’t
—kda (by+b : )
Q=rdzdy

Equation (19) dan:therefore be written

ot % r :
b_x’—{_@’: % (20)

Or, in terms of the dimensionless variables,

o ¢*
32

0% 6*

If the slab is bounded by a coolant whose bulk temperature

is Tp and if the local surface heat-transfer coefficient at a
point & on the surface is A, the boundary condition at that
point i3

HE)=-h-Td e

where # is the direction normal to the surface.. Equation (22}
can again be written in terms of the dimensionless variables

E) Nu b*
on*

—— 0" (23)
Equation (21) together with boundary condition (23) fully
describes the two-dimensional problem. All physical vari-
ables are agam grouped into a single parameter A* Nu/k*,
which appears in the boundary condition. In order to apply
the relaxation method of solution to these expressions, they
are first converted to difference equations.
For this purpose a rectangular grid is placed mfo the slab,
a8 indicated in the folloswing diagram:

i
*Y

L

Adjacent net points are separated by a distance A*. The
derivatives of ¢* at an arbitrary point 0 can be expressed in
terms of the temperature function at swirounding points.
Thus the first derivatives are

og* 0 ¥ _g,* ae*) 6, —0,*
i z——-;—-
aa: A* 0 ba:* 3 A
26* ~a,*—e°* ae*) . —a.
AT S
and the second derivatives become
D26* 0.+ 6,*—26,*
ax*z““ AFE -
D%*  B,* 0, —26,*
ay$2 -~ A*2
With these values, equation (21) becomes T
61*+'02*+08*+ 94*—490*+A“= 0 (24)

The boundary condition can be evaluated by assuming that
points 1, 0, and 3 lie on the surface of the wall. Point 4 then
lies in the stream and its temperature must be expressed by
the normal derivative at point 0.

%' * L
g_ei)“g‘ —0q
\O¥ /o

A*
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or, with the use of the value of 36*%dy* as given by equation
(23),
bf =% (1_1\15 r* )

Along the boundary, therefore, the following equation
applies:

(25)

Nu h*

91*"[—9-1*'['33 —30 (3'[‘ A*)'[—A*E—O (26)

Equation (24) together with boundary condition (26) can
again be solved by means of the relaxation method.

Solution by relexation method.—A heat exchanger com-
posed of & large number of rectangular passages will be dis-
cussed. The walls of the heat exchanger are made of a
homogeneous material in which heat is generated at & uni-
form rate r. Figure 9 represents a cut through the heat
exchanger so that the flow of coolant is in & direction normal
to the cut. In the discussion that follows, it is assumed that
the geometry of the configuration is given in the dimensionless
system of coordinates.

A complete discussion of the relaxation method is not
presented herein, inasmuch as it is generally aveailable
elsewhere. (See, for example, reference 9.) The essential
features of the method can be outlined as follows:

Suppose it is desired to solve a given finite-difference
equation over a certain area of integration. The equation
is of the following type:

fe*)=0 @9
The solution of equation (29) must also satisfy prescribed
conditions at the boundary of the area of integration.

" First, it is necessary to select & number of net points cover-
ing the entire area of integration. The distance A* between
net points is arbitrary, with the accuracy of the final solution
increasing as the distance between points is decreased.
Next, values of 6* are assumed at each net point. If by
chance these assumed values of §* are the correct values,
then they satisfy the appropriate finite-difference equation
at all net points.

In general, however, the assumed values of the function do
not satisfy the difference equation and the left side of equa-
tion (29) is equal to some residual value IV instead of zero.
At any given net point §* must then be adjusted in order to
make NN venish at that point. This adjustment of 6* also
changes the residuals at adjacent net points. However,
if this process of adjustment is started at the point at which
the absolute value of IV is greatest and is then repeated for
points at which the velue of the residual is successively less,
the correct values of ¢* for the entire net eventually are
obtained.

In applying this method to the heat exchanger under
consideration, it is first assumed that the wall thickness ¢*
is small, so that the one-dimensional solution applies.
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FreUuRE 11.—Relaxation net for rectangplar thin-walled heat exchanger.,

The actual configuration to be discussed is shown in fig-
ure 10. Because points A, B, and C are points of sym-
metry, only the region bounded by these points need be
considered. Furthermore, the distribution of temperature is
also symmetric about point O with respect to AO and OC.

[

An enlarged view of the section under consideration is

represented in figure 11.

