MIL-STD-417A(MR)

8 February 1976

SUPERSEDING
MIL-STD-417(Ord)
10 September 1957

MILITARY STANDARD

CLASSIFICATION SYSTEM AND TESTS FOR SOLID ELASTOMERIC MATERIALS

(Symbols and Tests)

FSC 9320

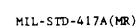
Army Materials and Mechanics Research Center Watertown, Massachusetts 02172

Classification System and Tests For Solid Elastomeric Materials

MIL-STD-417A (MR)

- 1. This limited coordination Military Standard has been prepared by the Army Materials and Mechanics Research Center based upon currently available information, and has been approved by the Army Materiel Command.
- 2. Recommended corrections, additions, or deletions should be addressed to the Director, Army Materials and Mechanics Research Center, Watertown, Mass. 02172.

FOREWORD


This standard was revised to reference the latest industry test methods and to include metric equivalents.

The rubber materials covered by this standard can be associated with rubber materials classified in ASTM D2000 entitled "Elastomeric Materials for Automotive Applications."

When specifications and drawings referencing materials listed in this standard are updated, they shall be changed to reference ASTM D2000.

CONTENTS

1. 1.1 1.2 1.3	SCOPE Scope Applications Classification
2. 2.1 2.2	REFERENCED DOCUMENTS Specifications and standards Other publications
3. 3.1 3.2 3.2.1 3.2.2	DEFINITIONS Grades Suffixes Suffix numbers Suffix letters
4. 4.1 4.1.1 4.1.1.2 4.1.2.2 4.1.2.1 4.1.2.2 4.1.2.3 4.1.3.1 4.1.3.1 4.1.3.2 4.2 4.3	GENERAL REQUIREMENTS Materials Type R Class RN Class RS Type S Class SA Class SB Class SC Type T Class TA Class TB Physical properties Commonly used grades Basic requirements
4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.5 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5	Durometer hardness Tensile strength Ultimate elongation Oil aging Compression set Heat aging Special requirements added by suffix letter Resistance to heat aging - Suffixes A, A ₁ , A ₄ , A ₆ Compression set - Suffixes B, B ₁ , B ₃ , and B ₇ Resistance to ozone - Suffixes C ₁ and C ₂ Compression deflection - Suffix D Resistance to oil and fuel aging - Suffixes E ₁ , E ₃ , E ₄ , E ₅

4.5.6	Low temperature brittleness -
-	Suffixes F_1 , F_2 , F_3 , F_7 , F_{13}
4.5.7	Resistance to tear - Suffix G
4.5.8	Resistance to flexing - Suffix H
4.5.9	Resistance to abrasion - Suffix J
4.5.10	Adhesion to metal (bonded) - Suffix K_1
4.5.11	Adhesion to metal (cemented) - Suffix K2
4.5.12	Resistance to water - Suffix L
4.5.13	Resistance to flame - Suffix M
4.5.14	Resistance to repeated impact - Suffix N
4.5.15	Resistance to staining of organic finishes -
	Suffix P
4.5.16	Resilience - Suffix R
4.5.17	Low temperature torsional stiffness -
	Suffixes S_1 , S_2 , S_{11}
4.5.18	Special requirements - Suffix Z
4.6	Workmanship
5.	DETAIL REQUIREMENTS
5.1	Tests
5.1.1	For basic requirements
5.1.2	Durometer hardness
5.1.3	Tensile strength
5.1.4	Ultimate elongation
5.1.5	Oil aging
5.1.6	Compression set
5.1.7	Heat aging
5.2	Suffix letter requirements
5.3	Acceptance tests

TABLES

Table 1	Specimen t	hickness - Deg	gree tw	ist rela	ationship
11	Testing fo	r suffix lette	er requ	irement	s
III	Physical r	equirements -	Type R	, Class	RN
IV	*1	11	Type R	, Class	RS
v	**	11	Type S	, Class	S۸
VI	,,	11	Type S	, Class	SB
VII	Pt	11	Type S	, Class	sc
VIII	Ħ	n	Type T	, Class	TA
ΙX	ti	11	Type T	, Class	тв

THIS DOCUMENT PROVIDED BY THE ABBOTT AEROSPACE
TECHNICAL LIBRARY
ABBOTTAEROSPACE.COM

MILITARY STANDARD

CLASSIFICATION SYSTEM AND TESTS FOR SOLID CLASTOMERIC MATERIALS

1. SCOPE

- 1.1 Scope. This standard covers a group of significant symbols identifying performance characteristics of rubber compositions; and, when practicable, test methods for use in determining compliance with the identifying characteristics.
- 1.2 <u>Applications</u>. This standard shall be used to identify rubber compositions for military applications. Competent technical discrimination shall be applied, prior to issuance of a procurement document designating a particular grade, to insure that compatible suffix combinations have been selected.
- 1.3 Classification. Rubber compositions shall be of the following types and classes:

Type R - Non-oil-resistant

Class RN - Natural or synthetic natural (Cis 1-4 polyisoprene) (see table III)

Class RS - Synthetic (see table IV)

Type S - Oil resistant

Class SA - Very low volume swell (see table V)

Class SB - Low volume swell (see table VI)

Class SC - Medium volume swell (see table VII)

Type T - Temperature resistant

Class TA - Low and high temperature resistant (see table VIII)

Class TB - High temperature and oil resistant (see table IX)

2. REFERENCED DOCUMENTS

2.1 The following documents of the issue in effect on date of invitation for bids, form a part of this standard.

SPECIFICATIONS

MILITARY

TT-E-529 - Enamel, Alkyd, Semi-Gloss

(Copies of specifications and standards required by contractors in connection with specific procurement functions should be obtained from the procuring activity or as directed by the contracting officer.)

2.2 Other publications. The following documents form a part of this standard. Unless otherwise indicated, the issue in effect on date of invitation for bids shall apply.

