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EXECUTIVE SUMMARY

Commercial off-the-shelf (COTS) real-time operating systems (RTOS) provide a variety of
services to application software within a system. As RTOS services and capabilities grow in
complexity, it is clear that they have an increased influence on the overall system performance
and, as such, should have consideration in the overall system safety assessment (SSA). This
report addresses some aspects of using COTS RTOS software that may affect safety in aviation
systems.

Historically, aviation-based computing systems have used a federated design approach, which
can effectively isolate functions with respect to system criticality. However, in more recent
years manufacturers are integrating many of these functions into single computing systems with
possibly different levels of criticality. RTOSs have become the central computing resource to
manage these functions, and for this reason, RTOSs in integrated modular avionics (IMA)
require a high level of scrutiny. The RTOS and the associated partitioning, both spatially and
temporally, of such IMA systems is important to maintain effective software level separation.
The challenge is to design a partitioning solution that enables the exchange of information
between partitioned functions and controlled access to other shared resources (such as input and
output devices) while keeping the partitioned functions largely autonomous and unaffected by
other functions.

In IMA and non-IMA systems, RTOS system performance and associated determinism is key to
system safety in higher software levels. Complex central processing units that offer memory
caching systems and memory management partitioning need additional RTOS considerations
and perhaps alternate RTOS design approaches.

Specified and unspecified RTOS features or elements can pose potential safety hazards. Some of
these safety-related considerations with respect to several associated RTOS attributes and
features are data consistency, dead code, tasking, scheduling, memory and input and output, and
queuing. This list is not all-inclusive, but it does represent a set of potential issues and
approaches to consider. It should not be used as a checklist, but rather as a means for
understanding some COTS RTOS attributes that could need analysis and verification activities to
meet the robustness guidance of DO-178B.

Software level assignments of level A, B, C, or D from the system safety assessment will direct
the rigor of analysis of safety vulnerability that the RTOS is asked to tolerate. Some of the
elements or attributes will have little or no consideration for level D software; however, as the
software level increases, the software vulnerability with respect to safety also increases.

These and other functional class concerns can create a basis for a software vulnerability analysis
(SVA). With RTOSs as the center of the computing resource in many aviation systems, it
follows that the RTOS should be carefully analyzed for its own vulnerability with respect to
safety. From any SSA it is apparent that the RTOS software itself needs to be developed and
verified at a software level of safety associated with the system software levels assigned to its
applications. But beyond this, the COTS RTOS design and attributes should not compromise
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safety through its features, application programming interfaces (APIs), and the development
environment itself.

The report also makes a recommendation for stress and robustness testing of a typical COTS
RTOS.

Several approaches to RTOS safety implications are discussed with a detailed look at testing
methods in general and a specific look at wrappers. This report describes techniques that may be
used for improving system safety via proper COTS RTOS analysis. It offers several test
strategies that may be considered to verify the effectiveness of these safety assurance techniques.

vi
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1. SCOPE AND INTENT.

The purpose of this report is to investigate some aspects of using commercial off-the-shelf
(COTYS) real-time operating system (RTOS) software that may affect safety in aviation systems.
There is a trend to use commercially available RTOSs in aviation systems because of perceived
cost and timesavings associated with using readily available COTS components. Because of the
complexity and unknown integrity of many RTOSs, there are a number of concerns regarding
potential aircraft safety effects. The Federal Aviation Administration (FAA) is sponsoring
research in the area of COTS software to identify technical and safety issues regarding their use,
as well as to identify areas to be addressed in future certification policy and guidance. A
previous COTS avionics software study [COTS SW] identified that COTS RTOSs are a potential
focus area for COTS in aviation software applications. This follow-on work provides an in-
depth study into the considerations of using COTS RTOSs in aviation systems.

COTS RTOS, for the purpose of this study, is meant to be available RTOS software that is sold
by vendors through public offerings. The RTOS must be available to the general public and
have at least minimal existing distribution. The RTOS may or may not have supporting DO-
178B [RTCA SC167] software life-cycle data available. However, it is important to note that the
findings of this report can be applied to in-house-developed RTOSs.

2. INTRODUCTION.

The basic focus of the research was to identify what characteristics of the technology can be used
to support protection and partitioning rationale such that empirical data obtained can be applied
to protection and partitioning approaches proposed by applicants. In particular, real-time
operating systems are being designed to provide the protection and partitioning functions for the
applications executing on the RTOS and computer hardware. The RTOS is the “glue” between
the application, hardware resources, system services, and input/output (I/O) devices. Without an
understanding of the underlying concepts, approval of systems with protection and partitioning
features of such RTOSs can be difficult and inconsistent.

This research will be accomplished in two phases. This report summarizes the phase that
focuses on COTS RTOS characteristics. The next phase will consider architectural strategies for
COTS RTOS integration with software applications in aviation systems, with an emphasis on
RTOSs and the complex hardware with which they must interface.

3. BACKGROUND.

Airframe and engine manufacturers, in part due to perceived cost and schedule reductions, see
commercially available RTOSs as candidates for use in airborne-embedded software systems.

COTS RTOSs have been approved as part of aviation systems that have no safety impact and
those with only minor safety impact on aircraft performance and operations. However, once
aviation system applicants propose to use them on systems with more severe safety impacts
(major, hazardous, severe-major, or catastrophic failure conditions), the considerations of this
report are applicable.
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Software professionals have pursued the reuse model established in the hardware arena for using
COTS hardware components when building a system. Traditional hardware designs can be
fabricated from subassemblies and other components. Software designers have not been as
effective in establishing a reuse of COTS software components. Nevertheless, software
component reuse is still sought as a means for increasing software development productivity and
reducing development costs and schedule times.

This report takes a detailed look into the safety and certification issues of using a COTS RTOS
in aviation applications with potential safety impacts. RTOS attributes are detailed and their
safety-related properties are discussed as well as considerations to address when integrating a
COTS RTOS with an airborne software application(s) in an aviation system.

4. ANALYSIS OF SAFETY-RELATED ISSUES IN COTS RTOS.

In real-time systems, correctness of operation depends not only on the right results being
generated but also on the results being produced within time constraints. Timing requirements
are an integral part of the design and implementation of a real-time system. In real-time systems
that employ an RTOS, the correct operation of the system is dependent on the services provided
by the RTOS. An RTOS must respond in a predictable way to unpredictable external events.
Additionally, an RTOS should have the necessary features to effectively implement the real-time
system (i.e., it must be an effective building block for the system) and to support safety features
of the system.

This section analyzes concepts related to the use of COTS RTOSs in the context of the aviation
systems that may impact aircraft safety. It reviews common functional characteristics that
RTOSs should possess when they are used in safety-related systems. In particular, this section
summarizes the various time and space (memory) partitioning features and other protection
mechanisms used by RTOSs and documents predictability issues related to these features and
mechanisms. Further, RTOS features that may be susceptible to failures or that may cause
concerns for safety are also analyzed. Lastly, robustness-benchmarking techniques are presented
and approaches for handling DO-178B compliance are discussed.

4.1 CHARACTERISTICS OF RTOSs USED IN AVIATION APPLICATIONS.

4.1.1 Predictable Timing.

As RTOS services and capabilities grow in complexity, it is clear that they have an increased
influence on the overall system performance and, as such, should have consideration in the
overall system safety assessment (SSA). An RTOS typically contains the following features to
support deterministic timing [Timmerman 98]:

. Multithreaded and pre-emptible execution.
o Thread priority assignment.
o Predictable thread synchronization mechanisms.
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o Priority inheritance mechanism, to prevent priority inversion, in which a lower priority
task may get executed instead of a higher priority task that is ready [Tindell 00].

o Known and predictable timing behavior (e.g., interrupt latencies, task switch latencies,
and driver latencies).

The above features provide the infrastructure needed to support predictable execution times for
tasks in a real-time system. In safety-related, real-time systems where a failure can result in a
catastrophic, hazardous, or major failure, not only should the RTOS itself be safe but it should
also promote the safety of the entire system by providing features that minimize the ways that
tasks can adversely affect each other. In regards to safety, a critical feature that an RTOS should
have is the support for partitioning of resources, in both space and time, and other protection
mechanisms between the multiple applications executing on the same central processing unit
(CPU) or sharing common computer resources (such as I/O devices). Partitioning has become
increasingly important in the context of aviation systems, because more and more functionality is
being consolidated onto single computing platforms.

