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A THEORETICAL ANALYSIS OF THE EFFECT OF TIME LAG IN AN AUTOMATIC STABILIZATION
SYSTEM ON THE LATERAL OSCILLATORY STABILITY OF AN A]RPLANE !

By LeonNaRD STEENFPIELD and Orpway B. Gares, Jr.

SUMMARY

A method is presented for determining the effect of time lag
in an automatic stabilization system on the lateral oscillatory
stability of an airplane. The method is based on an analytical-
graphical procedure. The critical time lag of the airplane-
aufopilol system 1ig readily determined from the frequency-
response analysis.

The method is applied to a typical preseni-day airplane
equipped with an automatic pilot sensitive fo yawing accelera-
tion and geared to the rudder so that rudder control is applied
in proportion to the yawing acceleration. The results caleulated
for this airplane-autopilot system by this method are compared
with the airplane motions caleulated by a step-by-step procedure.

INTRODUCTION

Recent calculations and fight tests of several airplanes
designed for operation in the transonic speed range have
indicated unsatisfactory damping of the lateral oscillation.
The results presented in reference 1 show that the oscillatory
stability can be improved by the use of an automatic pilot.
The calculations of reference 1, however, were made on the
assumption of an ideslized control system without lag.
Reference 2 points out that lag of the type in which the
amount of control applied at a given instant is assumed to
be proportionsl to a deviation which existed at a fixed time
previous to the given instant can be represented mathe-
matically by use of the lag operator e ™™, where =, is
nondimensional time lag based on the span and IJ, is the
differential operator. Lag of this type is generally referred
to as time lag. Reference 2 suggests that for purposes of
calculation the lag operator may be approximated by three
terms of the Taylor's series for ¢~ This approximation
was used in some recent calculations (reference 3) and the
results were found to be erroneous and misleading. The
purpose of this report is to present a satisfactory method
for determining the effect of time lag on the lateral oscilla-
tory stability based on the exact expression of the lag
operator rather than eny approximation. Some recent
analyses on the same problem, unknown to the authors at
the time this problem was being analyzed, are presented in
references 4 and 5.
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SYMBOLS AND COEFFICIENTS

angle of roll, radians

angle of yaw, radians

angle of sideslip, radians (v/V)

yawing angular velocity, radians per second

(dy/dt)

yawing angular acceleration, radians per

second per second (d%y/d#®)

rolling angular velocity, radians per second
(de/dt)

sideslip velocity slong lateral axis, feet per
second

airspeed, feet per second

mass density of air, slugs per cubic foot

dynamic pressure, pounds per square foot

(z27)

wing span, feet

wing area, square feet

weight of airplane, pounds

mass of airplane, slugs (1¥/g)

acceleration due to gravity, feet per second
per second

relative-density factor (m/pSbh)

jnclination of principal longitudinal axis of
airplane with respect to flight path, positive
when principal axis is above flight path at
nose, degrees

angle of fhght path to horizontal a_‘ns,
positive in & climb, degrees

radius of gyration in roll about principal
longitudinal axis, feet

radius of gyration in yaw about principal
vertical axis, feet

pondimensional radius of gyration in roll about
principal longitudinal axis (kr/b)

nondimensionsl radius of gyration in yaw
about principal vertical axis (kg /b)

nondimensional radius of gyration in roll
about longitudinal stability axis

(.‘/K xo’ cos’ n+ Ky ? sin? 'q)

t Supersedes NACA TN 2005, ©*A Theoretical Analysis of the Eflect of Time Lag in an Automatic Stabilization System on the Lateral Oscillatory Stability of an Afrplane” by Leonard

