
im OF SAIVSFL.IH0 FEEDBACK SYSTIiv! FOR
S'rAiflJZAnON OF LOW RIEQUENCY

OSClLLATfOMS IH UQUm MOHQPRQPBA.AHr
ROCKET MOTORS

finti^&i»etMr.t^Vi^ ••^*«*»*^<»*W»i

C. FERNANDEZ, M.



Library c u-^j

U. S. Naval Postgrad^iate School

Monterey, California







3





USE OF A SAMPLING FEEDBACK SYSTEM FOR

STABILIZATION OF LOW FREQUENCY OSCILLATIONS

IN LIQUID MONOPROFELLANT ROCKET MOTORS

Thesis by

LCDR C. Fernandea, Jr., USN
If

In Partial Fulfillment of the Requirements

For the Degree of

Aeronautical Engineer

California Institute of Technology

Pasadena, California

1953



Fa^



-i-

ACKNOWLEDGEMENT

The author is deeply grateful to Dr. Frank E. Marble,

of the Daniel and Florence Guggenheim Jet Propulsion Center,

California Institute of Technology, for help an4 guidance in tins

problem.

The author wishes to thank i<^rs. Virginia Boughton for

typing the thesis.

Z ssx.





- li -

ABSTRACT

Instability in liquid monopropellant rocket motors may be

corrected by the use of a feedback servom^echanisna. This

mechanism consists essentially of a pressure pickup -which senses

pressure oscillations in the combustion chamber, an amplifier and

a variable capacitance in the feed line. It is shown that a feedback

system with an arbitrary sampling circuit which causes the capaci*

tance in the line to complete its own cycle of variation once for

every several cycles of combustion pressure oscillations can be

made to stabilize the oscillations for all values of combustion timie

lag for a particular motor. It is believed that this systetn of

stabilization may be applied to monopropellant motors in general.
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SYMBOLS AND DEFINITIONS

t = time

"^ a time lag

p a instantaneous value of pressure

n B dimensionless quantity relating pressure and time lag

p 3 steady- state pressure in the combustion chamber

^p - injector pressure drop

p s p/ZAp
, injector pressure drop parameter

f a distance along feed line between pump outlet and injector

m = steady-state mass flow rate

A 3 cross-sectional area of the feed line

65 ss gas residence time in the combustion chamber

J s Frh/Zzip A6c^ line inertia characteristic parameter

p js instantaneous value of pump outlet pressure

p a steady- state value of pump outlet pressure

m a instantaneous value of pump outlet mass flow rate

o( = -rnl p,-p)/ 5 (nfv«r>jpumip delivery characteristic parameter

^ s (p-p )/ p , fractional variation of pressure in the combustion
chamber

i = "l / Q (3 , reduced time

^ = r/Qg , reduced time lag

^M = Lrn^-^) /rv» fractional variation in injector mass flow rate

^ a reduced amplification coefficient

^ a reduced angular frequency (real frequency divided by resi-
dence time)

^ LI) a instantaneous value of capacitance

f-*,U) = transfer function of sampling circuit

F^ c? ^
a transfer function of amplifier
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I. INTRODUCTION

The low frequency, "chugging", oscillations in liquid rocket

motors have been attributed to the coupled effects of the feed system

and combustion chamber dynamics. According to D, F, Gunder and

O. R. Friant^ » the pressure oscillations can take place in the

combustion cham^ber merely as a result of small changes in the

velocity of flow in the Injected fuel; that is, if for any reason the flow

rate decreases, the rate of burning and hence the pressure will

decrease a short time later In the chamber. Then, as the pressure

drop is felt at the injector the flow rate will increase and a short time

later the pressure at the point of combustion will increase resulting

finally in a decrease in rate of flow from the injection noszle, the

cycle continuing indefinitely. The explanation for this phenomenon

involves the concepts of time lag between the instant of Injection and

transformation of the fuel to hot combustion products, and of the

dependence of the rate o£ burning on combustion chamber pressure.

(2)M. Summerfteld * ' has shown how the length of feed line, the

velocity of the propellant in the feed line, the ratio of feed pressure

to chamber pressure and the ratio of chamber volume to nozzle area

affect chugging oscillations and has discussed the trend of changes

required in the feed system and motor parameters to suppress these

oscillations.

(3)
L.. Crocco* ' has introduced the concept of variable time lag

basing this concept on a qualitative analysis of the complicated

processes that affect the propellants from the time of injection to the
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time of burning. He has formulated a relation between time lag

and pressure showing that if the pressure is oscillating, the time

lag is also an oscillating quantity around an average value. Using

this idea he has demonstrated that self-excited oscillations in the

combustion chamber can exist even in the absence of any variation

in the injection rate. In the case where the titne lag is decreasing

the burning of the particles that were injected later catch up with the

burning of those that were injected earlier and an increase in rate of

burning would result, the opposite being true if the tinne lag were

increasing; then, if the variations in time lag coincided with the

variations in pressure in a certain manner, self-excited oscillations

would be produced.

