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Granulation and Oscillations of the
Solar Atmosphere

By Charles Whitney1

The intensity of the continuous and line
spectra of the solar disk and the velocities in-
ferred from Doppler displacements show point-
to-point fluctuations. The optical properties
of the equipment and the earth's atmosphere
greatly limit quantitative observations of these
fluctuations.

These essentially random fluctuations may be
described by three parameters (although im-
proved observing techniques may show these
averages to be meaningless): (1) the mean size,
or characteristic length; (2) the intensity con-
trast; and (3) the mean lifetime or half-life.

Summary of observations

One-dimensional autocorrelation analyses indi-
cate that the fluctuations in brightness are es-
sentially random, although visual examination
of photographs usually suggests the existence of
characteristic lengths. In many cases the char-
acteristic length thus derived (3000 to 5000
km) is undoubtedly a measure of the resolving
power of the photograph.

Recent studies by Rosch (1955, 1957), how-
ever, support the view that a characteristic
length of 1000 to 1500 km has a real significance.
Indeed, he finds foreshortening toward the limb
for granules of diameter 1000 km, which
strongly suggests that these are not random
dumpings of smaller granules.

Data concerning lifetime and contrast have
been summarized by Macris (1953). Correc-
tions for scattered light have led to estimates of
intensity contrasts as high as 30 to 40 percent,
values corresponding to fluctuations of about

1 Smithsonian Astrophysical Observatory, and Harvard College
Observatory.

500° K in brightness temperature. These esti-
mates are extremely uncertain.

The lifetimes of granules are of the order of
minutes, judging from the changing appearance
of the granulation pattern. Quantitative esti-
mates give 2 to 5 minutes as the mean half-life.

Evidence exists for a positive correlation be-
tween continuum brightness and violet shift of
the Fraunhofer lines. On the basis of plots of
velocity and brightness, Richardson and Schwarz-
schild (1950) suggest the presence of only a
weak correlation. Plaskett's statistical analysis
(1954) showed a correlation on two of the three
plates he measured. However, the weakness of
the correlations suggested to Plaskett that the
absorption lines were formed above the granula-
tion.

As will become evident in the final section of
this paper, it is not possible to base a physical
model on such correlations measured on isolated
plates. The analysis of a time sequence, yield-
ing phase relations, is required before meaning-
ful statements can be made concerning the
physical connection between fluctuations in
velocity and brightness.

Visual examination of prints made from spec-
tra obtained with the McMath-Hulbert vacuum
spectrograph has convinced the present writer
of a positive correlation between localized dark"
ening of the photospheric continuum and the
largest redward Doppler-displacements of me-
tallic lines.

A fact which may place restrictions on theo-
ries of granulation is the striking similarity be-
tween the patterns of Doppler displacements of
strong (chromospheric) Fraunhofer lines and
of weaker lines, presumably formed in the
photosphere. This similarity also holds be-
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366 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS

tween neutral and ionized lines. McMath,
Mohler, Pierce, and Goldberg (1956) have con-
cluded that this similarity "implies either a
chromospheric origin for the centers of all me-
dium-strong Fraunhofer lines or the extension
of the photospheric granules into the low chro-
mosphere."

Interpretations of the data
There is little doubt of a physical connection
between granulation and the instability of the
deep photosphere (optical depth greater than
unity) against convective motions. But, is
the connection direct or indirect? Early inter-
pretations held that the connection was direct
and that granules were the rising convective
cells themselves. But this interpretation no
longer seems so reasonable as it once did, and
it has yet to be investigated quantitatively in
terms of variations of opacity, excitation, and
the relative depths of line and continuum for-
mation. Since the temperature gradient of
the upper photosphere is less than the adiabatic
gradient, this region is stable against convec-
tive motions. Thus, it becomes difficult to
explain the positive correlation between bright-
ness and upward velocity or the extension of
the motions into the low chromosphere.