Sternfield and Ordway B. Gates, Ir., 1950.
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nondimensional radius of gyration in yaw
about vertical stability axis
(vKz,? cos? 1+ Kx,? sin? 1)
nondimensional product-of-inertia parameter
((Kzo’—Kxo’) sin 7 cos 1)
W cos 'y)

trim lift coefficient

rolling-moment coefﬁcmnt (Rolhngsm oment,)

yawing-moment coefficient (1 awmgég oment

(Lateral force)

lateral-force coefficient

time, seconds
nondimensional time parameter based on span

(Vi/b)
differential operator (%)
b

period of oscillation, seconds

time for amplitude of oscillation to damp to
one-half its original value

deflection of control, radians

real part of complex root of characteristic
stability equation

angular frequency, radians per second

time lag between signal for control and its
actual motion, seconds

ERONATUTICS -

(74)e critical time lag

K, meximum amplitude of acceleration in yaw
produced by control deflection of unit
a,mphtude( v )

5, alrplane,

(KA)I —KA

k amplitude of control-surface oscillation pro-
duced by autopilot in response to oscillation
of airplane acceleration ( 5—’ )

‘l’ aulopilal
VZ
k,=—b—, k
1

KC=E

(KC)U—__

] phase angle, radians .

84 phase angle of lag of 8, behind ¢ when oseillat-
ing control surface forces airplane to
oscillate, radians

be Phase angle obtained from frequency response
of autopilot

ANALYSIS

The investigation of the effect of time lag on the lateral
oscillation may be conveniently divided into two parts:
(a.) determination of the smallest time lag which would result
in & neutrally stable oscillation, referred to as critical time lag,
and (b) the effect of a given time lag on the lateral oscillatory
stability. It is important to know some of the results of the
analysis obtained in part (a) in order to facilitate the analysis
presented in part (b). Part (2) is based on the frequency-
response method of analysis (references 6 and 7). This
method affords a relatively simple means of determining tho
critical time lag of an automatic stabilization system and
thereby of establishing the range of time lags for which the
airplane motion is stable. Part (b) treats the solution of a
transcendental equation by means of an analytical-graphical
procedure. The analysis is presented for an airplane
equipped with an automatic pilot sensitive to yawing ac-
celeration and geared to the rudder so that rudder control
is applied in proportion to the yawing acceleration, as sug-
gested in reference 3. A similar analysis is applicable, how-
ever, o any automatic stabilization system with time lag.

The equations of motion used are expressed in terms of
the nondimensional time parameter based on the span of the

airplane s,=%t; but the results of the calculations obtained

in terms of g, have been converted from the nondimensional
time s, to time ¢ in seconds. Thus the discussion of the
results and the figures included in the report are given in
terms of ¢.
DETERMINATION OF CRITICAL TIME LAG

The critical time lag of a system is defined as the time lag
that results in a neutrally stable or steady-state oscillation.
The motion of the control § and the airplane acceleration ¢
when a critical time lag exists are shown in figure 1. This
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FIGURE 1.—The relationship betwean the alrplane acceleration and the control motion for the

case of critical time lng. PmawAl; Almrm-
figure indicates that the relationship between the time lag 7
and the phase angle @ between the motion of the control and
the airplane acceleration can be expressed as r=%- Since

r can be expressed as & function of 8, the frequency-response

(:Q#a-szpaz—é C:, Da) q5+(2p.Kx;D.’—% Ct, Da) v— C;‘ﬁ= 0
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method can be utilized to determine the critical time lag
for & combined airplane-autopilot system. This method re-

quires that the frequency-response curves be caleulated for
the airplane and autopilot separately and the results analyzed

to ascertain the conditions for neutral oscillatory stability
of the airplane-autopilot system.

Frequency-response curves for airplane.—The frequency-
response curves for the airplane ere obtained from the cal-

culation of the steady-state motion of the airplane inresponse
to a sinusoidal forcing function of unit amplitude (see ref- __

erence 8). Thus if

§.=sin w8 _
the acceleration of the airplane is

" D2=(K ), sin (w,8+04)
The values of (K,),, known as the amplitude ratio, and 5,‘.

are obtained over the desired range of angular frequencies by _
substituting 1w, for D, in the expression for D%/, whichis _ _

derived from the lateral equations of motion. The non-
dimensional Iateral equations of motion, referred to stability
axes, for a given control deflection are