The section has been subdivided into & number of net _
. k, each separated by a distance A* from

points a, b, ¢, .
adjacent points. The first step in the analysis is the assump-
tion of temperatures at all net points, which can be done by

setting:up a balance between the total heat produced within

the walls and the totsal outflow of heat from the walls. In
terms of the dimensionless variables, this heat balance
becomes

1 Nu

T B 30)

o
f PR LY dot =1
1]
If, for the initial assumption, A*=~A’*=1 and 6* is constant,
the following expression is obtained:

&*L*
2Nu

= - (81)

The value of 6* given by equation (31) is assumed to exist
at all net points. The appropriate difference equation at
points b, ¢, 4, f, and ¢ is (from equation (18))
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0% 4 ;" — 85" [2+ *k,,,(h* B*a% [+AB=N, (32)

where the subscript 0 refers to the point at which the equa-
tion is to be applied and subscripts 1 and 2 refer to adjacent
points. At point @, which is influenced by three points, the
following equation is required:

26, 4-0,5—8 *[3+ U h* A% [ LAM=N, (33)
At point e, which is a point of symmetry, the following
expression applies:

26— 0% [2-1— VL (W hMan [Ham=N,  (39)

A similar expression applies at point A. With these equa-
tions, the residuals NV are calculated at each net point. The
point at which N has the largest absolute value is then
selected and #* at that point is adjusted so that the residual
vanishes. The effect of this adjustment on the residuals at
adjacent points is calculated with the aid of the appropriate
finite-difference equation.

The process is repeated for the pomt at which the next
largest value of the residual appears.
process is repeated often enough, the residuals at all net
points approach zero.
satisfy the appropriate equations at &ll net points.

These values of 6* should also satisfy the heat balance as
given by equation (30). This equation can therefore be
used to check the validity of the final temperature distribu-~
tion. If the check is unsatisfactory, it is necessary to

continue the solution of the ﬁmte—dlﬂexence equations by .

using a smaller net spacing.

The same heat-exchanger configuration is now investigated
without making the assumption that the wall thickness is
small. The two-dimensional equations are therefore applied.
An enlarged view of the shaded portion of figure 9 is shown
in figure 12. The lines CD, FG, and GA are lines of sym-
metry, and there is no flow of heat across these lines. The
temperature distribution along line DEF will be symmetric
about point E, but there will he a flow of heat across this

line. A large number of net points are selected to cover the

entire section of the configuration shown in figure 12. (Only

o, —A
a [«] ]
g . &—o c
d e Ve
o ©
m n o g h 1
O © o O
1l x A ; kI
- 7 £ T b

Fiourk 12,—Relaxatlion net for rectangalar thick-walled heat exchanger.

Eventuelly, if the.

The final adjusted values of 6* then
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a few of these poinfs are presented in tbe fig.) An initial
value for the temperature along lines AB and BC is obtained
by setting up a balance between the total heat produced
within the section and the flow of heat to the gas. In
terms of the dimensionless variables, this heat balance
becomes .

L (e g v A% E* -

e ﬁ Bt drt =L 35)

If, for the initial assumption, A*=1 and 6* is constant,
then the following expression for ¢* is obtained:

Pt = (36)

It can now be assumed that the temperature as given by
equation (36) exists along the surface of the wall and that
a somewhat higher temperature exists at internal points.
The assumed temperatures are then adjusted by means of
the relaxation method.

The appropriate finite-difference equation for internal
points, such as point ¢, is written as follows:

: eb*‘l' af*'l" eh*+a¢*_4ea+A*’=Ne (37)

For points along the bc;undary, such as point &, the equation
is

65 0,% 4 6. — 6, (3+—; h,*A*)+A*==N, 38)

and for péints on 2 line of symmetry, such as point f,
8.*426,*+ 6, —405-A¥ =N, (39)

The appropriate equation for points along DEF can he
determined by taking advantage of the antisymmetry about
this line. At point %, for instance, the equation becomes

en*'{' 9:*‘[' 51-*+ 31‘*‘43t*+A*2=Nk (40)

Expressions of the type (37) to (40} apply at all net points.
The method of determining the actual temperat,ure distribu-
tion is the same as the method outlined in the prvvmus
section. -

The final temperatures along the surface of the wall can
be checked with the aid of equation (35). If the check
is unsatisfactory, a finer net spacing is required.

RESULTS

One-dimensional solution.—The one-dimensional solution
was applied to heat exchangers composed of rectangular and
triangular passages, respectively. In each casoe the passages
were staggered in order to minimize the expeeted hot spots.

The rectangular configuration is represented by figure 10.
The height-to-width ratio of each passage in this configura-
tion is 1 to 5. Figure 1 represenis the triangular configura-
tion. Each passage in this configuration is an isosccles
right triangle.
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FIGURE 13.—Temperatare distribution for passage of thin-walled triangular heat exchanger
(fg- 1).