American Society for T sting and Materials (ASTM) Standards:

- D 395 Compression Set of Vulcanized Rubber
- D 412 Tension Testing of Vulcanized Rubber
- D 429 Adhesion of Vulcanized Rubber to Metal
- D 471 Change in Properties of Elastomeric Vulcanizates Resulting from Immersion in Liquids
- D 518 Surface Cracking Resistance of Stretched Rubber Compounds
- D 531 Indentation of Rubber by Means of the Pusey and Jones Plastometer
- D 573 Accelerated Aging of Vulcanized Rubber by the Oven Method
- Compression-Deflection Characteristics of Vulcanized Rubber D 575
- D 624 Tear Resistance of Vulcanized Rubber D 813 Crack Growth of Rubber
- D 832 Conditioning of Elastomeric Materials for Low-Temperature Testing
- D 865 Heat Aging of Vulcanized Rubber by Test Tube Method
- D 925 Diffusion Strain of Rubber and Migration Strain of Vulcanized Rubber in Contact with Organic Finishes
- D 945 Mechanical Properties of Elastomeric Vulcanizates Under Compressive or Shear Strains by Mechanical Oscillograph
- D 1053 Low-Temperature of Stiffening of Rubber and Rubber-like Materials by Means of a Torsional Wire Apparatus
- D 1149 Accelerated Ozone Cracking of Vulcanized Rubber
- D 1229 Low-Temperature Compression Set of Vulcanized Elastomers
- D 2137 Low-Temperature Impact Test for Brittleness Determination for Flexible Polymeric Materials or Fabrics Coated Therewith, or Both
- D 2240 Indentation Hardness of Rubber and Plastics by Means of a Durometer
- D 2228 Abrasion Resistance of Rubber by the Pico Method

(Applications for copies should be addressed to the American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.)

3. DEFINITIONS

- 3.1 Grades. The grades are designated by numbers following the prefix letters (RN, RS, SA etc.) (see tables III through IX). These grade numbers consist of three digits, the first indicating Shore A durometer hardness range. For example, 3 for 30 \pm 5, 4 for 40 \pm 5, etc. The second and third digits indicate the minimum tensile strength. For example, 10 for 1000 psi (7.0 MPa), 15 for 1,500 psi (10.5 MPa), etc.
- 3.2 <u>Suffixes</u>. It is recognized that basic requirements used mainly to classify compositions do not sufficiently describe some compositions, thus, provision is made for added requirements which are indicated by suitable suffixes to the grade number.
- 3.2.1 Suffix Numbers. Suffix numbers are used only in those cases where one composition has the same tensile strength requirements as another composition, but the ultimate elongation requirement differs. The suffix number is expressed by a single digit preceded by a hyphen and appended to the grade designation indicating the required elongation. For example, -4 for 400 percent, -7 for 700 percent, etc.
- 3.2.2 Suffix Letters $\frac{1}{2}$. Suffix letters are added singly or in combination after any grade number to indicate additional requirements for that particular grade (see tables III through IX).

```
A - Resistance to heat aging 70 hours at 158°F (70°C)
A<sub>1</sub> - Resistance to heat aging 70 hours at 212°F (100°C)
A<sub>4</sub> - Resistance to heat aging 70 hours at 347°F (175°C)
A<sub>6</sub> - Resistance to heat aging 70 hours at 447°F (230.9°C)
B - Compression set after 22 hours at 158°F (70°C)
B1 - Compression set after 70 hours at 212°F (100°C)
By - Compression set after 70 hours at 302°F (150°C)
B7 - Compression set after low temperature, 22 hours at -67°F (-55°C)
C1 - Resistance to ozone at 50 pphm at 100°F (38°C) for 7 days
C<sub>2</sub> - Resistance to ozone at 50 pphm at 100°F (38°C) for 7 days after oven
       exposure for 70 hours at 158°F (70°C)
D - Compression-deflection
E_{\rm 1} - Resistance to oil aging, ASTM D 471, ASTM 0il No. 1 E_{\rm 3} - Resistance to oil aging, ASTM D 471, ASTM 0il No. 3
E<sub>4</sub> - Resistance to oil aging, (compounded petroleum oil)
E5 - Resistance to fuel aging (ASTM D471, ASTM Fuel B)
F<sub>1</sub> - Low temperature brittleness at -40°F (-40°C)
F_2 - Low temperature brittleness at -67°F (-55°C)
F<sub>3</sub> - Low temperature brittleness at -103°F (-75°C)
F7 - Low temperature brittleness - 22 hours at -67°F (-55°C)
F<sub>13</sub> - Low temperature brittleness - 7 days at -103°F (-75°C)
G - Resistance to tear
```

^{2/} Subscript numbers are used to indicate different time, temperature and/or other conditions for the same suffix letter. Numbers are not necessarily used in sequence since some are held in reserve for future requirements.

MIL-STIF 417A (MR)

H - Resistance to flexing

J - Resistance to abrasion

K1 - Adhesion to metal with bond made during vulcanization

K₂ - Adhesion - cemented bonds made after vulcanization

L - Resistance to water

M - Resistance to flame

N - Resistance to repeated impact

P - Resistance to staining

R - Resiliency

S₁ - Low temperature torsional stiffness at -40°F (-40°C)

 S_2 - Low temperature torsional stiffness at -67°F (-55°C)

 \tilde{S}_{11} - Low temperature torsional stiffness - 7 days at -40°F (-40°C)

Z - Special requirements

4. GENERAL REQUIREMENTS

- 4.1 Materials. Rubber compositions specified herein shall be of three types and seven calsses. These compositions shall be manufactured from natural rubber, reclaimed rubber, synthetic rubber or rubber-like materials, together with added compounding ingredients of such nature and quality as to produce vulcanized rubber conforming to the requirements of this standard. These vulcanized compositions shall show no objectionable bloom nor bleeding. Unless otherwise specified, color shall be black except for the TA compositions whose color is dependent on the filler used.
- 4.1.1 Type R. Type R composition shall be made from natural rubber, reclaimed rubber, synthetic rubber or rubber-like materials, alone or in combination, for services where specific resistance to the action of petroleum based fluids is not required.
- 4.1.1.1 Class RN. Class RN composition shall be based on natural rubber in the form of crude rubber or reclaimed rubber or synthetic natural rubber (Cis 1-4 polyisoprene).
- 4.1.1.2 Class RS. Class RS composition shall contain synthetic rubber or rubber-like materials for general purpose use where oil resistance is not required.
- 4.1.2 Type S. Type S compositions shall be made from synthetic rubber or rubber-like materials for services where specific resistance to the action of petroleum base fluids is required.
- 4.1.2.1 Class SA. Class SA compositions shall have very low volume swell in low-aniline point oils or fuels.
- 4.1.2.2 Class SB. Class SB compositions shall have low volume swell in low-aniline point oils or fuels.
- 4.1.2.3 Class SC. Class SC compositions shall have medium volume swell in low-aniline point oils or fules.