Further, Plaskett's (1956) calculations imply
that the persistence of granulation to within
5" to 10" of the solar limb (see, e. g., Rosch,
1955, 1957) is not consistent with the hypothe-
sis that brightness fluctuations are generated
as deep as the top of the convection zone (opti-
cal depth approximately unity).

If we admit the extension of granulation into
the upper photosphere or low chromosphere,
and recognize the stability of this region against
convective motions, it becomes necessary to
assume that granulation is an effect of wave
motions.

That is, we must admit that the fluctuation
energy is propagated into the critical region as
wave energy, rather than being carried in as
thermal energy by mass motions.

The suggestion that sound waves are present
in the solar atmosphere is not a new one (Bier-
mann, 1946; Schwarzschild, 1948; Schatzman,
1953; Thomas, 1954), but previous investi-
gators have limited themselves to the one-
dimensional case of plane-waves propagated

vertically. However, I treat the two dimen-
sional equations of motion and am led to con-
sider a family of solutions which differ physi-
cally from those previously discussed. These
solutions, which do not appear in the one-
dimensional treatment, represent gravity waves
or, more generally, mixtures of gravity waves
and compressional waves.

I adopt an approach suggested to me by
Krook in which a "top" of the convection zone
is postulated and is treated as a solid surface
whose Z-coordinate fluctuates with X, Y, and
time. These fluctuations of Z may be consid-
ered as resulting from a combination of con-
vective motions and sound waves. These
motions of the "top" of the convective zone
impress motions on the overlying atmosphere,
and waves are generated. These waves will
interfere constructively or destructively in a
manner that depends on the characteristic fre-
quencies and horizontal lengths of the fluctua-
tions. Those that interfere constructively will
be amplified, and can be expected to carry
energy and momentum into the upper
atmosphere.

The present paper analyzes this situation by
(a) considering the problem in two space-
dimensions, (b) assuming temperature and
gravity to be independent of height in the
initial, undisturbed atmosphere, and (c) by
treating only the steady-state of motions set
up by the Fourier components of the fluctua-
tions of height at the "top" of the convection
zone.

This restriction to steady-state solutions is
a serious one, in view of the random nature of
motions in the convection zone. We hope sub-
sequently to remove this restriction and to
treat the situation as an initial-value problem.

The equations of motion 2

We shall use the Lagrangian formulation, and
consider adiabatic oscillations in two space-
dimensions. Capital letters and subscripts "0"
shall denote unperturbed values, and lower-
case letters shall denote deviations from equi-
librium. The acceleration of gravity, g, is
directed toward negative Z and is independent

1 In this and the following section we use the development given by
Bjerknes et al. (1934, chapters 7, 8).
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of Z. Define a, B, y by

dp a2 dp

SOLAR ATMOSPHERE

This equation has the solution

C(Z) =<

where a can be shown to equal the velocity of
propagation of a small disturbance in a homo-
geneous medium.

The equations of motion in their linearized
form become:

d 2.

522 d2 d p . . p

bX dZ p0

We assume solutions of the form

x=A{Z) cos (A:X— at),

z=C(Z) sin (ArX—«<),

Po Po
sin (ikX-

(1)

(2)

(3)

(4)

(5)

(6)

and introduce them into equations (1) to (3),
obtaining the equations,

-a2A+kgC+kD=0,

-u>2C+9C'+D'+g(a-B)D=0,

(7)

(8)

(9)

The primes denote differentiation with respect
toZ.

Before discussing the most general solution to
this set of equations, we shall investigate four
special cases.

Case I: -4=0, &=0.—In this case, x vanishes,
and the phases of z and p are independent of X.
The solution represents plane waves propagated
vertically. Equation (9) is now

C'=-aD
or

D'=—-C".a

Introducing equation (10) into (8) leads to the
equation,

C'-8gC'+a3aC=0. (11)

When ij2>0, we have

z=ef*zl\Cle<z+C2e-*) sin wt,

367

(12)

(13)

(14)

which represents the sum of two standing waves,
each of which has an amplitude increasing up-
wards. The solution for p has the same Z-
dependence.