-

(2.’-"DKXZD¢2_% Ce, Da)¢+(2#aKzszz—%O-,Do) ¥—Cy =04, 5 > (1)
L .
( —3 Cr, Dy— CL) ¢+( 2FaDa—é‘ Cy,Dy—Cy tan 'Y) v+(2peDy—Cy,) =0 J
. o, _oly . .
The derivatives C;, =35 and Cy, =3 &re ususally very small and therefore have been neglected in equations (1).
Hence,
2mEeDi—5C Dy O ~C, -
Di|2uExsDi~5C0, Do Ca, —c., :
D2y —'% CY,Da— Cy 0 2paDp— 07, o
= (2)
b 2ﬂ-aKx’Dbz—% C’t, Dn 2PbezDaz——;' Cx, Db - Ct,
2 #nszDaz—% Cn, D, zﬂsz!Db!_% Cn, D, - Cn, N

~5Cr, D= Cy

After the numerator and denominator are expanded by the
method of determinants, the expression for D,%/s, results in
the ratio of two polynomials in D,. The substitution of
iw, for D, in equation (2) gives a complex number A-+iB
which may be expressed as (K,).,6*s. The amplitude ratio

<2ﬂ-r——;' CY,,) Dy—Crtany  2p,Dp— Or,

2
(K,)., which is equal to K, Tb72: can be determined from the

relation (K,),=+ A%+ B?. The phase angle 6, can be de-

termined from the relation §;=tan™? %

p——
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Frequency response of autopilot.—The frequency response
of the autopilot is obtained from the equation for the control
motion with time lag taken into account

8= ’C;Dy’\b('gg— 1'.) (38.-)
where the term Dy (8,— 7,) signifies the fact that the amount
of control applied at a given instant is proportional to the
acceleration at a fixed time 7, previous to the given instant.
This time-lag effect can be expressed by the so-called lag
operator ¢~", Thus equation (3a) becomes

8=k, Dy*ye "1™ (3b)
Solving equation (3b) for DyX/s, gives
2
e i .0 e @
where
b2l |
(KC)‘ KC_V ‘sr attopilot

Substituting i, for D in equation (4) results in an amplitude
ratio (Kc).=ki: which is independent of frequency, and a

phase angle fo=r1,;,.

Conditions for stability—The necessary and sufficient
conditions for any one of the oscillatory modes to be neutrally
stable are that, at a particular frequency, the phase angles
and amplitude ratios of the airplane and autopilot must be
equal—that is, 8,=0; and (K,),=(K¢),., Even though
these conditions are satisfied, the resultant motion of the
airplane which is composed of all the individual modes of
motion may be unstable since, as is pointed out subsequently,
an additional unstable oscillatory mode may be present. In
general, the condition which must be satisfied in order that
all the oscillatory modes be stable is that, at each angular
(KA)I
(Kc)a
at that frequency The mathematical proof of this state-
ment is given in reference 9.

Tlustrative example.—The foregoing method is apphed
to a typical present-day high-speed airplane having the
characteristics presented in tableI. The value of the control-
gearing ratio k is arbitrarily assumed to be 0.0427. (This
value of £=0.0427 corresponds to a rudder deflection of 1°
for a yawing acceleration of 23.4°/sec/sec.) The amplitude-
ratio and phase-angle curves for the airplane, plotted as a

must be less than 1

frequency where 8, =48, the ratio

function of angular frequency w, where w=uw, 'T_b” are pre-

sented as solid-line curves in figures 2 () and 2 (b), respec-
tively. As the frequency increases to infinity, K, approaches
a value of 15.98 and 4, approaches =, The dashed line in
figure 2 (a), which is independent of frequency, is the ampli-
tude ratio of the autopilot K;. The phase-angle curves of
the autopilot are siraight lines with slopes equal to 7, where
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r=% 75 and are shown as dashed lines in figure 2 (b) for

several values of 7. Since the phase angle remains between
the range of 0 to 27, fc=rw continues to repeat itself when-
ever tw=2r. To take account of this fact, 8 is plotted as
e series of pareallel lines for each value of r. Figure 2 (a)
indicates that K,=K,; at w=3.8 and w=8.5. The corre-
sponding values of 7 where 6,=8; at ¥=3.8 and w=8.5 are
r=1.63 and r=0.38, respectively. One of the oscillatory
modes of motion is thus neutrally stable when r=1.63 and
r=0.38. However, as mentioned proviously, the motion of
the airplane is neutrally stable only if all other oscillatory
modes present are stable. This condition is satisfied for
r=0.38, since for each value of w where 8,=6, the ratio

K,
I—{—c-<1.
neutrally stable but the systemn is unstable, because at w=6,

6,=0; but g—:>1.