- 4.1.3 Type T. Type T composition shall be made from synthetic rubber or rubber-like materials which shall be suitable for services where specific resistance to the effects of high or low temperatures is required.
- 4.1.3.1 Class TA. Class TA compositions shall be made from materials having maximum resistance to the effects of both high and low temperatures.
- 4.1.3.2 Class TB. Class TB compositions shall be made from materials having outstanding resistance to both dry heat and oils at high temperature.
- 4.2 Physical Properties. The physical properties of rubber compositions shall conform to the values established in tables III through IX as determined by the applicable tests prescribed in 5.1.1 and table II. Physical properties contained in this specification are not applicable to rubber compositions used as a binder for material such as cork to form a uniform and homogeneous
- 4.3 <u>Commonly used grades</u>. The compositions fo tables III through VII marked with an asterisk are those most commonly used. It is suggested that these grades be specified when practicable.

4.4 Basic requirements.

- 4.4.1 <u>Durometer hardness</u>. The durometer hardness of samples tested shall not exceed the limits established in the applicable table when samples are prepared and tested in conformance to 5.1.2.
- 4.4.2 Tensile strength. Tensile strength of samples tested shall not be below the minimum value established in the applicable table when samples are prepared and tested in conformance to 5.1.3.
- 4.4.3 Ultimate elongation. Ultimate elongation of samples tested shall not be below the minimum value established in the applicable table when samples are prepared and tested in compliance with 5.1.4.
- 4.4.4 Oil aging. The changes in physical properties shall not exceed the limits established in the applicable table when samples are prepared and tested in accordance with paragraph 5.1.5.
- 4.4.5 <u>Compression set</u>. Compression set values shall not exceed the percentages established in the applicable table when the samples are prepared and tested in conformance with 5.1.6.
- 4.4.6 Heat aging. The change in physical properties shall not exceed the limits established in the applicable table when samples are prepared and tested in conformance to 5.1.7.
 - 4.5 Special requirements added by suffix letter.
- 4.5.1 Resistance to heat aging. Suffixes A, Al, A4, and A6. Physical properties (durometer hardness, tensile strength, ultimate elongation) shall not exceed the maximum limits established in the applicable table when prepared and tested in conformance to the applicable requirements of table II. The aged specimens shall show no evidence of cracking when bent back 180 degrees upon themselves.

- 4.5.2 Compression set Suffixes B, B₁, B₃ and B₇. Compression set values shall not exceed percentages established in the applicable table when samples are prepared and tested in conformance to the applicable requirements of table II. For Suffix B₇ (22 hours at -67°F (-55°C)) compression set shall not exceed 70 percent after 30 minutes recovery at -67°F (-55°C).
- 4.5.3 Resistance to ozone Suffixes C1 and C2. The specimens shall show no evidence of cracking when examined following testing in conformance with the applicable requirements of table II. Compositions that are being tested for conformance to the requirements for C1 suffix shall show no cracks after exposure to an ozone concentration of 50 parts per hundred million of air. Compositions that are being tested for conformance to the requirements for C2 suffix shall show no cracks after exposure to an ozone concentration of 50 parts per hundred million of ir after oven exposure for 70 hours at 158° F (70°C).
- 4.5.4 <u>Compression deflection Suffix D.</u> Compression deflection values shall not exceed the limits established in the RN and RS tables when samples are prepared and tested in conformance with the applicable requirements of table II.
- 4.5.5 Resistance to oil and fuel aging Suffixes E₁, E₃, E₄, and E₅. The change in physical properties, following testing in conformance with the applicable requirements of table II, shall not exceed the limits established within the applicable table.
- 4.5.6 Low temperature brittleness Suffixes F₁, F₂, F₃, F₇, and F₁₃. There shall be no evidence of any break, crack, fissure or hole visible to the naked eye after testing in conformance with the applicable requirements of table II. Compositions that are being tested for conformance with the requirements of F₁ compounds shall not fail at -40° F (-40° C) while compositions being tested for conformance to the requirements of F₂ and F₇ shall not fail at -67° F (-55° C), and those for F₃ and F₁₃ shall not fail at -103° F (-75° C).
- 4.5.7 Resistance to tear Suffix G. Specimens shall be prepared and tested in conformance with the applicable requirements of table II. Unless otherwise specified, the tear resistance shall not be less than 200 pounds per inch (35.02 kN/m) of thickness for compositions having a tensile of 2000 psi (14.0 MPa) or 150 pounds per inch of thickness (26.26 kN/m) if tensile is under 2000 psi (14.0 MPa).
- 4.5.8 Resistance to flexing Suffix H. Specimens shall be prepared and tested in conformance with the applicable requirements of table II. It shall be the responsibility of the procuring activity to establish acceptance values for compounds when tested as specified herein.
- 4.5.9 Resistance to abrasion Suffix J. Specimens shall be prepared and tested in conformance with the applicable requirements of table II. Unless otherwise specified, the loss in weight of the specimens after testing shall not exceed 5 percent.

- 4.5.10 Adhesion to metal, bond made during vulcanization Suffix K1. Specimens shall be prepared and tested in conformance with the applicable requirements of table II. Unless otherwise specified, the adhesion value shall not be less than 40 pounds per inch (7.00 kN/m) of width.
- 4.5.11 Adhesion, cemented bond made after vulcanization Suffix K2. It shall be the responsibility of the procuring activity to establish the test method and the adhesion value.
- 4.5.12 Resistance to water Suffix L. Specimens shall be prepared and tested in conformance with the applicable requirements of table II. Durometer hardness shall not change more than ± 10 points, and volume shall not increase more than ±10 percent for RS and SB compounds only.
- 4.5.13 Resistance to flame Suffix M. Specimens shall be prepared and tested in conformance with the applicable requirements of table II. Unless otherwise specified, the flame propagation rate of the specimen shall not exceed 1/2 inch (12.7 mm) per minute, and the specimen shall show no evidence of separation of burning particles.
- 4.5.14 Resistance to repeated impact Suffix N. It shall be the responsibility of the procuring activity to establish the test method and the number and magnitude of foot pound blows the specimen must be capable of withstanding.
- 4.5.15 Resistance to staining of organic finishes Suffix P. Specimens shall be prepared and tested in conformance with the applicable requirements of table II. The enameled surface shall show no evidence of staining.
- 4.5.16 Resilience Suffix R. Specimens shall have a Yerzley resilience of not less than that shown on the applicable table for the grade specified, when tested in conformance with the applicable requirements of table II.
- 4.5.17 Low temperature torsional stiffness Suffixes S₁, S₂, and S₁₁. Specimens shall be prepared and tested for conformance with the applicable requirements of table II. Specimens being tested for conformance with the requirements of these suffixes shall meet the minimum twist requirements of table I. Compositions that are being tested for conformance with the requirements for S₁ and S₁₁ compositions shall be tested at -40°F (-40°C) while those being tested for conformance with the requirements for S₂ compositions shall be tested at -67°F (-55°C).