4.1.2 Federated Versus Integrated Systems.

Aviation systems have traditionally used a federated architecture, in which many distinct
computer systems are assigned to distinct control functions in the aircraft, and communicate with
each other only using directed or broadcast data buses. These systems are largely de-coupled
and only communicate as needed to perform their designated functions. One advantage of the
federated architecture is that it provides inherent fault-containment and isolation, since faults
cannot easily propagate from functions that are physically located in separate units. However,
the federated system approach has its disadvantages in terms of the number of systems and
components needed to produce, certify, and maintain. There are often many components of
different types, increasing the cost of maintenance and upgrades. The configuration of
components can result in an aircraft architecture where it is very difficult to analyze, verify, and
validate. It may require constructing a very sophisticated systems integration laboratory and
high-fidelity simulation to even approach verification and validation of all the aircraft systems’
dependencies and interaction. However, at the system level, a federated system that only
performs a limited set of functions can often be more easily verified and validated than a highly
complex, highly integrated aircraft system with many functions. The federated approach also
creates obstacles for improvements in functional or safety procedures, because adopting any new
system-level solutions may require making changes to each of the variously affected subsystems,
which is costly. An alternative to a federated architecture is integrated modular avionics (IMA),
in which multiple functions, with possibly different levels of criticality, are incorporated on a
single physical platform. One researcher [Rushby 99] views that the use of a small number of
generic types of components will facilitate the analysis of safety. In federated architectures,
there are many subsystems, of different kind, and the possibility that any one can fail is larger
than if there are fewer components. Thus, fewer redundant general-purpose units might be better
than several specific purpose units.
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4.1.3 Partitioning.

A smaller number of computing systems means that larger numbers of functions need to share
the same computing resource, which potentially introduces a whole new set of potential failure
conditions that the system must address. When executing functions on the same computer
hardware, it is necessary to protect functions from having adverse effects on one another. One
way to provide this protection is to partition or isolate the functions of the system from one
another. Otherwise, one function may interfere with another, causing it to no longer perform its
intended function. Also, software functions of different software levels may be executing on the
same computer and sharing computer resources. Partitioning and other protection mechanisms
are valid means of protecting higher-level software functions from adverse effects of lower-level
(less assured) software functions.

Without partitioning, an alternative would be to assign the software level of all functions to the
highest level of the system’s functions. However, developers typically want to reduce cost and
time constraints by developing the less critical functions to a lower level, thereby needing to
implement partitioning and other protection mechanisms to allow that level reduction. Even
without functions of higher and lower levels, the need for partitioning still exists in some
systems, because functions that may independently be safe may not be safe when integrated with
other functions sharing computer resources.

The intent of partitioning is to control any additional hazards or failure conditions that may be
introduced when multiple aviation functions are sharing the computer processors, memory, and
other system resources. Therefore, the software level of the partitioning and protection
mechanisms must be at the highest level of classification the functions being protected and
potentially higher if the failure of multiple functions introduces more severe failure conditions
than the functions by themselves. Partitioning provides fault containment between functions that
allows multiple functions to execute on the same computer and in the same system. This can
facilitate safety analysis and increase safety assurance, if properly implemented and verified.
Ideally, partitioning and other protection mechanisms should produce a virtual impression that
each function has control over its own computing system and system resources. Protection
schemes should address both the space (memory) and time (CPU throughput) domains, which
are described in the following subsections.'

4.1.3.1 Spatial Partitioning.

Spatial partitioning seeks to prevent a function in one partition from overwriting or corrupting
the data space (i.e., memory) of a function in another partition. Memory protection can be
achieved by two mechanisms.

. First, the hardware-based method, which consists of using a memory management unit
(MMU), can be used to perform checks whenever memory is being accessed in order to
prevent unauthorized access to certain memory locations. Many times, MMUs are COTS

' The terms partitioning and protection are often used interchangeably in the aviation community. In short,
partitioning is a method of protection.
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hardware devices that are provided with the microprocessor. The RTOS kernel can
control portions of the MMU. Hardware-based spatial partitioning is the most prevalent
form of spatial partitioning. It has a one-time cost of designing, implementing, and
certifying the partitioning mechanism of the kernel and its supporting hardware. The
MMUs available in most commercial processors today are overly complex and raise
certification concerns.

. A second choice would be to use software fault isolation (SFI), which consists of adding
logical checks in the code at each memory access point. By examining the machine code
of the software in a partition, it is possible to determine the destinations of some memory
references and to statically check whether they are accurate. Indirect memory references
cannot be checked statically, so instructions are added to the program to check the
contents of the address register at runtime, immediately prior to its use. The SFI
technique imposes some overhead cost by adding code to the program. It also requires an
additional analysis and certification cost on every project. However, it is possible to
automate much of the check procedure and to qualify a tool or toolset that can be used on
multiple projects.

A related concern in spatial partitioning is to save the status information of a task prior to
switching execution to another task. The RTOS usually saves registers in the stack whenever it
performs a context switch, potentially mixing data of different tasks of perhaps different
assurance levels on the stack. However, it is important to save all registers, without ignoring the
less frequently referenced ones. The content of any register that has not been saved may get
modified by another task, which may constitute a failure condition by corrupting or overwriting
the stack data of another task.

4.1.3.2 Temporal Partitioning.

Temporal partitioning ensures that each function has sufficient processing time to complete its
operation. Temporal partitioning is closely related to schedulability of tasks in a multitasking
real-time system; hence, both temporal partitioning and multitasking scheduling have similar
challenges. The techniques used for scheduling tasks in real-time systems can thus be used to
enforce temporal partitioning. However, in the case of safety-critical systems, there is added
emphasis on using proper schedule enforcement mechanisms in order to prevent a task from
overrunning its schedule, monopolizing the CPU, crashing the system, or comparable problems.

Task scheduling techniques can be subdivided into two classes—static and dynamic.

o With static scheduling, the list of tasks is executed under a fixed cyclic schedule and each
task receives a fixed slice of execution time in a cycle. The sequence of the execution of
these tasks is decided at design time, based on the constraint of satisfying all task
deadlines, and it is not flexible. One advantage of static scheduling is that it is very easy
to prove that task deadlines will be met with the proposed schedule. However, static
scheduling techniques can have potentially long response times to external events, such
as interrupts, which can only be serviced when the corresponding interrupt service
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routine is scheduled to run. In addition, tasks are scheduled for their entire duration
(period), even if they have nothing or very little to process.

. With dynamic scheduling, there is no predefined schedule, but priorities are assigned to
tasks at design time so that a higher priority task may pre-empt a lower priority task that
is executing. At any given time, the highest priority task that is ready to execute is
allowed to execute. Under certain circumstances, priority assignment techniques such as
Rate-Monotonic Scheduling (RMS) and Deadline-Monotonic Scheduling (DMS) [Liu 73,
Tindell 00] can be shown to guarantee that tasks meet their deadlines under all
circumstances. RMS assigns priorities to tasks monotonically, based on the period of the
task—the smaller the period, the higher the priority of the task. RMS assumes that task
deadline equals task period. DMS is a generalization of RMS, with the assumption of
task deadline being less than or equal to its period. Priorities are assigned monotonically,
based on the deadline of the task—the shorter the deadline, the higher the priority.

Hardware interrupt timers, or watchdog timers, are sometimes under the control of the RTOS
kernel and may be used as a mechanism to prevent a task from overrunning its schedule.

4.1.3.3 Interpartition Communication.

If the goal of partitioning were to simply keep one partitioned function isolated from another,
then it would be a relatively straightforward problem to address. However, in reality, partitioned
functions may need to communicate, and they may require access to other shared resources (such
as I/O devices, queues, and buffers) at the same time. Hence, the challenge is to design a
partitioning solution that enables the exchange of information between partitioned functions
(e.g., interpartition communication) and controls access to other shared resources (such as 1/0
devices) while keeping the partitioned functions largely autonomous and unaffected by other
functions. Interpartition communication and sharing of I/O devices influences both the space
and time aspects of partitioning and protection mechanisms.