When ri2<C 0, we write

/ B2d2\1/i

(15)

and find

z=e*z/2(<VfZ+Of
2e-'rz) sin at. (16)

This solution represents the combination of
an upward-running wave and a downward-
running wave. The phase velocity of these
waves, V, is given by the expression

>a. (17)
' ( i - J 4a,2

For the group velocity,

we find from equation (15),

(18)

This is the velocity with which energy is trans-
mitted through the medium.

For an atmosphere which is initially iso-
thermal,

kT a3

P=Po—=Po—>

where k and n are the Boltzmann constant and
the mean molecular weight of the gas. Hence,
since 8 is defined as

B=yla*,
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and, since a=l/a2 , we have

/72<7* <a'

Therefore the value of to separating the real
and imaginary domains of 17 is

yg

When 7=5/3, T«=2 .3 102 sec, which is nearly
identical to the critical period for plane, vertical
waves. In fact,

«< 2V7—1

Case III: (7=0.—Equations (7) to (9; give

For the solar atmosphere, g=\QiM cm/sec"^
a—^ykT/n, a=6A 106yin cm/sec, M—ma, and
2b~5000° K.

Hence

rt=—=-7= Krsec,

and since 5 /3>7>l , the critical period is be-
tween 3 and 5 minutes.

Case II: A=0, k?*Q.—This is the case of
purely transverse waves propagated horizon-
tally, and we have from equations (7) to (9) the
equation

D'+g(a-fS)D=0,

Hence for a non-vanishing solution,

C'-agC=0, (19)

D=-gC. (20)

The solutions of equations (19)*and (20) are

We note that the frequency of these oscilla-
tions is independent of k, the wave number, and
that it vanishes for an atmosphere in which
a=/3.

Two types of atmospheres for which a=/3 are
a) an atmosphere in adiabatic equilibrium, and
b), an atmosphere which is initially isothermal
and which undergoes isothermal changes of
state (7=1).

For the solar conditions adopted above, we
have

c*-g ( 7 - 1 ) = ^ 1.84 10-3,

Hence

This solution represents plane longitudinal
waves running horizontally. These are pure
sound waves. The amplitude of the wave
shows an exponential increase with height
when /3>a, i. e., when

dp0^ dp
dp dp

The case a=/3 is distinguished by an ampli-
tude independent of height.

Case IV: D=0.—The pressure variations
now vanish and we have pure gravity waves.
That is, the potential energy of wave motion
appears in the form of gravitational potential
alone. This is to be contrasted with the solu-
tion in Case III , in which the gravitational
potential of a particle is independent of time
(since z=0), and the wave potential has the
form of compression energy. Equations (7) to
(9) give the expressions

sec.

x=A0e
kZ cos (kX—ut),

z=At*z sin (kX-o>t).

The wave amplitude increases with height,
and the particle paths are circular. Since a
and /3 do not appear in this solution, and since
the pressure fluctuations vanish everywhere,
this solution is also valid for an infinitely deep,
homogeneous, incompressible fluid with a free
surface.
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Summary of 'particular solutions.—We sum-
marize the results of the above discussion by
assembling the dispersion relations for the
solutions considered. In the parenthetical com-
ments, the words "vertical" and "horizontal"
refer to the direction of phase propagation, or,
equivalently, the direction of motion of the
planes of constant phase. The words "trans-
versal" and "longitudinal" refer to waves in
which the particle motions are, respectively,
perpendicular to and parallel to the direction of
phase propagation. The absence of vertical-
transverse waves is due to the atmosphere's
inability to resist shearing motion, i. e., the
neglect of viscosity.

k

Case I: <oc=^>

Case II: u),= (y—l)g/a

Case III: oi,=ka,

Case IV: <at=^fkg.

(Critical frequency
for vertical-lon-
gitudinal wave.)