MI L= STD= 417A (MR)

Table 1 - Specimen thickness - Degree twist relationship $\frac{1}{2}$

Torsional stiffness test

T	hickness	
Inches	(mm)	Twist, angular degrees, minimum
.060	1.5	98
.070	1.8	80
.080	2.0	66
.090	2.3	55
.100	۷.5	46
.110	2.8	40

Interpolation shall be used for those thicknesses not contained within this table. These values are based on a modulus of elasticity of 10,000 psi (70 k for a specimen having a free span length of 1.0 inch (25.4 mm) and 0.125 inch (3.175 mm) wide.

- 4.5.18 Special requirements Suffix Z. It shall be the responsibility of the procuring activity to establish a criterion for determining conformance to any special requirements that the procuring activity may require.
- 4.6 Workmanship. Compositions shall be uniform in construction and appearance and shall be free of porous areas, weak sections, bubbles, foreign matter and other defects affecting serviceability of the finished item.
 - 5. DETAIL REQUIREMENTS
 - 5.1 Tests.
- 5.1.1 Basic requirements. Testing for conformance with the basic requirements shall be performed in accordance with the following tests in order to determine compliance with the applicable requirements of section 4.
- 5.1.2 Durometer hardness. Determination shall conform to ASTM D 2240 using a Shore A durometer. ASTM D 531 shall be used as a referee method.
- 5.1.3 Tensile strength. Determination shall be in conformance with ASTM D 412 using a dumbbell shaped specimen, cut with a die conforming with the dimensions of die C.
- 5.1.4 Ultimate elongation. Determination shall be in conformance with ASTM D 412 using a dumbbell shaped specimen cut with a die conforming to the dimensions of die C.
- 5.1.5 Oil aging. Testing shall be done in conformance with ASTM D 471 using ASTM Oil No. 3 as the test fluid. Temperature of oven and duration of test shall be as specified in the applicable table.

- 5.1.6 Compression set. Testing shall be in conformance with ASTM D 395, method B.
- 5.1.7 Heat aging. Testing shall be in accordance with ASTM D865 for TA compounds. Test specimens shall be cut with a die conforming to die C of ASTM D412.
- 5.2 <u>Suffix letter requirements</u>. Testing for conformance with suffix letter requirements shall be accomplished in conformance with the applicable requirements of table II, in order to determine compliance with the applicable requirements of section 4.

Table II - Testing for suffix letter requirements

Suffix letter	Test method
A, A ₁ , A ₄ , and A ₆	Use ASTM D 573 at 158 or 212°F (70°C or 100°C) or ASTM D 865 at 250°F (121°C) or over. Test specimens shall be cut with a die conforming to die C of ASTM D 412. Subsequent to testing for change in durometer hardness, tensile strength and ultimate elongation of the aged specimens, one part of the broken specimen shall be bent back upon itself and be held in that position for 30 seconds. Temperature of the oven or tube and duration of the test shall be as specified in the applicable table.
B, Bl and B3	ASTM U 395, method B
B ₇	ASTM D 1229 - 22 hours at -67°F (-55°C)
C ₁ and C ₂	ASTM D 1149 - Test specimen size shall be 1 inch (25.4 mm) wide, 3-3/4 inches (95.25 mm) long and 0.075 (1.91 mm) to 0.125 (3.175 mm) inch thick. Specimens shall be mounted in accordance with the requirements of ASTM D 518, method B except that the length of the clamping strips shall be such as to facilitate placement within the test chamber of the ozone cabinet. Duplicate specimens from each composition or item being tested for conformance to this suffix letter shall be tested for conformance to suffix letter C_1 shall be exposed for 7 days to an ozone concentration of $S_0 \pm 5$ parts per hundred million of air at a temperature of $100 \pm 2^{\circ}F$ (38 \pm 1°C). At the end of the exposure time the specimens shall be examined under a seven power magnifier. Samples being tested for conformance with suffix letter C_2 shall be exposed for 7 days to an ozone concentration of $S_0 \pm 3$ parts per hundred million of air at a temperature of $100 \pm 2^{\circ}F$ (38 \pm 1°C) after oven exposure for 70 hours at $158^{\circ}F$ (70°C). At the end of the exposure time, the specimen shall be examined under a seven power magnifier.
D	ASTM D 575

ij

MI STIME 11 TAYMEN

 E_1 , E_3 , E_4 , and E_5 ASTM D471. Specimens that are being tested for conformance with the requirements of Suffix E_1 shall be tested in ASTM Oil No. 1; those with Suffix E_3 in ASTM Oil No. 3; those with Suffix E_4 in ASTM Service Fluid 100; those with Suffix E_5 in ASTM Reference Fuel B.

f₁, f₂, r₃, p₇, s₁

ASTM 1/2137, Method 4. Five type B specimens shall be tested at one time. Paragraph 9.3.2 of ASTM D2137 shall be used to determine acceptance or failure of compositions tested. Specimens being tested for conformance to Suffix F₁ requirements shall be conditioned for 3.0 ± 0.5 minutes in liquid at $-40^{\circ} \pm 2^{\circ}F$ ($-40 \pm 1^{\circ}C$) and then tested. Specimens being tested for conformance to Suffix F₂ requirements shall be conditioned for 3.0 ± 0.5 minutes in liquid at $-67 \pm 2^{\circ}F$ (-55 ± 1°C) and then tested. Specimens being tested for conformance to Suffix F3 requirements shall be conditioned for 3 minutes in liquid at $-103 \pm 3^{\circ}F$ (-75 \pm 2°C) and then tested. Specimens being tested for conformance to Suffix F7 requirements shall be conditioned for 22 hours in air at -67 \pm 2°F (-55 \pm 1°C) and then tested. Specimens being tested for conformance to Suffix F13 requirements shall be conditioned for 7 days in air at -103 ± 3°F $(-75 \pm 2^{\circ}C)$ and then tested.