In the case of interpartition communication, the space can be partitioned by using the kernel as a
trusted intermediary between partitioned functions, where the kernel copies data from one
memory space to another. Another way is to reserve separate memory space for communication
between each pair of partitioned functions. For communication between partitioned functions
and devices, there are several approaches for space partitioning. For processors with memory-
mapped /O, in which a device is only accessed by one partitioned function, the device may be
mapped into the memory space of that particular partition and mechanisms such as MMU and
SFI can be used. If access to a device is shared between partitioned functions, special device
management partitions can be implemented that control several devices and are trusted to keep
them separate.

Interpartition communication and communication with I/O devices can also affect the time-
partitioning model in use. For instance, if a servicing partition fails to respond, another partition
might wait indefinitely for the data or service from the servicing partition. Therefore, the RTOS
should provide alternative mechanisms to prevent this from happening. Communication between
partitioned functions and devices should also be managed by the RTOS (e.g., using device
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management partitions), because a partitioned function may hold a device indefinitely. The use
of other cross-partition interference, such as locks and semaphores, should also be limited.

4.1.3.4 Cache Memory and Partitioning.

An area that deserves particular attention is the use of cache memory in a partitioned computer
platform environment. A cache is typically small-size, high-speed memory, or a hierarchical set
of memory, that resides between the CPU and the main memory. A cache is an intermediate
memory storage location, which has rapid access times. The role of the cache is to match the
fast speed of the processor to the slower speed of the main memory. Cache memory contains a
copy of the most frequently accessed memory locations, which can reduce the overall memory
access time. The use of cache can lead to nondeterministic execution time for functions,
depending on how much of the data needed by the function is available in cache. This behavior
may be further aggravated by the fact that cache is typically a shared resource among partitioned
functions, which may lead to cross-interference among partitioned functions in the time domain,
and violate the partitioning protection. Depending on the state in which the cache memory is left
by a function in a partition, the execution time of the next function scheduled to execute may
vary. Even though the execution time of a function is nondeterministic due to cache, it is still
bounded by the worst case of having all accesses directly to and from main memory. Since
worst-case analysis is crucial in safety-critical, real-time systems, timing analysis and scheduling
to tasks should address protection of the partitioned functions considering the presence and use
of cache memory. Interference of cache in the spatial domain can be controlled using memory
protection mechanisms such as MMU and SFI. However, the use of cache introduces an
additional concern of maintaining cache coherency. Cache coherency keeps consistent multiple
copies of a single variable, so that the cache swapping is valid at all times. Changing a datum
only in cache or main memory, without reflecting it in its copied version, may result in
inconsistent or erroneous behavior. Techniques for preserving cache coherency should be
verified, and the overhead of additional timing or interactions with the CPU should be accurately
analyzed and addressed in worst-case scenarios.

4.1.3.5 Additional Partitioning Considerations.

Static scheduling of tasks may not be appropriate if partitioned functions frequently need to wait
for data from other partitioned functions or devices, since the function that is waiting for service
may waste CPU time. Also, with static scheduling, if a critical interrupt is sent to a partitioned
function that is not actively running, servicing of that interrupt will have to wait until that
partition function is scheduled, thus response time may suffer. In such cases, dynamic
scheduling may be more flexible, although more difficult to verify. However, one should
address how other partitioned functions may interfere with timing of a partition, and also address
the worst-case overhead of context switching by the kernel to ensure performance and timing
requirements can be met. For instance, a faulty partitioned function may repeatedly issue a
request for CPU time, which may produce significant overhead and interfere with the execution
time of a given function. In this case, it is important to establish hard maximum quotas of time
allocation for a partitioned function, and quota for interrupts and invocation of kernel functions
can be deducted from the quota of the issuing partitioned function.
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Regardless of the mechanism chosen for partitioning, the operating system is an essential
component in the implementation of the mechanism. In a traditional operating system, all
operating system services may be accessible to all applications, which make the safety analysis
of the operating system more difficult. Rushby deals with the complexities of partitioning in
space and time and other protection mechanisms by proposing alternative operating system
architecture [Rushby 99]. The proposed alternative suggests an arrangement that allocates
operating system services separately within each partition. Critical applications may use a
minimal set of services, whose robustness may be easier to verify, while less critical applications
may employ something closer to full-fledged commercial operating system services. In other
words, operating system services may be allocated within the confines of certain partitions,
leaving mainly the kernel as the only common resource between partitions.

4.2 RTOS SPECIFIC FAILURES WITH POTENTIAL SAFETY IMPACT.

This section analyzes aspects of an RTOS that may be the most susceptible to failures or that
may cause concerns for safety. When developing an RTOS for the aviation domain, RTOS
developers or users should document any failure or safety concerns, the severity, and their
approach for addressing the problem. For example, one safety requirement is to prevent run-
time errors that could compromise the continued safe operation of the system. Some of the
potential failure conditions associated with this requirement are erroneous data, improper
implementation of the RTOS requirements specification, and incorrect calculations or operations
performed by the RTOS.

Each of these failure conditions can be further decomposed into areas of concern with respect to
software vulnerability based on the RTOS function used. A software vulnerability analysis
(SVA) can identify areas of potential anomalies, which can be provided as input not only to a
robustness or stress-test plan, but also to a system functional hazard analysis or SSA. How an
SVA is conducted is up to the RTOS developer or applicant, but table 1 identifies the areas of
concern with regards to RTOSs and can be used as a basis for establishment of an SVA.

It is not possible to perform a vulnerability analysis without referring to a specific RTOS
implementation. Two RTOSs that offer the same feature may implement the feature in vastly
different manners, and the vulnerability analysis results will depend on the implementation of the
feature.

A review of a recent paper [Kleindermacher 02], along with a study of a representative example
of RTOSs, reveals the following areas of concern, as listed in table 1. The table does not
represent an exhaustive list of RTOS concerns with respect to an SVA, and for any given RTOS,
the areas of concern will differ.
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TABLE 1. RTOS AREAS OF CONCERN BY FUNCTIONAL CLASS

Number

Functional Class

Concern

Description

D1

Data consistency

Data corruption or loss within
the RTOS by the RTOS itself

Data, which is visible to the RTOS, is corrupted
or “lost” by the RTOS.

D2

Data consistency

Input data corruption or loss
by the RTOS

The RTOS incorrectly handles input data or loses
it by storing it incorrectly, or incorrect data
values are assigned to data variables or returned
as results.

D3

Data consistency

Erroneous data or results
caused by incorrect
calculations or operations by
the RTOS

Incorrect data values assigned to data variables or
returned as results.

D4

Data consistency

Abnormal parameters

Calculations performed by the math library
functions may return unpredictable small
numbers if the values passed as parameters are
abnormal.

Cl

Inclusion of
deactivated code
or dead code

Inclusion of deactivated code

Unused functions may be loaded with the
application even though they are never called.
This activity can also be dependent on a linker or
loader that is used to link the executable code
into the executable image and/or load the image
into the target computer memory. Unintended
activation of this code may have unknown
effects, typically leading to system failure.

C2

Inclusion of
deactivated code
or dead code

Generation of dead code

Additional software is generated by the compiler
or linker, which is not verified during
requirements-based testing or coverage analyses.
This is especially a concern for Level A
applications where the applicant needs to
“account” for executable object code that is not
traceable to source code; it can result in dead
code, and compiler generated code can result in
code that is not exercised during requirements-
based test, nor is it included in structural
coverage analysis which is typically performed at
the source code level. Compiler- or linker-
generated object code is not exempt from
satisfying these objectives for compliance to
requirements and robustness for Levels A-D and
for low-level requirements for Levels A-C.

Tl

Tasking

Task terminates or is deleted

The task runs to completion or is deleted by

another task. If the programming model requires
a task to run forever, in a never-ending loop, then
the API call to delete the task should be removed.

T2

Tasking

Kernel’s storage area overflow

A central storage area in the kernel, which holds
task control blocks and other kernel objects, may
run out of space due to a malicious task that
constantly allocates new kernel objects that may,
in turn, affect execution of other tasks. A quota
system should be implemented to protect other
tasks in the system.



http://www.abbottaerospace.com/technical-library

TABLE 1. RTOS AREAS OF CONCERN BY FUNCTIONAL CLASS (Continued)

Number

Functional Class

Concern

Description

T3

Tasking

Task stack size is exceeded

The task stack is overwritten leading to
unpredictable system behavior and stack data
corruption.