It has previously been stated that, for each configuration,
the temperature distribution in the passage walls is a function
only of the parameter Nufs*k*. Accordingly, temperature
distributions were caleulated for several values of this param-
eter, ranging from 0.1 to 100. This range of values is
believed to include all values actually encountered. -

Temperature distributions were calculated according to the
method outlined in the previous section of this report and
were then checked by equation (30). Local rates of heat
transfer g*=h*0* were calculated for this purpose. Accord-
ing to equation (30), the mean value of ¢* when multiplied
by 2Nufk*s* should equal 1. Because the finite-difference
method of solution is essentially an approximate method, the
results were not expected to be exact. All results presented
in this section of the report, however, were held to an error
of less than 6 percent. The final temperatures were multi-
plied by a constant scale factor in order to satisfy equation
(30) exactly.

Temperature distributions and local rates of heat fransfer
are presented for the triangular heat exchanger in figures 13
and 14 and for the rectangular heat exchanger in figures 15

1
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and 16. In the temperature plots (figs. 13 and 15), the
temperature difference (f— Tg) is referred to the temperature

difference (t— T's), for a thin-walled circular tube with the __ o

same hydraulic diameter and an internally heated wall with
the same physical properties. The temperature difference

for the circular tube is given in the nondimensional form by

equation (31). Similarly, the ordinate in figures 14 and 16

refers the rate of heat transfer ¢ to the rate of heat transfer
from the wall of & thin circular tube g.. It is believed that '
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Fratee 14 —Local rate of heat transfer from passage of thin-walled heat exchanger (fig. I},
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the interpretation of the temperature and heat-transfer
curves is simplified by this final change of ordinates. Tem-
perature distributions for the {riangular configuration are
shown in figure 13. These curves ara presented for values
of Nufs*k* of 0.1, 1.0, 10, and 100. As was expected, the
temperatures :peak near the cormers of the passage. The
largest temperature differences are encountered for large
values of the parameter Nufe*k*. A large value of this
parameter indicates & low conductivity of the wall material
or a small wall thickness. Both of these conditions are
conducive to low rates of heat exchange within the wall.
Local rates of heat transfer corresponding to the temperature
distributions just discussed are presented in figure 14.

Temperature and heat-transfer curves for the rectangular
configuration are shown in figures 15 and 16. The results for
this configuration are similar to those for the triangular
configuration.’ ' -

In order to determine when the one-dimensional solution
can be used, it is necessary to obtain some information on
the temperature difference that exists across the passage
walls on normals to the surfaces and to compare this tem-
perature difference with the temperature differences along
the surfaces.: An estimate of the temperature difference
dt, across the wall may be obtained by calculating this value
for a flat plate. The result of this calculation is

at,,=8r—k & : (41)

The equation can be changed to the dimensionless values
to yield

(42)

This temperature difference can again be referred to the
temperature difference (f—T's). as follows:

AERONATTICS

5t s*Nu
T aF (43)
The one-dimensional solution applies as long as this value is
small as compared with the temperature difforences presented
in figures 13 and 15.

Two-dimensional solution.—The two-dimensional solution
for the temperature field within the heat exchanger depends
on two parameters; namely, the dimensionless wall thickness
s* and the value Nu h*/k*. In addition, the lime required
to obtain the solution for a special case is much longer than
for the one-dimensional solution. Only one example was
therefore calculated; namely, the {emperature distribution
within the walls of a heat exchanger composed of rectangular
passages, as shown in figure 9. The ratio of the two side
lengths of the rectangle is 1 to 5. The ratio of the hydraulic
diameter to the short side of this passage is 1.67 and the
dimensionless wall thickness is 0.6. Figure 17 presenis the
results of the calculation using the relaxation method with a
network of 88 points. Lines of constant lemperature (iso-
therms) are shown within the portion of the heat-exchanger
walls that is shaded in figure 9. As may be seen, the heat
flow within this wall is mainly in the direction normal to
the wall surfaces. The maximum temperature differences on
any normal to the surface are not very different from the
value in a flat plate as calculated in equation (42). The
temperature differences along the surface of the wall are
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FIGURE 16.—Local rate of heat transfer from passage of thin-walled rectangular heat exchanger
(fig. 10).