(4)
H. S, Tsien* ' has demonstrated that a feedback servomech-

anism may be used to stabilize combustion chamber pressure

oscillations for all values of time lag, thus making it possible to

stabilize motors for which a change in configuration parameters alone

would not correct instability or where such changes would not be

feasible. The servomechanism Tsien proposed consists essentially

of a feedback servocontrol which senses the oscillating pressure in

the combustion chamber and changes the propellant flow by the proper

amount and in the proper phase to damp the oscillations. Such a

system is shown schematically on Figure 1.

A servomechanism in which the variable capacitance is

required to oscillate at the same frequency as the chamber pressure

fluctuations is likely to produce at least two important problerixS
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arising from the rate at which these oscillations generally occur,

namely in the order of 100 per second. One is the difficulty of pro-

ducing sizeable changes in capacitance at such frequencies, and the

other is cavitation in the fluid. If the variable capacitance consists

of a piston-cylinder mechanismi, it would help to lessen the problenas

to move the piston down on the compression stroke at the same

frequency as the chamber oscillation and to withdraw the piston

slowly to the maximum -capacity position in the time required for

several pressure oscillations in the chamber to take place, ^'ith the

proper phasing and amplitude it should be possible to damp out

pressure oscillations in the chamber.

The purpose of this investigation is to design a feedback

circuit that will detect symmetric (say sinusoidal) oscillations in the

comibustion chamber and provide signals to the servomotor that will

produce the asymmetric motion described above and provide stability

for all values of combustion time lag.

As an extension of Tsien's work, F. £• Marble and

is)
D, W. Cox^ ' have shown that a feedback servomechanism may

stabilize liquid bipropellant motors as well as monopropellant motors.

Their general miethod for designing the stabilizing transfer function

of the feedback loop will be used in this investigation.





A m

11. DYNAIvIICC OF THE MONOPROPELLANT MOTOR

The basic motor without feedback control considered in this

investigation essentially consists of a combustion chamber, injector,

feed line and fuel pump. It may be thought of as two dynamic systems:

one, the coznbustion chamber and the discharge nozzle; the other, the

propellant supply system consisting of the propeliant pump, propellant

line and injector. These two systems are coupled through the require-

ment that the mass of propellant discharged from the propellant line

appear in the comb'Astion chamber. The performance of the combustion

cham.ber is characterized by a mean pressure p , a mean residence

time @3 and a mean flow rate no . When the chamber pressure

varies from p its fractional variation will be denoted c^ = _
'^

p

The performance of the propellant feed systenrx depends upon the cross-

sectional area A and length P of the feed line, the pressure drop £^p

across the injector and the local slope a of the mass flow-pressure

characteristics of the pump where o( = "l*"^" —^^ . The

fractional variation in propeliant injection rate will be defined as

The fuel injected into the chainbcr does not burn Immediately

but only after it has remained a certain time t in the chamber. The

time -V required for the transformation of propellant into products

of combustion may be represented by nrieans of the integral

-f (p, T^^) = constant

where f(p, T ) is a function depending upon the mechanics of the
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process, and T^ is the ambient gas temperature in the neighborhood

of the injector. Since the time lag -c depends upon the chamber

pressure it varies with time in the same manner as the chamber

(4)
pressure does. In fact Tsien^ ' has shown that

dr p et-T) - pCT)
=. o

where .
, i/ - - x

r) = 1 !—:

—

-—
d lo3P

(3)Now, as shown by Crocco^ ', the continuity of mass flow

through the combustion chamber rnay be written as

where S is the reduced time lag — and z = —
Furthermore, defining-

p = ^ J = -J m
2Ap szipAe.^

the dynanaic equilibrium of the propellant supply system is given by

d^
i(p. ^)4 1 |J + P4) = o (2)

The presence of <^ and (u in Equations (1) and (2) indicates the

coupling between the chamber and feed systeiTis.
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To analyze the stability o£ the system the following solutions

may be tried:

Jj(t)= M Cs ) e
"i?

where s = A -v- i oj . Using these trial solutions and eliminating

the common factor e Equations (1) and (2) represent a solution

of the system If the two homogeneous equations below are slmul«

taneously satisfied:

-•si -si
(3)(s-n - n -^ o « !>$C^) - e ^-^C^;) = o

P$CS) Js-^-^CP-^^)^. W) ( S) r= O (4)

For non-trivial solutions the determinant of the coefficients of

Equations (3) and (4) must vanish, that Is

-sS
S -*-

1 - n -i- n e
-s&

- G

Js -^ -i^ iP-^^)^i

= C'C^)= o C3;

This Is a transcendental equation In the complex variable s , the

roots of which determine the stability of pressure oscillations. If

any root of C'cs) =o possesses a positive real part the system

is unstable. The Nyquist criterion may be applied to C'Cs) to

(5)
determine the existence of such roots ^ '. In this method the variable

5 traces a contour enclosing the right-half complex plane. As s

moves In the manner shown In Figure 2, that Is, along the imaginary

axis and a large half circle to the right, the behavior of C'(S) is

plotted and the number of complete revolutions noted. This num.ber
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is the difference between the number of roots and poles of C C3^ in

the right half s -plane. If the number of poles can be determined

independently the nuinber of roots is known and the stability determined.