S1

Scheduling

Corrupted task control blocks
(TCB)

TCB’s may be corrupted, which compromises the
scheduling operations of an RTOS. Scheduling
information data should be protected from access
from user software applications.

S2

Scheduling

Excessive task blocking
through priority inversion

A user task of high priority may be excessively
blocked by a low-priority task because they share
a common resource and an intermediate task pre-
empts the low-priority task.

S3

Scheduling

Deadlock

If two tasks both require the same two resources
but they are scheduled in an incorrect sequence,
then they may cause a deadlock by blocking each
other.

S4

Scheduling

Tasks spawns additional tasks
that starve CPU resources

New tasks spawned by an existing task may
affect the schedulability of all tasks in the system.
User applications should not be allowed to spawn
new tasks at their own will.

S5

Scheduling

Corruption in task priority
assignment

Increasing or decreasing the priorities of tasks in
the system may lead to the task set not being
schedulable or the system not responding in a
timely manner. The ability to change the priority
of a task should be limited to special cases, such
as to prevent the occurrence of priority inversion.

S6

Scheduling

Service calls with unbounded
execution times

Schedulability of tasks is impacted if there are
kernel service calls that have unbounded
execution time. The execution time of a task that
makes such service calls may itself be affected, as
well as accounting for the kernel’s overhead
while switching between tasks. Kernel service
calls should have bounded execution time
regardless of system load conditions.

M1

Memory and /O
device access

Fragmentation of heap
memory space

Allocation, de-allocation, and the release of
memory from the heap may lead to fragments of
free memory, which complicates future
allocations and may compromise timing analysis,
making it unpredictable. Dynamic memory
allocation, de-allocation, and “garbage
collection” should be very limited and controlled.

M2

Memory and I/O
device access

An incorrect pointer
referencing/de-referencing

An incorrect reference to an object, such as a
semaphore, may be passed to the kernel via a
service call, which can have disastrous results.
The kernel should check validity of pointer
references.

M3

Memory and I/0
device access

Data overwrite

Data is written beyond its allocated boundaries
and overwrites and corrupts adjacent data of
other functions in memory.

10
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TABLE 1. RTOS AREAS OF CONCERN BY FUNCTIONAL CLASS (Continued)

Number

Functional Class

Concern

Description

M4

Memory and I/O
device access

Compromised cache
coherency

Increased access time occurs due to cache misses.
This occurs when needed data is not available in
cache and data must be accessed from other
typically slower memory. Data loss due to
missed memory updates.

M5

Memory and 1/O
device access

Memory may be locked or
unavailable

The MMU page tables may be incorrectly
configured or corrupted such that access to a
region of memory is prevented.

M6

Memory and I/O
device access

Unauthorized access to critical
system devices

Unauthorized access to 1/0 devices may lead to
improper functioning of the system. The kernel
must implement mandatory access control to all
critical devices.

M7

Memory and I/O
device access

Resources not monitored

Proper allocations and usage of resources are to
be monitored, otherwise resource could be
deadlocked

Ql

Queuing

Task queue overflow

May experience loss of information or change in
scheduler performance. May result in missed
schedule deadlines and incorrect task sequencing.

Q2

Queuing

Message queue overflow

Messages may be missed, lost, or delayed if the
queue is not properly sized or messages are not
consumed promptly unless this is protected.

Q3

Queuing

Kernel work queue overflow

The work queue is used to queue kernel work that
must be deferred because the kernel is already
engaged by another request and the queue is full.
Kernel work deferred to the work queue must
originate from an interrupt service routine. The
work queue may overflow if the interrupt rate is
too high for the kernel to process tasks within the
allotted time frame.

Il

Interrupts and
Exceptions

Interrupts during atomic
operations, such as task
switching

Certain operations that work on global data must
complete before subsequent operations can be
invoked by another task of execution. An
interrupt arriving during this period may cause
operations that modify or use a partially modified
structure, or the interrupt may be lost if interrupts
are masked during critical code execution.

12

Interrupts and
Exceptions

No interrupt handler

No interrupt handler has been defined for an
interrupt. A default interrupt handler should be
provided by the RTOS if the user has specified
none.

I3

Interrupts and
Exceptions

No exception handler

No exception handler has been defined for an
exception raised by a task. A default exception
handler should be provided to suspend the task
and save the state of the task at the point of
exception.

14

Interrupts and
Exceptions

Signal is raised without a
corresponding handler

A signal may be sent by a task to another task or
by the hardware under defined exception
conditions.

I5

Interrupts and
Exceptions

Improper protection of
supervisor task

Supervisor task that is invoked, due to an
exception, runs in an unprotected address space
that may be corrupted.

11
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4.3 ROBUSTNESS BENCHMARKING TECHNIQUES.

Various methods have been developed over the years to assess the robustness of COTS operating
systems. The following description summarizes some of the methods.

o An early method, called CRASHME [Carrette], operates by writing random data values
to memory. Several tasks are then spawned to execute those random bytes as concurrent
programs. The method relies on pure chance of the execution of the tasks with random
data causing the system to crash.

o Similarly, the Fuzz approach [Miller 90, Miller 98] also relies on random data injection,
but it tests specific operating system elements and interfaces (as opposed to the
completely random approach of CRASHME). Fuzz compares the quality of open-source
operating systems versus commercial operating systems. The results concluded that
open-source operating systems were more robust than commercial ones, based on
robustness measures.

. The Ballista work [Koopman 00] is similar to Fuzz, except that operating system function
calls are used instead of application level software, as well as combinations of valid and
invalid data. The Ballista robustness testing system tests the exception handling
capabilities of application programming interfaces (APIs) of portable operating systems
interface (POSIX) -compliant operating systems. The basic idea in Ballista is to focus on
the data types of the system calls and not the actual calls. This makes the definition of
the test cases to be carried out very simply. For each data type some test values are
defined, representing common values as well as boundary values. For every system call,
all the combinations of the test values are used to produce the test cases. Each test case is
executed one at a time and after the execution the result is interpreted according to the
CRASH (catastrophic, restart, abort, silent, hindering) severity scale. Tests using Ballista
were conducted on 15 POSIX operating system versions and identified many instances of
exceptional conditions being handled in a nonrobust manner; some leading to complete
system crashes.

. Another tool, called MAFALDA (Microkernel Assessment by Fault-injection AnaLysis
and Design Aid) [Fabre 00] gathers information on the failure modes of microkernels and
helps to integrate them into safety-critical systems using wrappers. MAFALDA
classifies the failure modes of the microkernel by using both classical software fault
injection and parameter fault injection, like Ballista.

To date, no evidence has been shown that these have been used for certification activities in civil
aviation applications. However, some of these approaches could possibly be used to help
augment robustness testing.

5. STUDY OF RTOS SAFETY ASSURANCE TECHNIQUES.

DO-178B section 6.4.2.2 requires robustness testing for Levels A, B, C, and D software. As
such, to meet the robustness requirement for a highly integrated and complex RTOS, an SVA

12
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could be conducted and corresponding robustness and stress testing could be developed to meet
the robustness guidance in DO-178B. This is particularly significant for COTS RTOSs since
aspects of the design and verification data for a COTS RTOS may not be available.

An RTOS SVA is not a requirement per DO-178B, and one could offer that any application
using a COTS RTOS that meets the objectives of DO-178B clearly is in compliance. The basis
for recommending a COTS RTOS vulnerability analysis is that the highly integrated nature of
today’s COTS RTOSs coupled with complex microprocessor architectures of modern processing
systems may well indeed influence the overall system safety, particularly in the time, space, and
resource domains.

The following sections (1) describe the techniques that may be used for improving system safety
of COTS RTOS, (2) describe the test strategies that may be considered to verify the effectiveness
of these safety assurance techniques, and (3) investigate the fault-containment techniques to
protect against the effects of unintentional functions and failures in an RTOS.

5.1 TECHNIQUES FOR IMPROVING SYSTEM SAFETY AND PROTECTION FROM
FAILURES IN AN RTOS.

Several techniques exist to help system safety with respect to COTS RTOS-based products.
Some techniques are used by the end user of the RTOS (i.e., the system integrator), while other
techniques would be implemented as part of the COTS RTOS development. The techniques can
be grouped into the following general categories, based on the how they seek to improve system
safety:

. Prevent the presence of defects in the RTOS (i.e., fault avoidance), which can be
accomplished by proper design assurance.

o Analyze and test the COTS RTOS and remove any defects if present.