(Horizontal - trans-
verse wave.)

(Horizontal - longi-
tudinal, or pure
sound wave.)

(Pure gravity wave.
Phase p ropa -
ga ted horizon-
tally. Circular
particle paths.)

Solution for an isothermal atmosphere

If we eliminate C and D from equations (7) to
(9), and set a and /S constant, we find that

-a)^]^=0. (21)

C and D satisfy identical equations when a
and /3 are constant.

From equations (7) to (9) we may also find
that

(22)" T faJ2__q2/o_ \ '

_co2 —gA'+u*A
— u 2 n2(Q \' (23)

Thus, given the solution to equation (21), the
values of C and D may be found from equations
(22) and (23). The results are:

" ' * ] , (24)

(25)

We now impose the conditions that the
atmosphere be isothermal in space and time
(a=/3 = 1 fa2). Introducing the scale height, H,
whose value is

H=a?lg,
we find

A=ez/2H(Ale'z+A3e-'z), (27)

^ 1

(28)

( 2 9 )

where

Application of boundary conditions

If we consider the wave motions of the solar
atmosphere to be driven by the upward and
downward movement of the "top" of the con-
vective zone, we may postulate a lower-bound-
ary condition of the form

Condition I: x(0)=0,
Condition II: z(0)=AoH sin kXsin ut.

These conditions state that the motions at the
lower boundary of the atmosphere (Z=0) are
vertical and are represented by a standing wave
whose wave number is k.

The form of the solution initially assumed in
equations (4) and (5) is that of a running wave.
If, now, we assume a solution of the form

x=A(Z) cos kX sin cd, (30)

z=C(Z) sin kX sin <d, (31)

«28-E=P-=D(Z) sin kX sin ut, (32)
Po Po
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the equations for the coefficients A, C, D are
unchanged. Since the boundary condition has
the form of a standing wave, it is clear that we
should adopt equations (30) to (32) for further
discussion.

The boundary conditions give

Condition I:

A(0) = 0.

Condition I I :

From these we find

Introduction of these into equations (27) to
(29) gives

^ ^ z - e - ' > z ) , ( 3 3 )

( 3 4 )

( 3 5 )

Solutions (33) to (35) are completely specified
by the parameters k and u or, equivalently, Jc
and 7j. There is a double infinity of possible
solutions corresponding to the infinite range of
choices for o» and k.

We now introduce a further condition on the
solution, that the pressure variations vanish at
a prescribed height, Zt. Such a condition is
difficult to justify fully, but its reasonableness is
suggested by the following. First, the recent
models indicate that the chromosphere-corona
transition consists in an abrupt rise in tempera-
ture. For waves of sufficient length, this
transition will appear as a discontinuity of
temperature and density. The density above
the discontinuity will be significantly less than

that below the discontinuity, since the ratio of
densities is essentially the reciprocal of the ratio
of temperatures. Thus, for a sufficiently rapid
and great increase of temperature with height,
the discontinuity will behave essentially as a free
(constant-pressure) boundary.

The second consideration is that dissipation
of wave energy by radiation (excluded from the
present solution, since 7=1) may damp the
wave and limit its amplitude at great heights.

The condition that pressure variations shall
vanish at height Zt gives the relation:

or

Hence

^-Q[~—

(36)

Thus, once the physical parameters Zt, g, and
H are given, equation (36) becomes a "disper-
sion" relation between OJ and k.