ASTM D 624 - The specimen shall be cut with a die conforming to die B.

ASTM D 813

ASTM D 2228

ASTM D 429, Method B

The procuring activity shall determine the method of testing for conformance to this suffix letter.

ASTM D 471

The testing apparatus shall consist of (1) a metal chamber, 12 inches (304.8 mm) wide by 14 inches (355 mm) deep by 24 inches (609.6 mm) tall, open at the top and front; (2) a Tirrell burner with a 3/8 inch (9.53 mm) bore and 4 inches (101.6 mm) long above the primary air inlets; (3) a watch or clock with a sweep second hand; and (4) a supply of illuminating gas at normal pressure.

The specimens shall be 10 inches (254 mm) long, 1/2 inch (12.7 mm) wide and 1/4 inch (6.35 mm) thick. Not less than three specimens shall be tested. The specimen shall be marked at a distance of 2 inches (50.8 mm) from each end,

Н

Κį

K 2

Ĺ

M

and centered in a horizontal position in the test chamber, on supports 8 inches (203 mm) apart and clamped at each end. The burner shall be adjusted to provide a flame approximately 5 inches (127 mm) high, having an inner blue cone approximately 1.5 inches (38.1 mm) high. The burner shall be placed beneath the specimen midway between the supports in such a manner that the flame of the core just touches the underside of the specimen. The burner shall be left in this position for 30 seconds, then removed and the flame extinguished. The rate of flame travel (total inches divided by time of test) along the 6 inch (152.4 mm) test length shall then be calculated and the average of the three specimens shall be reported as the flame propagation time.

The procuring activity shall determine the method of testing for conformance to this suffix letter.

ASTM D 925, method B - The metal panels shall be finished with olive drab enamel conforming to Specification TT-E-529 and shall be aged 48 hours prior to the test. Exposure shall be 24 hours at $140 \pm 5^{\circ}F$ (60 ± $3^{\circ}C$).

ASTM D 945, part A

ASTM D 1053 - The general procedures of this method shall be used, with the exception of those sections that are in conflict with the following. The angle of specimen twist shall be determined at only one temperature (-40°F) (-40°C) for testing samples for compliance with S1 or S11 requirements or -67°F (-55°C) for testing samples for compliance with S_2 requirements. Test specimen dimensions shall be as follows: Thickness -- $0.085 \pm .025$ inch $(2.16 \pm 0.64 \text{ mm})$; free span specimen length $-1.0 \pm .10$ inch (25.4 \pm 2.54 mm); width $-0.125 \pm .005$ inch $(3.175 \pm 0.13 \text{ mm})$. Only one wire shall be used for the test. The wire shall be 2.6 ± .3 inches $(66 \pm 7.62 \text{ mm})$ long and have a torsional constant of 0.500 gram-force-centimeter per degrees of twist (color code yellow). For liquid heat transfer media the temperature of the bath surrounding the entire test specimens shall be controlled to within ± 1.8°F (± 1.0°C) and the specimen shall be conditioned 5 ± 0.5 minutes. (The liquid heat transfer media and temperature control as described within ASTM D 2137 are suitable.) For gaseous media the temperature of the bath surrounding the entire test specimens shall be controlled to within ± 2°F (± 1°C) and specimens shall be conditioned one hour for S1 or S2 and 7 days for S₁₁ requirements. Not less than three specimens shall be tested from each sample submitted, for conformance with the twist requirements of table I. If one of the three specimens tested fails to meet the minimum twist requirements for its thickness, three additional specimens shall be tested. Failure of any one of the second set of specimens shall constitute failure of the sample.

N

P

R

 S_1 , S_2 , and S_{11}

MITI-STH-4174 (MR)

Z	See 4.5.18

5.3 Acceptance tests. The requirements for rejections and retesting shall be established by the procuring activity. It is recognized that deviations by the purchaser may be permitted to the extent of 10 percent tensile and elongation only when test specimens are cut from parts instead of test slabs due to variations in shape factor, grain effect and knitting of the rubber composition.

Custodian:

Preparing Activity:

Army - MR

Army - MR

Review interest:

Project Number 9320-A162

Army - ME

Ž	
Class	
œ,	
77	
•	
Compositions	
Rubber	
õ	
Requirements	
- Physical	
111	
Table	

		Basic R	Require	ements		† 	Requ	if rement	Requirements Added by Suffix Letter	uffix Leti	ter	
						Suffi Heat aged at 158 F	188	hr . C)	Suffix B	ઢી	Suffix D	Suffix R
		Tensile	<u>•</u>	Ultimate	Compression set after	e, Max.	% 'a'	*	Compression set siter	10 20% d	load at 20% deflection	Yerzley restlience
Grade number	Durometer hardness number	etrength min. psi MP	g th MPa	elonga- tion, min., "	22 hr. at 158 F (70 C) max., %	nbrafi Snado		ELong chang chang	22 hr. at 158 F (70 C) max., %	pet	MPs	deformation min., Z
RN 310	30 ± 5	1	7.0	00 ₄	R	+10	8	OE-	25	01 + 0/	0.483 ± 0.069	88
ž			10.5	88	: :	::	: :	: :	: :			
Š			17.5	8	:		:	=	:			
RN 410	£ 0 ∓ 0th	1000	0.0	88	: :	:	= :	= =	= :	100 ± 13	0.689 ± 0.103	75
3			0.4	3 S	:	:	:	:	:			
13		2500	17.5	88	: =	: :		: :	: :			
RN 510	5 7 05	1		38	Ē	F	F	-		140 ± 20	0.965 ± 0.138	70
*5 15			10.5	00 1	:	:	:	:	=			
•520	-		14.0	Š	: !	: :	: :	: :	: :			
*525 530		3000	21.0	88	: :	: :	: :	::	: :			
535			24.5	9	:	:	:	.	-			
RN *610	5 ∓ 09		0.7	00 S		F :	: :	: :	::	195 ± 30	1.344 ± 0.207	99
(29 <u>.</u>		2000	14.0	3		:	=	:	:			
\$65	<u></u>		77.5	<u> </u>	: :	: :	: :	: :	: :			
6.0			24.5	28	:	:	Ξ.	;	:			
RI: 710	70 ± 5		0.	00. 00.	-	F	-	F	ŧ	300 ± 70	2.068 ± 0.483	8
*715			10.5	25		:	:	:	:			
22 •		2000	14.0	8	• :	: :	: :	: :	::			
(2)	ŀ	1		3	*	-	F	-		36.	_	
010 5	ر <u>۱</u> 88		0.0	25		:	:	:	:	4/2 ± 100	3.275 ± 0.70	
0 0 0 0		2000	14.0	38	;	:	:	:	:			
010	90 ± 5	!	7.0	100	-	:	:	-	:			
		1500	10.5	150	:	:	:	:	:	,		

*Grades most commonly used.