When r=1.63, one of the oscillatory modes is

An analysis indicates that for values

of K< 15.98, which is the limiting value of K}, tho system
will be unstable for any infinitesimal time lag. The reason for
the instability is that, for any infinitesimal time lag, the
value of 8, is equal to 8; at some high frequency where it

can be shown that %>1 since at the very high frequencies

Ky (Ki)orot+AK,
KC (KA)w—m_'AKC‘

where AK, and AK. are small incremental values,

TABLE L—STABILITY DERIVATIVES AND MASS CHAR-
ACTERISTICS OF A TYPICAL PRESENT-DAY AIRPLANE

WS, o it e ———— 65
S, e e 130
2 By T e e e 28
oy Blugs/Et e ..-0.00089
Y, 800 - oo e e m——— 797
¥y def o e ———— .0
C e e e e e e e e e 0.23
B s o e e e e e e e —————————— — 80.7
K e 0.00067
Ko e m 0.0513
Kyz oo o e —0.00145
1 e e -3.0
G yperradian. .. . __ —_ —0.40
C, . per r8HAN 0.08
C’..p, Per radian « - e —0.0155
Capperradian._ . s —0.40
Cy,, perradian__ . __.__________ e mmmmm—m e mmmmaana 0
Cy,, perradian_ o 1]
Cy‘, perradian_ e - 1.0
C p per redian .k 0.25
C’;’, perradian_ .. ..., A e —~0.120
C',.‘r, perradian. ... oo oooo . e mm—aan —0.163
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In order to verify the results predicted by the preceding
analysis, motions of the airplane were calculated subsequent
to an initial disturbance of 5° in sideslip. The calculations
involved a step-by-step procedure based on the Kutta 3/8
method (reference 10). The results of these calculations for
7=0.38 and r=1.63 are presented in figures 3 and 4, respec-
tively. The solid-line curve in figure 3 was obtained by
using a time increment of 0.095 and the motion is seen to be
slightly unstable, whereas neutral stability is predicted by
frequency-response analysis for r=0.38. An additional cal-
culation was made by using a time increment of 0.0475,
represented by the dashed-line curve in figure 3, and although
the motion was still slightly unstable, the trend indicated
by reducing the time increment was such as to make the
oscillation more nearly neutrally stable. The airplane mo-
tion for r=1.63 is presented in figure 4 and, as was predicted,
the motion is unstable. A neutrally stable oscillation was
also predicted for this value of time lag but it is apparent

SRONATUTICS

from figure 4 that the unstable mode influences the airplane
motion more than the neutrally stable mode.

EFFECT OF TIME LAG ON LATERAL OSCILLATQORY STABILITY

Derivation of equations.—The nondimensional cquations
of motion, referred to the stability axes, which include the
effect of an autopilot applying rudder control in proportion
to the yawing acceleration at time s,—r,, are obtained by
combining equation (3b) with equations {1). When ¢e.en
is substituted for ¢, Yee*® for ¢, and Bee*® for 8 in the re-
sultent equation written in determinant form, M must be a
root of the characteristic stability equation

AN4-BNHON DN E+-ke ™M AN BN 40N+ D'N)=0
(8)

where 4, B, C, D, E, A’, B’, ’, and D' are functions of the
mass and serodynamic parameters of the airplane. The
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expressions for 4, B, C, D, and E are given in reference 1 and
A'=—4p K Cy,
.