. Protect against remaining defects in the COTS using wrappers or other similar
techniques.

A combination of techniques is often employed for increased safety assurance of the end
product. The first group of techniques (fault avoidance) usually depends on the efforts of the
COTS developer. Stringent development practices and adherence to software development
guidelines and standards (drafted by various safety-related industries) can help to prevent defects
and obtain acceptance of the COTS product in a particular target domain. Extensive studies in
the field of software engineering have focused on software development processes, and in the
case of safety-critical systems, the most important consideration is to incorporate safety as an
integral part of the design and development process; i.e., it should not be an afterthought. In the
end, in the case of the safety-critical applications, the applicant must be able to present sufficient
evidence (or provide supporting material to help the system and software developer and COTS
user present the evidence) of compliance to a particular standard for the end-user application
domain.

13
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5.2 TEST METHODS.

Some design and verification techniques used on the COTS RTOS are key to its relative system
safety affects. Access to COTS development data is essential to properly assess the development
and verification activities especially for higher software levels; unfortunately, many COTS
products lack this data. However, a survey conducted for this research project revealed that
aviation systems manufacturers striving to develop the most critical systems (i.e., Levels A and
B) are seeking vendors who have considered DO-178B guidance in their COTS RTOS
development. As such, the DO-178B software life-cycle data can be made available to the user
as part of the service agreement. Independent and supplemental testing is still required and a
variety of techniques can be used.

Methods used to test software in general also apply for testing of COTS RTOS. The purpose of
testing is to detect faults in the component under test, i.e., to identify discrepancies between the
specifications of the RTOS and its actual behavior. The vendor must perform the necessary
component testing of the RTOS to verify its compliance to all the requirements specifications,
which includes those related to safety. The vendor should also test the RTOS with representative
software applications executing on the RTOS, and to demonstrate RTOS robustness, should
execute rogue application testing where the rogue application(s) attempts to violate the
partitioning and other protection mechanisms offered by the RTOS. The certification applicant
using the COTS RTOS must ensure that the RTOS is properly integrated into the final product,
such that appropriate software integration testing, hardware-software integration testing, and
system-level testing are performed.

Testing of an RTOS consists of subjecting the RTOS to a variety of test cases. Clearly no set of
test procedures can achieve 100% test coverage in a practical amount of time. Combinatorial
explosion is a term often used to refer to the unbounded increase in the number of test cases that
results from choosing different combinations of input values for each test case. Even for
moderately complex software, the number of test cases required to adequately test the RTOS
may be impractical. Test cases are thus chosen in a manner such that test cases exercise different
aspects of the RTOS to maximize the test coverage. Defects found during testing can be fixed
by the user, if source code is available, or with support from the vendor. Alternatively, test
results can provide information that can be used to appropriately design wrappers or other
schemes for shielding the system and software applications from the RTOS defects. Testing of
an RTOS can be subdivided into the following subcategories, based on how test cases are
selected:

o Stand-alone testing, including:

- Requirements based (black box)

- Structural based (white box)

- Random testing (black box)

- Error seeding or fault injection based (white box)
- Equivalence class and boundary testing
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o Testing of an RTOS in a target system with actual or representative software applications
integrated, comprised of:

- Requirements-based testing (functions as intended)

- Robustness or stress testing (has no unintended functions, side effects, or
anomalous behavior)

Some of the testing methods require knowledge of the source code (white-box testing), while
others make no assumption about the inner workings of the unit under test (black-box testing),
which is an important consideration in the case of COTS. Each of these techniques is discussed
in detail below.

5.2.1 Stand-Alone Testing of an RTOS.

Stand-alone testing of the RTOS is equivalent to software component testing; i.e., the RTOS is
tested in isolation from other components of the target system. Conceptually, both requirements-
and structural-based approaches subdivide the input domain into a number of logical subsets,
according to some criteria, and select a number of elements from each subdomain as test cases.
The criterion employed for subdividing the input domain distinguishes the two approaches,
which are further described below.

5.2.1.1 Requirements-Based Testing.

In requirements-based approaches, input data are selected from partitioned sets that effectively
test the functionality specified in the requirements specification of the RTOS. Hence,
partitioning of tests is based on selecting inputs that invoke a particular aspect of the RTOS’s
functionality. Testing involves the observation of the output states, given the inputs, and thus, no
analysis of the internal structure of the RTOS is attempted. Therefore, requirements-based test
approaches are a type of black-box testing. Requirements-based approaches can use the
equivalence class techniques discussed below.

An example of requirements-based testing of RTOSs is the Ballista project [Koopman 00],
which tests only the exception-handling capabilities in a POSIX-compliant operating system. In
the Ballista project, subdividing the input domain into subdomains, with each subdomain
containing one API function call, derives test cases. A test case consists of the name of the
function call and a single-test tuple that are passed as parameters. The general Ballista approach
is to not only test the requirements but also test the robustness of a single call for a single-test
tuple, and then iterate this process for multiple test cases such that each has different
combinations of valid and invalid test values. The Ballista testing methodology involves
automatically generating sets of exceptional parameter values to be used in calling software
applications. Tests performed on over 15 operating systems concluded that none of the RTOSs
tested displayed a high level of robustness.
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5.2.1.2 Structure-Based Testing.

Structure-based testing approaches are a form of white-box testing. The basis for the subdivision
of the domain is not the functional specification of the system or what the system should do, but
what the underlying code and structure of the RTOS is itself. Structure-based approaches devise
subdomain partitions that attempt to provide coverage by exercising necessary elements of the
code that constitute the RTOS. Under the guidance of DO-178B, structural verification is
conducted on software Levels A, B, and C. The approach encouraged by DO-178B is to conduct
a structural coverage analysis based on the systems functional requirements already tested.
These elements for analysis relate to structural elements and architecture of the program such as
statements, edges, paths, or the data flow characteristics of the program. A basic requirement is
for each program element to be executed at least once, which results in complete structural
coverage and associated analysis per DO-178B. It is important to note that structure-based
testing alone does very little towards meeting DO-178B and that it is really the analysis that is
the mechanism for discovering structural deficiencies. The discoveries during this analysis and
testing also include revealing dead code and improper use of deactivated code. The structural
coverage analysis can also point out shortcomings in the requirements-based test cases or
procedures. With respect to the guidance of DO-178B, what this implies for software Levels A,
B, or C is that the COTS RTOS must either be accompanied by a structural coverage analysis or
the applicants must conduct the analysis by themselves. In the latter case, availability of the
COTS RTOS source code is required, which is not always possible with COTS RTOS.

Particularly acute problems that can occur with structure-based approaches are that there is no
guarantee of coverage unless the structural coverage analysis is conducted. It also suffers from
combinatorial test case explosion if the code lacks effective design structure. Further discussion
regarding structural coverage analysis is available in [RTCA SC190] Frequently Asked
Questions 42, 43, 44, and Discussion Paper 3 of DO-248.

5.2.1.3 Random and Statistical-Based Testing.

Statistical-based techniques rely on the assumption of random and statistical nature of defects to
exercise a program with the aim of causing it to fail. Two approaches that fall under this
category are random testing and error seeding (a.k.a., fault injection-based testing). (Error
seeding is discussed in more detail in section 5.2.1.4.) This type of testing can be correlated to
robustness testing with respect to DO-178B; however, for higher level of criticalities, it lacks a
completeness and coverage argument.

Random testing is a black-box testing approach in which test cases are derived at random. This
avoids possible bias in only testing known features of the software. Random testing is simple
and quite easy to automate. One problem with random testing is that it is possible that, at the
end, only a section of the software may have been tested. In addition, random testing is not
repeatable, so it is hard to take credit for certification purposes. Random testing is, thus, best
used to complement the other testing techniques described in this report. The CRASHME
approach is a representative example of random testing of robustness of an RTOS.
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5.2.1.4 Error Seeding or Fault Injection-Based Testing.