TEMPERATURE DISTRIBUTION IN INTERNALLY HBEATED WALLS OF HEAT EXCHANGERS
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FrourE 17,—Isotherms in internally heated walls of thick-walled rectangular heat exchanger.
(Shaded portion of fig, @ shown.) Nwufs*k*, 10.0; ratio of Sow area to toal area, 0.{16;
s*, 0.8; p*fz*, 1/5.

appreciably smaller than the temperature differences across
the wall. The values of the one-dimensionel solution cannot
therefore be expected to apply to this case. Actually, the
temperature difference found in figure 17 along the surface
of the wall is considerably greater than for the corresponding
one-dimensional case. In addition, heat is generated within
the corner area of the rectangular-wall configuration and has
to be conducted away along comparatively long paths. An
additional temperature increase can therefore be found
within this corner area.

CONCLUSIONS

A method to calculate the temperature distribution in &
heat exchanger composed of noncircular flow passages with
internally heated walls has been presented.

Local heat-transfer coefficients along the circumference of
the heat-eschanger passages were obtained from flow
measurements made by Nikuradse, assuming similarity be-
tween the velocity and temperature fields. The heat-transfer
coefficients, as determined in this manner, decrease sharply
near the corners of the passages and vanish af the corners.
This decrease becomes more pronounced as the corner angle
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is increased. Near the corners these coefficients are es-

gentially influenced only by the magnitude of the included _

angle of the corner.

It was shown that the dimensionless temperature distribu-
tion within the passage walls depends on a single parameter,

provided the dimensionless wall thickness is small. Numeri- .

cal evaluations for friangular- and rectangular-passage con-
figurations for a wide range of the aforementioned parameter
were carried out. The results of these evaluations are pre-
sented so that temperature differences arising in the walls of
heat exchangers with the investigated passage shapes for any
condition within the range of practical interest can be read

off one of several curves. These curves show a tempera,ture ‘

incresse near the corners of the passages. This increase
becomes more pronounced for high Nusselt numbers based
on the average heat-transfer coefficient, for low Wall—thlckness

ratios, and for low ratios of the conductivity of the wa.]l to

the conductivity of the coolant.

The dimensionless temperature distribution for thick-
walled heat exchangers depends on the wall-thickness ratio
in addition to the property parameter.

v

!

|

ih |

Mf'i

Because the time ____"_;

required to calculate temperature distributions in the whole

field of interest determined by the two parameters is prohibi-
tive, only & specific example was evaluated numerically.
The method of calculation is presented in great detail, how-

ever, 50 that evaluations for other interesting cases can be _ _

carried out.

Lewrs FriceT ProruLsiox LaABORATORY -
NaTroNaL Apvisory CoMMITTEE FOR AEBO\AUTICS
CreverLsxp, Omro, October 4, 1950

APPENDIX
SOLUTION BY RUNGE-KUTTA METHOD

Equation (16} is of the following form:
& e*

7= & 6 +1=0 (A1)
The boundary conditions are
(d
dz*)rea
e (A2)
(af-r*)x‘d—

where ¢ and b are points of symmetry.

In general, a solution of equation (Al) could be obtained
by assuming an initisl value of 6* at point ¢ in eddition to
the first of the boundary conditions (A2) and by working the

solution toward point b using & numerical method of inte-.

gration. If the boundary condition at point b is nof satisfied,

the solution hes to be repeated with a new initial value.
This trial-and-error process is tedious and can be avoided
by splitting equation (A1) in such & manner as to keep an
undetermined constant ¢ in the solution. This constant is
finally determined by satisfying the second boundary con-
dition. Lef

=6 +co,* (A3)

20 %

O — fa*) a4 1=0

2

O fa*) 0 =0

where -

61*(0;) =0 93*((1 ) =1
202 o 25

b [ RN
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These expressions still satisfy equation (A1) and the first
of the boundary conditions (A2). After the solutions for
* and 6,* have been numerically obtained, the constant ¢

is determmed so that the boundary condlt-lon a,t. pomb 6 is

fulfilled; thus"
()2

(d"z) L

The final temperature distribution is given by equation (A3).

The temperature distribution in a thin-walled heat ex-
changer with triangular passages was calculated in this
manner (for Nu/s*k*=10) and was compared with the cor-
responding curve in figure 13. The Runge-Kutta method
(reference 10) was used for the numericel integration. 'This
particular comparison showed differences of 2.2 percent of
the temperature ratio near the corners of the passages and
smaller deviations elsewhere. The temperature curves are

or

uncertain to the same order of magnitude, however, because .

\ERONAUTICS
of the-freedom in the extrapolation of the heat-transfer-

coefficient curves: The simpler relaxation method is there-
fore regarded satisfactory for the present purpose.
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