HIL-5TD-4174(HB)

			Real	reoutrements	Requirements added	-			Require	nente	Requirements added by	suffix lette		
			2			Heat aged 70 hrs at 158 F (70 C)	Fed 70 F (70	bre C)	Suffix Heat aged 70 1 at 212 F (100	Suffix Assert 100 c)	# [0			S.T.T. D
• p	Durometer hardness		11 mm m	a t	Compression set after 12 br. at	Beschtaf Ange, Max.	Tensile change, max. l	Ziongecton change, max. Z	Hardness change, max.	Tensile change æes.,≸	Elone,a tion change, me.r., ≸	Compression art after 22 hr. at 154 pc. maxx., 3	20% de.	Load at 20% deflettion past
75 510 75 510 515	30 ± 5		7.0		S		22.	-35	01-	÷: :	 	25	70 10	70 ± 10 0,483 ± 0.069
320 RS 410	40 ± 5	1000	7.0	400	= =	= 7	= =	-35	= =	: :	: :	F =	100 ± 15	0.689 ± 0.103
• 420		2000	14.0	00	=	:	=	:	=	=		=		
P.S • 510 • 515	\$ +1 \$	1200	10.5	6 6 6	= = =	+ + 10	: : :	-35 -25	: : :	: : :	: : :	: : :	140 ± 20	0.965 ± 0.138
• 525		2500	17.5	400	ž.	=	-	=	=	=	=	1		
RS *610 *615 *620	\$ 7 29	1000 1500 2000 2500	7.0 10.5 14.0 17.5	& <u>& &</u> &		+10	::::	-35 -25 "		::::			193 ± 30	1.344 ± 0.207
RS •710 •715 •720	70 + 5	1000 1500 2000 2500	7.0 10.5 14.0 17.5	K K K K		+10 +7 ::		-35				* = = =	300 ± 70	2.068 ± 0.483
RS 810 815 820	80 ± 5	1000 1500 2000	7.0 10.5 14.0	150 200 200		+10	= = =	.35 25.	* * *	= = =	:::	:	475 \$ 100	475 ± 100 3.275 ± 0.690
RS 910 915	5 ∓ 8	1000	7.0	150	= =	÷ ÷	<u>: :</u>	33	: :	: :	: :			

14

MIL-	CTT\-	41	7.4	
MILL-	3 W-	~ 4	,,,,,,	

																-		•	
			_	! !	,		Klong cheng mex.		9	=		: :	:	:		=	=	- :	
	Suffix E3	011 mged 70 Mr. mt	7 (100 c) F 011 F 011				TensT Chado		ୡ	=	;	: :	-	-		=	=	: :	
letter	Jng	70 02	212 F STP: 58TP		(atha		Herdn Cheng		-5 to	Ξ	=	= =	=	<i>-</i>		: 	:	: :	
exided by suffix 1	Suffix By					Compression set after	70 nr. ac 212 F (100 C) max. A					ç	,		SS.				
		() 0 0			•		Sued:	- 1	-30	Ε	*	= =	=	=	Ξ	11	=	: :	
Requirements	Suffix A1	Heat aged 70 at 212 F (100				\$	(enetl) Spend: .xe	5	-15	Ξ	2	= =	=	=	:	:	=	= =	
æ	ms	Heat at 21			73		onbrei Oned:		410		=	= =	-	=	=	:	=	: :	
				τ ο 31 1. (ο ος) 4 821) 4 821	otaa ta	ompre S br.	2	\$	=	·	: :	-	:	:	:	"	. 1	
		011 mged 70 hr. mg	212 F (100 C) ABTH 011 #3			Volume	Parties of the second of the s		0 to +10	=	Ξ	z	1	: =	=	11	= .	2 5	
requirements					ئر • 10 0 00	te el min,	ltim ton,	r n	8	8	30	8	300	250	300	150	. <u>2</u> 2	85	3
1 -	i						ingile rength min.	HPs	3.8	3.5	3.5	7.0		· ·	14.0	3.5	7.0	3.5	>:
Basic							Tensile strength	1 ed	\$00	200	200	1000		000	2000	500	1000	200	222
							Durometer hardness	number	5 ∓ O†	50 ± 5	30 ₹ 5		K	n + 2		80 ± 5		\$ \$ 06	
							Grade	number	SA 405	SA 505	\$00 15		1	SA 705	2.6	3A 305	810	SA 905	275

MIL-STD-417A(ME)