Error seeding is a unique technique for testing in which some carefully devised known defects
are injected (seeded) into the code that is to be tested. Test cases are then applied to the program
containing the known defects and possibly a number of unknown defects. Assuming that the
seeded defects are typical defects, it can be argued that the ratio of the known defects found
during testing and the total of the known defects is the same as the ratio of the unknown defects
found and the total of the unknown defects. This allows for statistically estimation of the
number of remaining defects in a program. This is a way of building confidence that the test
cases used are somehow valid in uncovering the various types of defects. Unfortunately, there is
no guarantee that all defects will be revealed. The effectiveness of this technique is heavily
dependent on the knowledge of the types of defects in the system and of the test cases that can
uncover them. In addition, this technique is a type of white-box testing that requires availability
of source code, which may not be available with COTS components.

5.2.1.5 Equivalence Class and Boundary Testing.

With equivalence class techniques, each input condition is partitioned into sets of valid and
invalid classes called equivalence classes. These are, in turn, used to generate test cases by
selecting representative values of valid and invalid elements from each class. In this approach,
one can reasonably assume (but not with 100% certainty) that a test of a representative value of
each class is equivalent to a test of any other value. Testing of boundary values can also be
conducted at this level.

The requirements-based approach of dividing the test domain into equivalence classes is, in
general, ineffective in testing combinations of input circumstances. However, most hard to
detect faults are due to a combination of, or a sequence of, inputs to the system. Another major
issue is that of the rapid proliferation of test cases needed for adequate coverage (combinatorial
explosion). Another difficulty is in determining the granularity level of the equivalence classes.
In most typical situations, it is hard to predict the correct level of granularity of the equivalence
classes prior to testing. Requirements-based testing is also unable to find nonfunctional failures
(e.g., task schedule or task queue overruns, failure from presence of dead code, etc.).

5.2.2 Testing of an RTOS in a Target System.

The RTOS must be tested in the target environment, integrated with the actual or representative
software applications that will run in the target system. This testing is referred to as
requirements-based integration testing and requirements-based hardware software integration
testing in which applications are gradually integrated and tested in the RTOS platform. It also
provides for the inclusion of all the applications in the target system (system testing) and
culminates with more rigorous, robustness testing where rogue applications may attempt to
violate the RTOS protection mechanisms and invalid data and worst-case interrupts and events
are introduced to determine how robust the system is. The process of incrementally adding
applications (modules and partitioned functions) makes it easier to detect faults during
integration testing. System and robustness testing are still needed after integration testing
because, while the interaction between all different modules may have been tested during
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integration testing, task loading and contention of RTOS resources may not have been
effectively tested.

In general, stand-alone testing of the RTOS is likely to cover the overall functioning of the
operating system in more breadth and probably more rigorously check each functional feature.
On the other hand, integration and system testing using other applications, tests the RTOS in the
confines of the target environment. Integration testing on a target system may only test a
narrower portion of the system in more depth, but it is likely to exercise a greater number of test
cases in the subset of the code that is going to be more heavily used. While unit testing focuses
mainly on the internal properties of the component being tested, integration and system testing
can uncover inconsistencies in the interaction among the units. Performing integration and
system testing only, without stand-alone testing of the RTOS, may leave untested unused code in
the RTOS, which may lead to potential safety hazards during operation.

System-level testing is subdivided into different classes of testing, depending on which aspect of
the system needs to be verified, such as functional (requirements-based) testing, robustness
testing, and stress testing.

. Functional testing uncovers the differences between functional requirements and
functional behavior of the system and demonstrates that the system satisfies “functional”
requirements.

. Robustness testing extends the boundaries set by functional tests, by subjecting the

system to unconventional conditions, such as various fault scenarios and invalid inputs,
in order to try to crash the system. The motivation behind applying robustness testing
comes from an observation that most system failures occur during unusual scenarios that
are easily overlooked, or hard to conceive, during unit testing.

o Stress testing subjects the system and software to the extremes of real-time workloads,
large data volumes, repetitive operations, and operations for extended periods of time.
The purpose of stress testing, also called load testing, is to measure characteristics such
as response time and memory utilization under data and transaction loads, which is
particularly crucial in the case of RTOS. For instance, the task switching time in an
RTOS may be dependent of the number of tasks in the ready queue. Thus, the worst-case
condition needs to be evaluated. Benchmarking techniques can be very helpful when
trying to measure key performance criteria of an RTOS. Important features to be
measured are task switching time, pre-emption time, interrupt latency, semaphore
shuffling time, deadlock breaking time, memory allocation/deallocation time, and
message passing time. Adequate instrumentation to perform the measurements is an
issue in this type of testing.

5.3 COTS FAULT-CONTAINMENT TECHNIQUES.

A variety of fault-containment techniques can be used; this report focuses only on those
techniques for COTS RTOS software. Fault-containment techniques complement the efforts of
fault prevention and fault-testing mechanisms that were described above. Fault-containment
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techniques are needed when faults cannot be removed or, as a precautionary measure, when one
is not sure whether the component can be considered fault-free. Fault-containment strategies are
particularly useful when dealing with COTS software, since source code may not be available,
and the only alternative may be to isolate, or contain, specific faulty behaviors. The approach,
therefore, is to use untrustworthy COTS software in a way to provide assurance by other means
that the COTS software will not impact the safety, functionality, and performance of the entire
system.

The partitioning methods discussed in section 4.1.3 can essentially be viewed as fault-
containment techniques for application-level faults (not the RTOS level). Partitioning is a
system approach for fault containment of application errors, which requires RTOS-level support.
Similarly, other software and hardware features that can contribute to the process of fault
containment are value monitors and timing monitors [Jaffe 00]. Value monitors correspond to
additional logic blocks whose purpose is to check the validity of results generated from the
subsystem being monitored. Value monitors can be viewed as additional safety checks that can
be quickly identified when results do not make sense (i.e., negative altitude information being
generated). The key idea is that value monitors should use a relatively simple logic (that is
easier to validate) in order to test the validity of results generated from a more complex
subsystem. Timing monitors (such as watchdog timers and heartbeat and activity monitors) are
devices used to monitor things such as task schedule overruns and nonresponsiveness of tasks.
Timing monitors can generate interrupts to signal the violation of a timing schedule.

Besides protecting the system against application-level faults, it is necessary to protect against
faults in the COTS RTOS itself. Fault containment in COTS RTOS is typically achieved by the
use of wrappers. A wrapper (a.k.a., invocation filter or mini-API) is middleware used between
the software applications and the RTOS API. A wrapper can prevent the invocation of unwanted
features in the RTOS. Wrappers can be designed at different levels of complexity. Some
wrappers may bypass most API calls and concentrate on intercepting specific API calls that are
deemed as being problematical. Wrappers can also intercept and perform logical checks into
APIs to ensure that the user function is properly calling the API. This would be useful, for
example, in RTOSs that lack proper exception handling, such as those tested using Ballista. As
an alternate use, wrappers can complement the original API by implementing additional features
desired by the application but are not provided in the original COTS software. Many COTS
RTOS vendors and applicants suggested that wrappers are the fault-containment technique of
choice and, as such, wrappers are discussed below in more detail.

5.3.1 The Role of Wrappers in COTS RTOS-Based, Safety-Critical Systems.

A software wrapper is a software layer used to protect, isolate, or interface to another
component. Wrappers are viable candidates to protect COTS components within a system,
without modification to the COTS component. Wrappers can be used to enhance a wrapped
COTS component functionality, thus allowing it to meet all the targeted system requirements. In
addition, wrappers can be used to mask COTS functionality that is not used in the new system
implementation.
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5.3.2 Wrappers—Interface Abnormalities.

Wrappers can be used to address three major issues with respect to employing COTS
components in general:

o Consistency of operation of a COTS component is insufficient or not established by
adequate evidence.

o Specification of the COTS component is incorrect or incomplete.
. COTS components are to be employed in a different context from that of the original
design.

Wrappers can take action in response to detection of an abnormal circumstance at the RTOS
interface (i.e., either input or output). Wrappers may be used to mitigate certain input conditions
for which the COTS RTOS is known (or suspected) to produce anomalous behavior in the
system. Input conditions that should be addressed include the following [Popov 01]:

o Inputs outside the domain intended, by system designers, for the COTS.

o Inputs outside the domain where the system designers consider the COTS trustworthy.

o Inputs in a domain for which the COTS is known to produce anomalous behavior.

. Inputs that are illegal per the COTS specification.

o Inputs determined to be erroneously generated by the system.

. Inputs generated by the system that are illegal outputs of the system, per the system
specification.