B’=(2#»K320Y,+#b01,)0u,r

, (1 1
=(—=5C1,Cry+5 COr,C ) o,
D'=C:0Co,

The damping and period of the lateral oscillation in
seconds are given by the expressions
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where a and w, are the real and imaginary parts of a complex
root of equation (5).

Determination of roots of transcendental equation.—The
characteristic stability equation of this system (equation
(6)) is seen to be & transcendental equation because & con-
stant time lag 7, in the automatic stabilization system is rep-

resented by the so-called lag operator e—=%. It is apparent

that the complex roots of such an equation cannot be deter-
mined by conventional methods. A method of obtaining
the complex roots of this transcendental equation for a par-
ticular value of 7, is therefore presented.

If a+1w, is substituted for X in equation (5) and the real
and imaginary quantities are separated, two equations in «

Tu= —0(;693 % and o, result:
2% b (©) et = Fy(a,0) 78)
P=aT e=ro— Fa, o) (7b)
/0 A,\
[
) iR
6 Y\ / |
\ e
) / AR l
[0 | \
’ \Y AR -
A / |H B2\ / \ /
@ | 4\ / / |

_—-—T
f—]
"'h-_--.__*b___
I B

_4 \ /

- Y\ \

-8

% 4 8 2 .16 20 24 28 32 . 36 40 44 48 &2 56 _ 60 .

i, sec

Fiourx 4. —Eflect of r=1.53 an the motion of the afrplane.
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A simultaneous solution of equations (7a) and (7b) gives the
desired values of @ and e, which satisfy equation (56). The
method used to solve equations (7a) and (7b) simultancously
is basically a graphical procedure. For a series of values of
w,, the right-hand sides of equations (7a) and (7b) are
plotted against a as illustrated in figure 5. The solid lines
and dashed lines correspond to the functions Fi(a,»;) and
Fy(a,0,), respectively. The variation of ¢~"¢ with a is also
plotted in figure 5. The exact values of ¢ and «, for which
F,(a,0;) =F,(d,w;)=e"* are determined from a cross plot
of the results of figure 5 as shown in figure 6. In this figure,
with @ as the abscissa and o, as the ordinate, are plotted the
values of ¢ and w, which correspond to the intersection of
the e~me curve with the functions Fi(a,w,) and Fi(a,w,).
The solid curve in figure 6 thus satisfies the equation
¢—"s=F,(a,w,) and the dashed curve satisfies the equation
e =F,(a,w,). The values of a and w, at the intersection
of these two curves therefore determine a root of the char-
acteristic stability equation (equation (5)). The period and
damping of the lateral oscillation are determined from equa-
tions (6) by using this root.
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Fiouri 5.—The effect of a and o, on the functions Fi(a,w,), Fi(a,a.), and e-r.«,
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FIGUuRE 8.—A cross plot of the points of intersaction of Fi(a,.,) and Fi(a,«,) with e-r,%as
determined from figure 5.
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An alternative method for the simultaneous solution of
. . . et .t}
equations (7a) and (7b) is to substitute l—r,a,-{--Lz-———‘—ﬁ—
for e—™% in each of these equations. The ecalculations in-
volved become considerably less laborious when this ap-
proximation is made and results obtained by using this alter-
native method have been found to be in excellent agreement
with results obtained from the method described previously.
Figure 7 shows that for |ra|=1 very close agreement is
obtained between the exact value of e—%% and its approxi-
mation by three and four terms of the series for ¢—™¢. In
actual practice the product ra will almost invariably be
much less than 1. When this substitution is made, both
equations (7a) and (7b) become seventh degree in a for a
given value of «, Although these equations are of high
degree, no serious problem is presented since the values of
a desired must be real and, in general, small; that is, only
one or two of the roots of these high-degree cquations are
of interest. In order to calculate the complex roots of
equation (5) for a particular value of r,, the following pro-
cedure should be used. For a sequence of values of w,,
compute ¢ from equations (7a) and (7b). The resulls ob-
tained from each equation may then be plotied in & figure
similar to figure 6 and the complex root of the characteristic
stability equation determined from the interseetion of the
two resulting curves. If the value of the approximate
series for ¢ is in good sgreement with the exaet value
of e for the ¢ determined from the intersection of the
two curves, then the complex root obtained is valid, A
point of intersection for a value of a which would not give
satisfactory agreement between the approximate series and
e—¢ might exist, however. If such be the case, the accurate
point of intersection is readily ascertained. The cstimated
values of @ and «, represent the point of inlersection of
Fi(a,w,) or Fy(a,w,) with the series approximating e,
The desired point is the point of intersection of Fi(a,w,) or
Fi(a,»,) with e—"s. The first step is to evaluate the term
¢ for several values of a in the vicinity of the estimated
point of intersection. The expressions Fi(a,w,) and Fi(a,w,)
are then evaluated for values of w, slightly less than and
greater than the estimated value of w, for several values of
a in the range of the estimated poiot of intersection. Thus,
the corrected curves of equations (7a) and (7b) are obtained
and at their point of intersection, the accurate values of a
and w, are determined.