Durometer arrength hands and strength handless after 1500 10.5 450 10.5 1500 10.5 10.0 10.0	Suffix A ₁ Heat aged 70 hr. at 212 F (100 C)	Suffix B	30.0			
Durometer strength handle on 11 aged 70 hr. at 212 7 (100 F) and 12 12 12 12 12 12 12 12 12 12 12 12 12	rat age 2 hr. a 7 (100	_		Suffix B ₃		Suffix
Durometer strength hardness and strength hardness attracts attracts to 100 to 1			70 hr.	at 212 F (100 C) ASIM 011 #3	()	7 days at room tem: ASTM
Durometer strength stands on the bardness strength stands on the bardness strength stands on the bardness of t	T,		%			Fuel
Durometer strength make hardness submitted at the strength make submitted at the submitted	UO XVIII	क क	no.			துரகம் x.
100 1.0 100 1.0 100 1.0 1.0 1.0 1.0 1.0	oo c), rafie netle engo, congati	eserges Or ref. 2 F (1	elien Lagner Lagner	t egaac etanom easubra	olume henge	o somo to
10001 7.0 450 0 50 1500 10.5 1500 10	1) es es fo fo	50	Œ	P	ົ້	٨
70 ± 5 1500 110.5 4500 1500 110.5 4500 1500 110.5 1400 1500 110.5 1400 1500 110.5 1500 1500 110.5 250 1500 1500 1500 1500 1500 1500 1500 15	01-02- 51+ 09	£9.	45 -45	-10 to +5	0 to 25	ς; •
60 ± 5 1000 1.0 350 1000 15.0 350 10.0 15.0 15.0 15.0 15.0 15.0 15.0 15	*		→.	•		-
1500 110.5 1,000 2000 14.0 1,000 1000 7.0 250 1500 10.5 250 2000 14.0 250 1500 10.5 250 1500 14.0 250 2500 14.0 250 2500 14.0 250 2500 14.0 250 2500 14.0 250 2500 14.0 250 2500 14.0 250 2500 14.0 250 2500 14.0 250 2500 14.0 250 2500 14.0 250 2500 14.0 250 2500 14.0 250 2500 1500 1500 2500 1	:	:	:	:	=	:
2000 14.0 400 60 ± 5 500 14.0 400 1000 1.0 250 1000 14.0 350 1000 1.0 300 11500 10.5 250 2000 14.0 250 2000 14.0 250 2000 14.0 250 2000 14.0 250 2000 14.0 250 2000 14.0 250 2000 14.0 250 2000 14.0 250 2000 14.0 250 2000 14.0 250 2000 14.0 250 2000 14.0 250 2000 14.0 250 2000 14.0 250 2000 14.0 250	f :	£ :		: :	t :	
60 ± 5	:		+			F
1500 10.5 300 2000 14.0 350 2000 14.0 350 1500 10.5 250 2000 14.0 250 2000 14.0 250 2000 17.5 300 1500 1.00 1500 10.5 125 2000 14.0 125 90 ± 5 300 3.3 50	: :		: B	: =	:	:
2000 14.0 350 70 ± 5 300 3.5 150 1000 7.0 200 1500 10.5 250 2500 14.0 250 2500 14.0 100 1500 10.5 125 90 ± 5 300 14.0 125	= :	ε :		: 1	: :	: :
70 ± 5	* *		+		-	*
1000 1.0 250 2000 14.0 250 2500 14.0 250 2500 17.5 300 1000 7.0 100 1500 10.5 125 90 ± 5 500 14.0 125	: :	: :		:	•	:
2500 14.0 250 2500 17.5 300 80 ± 5 500 17.5 100 1500 10.5 125 90 ± 5 500 14.0 125	:	:	: -	ı	r	:
80 ± 5		:		:	=	:
80 ± 5 580 3.5 100 1000 7.0 100 1500 10.3 125 2000 14.0 125 90 ± 5 500 3.5 50	:	:	:	£	:	:
1000 7.0 100 1500 10.5 125 2000 14.0 125 90 ± \$ 300 3.3 \$0				k !	: :	: :
1500 10.5 125 2000 14.0 125 90 ± \$ 500 3.3 50	= 1 = :	F 1	_	: 1	: 6	: :
90 £ \$ 500 14.0 125	: 1	: :	: I	: :	: t	:
00 ± 5 − 500 3.5 − 50			+	*	*	ŀ
יייי יייייי	: 1		: E	:	1	=
1500 10.5	:	1		•		:
}						

16

HIL-STD-417A(MR)

		Basic		requirements			Req	ILTORE	Requirements added by	,	auffix	suffix letter		
							ŝ	Suffix A1	l .	Suffix	Suffix B3		Suffix R	Buffix Es
										┡-	70 ht.	. At		
				-	Σ.		<u>.</u>	Reat aged			212 7 (100 C)	(C) 82		7 40.00
					212 F (100 C)		212 F	70 at	୍ତ		£ £	110		room temp
					45TH 011					L				Vuel B
					3	30		\$	3*		¥			
				τ		· zų	, 20	.X.	.x.	0 C)	.XA	to	-	
,					i c			m (m '(01)			one;	
Grade number	Durometer hardness number	strength ain.	£ .	Ultime elonge min.	change 1	Compre after 158 P	Hardne Spancy	Tensti	ЕТОПОВ СРАПВЕ СРАПВЕ	SIS F	TensT change	Elongs change max.,	Yerale restli at 20) format	Volume n change
sc 305	30 + 5	8	3.5	8	0 to + 120	S.	+15	-15	£.	35	-65	\$.	ρ.	3 :
		0001	0.7	8 5	: :	: :	: :	: :	- F		- -	: :	: :	: =
32.5 20.5		2000	14.0	3 3	:	:	:	:	=	:	=	:	:	:
SC 403	\$ ∓ 04	∞	3.5	⊗ .			. :	-	. :	. :		= =	65	
410		0001	0.0	8 8	: =	: :	:	:	=			E	:	:
		2002	1.0	3 §	.*	ŧ	:	:	<u>.</u>		z	:	=	=
80 303 303	5+05.	\$00	3.5	8	= =	: :	: :	: :	= =	: :	= =		: :	: :
510		2005	10.5	3 6	2	r	:	:	-	:	<u>-</u>	•	=	:
(T)		2000	14.0	\$ 8	:	ε	:	:	=	:	<u> </u>	:	:	:
		2500	17.5	400	±	£	።	Ξ.		<u>-</u>	-		:	Ξ
30 905	60 1 5	00S	3.5	88	F E	: :	: :	: :	: :	: :	: :	: :	55	<u>.</u> 55:
*610 *615		20051	10.5	3,8	۲	:	ξ.	=	=		*	2	ż	:
, 689 199		2000	14.0	88		Ξ.	z :	= :	:	= :	: :	= :	: :	• :
		2500	17.5	Ş	F	-			-		• •			
30 705	5 7 04	200	3.5	8 8	: :	: :	: :			: :	: ;		င္ပ.	ጸ.
01.		5		3 5	ε	:	:	:		_	:	:	:	:
<u> </u>		2000	14.0	8	:	:	:	:	:	:	:	:	•	=
725		2500	17.5	8	g.	=	:	-	:	+	:	=	-	<u>-</u>
*Grades mos	comonly used	ė.												
							=.	_	_		_			_

Table VII - Physical Requirements of Synthetic Rubber Compositions - Type S, Class SC (cont'd) Requirements added by suffix letter : : Basic requirements 88888888 3.5 7.0 10.5 14.0 7.0 7.0 10.5 2000 2000 2000 1500 1500 # 8 8 885 815 915 916 916 917 8 8