These input conditions are determined through knowledge of the system design, the COTS item,
and the operating modes of the system. Wrappers can also be used to mitigate certain COTS
component output conditions, which are known to produce anomalous behavior. Output
conditions that should be addressed include the following [Popov 01]:

. Outputs that are illegal for the COTS component, relative to its specification.

o Outputs that are determined to be erroneous.

. Outputs that are in a domain considered risky for the system.

o Outputs indicative of a COTS component, which used internal functions that are not
trusted.
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5.3.3 Wrappers—Responses to Interface Abnormalities.

The wrapper response is specified as part of the system design. Actions may range from simply
reporting the abnormal circumstance to providing alternate functionality. Popov suggests
wrapper actions may include the following:

. Report exceptions, erroneous outputs, erroneous inputs, anomalous behavior, errors
detected.

o Substitute safe or default parameters or outputs or move the system to a safe state.

. Redirect action to alternate or default function such as a backup or simplified version.

o Retry previous actions that produced the current abnormality.

It has been suggested that the third most frequent cause of COTS design errors are discovered in
the error-handling portions of the code [Ghosh 99]. For COTS, wrappers provide a good
mechanism to address these “bugs,” as they become known, through input and output screening.

5.3.4 Wrappers in a Kernel.

A loadable kernel module is sometimes the basis of wrapper implementations for COTS RTOSs.
This approach has been the focus of recent research and development in the security domain, for
mission critical systems [Fraser 99]. The [Fraser 99] research is summarized as follows:

I. Wrappers are run in kernel mode, executing in kernel space, with kernel protections.
2. The wrapper intercepts some or all of the system calls made by the wrapped application.
3. The wrapped application’s interaction with the operating system and other processes is

completely controlled by the wrapper, without context-switch overhead.

This approach has been demonstrated for FreeBSD and Solaris operating systems and may be
applicable to any operating system that supports dynamically loadable kernel modules.

The development of wrappers for COTS operating systems is related to the development of
operating system extensions, since both rely on kernel interfaces. Prototypes of SLIC
[Ghormley 98], a system for efficiently inserting trusted extension code in existing operating
system kernels, have been demonstrated for Solaris and Linux that interpose extensions on the
kernel interfaces by modifying jump tables or by binary-patching kernel routines. Note that
binary patching is a practice not condoned in DO-178B. The approach requires a well-defined
interface to capture events and is limited in that new functionality can only be implemented in
terms of existing functionality provided by the COTS operating system. This also requires a
very detailed visibility into the internal workings of the RTOS; therefore, it is unlikely to be of
much support for COTS RTOSs where this visibility is very limited.
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Arguments associated with system service calls may not explicitly enumerate all the data
necessary to implement effective wrappers. Access to additional data structures may be
required, including global structures, kernel structures, and user mode structures. Utility
functions to provide this access pose an additional complication in wrapper development and
may require access to RTOS source code.

5.3.5 COTS RTOS Hardening Via Wrappers.

The hardening of COTS RTOSs, through the use of wrappers, is the subject of recent research
efforts. COTS RTOSs are being incorporated in systems that must be highly reliable, secure,
and safe. Wrappers can be used to modify the influence of RTOS behavior on the system but
may require internal visibility of the RTOS. If an RTOS fault response causes an undesirable
system response, then a wrapper may possibly be used to alter its response to one that the system
is able to handle; or alternatively, initiate a fault mitigation strategy within the wrapper. In
general, wrappers used in COTS software are limited in use, with respect to COTS RTOS. It is
difficult to conceive how a wrapper could completely isolate the RTOS, considering that the
services the RTOS provides may prohibit the effective integration of a wrapper, particularly on
the hardware services side of the RTOS. Because of the pervasive role of the RTOS in
controlling the entire system operation and the software applications that are executing on the
RTOS, there not only needs to be wrappers between the RTOS and the APIs but also between
the RTOS and the functions executing on it. Wrappers may be useful for checking input and
output parameter boundary values (input/output screening and data validity checking), but they
cannot, for instance, protect against inconsistencies in global data variables. It is not uncommon
for the COTS RTOS vendor to include some built-in wrapper functionality in the COTS
package, thus an additional wrapper layer by the integrator may be redundant at times. COTS
RTOSs to be used in a safety-related application may reveal that a wrapper in itself is not
sufficient. In this case, access to source code seems essential. A survey of the aviation safety
community shows that designers of systems targeted towards safety-related applications have
only used COTS RTOSs that have the source code available. Many times these RTOSs are
reverse engineered in an attempt to achieve the acceptance of the aviation safety community
guidance.

5.3.6 Wrappers and Software Assurance Levels.

For safety-critical systems, the wrapper software development is treated as any other critical
component and is to be developed under the certification objectives and guidance of DO-178B.
This means the certification of the wrapper must be obtained at the level of criticality appropriate
for its function. As an interface between the COTS application program and the system RTOS,
the wrapper may require certification at the level of the RTOS, which will be comparable to the
highest criticality in the system; however, certain implementations may allow the wrapper
software to be treated as application code, which is properly isolated in space and time by the
RTOS architecture. In this circumstance, the criticality level of the wrapper can be the same as
that of the application, which may be lower than the highest criticality in the system. In this
case, certification required for the wrapper would then be according to the lower level of
criticality.
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The complexity of wrapper software can range from simple parameter passing to very complex
kernel operations. The certification effort will vary according to the complexity and criticality
level of the wrapper. Careful consideration of the wrapper development and certification effort
is required to determine the cost-effectiveness of the wrapper implementation, with due
consideration of the benefits of reusing the COTS and existing COTS certification evidence.
The safety-critical system designer must do a careful benefit analysis of using COTS and the
development cost of the wrappers required to meet system requirements. The CPU overhead of
implementing wrappers has been evaluated in a number of research prototype projects. The
overhead penalty of a given wrapper is dependent on the complexity and nature of the interface
with the kernel. Typical overheads reported in the literature range from 2% to 15%.

As with all software, wrapper software is subject to design errors. The probability that design
errors exist must be minimized through development processes such as described in DO-178B.
Wrapper software must undergo verification testing appropriate to the criticality level.
Functional testing with the COTS RTOS should include all the black box testing used to verify
COTS functionality and to identify the COTS fault conditions addressed by the wrapper. Proper
operation must be shown for all cases. Wrappers should be developed to the highest level of the
software they are protecting.

6. DEVELOPING AN RTOS SVA AND STRESS TEST PLAN (A CASE STUDY).

This section describes how a software vulnerability analysis and potential stress test plan for an
RTOS in a safety-critical environment could be developed. A specific RTOS that is being used
by multiple aviation manufacturers was used as a baseline to represent the typical features of an
RTOS. This particular RTOS is a real-time, pre-emptive, multitasking kernel designed for real-
time, critical-embedded applications. The test plan is further augmented by considering testing
additional features commonly found in other RTOSs. The stress test plan is developed
considering the safety and protection mechanisms employed by RTOSs. The test plan describes
a set of tests that can be used to verify some of the safety-enabling features of the RTOSs.
Obviously, as mentioned in section 4.2, certain tests are dependent on how a particular feature is
implemented in an RTOS. The test plan presented here is rather generic in nature and can be
used as a baseline for evaluating multiple RTOSs.

The start of any case study requires understanding the features of the RTOS under study. In the
specific RTOS considered, task-handling methods, memory management methods, and
interrupting handling methods are basic system facilities. Partitioning and/or other protection
mechanisms are also considered. The following facilities and features are under review.

o Task-Handling Method

- Task model

- Scheduling policies

- Priority levels

- Maximum number of tasks

- Critical section involved in task switch

- Minimum random access memory (RAM) required per task
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o Memory Management Method

- Memory management model

- Maximum addressable memory space

- Memory protection method (including cache)
- MMU support

o Interrupting Handling Method

- Interrupting handling model

- Is interrupting nesting enabled? If it is, how many nest layers are enabled?
- Minimum RAM required by interrupt

- Context switch section and timing

- Communication method between interrupt and tasks

Once the features are understood, the SVA analysis can commence. The result of which could
possibly provide a basis for the robustness and stress test plan, input into the SSA, and possibly
affect the overall system design, such as providing system design and architecture considerations
via wrappers.