A method for constructing curves of constant period
and damping as a function of r, and k, is presented in the
appendix.

Range of w, and a to be used in the determination of the
complex roots of the characteristic stability equation.—In
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general, the analysis required to determine the damping of
the airplane-autopilot system would be carried out for those
values of 7, that result in a stable system, since the purpose of
equipping an airplane with an autopilot is to stabilize or-
increase the damping of the airplane motions. The range
of 1, for which the system is stable is determined from the
frequency-response curves of the airplane and autopilot as
indicated in the section entitled ““Determination of Critical
Time Lag.” Thus, if the system is stable, only negative
values of @ need be investigated. Also, if two stable oscil-
latory modes of motion exist, the least stable one is of
greatest interest—that is, the complex root with the smallest
real part is the one of most importance.
The estimated range of values for «, that should be used

in the analysis to determine the effect of some particular
value of time lag, located between r,=0 and the ecritical
time lag (7)., on the damping of the oscillation is obtained

from the known values of the frequency of the oscillation for .

the cases where r,=0 and r,=(r,).. The imaginary part of
the complex root of equation (5), which becomes a quartic
equation when r,=0, gives the value of w, for the case of
1.=0. The value of w, for r,=(r,}. is determined from the
analysis presented in the section entitled “Determination of
Critical Time Lag.” As mentioned in reference 11, the
frequency of the oscillation decreases as time lag increases;

thus for & value of 0<r,<(r}., the estimated values of «,

should include frequencies greater than the value of o, at
T«={(7:}c and less than the value of w, at r,=0.
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EFFECT OF TIME LAG IN STABILIZATION S7

Airplane motions for various values of +.—For purposes of
comparison, the motion of the airplane in sideslip subsequent
to an inijtial displacement in sideslip of 5° was calculated, with
the use of a step-by-step procedure, for =0, 0.10, 0.20, 0.25,
0.287, and 0.38. The results are presented in figures 8 (a}
to 8 (f). These figures indicate that as r increases from 0 to
0.2 the period increases slightly, whereas the damping is
markedly improved. The frequency of the oscillation is
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(&) Damping.
(b} Period.
FioUee 9.—Eflect of time Iag on the period and damping of the iateral osclllation.

Y STABILITY OF AIRPLANES

sbout w=3.7. However, as r continues to increase, the
presence of & high-frequency oscillation is noted in the motion

301

since this oscillation becomes less damped and the low- T

frequency oscillation becomes more heavily damped. (See
figs. 8 (d) and 8 (e).) For r=0.38, the motion is neutrally
stable at the high frequency of »«=8.5 but the low-frequency
oscillation does not appear in this motion since it is very

— -

well damped. In figures 9 (a) and 9 (b), the period and

damping of the lateral oscillation for several values of r,

calculated by the method discussed in this report, are com~ _

pared with the period and damping readily obtained from the

motion calculations shown in figures 8 (a) to 8 (f). The very
good agreement between the results presented in figures
9 (a) and 9 (b) would probably be improved if the increment
selected for the step-by-step calculations were reduced. The
trends indicated by these results, however, are applicable
only to the particular airplane-sutopilot system considered
in this example and may not be generalized to any other
arbitrary airplane-autopilot system.