2
T. Class 7
ŗ.
1
Commonitions
ייי ו
2
- 7

	1												ı	MIL-SID-417A(ML)			
		Puffle L	absorption	after 70 hr. in belling v. or volume	Cherips	ttt	tt	\$ \$:	i.t	<u> </u>	.tt	.t.t.	t :	. L L	,tt	tttt	
		:		£ .	# / M	3, 7	7.8	5.7.5 5.2.5	2.2	8.8	8.	22.2		8.75	17.51	14.00	
		antitus .	100	strength min.	47 41	20	. 😭	28	22	. 9 9	₹ , 2	88	2	20	. ∞ 8	22	
MILL LASTER.	Suffla Py	outtin Py con town.		Low temp. brittlesses ASTR D746 Procedure B	103 Z (-73 C)	· į ·	, ;					į.			•	, į	
1	1	(150 C)	• • 1	NAME AND	AP J	§	9	₹.		ş.,	ş÷	3		3 . 5	3 ,	♀ ,≩,	
1				aneri aneri	Merc Gher	٠.٠	Š.	۶,		£ .	÷÷	<u>٠</u>	<u>. </u>		39,	<u>۴,۴.</u>	
at a section		o c)	- 61		l'imi Ao in	222		222	33	33	22		3	2 2 2	3 3 3 5 3 3 5 3 3	3333	
A	,	Suffis E, 70 hrs at 302 F (150 AFTS 011 FL	5	notias.		222	2.5	229	ŖŖ	22	22	225	1,51	2,2	223	2222	
			*	. 2.mf . 03	Sensor Chart	222	L	229		l		225			888	8228	
		70 1		Pend Ce, Max.	Mari Gass	22.5		111	77	3,5	711	255	7	77	. <u> </u>	2222	
		שתנות ש		700 10 10 10 10 10 10 10 10 10 10 10 10 1	300 L	٤, ٤	τ	. 8.2	. \$	٤.	<u> </u>	, , ,	8	٠ ي	, <u>2</u> 2,	8,2,	
			•	Low temp. brittleness ASTR D746	-67 F (-35 C)	į.,	•		, .		••	• • •	•	• •			
		. Pre	(225 C)	, el , el , el	TOWN CLASTS \$1000	รรร	8	ዳዶ	2,2,2	8,8	5	98	ş ș		ጓ ት	२१११	
		··· 👳	_	9. Amil. 10	Toner Chang	titi	:	ዶዶ	333	1 '	+ 1	32	<u> </u>		*****	25.53	
		4	at 437	. 2.0M . 0	Martin Chang	223	Ş	22	111	2.5	22	200	===	? ?	223	2000	
		santsis Slongstion, Rin. S				1221	8	58	883	85	8	28	88	2.8	*****	8888	
		. t			£ .	2.5.5		*.	00.	2.5		2.0	~ % . %	2.2	100	24 27 22 0 0	
		Tenaile premgth min.					٤	ŽŠ.	8 8 8	88	388	888	8 2	88	8888	88 88	
					Parenter Bardress	20 1 20 1	,	288				888	-		0000		
					\$ 2.0	11 22	TOWAL		11510	74505	11606	74600 74610	7612	TA705	##706 ##706	200	
	-																

#11-STD-4174(PE)

₹ = . r Ao*rm*e change 70 hr. at 302 F (150 C) ASTM Service Fluid #100 chenge, mex. 2 * = = E Ξ . Elonga tion * ..xee Requirements added by suffix letter Suffix E_x ខុ = : E : ะมูม**าเนิด** 97 Ke rdness change 2 = Table IX - Physical Requirements of Synthetic Rubber Compositions - Type T. Class TB E = = • 5 2 × Volume change ŧ Ξ = E Σ £ င ş 70 hr. at 302 # (150 A6TM Oil #3 0 = ĸ : : E ႙ 2 change max. = Elongation ደ t = E = E 2 I : E Hardness change max. ጵ Heat aged 70 br. at 347 F (175 C) ± E I = E Ejonga tion Suffix A change max. ደ r I t = = Tensile to +10 = = = Herdness (120 C)' mmx'' 1 TO hr at 502 P ទូ = = = Ξ = COMPTERNIOR elongation air., * 8 8 8 23 3 8 8 8 Sagic requirement 10.5 7.0 10.5 7.0 10.5 3.5 Š Tonsile strongth Sin. 1500 1300 8 1500 11 800 900 8 8 Durometer hardness number +1 +1 + | +1 +1 8 \$ 2 ያ 8 TB 810 815 rb 710 715 TOWNER T TB 610 619 018 510 \$0\$ EL Grade

INSTRUCTIONS: In a continuing effort to make our standardization documents better, the DoD provides this form for use in submitting comments and suggestions for improvements. All users of military standardization documents are invited in provide suggestions. This form may be detached, folded along the lines indicated, taped along the loose edge (DO NOT STAPLE), and mailed. In block 5, be as specific as possible about particular problem areas such as wording which required interpretation, was too rigid, restrictive, loose, ambiguous, or was incompatible, and give proposed wording changes which would alleviate the problems. Enter in block 6 any remarks not related to a specific paragraph of the document. If block 7 is filled out, an acknowledgement will be mailed to you within 30 days to let you know that your comments were received and are being considered.

NOTE. This form may not be used to request copies of documents, nor to request waivers, deviations, or clarification of specification requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

(Fold along this line)

(Fold slong this line)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 12062 WASHINGTON D. C.

POSTAGE WILL BE PAID BY THE DEPARTMENT OF THE ARMY

DIRECTOR
ARMY MATERIALS AND MECHANICS
RESEARCH GENTER
ATTN: AMXMR-QS
WATERTOWN, MASSACHUSETTS 02172

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATE

STA	NDARDIZATION DOCUMENT IN (See Instructions Re	
1 DOCUMENT NUMBER	2 DOCUMENT TITLE	
30. NAME OF SUBMITTING ORG	GANIZATION	4. TYPE OF ORGANIZATION (Mark one) VENDOR
6 ADDRESS (Street, City State.	ZIP Code,	USER
		MANUFACTURER
		OTHER (Specify):
5 PROBLEM AREAS		
a. Peragraph Number and Words	ng	
•		
b. Recommended Wording		
r. Heason/Rationals for Recom	mendation	
6 REMARKS		
i. N		
L PLANT OF SUBMITTED A	August Mills Connection	h WORK TELEPHONE NUMBER (Include Area
TEMANE OF SUBMITTER (A.C.)		Cride : Optional
MATERICADORESS VICTOR	ts State ZII Codel - Optional	B DATE OF SUBMISSION (YYMMDD)
ģ		