When ri2<C0, it is convenient to introduce,
again,

in which case the lower-boundary conditions,
I and II, give

A iAJcH

The condition at the upper boundary becomes

^ 0 - ( 3 7 )

This may be transformed to

+ l /2)T,(n=l ,2,3. . .), (38)
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or, finally,

Solutions (33) to (35) become

C(Z) =

(39)

(40)

cos I fZ—tan"1

Equation (41) reduces to

- £ ) K («)

sin
(42)

In the special case ij2=0, equation (21) and
the lower-boundary condition give

A(Z)=A<tHkZez/2ir,

C(Z) =A0H

D(Z)=A0HZ

(43)

(44)

( 4 5 )

The condition of vanishing pressure at height
Zt gives

hence
TT

(46)

Evaluation of dispersion relation (ij2>0).—
We shall now evaluate these dispersion relations,
commencing with the case ?72=O. From the
assumed physical conditions, and taking Z r =
10 H, we derive

^=1600 km,

—=189 sec.
CO

These results are not sensitive to Z« as long as
Zt> 10 H. When i?2>0, equation (36) becomes

o>24-1.84 10-VI— 0.92 1Q-3

to2—1.84 10-37;H— 0.92 10~3'

For each assumed value of co, solution of
equation (47) gives the value of rjH. From the
definition of 17, we then derive

--i. (48)

It is easily shown that equation (47) has no
non-zero, real solution for 17 when w*< 1.10 10~3.
Also, in the limit

10~
we have

and the solution approaches that found above
for 77=0. Therefore, we conclude that when
ri^>0 the period of oscillation and the "wave-
length" (X) in the horizontal direction must
satisfy, respectively, the conditions

4x*
T*-i. ioio-3 S 6 c 1 '

- 0.35

That is, the period must be less than 190 sec
and the wavelength less than 1600 km. When
we take Zt—«>, the dispersion relation is
changed only slightly, and the limiting period
and wavelength are 208 and 1800 km, respec-
tively.

Tables 1 and 2 list the solutions for"Z,= 10H,
and Z , = 00.

When —<140 sec, the dispersion relation

becomes

which is the relation for pure gravity waves.
Consider, for example, a solution corresponding
to Z,=10H, OJ2=2.00 10"3, ^ , = 10-5. The ver-
tical displacements at the lower boundary have
an amplitude AoH=15O cm. The horizontal
and vertical displacements at Z=10H have an
amplitude, according to table 1 of

^4=C=4.9 104 AoH=7A km.
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TABLE 1.—Solutions of dispersion relation and corresponding amplitudes

1. 10X10-*
1. 20X10-*
2 00X10-*
3. 00X10-*
3.95X10-*
3. 95X10-*

Period
(sec)

2x

189
181
140
115
100
32

Wave-
length
(km)

2*
k

1600
1450
868
580
440

44

Displacement amplitudes

4(10 H) C(10 H)

8.8X10*
1.3X10*
4.9X10*
7. 3X10«
1. 3X10»
4 X10"

8. 9X102

1.3X10*
4.9X10*
7. 3X104

1. 3X10»
4 X10w

Relative density
variation

\P0/*-!H

- 5 . 9
—6. 3
-6.6X10-1
—4. 4X10-2

- 3 . 4X10-*
— 5. 4X10-*5

Product of wave

gravity (kg)

1. 07X10-*
1. 17X10-*
1. 98X10-*
3. 00X10-*
3. 95X10-*
3. 95X10-*

TABLE 2.—Solution of dispersion relation and corresponding amplitudes

0. 92X10-*
1. 10X10-*
1. 20X10-*
2. 00X10-*
3. 00X10-*
3. 95X10-*
3. 95X10-*

Period
(sec)

2»
to

208
189
181
140
115
100
32

Wave-
length
(km)

2x
k

1800
1510
1380
830
550
420

4

Displacement amplitudes

4(10 H) C(l0H)

7.4X10*
1.0X10*
1.4X10*
4 7X10*
8.2X10*
1. 3X10»
4 X108*

9. 0X102

1. 1X10*
1.4X10*
4 7X10*
8. 2X108

1. 3X10»
4 X10<*

Relative density
variation

\P0/x-iH

- 1 . 2X101

- 7 . 6
- 5 . 7
— 6. 6X10-1

— 4. 4X10-2

—3. 4X10-*
— 5. 4X10-*5

Product of wave

gravity (kg)

0. 92X10-*
1. 10X10-*
1. 20 X10-*
2. 00X10-*
3. 00X10-3

3. 95X10-*
3.95X10-2

The density and pressure variations vanish
at Z=10ff, but at the intermediate height
Z=5H, table 1 gives an amplitude

•——0.66 A<>=— 6.610~6.