CONCLUDING REMARKS

A method is presented for determining the effect of time
lag in an automatic stabilization system on the lateral
oscillatory stability of an airplane. The method is applied
to a typical present-day airplane equipped with an automatic
pilot sensitive to yawing ecceleration and geared to the
rudder so that rudder control is epplied in proportion to the
yawing acceleration. The results calculated for an sirplane-
autopilot system by the method described are in good )
agreement with the airplane motions calculated by a
step-by-step procedure.

LANGLEY AERONAUTICAL LiABORATORY,
NATIONAL ADVIsORY COMMITTEE FOR AERONAUTICS,
Lancrey Fiewp, Va., October 28, 1949.
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APPENDIX
A METHOD FOR CONSTRUCTING CURVES OF CONSTANT PERIOD AND DAMPING AS A FUNCTION OF t, AND F,

If an over-all picture is desired of the effect of time lag
for a given value of k, or the effect of varying k, for a given
time lag, construction of curves of constant period and damp-
ing with the use of the following method is recommended.

The characteristic stability equation of the airplane-
autopilot system (equation (5)) may be rewritten in the
form:

AN+BNH4-CA*+ DA4-E
—(ANFBNFONE DY)

If A=a--iw, is substituted in each side of equation (A1),
the condition that X be a root of the characteristic equation
is that the complex number 4,48, obtained from the left-
hand side must be equal to the one obtained from the right-
hand side A;+iB,;. The quantities 4,+1B; and A4,+iB,
may be represented by the expressions Rie!®: and Re'fs,
respectively. Therefore, this requirement is equivalent to
saying that R,=R; and 6,=6; if X is to be a root of equation
(A1), If A=a+tiw, is substituted in the right-hand side,
the following expressions result:

k'e —rgX

(A1)

ke9(cos Tw0y—1 sin 7,w,)=Ay+ 1 B;=R,eit2

where
Rz=k‘€—r'a
and
—S8II 7.
fe=tan ! —— 2= 1,0, =27 — 7,0,
COS Ty,

Therefore, if A=a+1w, is substituted in the left-hand side and

A;+1B,=R,e*: is obtained, the value of r required to make

6,=0; can be determined. Since r, is therefore determined

and a is fixed, the value of %, necessary to make R;=R, can

be calculated. Thus for these values of %, and r,,
A=a+1iw,

isarootof the transcendental stability equation (equation (5)).

For a given value of ¢, the analysis may be made through-
out the range of w, and the corresponding values of %, and
r, determined. A curve representing this value of ¢ may then
be plotted as'a function of k, and r,. This procedure is
repeated for a.sequence of values of ¢ and the corresponding
curves in the k,,r, plane are plotted. Each point on & curve
of constant a represents & particular value of w,. Curves of
constant frequency may therefore be plotted by drawing a
curve through the given value of w, on each one of the e
curves. The values of @ and w, are converted to T and P
by equations (6). The final result would consist of curves of
constant damping Ty and curves of constant period P in the
ke 7o plane. Thus the effect of time lag on the lateral oscil-
lations for any value of the gearing ratio k,, or the effect of
varying k. for any value of time lag, may be ascertained.
For purposes of illustration several lines of constant T3 and
P in the k,r plane were calculated for the typical present-
day airplane described in teble I and are shown in figure 10.

A curve can be plotted in the k,,r, plane which divides the
quadrant into a satisfactory and an unsatisfactory region
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F1aURE 10.—8everal curves of constant perlod and constant damping for the typical present-
day airplane described In table L.

according to any prescribed relationship between the period
and damping of the lateral oscillation. In order to calculate
this curve, several values of ¢ and w, that exactly satisfy the
criterion should be selected and substituted in equation (A1).
The combination of &, and 7, is then obtained for each set of
values of ¢ and w, and the desired curve is plotted in the

k,,7¢ Dlane.
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