Conducting the SVA 1is an activity that requires a detailed understanding of the RTOS features
and potential functional areas of concern as noted in section 4.2. The SVA itself is not presented
here, however, having a base of expertise in the RTOS via the vendor or other users of the RTOS
makes for a very effective approach. The detailed stress test plan offered is summarized in the
table in appendix A.

7. CONCLUSIONS AND RECOMMENDATIONS.

This report supports the idea that a separate RTOS SVA and the resultant development of
appropriate robustness and stress tests may be a vehicle to be used to effectively assess certain
safety implications of COTS RTOSs to meet the robustness objective of DO-178B. It also
supports the use of this analysis as needed input for the SSA.

Once the RTOS safety implications are understood, the following actions can be taken.

1. Prevent the presence of defects in the RTOS (i.e., fault avoidance), which can be done by
proper design assurance.

2. Analyze and test the COTS RTOS and remove any defects if present.

3. Protect against remaining defects in the COTS using wrappers or other similar
techniques.

24


http://www.abbottaerospace.com/technical-library

8. BIBLIOGRAPHY.

[Timmerman 98] Timmerman, M., Beneden, B.V., and Uhres, L., “Windows NT Real-Time
Extensions, Better or Worse?”, Real-Time Magazine, pp. 11-19, March 1998.

[Tindell 00] Tindell, K., “Deadline Monotonic Analysis,” Embedded Systems Programming,
June 2000; http://www.embedded.com/2000/0006/0006feat1.htm.

[Rushby 99] Rushby, J., “Partitioning in Avionics Architectures: Requirements, Mechanisms,
and Assurance,” SRI International, March 1999. Work Sponsored by FAA Technical Center,
NASA Langley Research Center, DARPA and NSA; http://www.csl.sri.com/users/rushby/
papers/faaversion.pdf.

[Kleindermacher 02] Kleindermacher, D., and Griglock, M., “Real-Time Operating System
Requirements for Use in Safety Critical Systems,” Proceedings for the Embedded Systems
Conference, San Francisco, CA, 2002.

[Liu 73] Liu, C. L. and Layland, J.W., “Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment,” Journal of the ACM, 20(1):46-61, January 1973.

[Carrette] Carrette, G., “CRASHME: Random Input Testing,” http://people.delphi.com/gjc/
crashme.html.

[Miller 90] Miller, B., Fredriksen, F., and So, B., “An Empirical Study of the Reliability of
Operating System Ultilities,” Communications of the ACM, Vol. 33, pp. 32-44, December 1990.

[Miller 98] Miller, B., Koski, D., et al., “Fuzz Revisited: A Re-Examination of the Reliability of
Unix Utilities and Services,” Computer Science Technical Report 1268, University of
Wisconsin-Madison, May 1998.

[Koopman 00] Koopman, P. and DeVale, J., “The Exception Handling Effectiveness of POSIX
Operating Systems,” IEEE Transactions on Software Engineering, Vol. 26, No. 9, pp. 837-848,
September 2000; http://www-2.cs.cmu.edu/~koopman/ballista/tse2000/ tse2000.pdf.

[Fabre 00] Fabre, J.-C., Rodriguez, M., et al., “Building COTS Microkernel-Based Systems
Using MAFALDA,” in Proceedings of 2000 Pacific Rim International Symposium in
Dependable Computing, pp. 85-92, December 2000.

[Jaffe 00] Jaffe, M.S., “Architectural Approaches to Limiting the Criticality of Commercial-Off-
The-Shelf (or Other Re-Used Software) Components in Avionics Systems,” Aviation Today,
September 18, 2000; http://www.aviationtoday.com/reports/ arch_methods.htm.

[Popov 01] Popov, P., Riddle, S., et al., “On Systematic Design of Protectors for Employing
OTS Items,” University of Newcastle Technical Report No. CS-TR-730, April 2001. Centre for
Software Reliability, UK; http://www.csr.ncl.ac.uk/dots/pubs/ euromicro-tr.doc.pdf.

25


http://www.abbottaerospace.com/technical-library

[Fraser 99] Fraser, T., Badger, L., and Feldman, M., “Hardening COTS Software With Generic
Software Wrappers,” 1999 IEEE Symposium on Security and Privacy; http://citeseer.nj.
nec.com/fraser99hardening.html.

[Ghormley 98] Ghormley, D., Rodrigues, S., et al., “SLIC: An Extensibility System for
Commodity Operating Systems,” Proceedings of the USENIX 1998 Annual Technical
Conference, New Orleans, Louisiana, 1998; http://citeseer.nj.nec.com/ghormley98slic.html.

[Ghosh 99] Ghosh, A., Schmid, M., “An Approach to Testing COTS Software for Robustness to
Operating System Extension and Errors,” Proceedings of the Tenth International Symposium on
Software Reliability Engineering, pp. 166-174, 1999; http://www.cs.nps.navy.mil/people/
faculty/bmichael/sw4540/article7-ghosh.pdf.

[RTCA SCI167] DO-178B, “ Final Report for Clarification of DO-178B ‘Software
Considerations in Airborne Systems and Equipment Certification,”” Special Committee 190,
RTCA, Inc., 1992.

[RTCA SC190] DO-248B, Final Report, Special Committee 190, 2001.

[ARP4754] Aerospace Recommended Practice 4754 Certification Considerations for Highly
Integrated or Complex Aircraft Systems, 1996.

[COTS SW] United Technologies Research Center, Krodel, J., “Commercial Off-The-Shelf
(COTS) Avionics Software Study,” DOT/FAA/AR-01/26, May 2001.

9. RELATED DOCUMENTS.

Leveson, N., Safeware: System Safety and Computers, Addison-Wesley, 1995.

United Technologies Research Center, Thornton, R., “Review of Pending Guidance and Industry
Findings on Commercial Off-The-Shelf (COTS) Electronics in Airborne Systems,”
DOT/FAA/AR-01/41, August 2001.

AEEC, “Avionics Application Software Standard Interface,” January 1997.

10. GLOSSARY.

Combinatorial explosion — The condition of massive amounts of test cases that develop when
testing all the combinations of paths that occur in a software system.

Deactivated code — Executable object code (or data) which, by design, is either (a) not intended
to be executed (code) or used (data), for example, a part of a previously developed software
component, or (b) is only executed (code) or used (data) in certain configurations of the target
computer environment, for example, code that is enabled by a hardware pin selection or
software-programmed options. [RTCA SC167]
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Dead code — Executable object code (or data) which, as a result of a design error, cannot be
executed (code) or used (data) in an operational configuration of the target computer
environment and is not traceable to a system or software requirement. An exception is
embedded identifiers. [RTCA SC167]

Deadlock — A situation where two or more tasks are forever suspended attempting to obtain two
or more shared resources (e.g., semaphores). Since each task has the semaphore that the other
needs, the tasks could suspend on the semaphores forever.

Priority inheritance — A mechanism for avoiding priority inversion by temporarily boosting the
priority of a task using a semaphore, while it owns the semaphore, to the maximum priority of all
tasks that also uses the same semaphore.

Priority inversion — A lower-priority task may get executed instead of a higher-priority task that
is ready. Priority inversion occurs when a higher-priority task is suspended on a semaphore that
a lower-priority task has, and the low-priority task, in turn, gets pre-empted by a middle-priority
task. The middle-priority task gets to execute before the high-priority task.

Robustness testing — A method of verification to demonstrate that software can continue to
operate correctly despite invalid inputs. [RTCA SC167]

Stress testing — A method of testing that subjects the system to the extremes of real-world

workloads, large data volumes, repetitive operations, and operations for extended periods of
time.
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APPENDIX A—SAMPLE TEST PLAN FOR COTS RTOS

Some test cases are dependent on information about the target environment; however for this test
plan, no system in particular was targeted. Lower level testing is also offered and visibility of
the source code would be of benefit.

It should be noted that the test cases presented are not comprehensive, and specific features of a
particular RTOS will require additional or modified testing. Also, although the most common
RTOSs features are considered for testing, some test cases listed may not apply at all to some
RTOSs that lack a particular feature being tested. Whenever there is a correspondence, the test
cases presented are cross-referenced to the vulnerabilities described in section 4.2, for a specific
RTOS considered in that section.

Test cases are presented. Some have correspondence to the RTOS vulnerable features described
in section 4.2.
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