The pressure and density variations are, indeed,
small.

The horizontal and vertical components of
particle velocity are

x=A(a cos kX cos <at,
y=C<a sin kX cos at.

Hence, the amplitudes of the velocity varia-
tions at Z=10H are A=C=2.8 km/sec=0.44a,
while the amplitudes of the gradients of dis-
placement are Ak=Ck=0.5S. These ampli-
tudes are not much smaller than unity, and the
linearized equations of motion are not valid.

If we consider a solution whose amplitude at

Z=0 is about one-fifth the amplitude used
above, i. e., take

the linear equation will be nearly valid. In
this case, the solution for the motion at the
height Z=10ff is

x=yjr cos kX sin at,

y—TX sin kX sin cot,

The X and Z motions are in phase in time,
but in space they have a quarter-wave difference
in phase. Therefore, the particle paths are
rectilinear, varying from vertical, when

kX=(2n-\-l) JZJ to horizontal, when kX=mr.
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FIGURE 1.—Solution of dispersion relation for an isothermal
atmosphere driven from below by an oscillating corrugation
(i»2<0). Abscissa: f/7, where f is defined by equation

(49). Ordinate: values of a2—derived from equations (39)

and (49). The dotted line denotes the lower limit to values
of the ordinate allowed by the condition i7*<0. Roman
numerals denote consecutive branches of the solution.

The motions converge horizontally toward
the regions of upward displacement and diverge
from the regions of downward displacement.
The resulting wave form is not sinusoidal, and
it deviates in the sense that the crests are
"sharper" than the troughs; that is, the crests
have a smaller radius of curvature than the
troughs. As long as the linear solution is valid,
this peaking is not very marked, and the wave
form is nearly sinusoidal. The peaking is
enhanced in the nonlinear case of finite ampli-
tude.

Evaluation of dispersion relation (ij2<0).—
When ij2<C0, we have

f2—n'=£-V-

and we employ the dispersion relation (39).
The solution of equation (39), with Z,= 10H, is

TT

shown in figure 1, where u2— is plotted against

$H (solid lines). The condition on f2 expressed
by equations (49) gives

(50)

The dotted line in figure 1 is the curve for
which

«*—=J«ff»+i (51)

Allowed solutions fall above this line. Thus,
TT

for example, when «2—=1, there are only two

allowed values of {H, corresponding to the
second and third branches of the solution,
respectively.

The lowest allowed frequency on each branch
of the solution follows from simultaneous solu-
tion of equations (39) and (51). In each case

hence the oscillation has the form of a plane
wave. We find, for the first four branches,

—=264 sec, ^ = 1 6 3 ,
(1)03

—=212, —=128.
0>Q2 " 0 4

As frequency increases above «Oi> the solu-
tion follows Branch I, until the frequency câ  is
attained. Beyond this frequency, solutions on
Branch II are also allowed. For still higher
frequencies, solutions on the succeeding
branches become allowed. For large frequencies
the number of allowed solutions becomes
proportional to the frequency.

Figure 2 is a dispersion curve in which the
logarithms of 2ir/k and 2T/« are the coordinates.
Only the first four branches are included. The
remaining branches would appear at equal
intervals to the left of those depicted. Note
that, for a given frequency, the interval be-
tween allowed wavelengths increases with wave-
length. That is, the shorter wavelengths are
crowded together. Also, for periods less than,
say, 102 seconds, the crowding is such that most
of the allowed wavelengths lie near the straight
asymptote. The equation of this asymptote is

or
a,— .

K
(52)

That is, the relation between the period and
the horizontal wavelength, \H, is just the rela-
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FIGURE 2.—Solution of dispersion relation (ij l<0). Abscissa:
wavelength of driving corrugation, 2w/k. Ordinate: period
of oscillation, 2x/w. Dotted line shows the upper limit to
the period.

tion between period and wavelength of an
acoustic wave.

Evaluation of equations (40) to (42) shows
that the amplitudes of oscillation increase
exponentially upward with an e-folding distance
of two scale-heights. These increases are
modulated by a circular function of height, and
thus show nodes. The first branch shows no
nodes but each succeeding branch has one addi-
tional node. Further, the horizontal and
vertical amplitudes are comparable to each
other, except for the cases &H—»0 and kH-+ <».

Comparison of the density oscillations for
this type of solution (ij^O) shows them com-
parable to those of the previous type OT^O)
for periods near the upper limit. However,
the density oscillations are nearly independent
of period for this type, and hence become
greater than those of the previous type as the
period becomes shorter.

We may designate solutions for i72<CO and
ij*>0 as compressions! and gravitational oscil-
lations, respectively. This dichotomy is used
only to indicate that the potential energy
associated with the oscillations appears pri-
marily as compressional energy in one case, and
as work done against gravity in the other.

The difference in character of the compres-
sional and gravitational solutions may be sum-
marized as follows. The compressional solu-
tions show an amplitude increasing as exp
(Z/2H) and modulated by sine functions of

height and horizontal distance. The density
oscillations are virtually independent of per-
iods. The gravitational solutions show a much
more rapid increase with height, but they do
not show a vertical modulation. The density
oscillations decrease rapidly with period.

Both types of solutions are restricted to per-
iods less than about four minutes, and the
gravitational solution is restricted to horizontal
wavelengths less than about 2000 km.

Thermal properties of the oscillations
To evaluate amplitudes, we took 7=1, recog-
nizing that radiative exchange of energy will
tend to make the oscillations isothermal. We
may obtain an estimate of the amplitude and
phase of temperature changes in the following
way (Whitney, 1955).

Consider an optically thin element of matter
whose equilibrium temperature and density are
To and Po. Let the instantaneous values of
these parameters be designated

T=T0+8T,

and use similar notation for the other variables.
Then the conservation of energy requires

Rpo vT
7—1 dt (53)

where K, I and e are respectively the absorption
coefficient, the mean intensity of incident radi-
ation, and the rate of emission. If

and

it follows that

RpnTn U 8T ST „ „, d Sp >
To

=RpoTo Zt 70'
 ( 54 )

The assumption of sinusoidal variations of
Sp and ST, i. e.,

Po
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leads to the equation,

E=

Defining

^ 4KQ<TP0TZ /Rp0T0\
 1

03 \ 7 — 1 /

(55)

we find
°\y-:

E
F"

7 - 1
pi tan-i(«>/w) (56)

Hence, for vanishing opacity, # = 0, and the
temperature and density variations are in
phase with each other.

Adopting the values of opacity and tempera-
ture in the model solar atmosphere tabulated by
Minnaert (1953) we derive the amplitudes and
phases given in tables 3 and 4.

These tables indicate that, for the optical
depths contributing to continuum formation
( T > 0 . 1 ) and for periods greater than 10
seconds, the radiative exchange of energy is
significant. For a given density oscillation,
the temperature oscillation is reduced and
advanced in phase. Thus, maximum temper-
ature can occur nearly at the phase of maximum
rate of compression rather than at maximum
compression itself.

TABLE 3.—Values of 2/«2a)~ I / 2

Optical
depth (T)

0. 0001
. 001
. 129
. 294
. 672

Period of oscillation/ — iin seconds

1

1. 00
1.00
1.00
1.00
1.00

10

1.00
1.00
0.99
. 97
.89

10»

1.00
0. 93
. 55
. 37
. 19

10»

0. 91
.24
.07
.04
.02

If we consider 100 seconds, or greater, as
the order of magnitude of observed granule
lifetimes, we see from table 3 that the tem-
perature oscillations, for a given density oscilla-
tion, increase rapidly with height in the atmos-
phere. Further, since the wave solutions show
a density oscillation increasing with height,
the temperature oscillations associated with
such a wave must increase with height.

These arguments suggest that, if we asso-
ciate the observed granulation with these waves,
the mean height of granule formation must be
greater than that of the mean continuum.

Concerning the phase relations between
velocity and temperature, we note that the
wave solutions show density oscillation and
displacement to be 180° out of phase. Hence,
maximum downward velocity is in phase with
maximum rate of compression. For adiabatic
oscillations (#/<•>«; 1) maximum temperature
occurs at maximum downward displacement.
For oscillations significantly affected by radia-
tive exchange, (#/w5=l) the temperature phase-
leads given in table 4 tend to shift maximum
temperature toward the time of maximum
downward velocity.

TABLE 4.—Values of tan"1 (£/&>) in degrees.

Optical
depth (T)

0.0001
.011
. 129
.294
.672

Period of oscillation! — lin seconds
\« /

1

0.026
.23
.86

1. 4
2.9

10

0.26
2.3
8.6

14.3
26.9

10*

2.6
22.3
56. 1
6a 2
79. 1

10»

24 1
76.2
85.9
87. 6
88.8

In any physical situation the phase relations
will be intermediate between these extremes,
and the maximum temperature will occur
between the times of maximum and zero
velocity downward. Thus these wave solutions
give a negative correlation between upward
velocity and temperature perturbation. Spec-
tra of the solar disk in which granulation is
discernible seem to indicate a positive correla-
tion (see p. 366).

However, a positive correlation would arise
from the present theory if the wave solution
had the character of a running wave rather
than the standing wave derived here. A
running-wave solution would have resulted if
we had not imposed the condition of vanishing
pressure-oscillation at a specified height in the
atmosphere. Whereas maximum density cor-
responds in phase to maximum displacement
for the standing wave, it corresponds to maxi-
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mum upward velocity for the running wave.
Thus, application of the above arguments to a
running-wave solution suggests that the maxi-
mum temperature should occur between zero
velocity and maximum velocity upward, de-
pending on the value of t?/«.

Thus we may draw the following distinction:
For a running wave, the maximum temperature
should fall at or before maximum velocity
upward; for the standing wave it should fall
at or after maximum velocity downward.

To use this distinction as a criterion for
choosing between standing and running waves
as the cause of the observed granulation re-
quires the assumption that there is no change
of wave phase with height in the relevant region
of the solar atmosphere. This assumption is not
inconsistent with results of high-resolution
spectroscopy discussed on page 365.

Admitting then, that the positive correlation
between upward velocity and temperature
rules out the standing-wave solution, we adopt
the other alternative. But for the running
solution, there is no unique dispersion-relation
between frequency and horizontal wavelength—
each value of one allows all values of the other.

Thus we can say nothing about the spectrum
of horizontal wavelengths. Tables 3 and 4,
however, allow the comment that since optical
depths less than 0.1 contribute only trivially
to the continuous radiation, the lifetimes of
significant temperature fluctuations must be
less than 103 seconds.

Also, the earlier arguments leading to a
height of granule formation greater than that
of the undisturbed continuum are still valid,

since the running-wave solution also displays
an amplification with height.

It is a pleasure to acknowledge the discus-
sions with Max Krook which led to this study.
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Abstract
The observations of solar granulation are briefly summarized and their interpretation is discussed. Steady-

state solutions of the linearized equations of motion in two dimensions, subject to the boundary condition of an oscil-
lating corrugation at the bottom of the solar atmosphere, are obtained and their observable properties outlined.

Two points are emphasized. First, the motions of the solar atmosphere cannot be pure compression-waves,
even in the region stable against convection. They should be considered as a mixture of compressional and gravita-
tional waves. Second, a physical interpretation of granulation requires the determination, with time-resolved spectra,
of the phase relations between brightness and velocity.
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