-sS
The term e in C c^) makes use of the Nyqulst diagram

difficult. A complete investigation would require plotting the function

G'c^) for many values of ^ , the reduced time lag. A different

technique, proposed by M. Satche^ ' and developed by Tsiea* ',

requires the function C'cs) to be separated into two parts, the first

consisting only of e and the second of the remaining terms. In

this case G'Cs) may be expressed as a combination of two deter-

minants

5+ l-n

P Js
i5,(S) =

^^CS) =
n

j(p*^) + i

-I

OS -v-^ (P- 4)

(6)

(7)

so that Equation (5) may be written

-sS ^

(A) - ^ ^
Following Tsien* ' In calling e 3 g, cs)

(8)

and ^ ^ -a^^i.'b)

^CSi

(9)

Equation (3) becomes

9, C^i - SzCS) ^ GC5)

and 3,C5) and o^cs) may be plotted separately. For neutral stability

K^(S) -o and g,(iuj) becomes a unit circle on the Satche diagram;

all unstable roots lie within the unit circle. Assuming that GCs

)
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has no poles in the right-half plane then if 9z^(:s) either passes

through the unit circle or encircles the origin the system is

unstable* while the converse is true. The function G(s)t however,

may have poles in the right-half plane because of possible zeros in

the denominator determinant ^zL^) , This number of poles may be

found by applying the Nyquist criterion to ^^(s) and this number

must be added to whatever number of turns ^^.c^;) makes about the

origin.

As an example of the above criteria applied to a specific case

a motor with the following parameters may be considered:

o( a 1.0 J s 1.5 n s 0.6 P=i.O

Expressing iD,cs) and O^^Li^ as follows:

Acs)=- Ar' - d:% - d;%^ (10)

the coefficients become:

d/'- [jC.-o^-..l(p.l)] 6^'\ ^j (12)

For this particular motor

d. = I d^ = 2.5

CO
d, - ^ > d^*''^- o,q

d. = IS

The characteristic equation for s is

-sS

2. .5 -V o.<^ S
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For the case iwhere s = luo , along the imaginary axis.

Oy^CcO^
\ -V- B . I <- i_o — \. 5 oo

-2..^ -«- O S I Uo

O'^bu?'- 2.B \.35oo-6).&5

The Satche diagram for this function is shown on Figure 3. The

function <5TXi<^) crosses the unit circle and indicates instability

for values of oo below approximately 0. 9. For large values of

s off the imaginary axis, let S-Re . Then 92.(5) behaves

Le . ,
as - Re and as G decreases from ir/2 to - w/2 the

curve progresses clockwise in a large arc from - 00 l to + "^ ^

in the left'half plane without encircling the origin indicating no

further instability.

References 4 and 5 contain examples of stable and unstable

motor behavior as determined by analyses siznilar to the above.
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rn. FEEDBACK STABILIZATION

The anstable operation of a motor with fixed parameters may be

corrected by means of a simple feedback servomechanism, consisting

of a combustion chamber pressure pickup instrument, sampling circuit,

annplifiert servomotor and a variable capacitance. A feedback system

in a stability analysis provides a mathematical relation between the

combustion chatnber pressure and the variable capacitance and intro-

duces a new coupling term in the relations for the sinaple circuit with-

out feedback. The relation between the capacitance k c*) and the

pressure tnay be written symbolically as

where F^. — ^^^ ^i — *'•* linear differential-integral operators
d? de

of the amplifier and sampling circuit, respectively. The above rela-

tion indicates that the line capacitance changes with time in accordance

with the amplifier signals whose action is controlled by a sampling

circuit, which interprets the combustion channber pressure impulses

in a certain xnanner.

A new set of simultaneous differential equations arises from the

(5)
introduction of the feedback loop ^ ':

dd)
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Using trial solutions

Si
CS i

= M t s ) e •

a set of homogeneous simultaneous equations similar to (.i) aoci (.a) is

obtained,

(S + i-n^-ne )$(5^-e n4CS)=o

F.(S1 F2(s)$ cs) - KCS) = o

where F, (S) and F^.(S) are the transfer functions of the sampling

circuit and the amplifier circuit, respectively. The stability of the

system now depends on the roots of the third order determinant,

formed from the coefficients of the above set of equations

-sSsS
S-vi-- n -V n

P

e

F,(S) F2.ts)

- e

Js-^» + ^CP-v^^ JsH ^ iP^-^)^

-I

(13)

This determinant may be conveniently expressed in terms of <&. t^>
,

Equation (6), «£^^ts) Equation (7), and a third minor defined as £>^ (^)

:)j,(s)=.

.2-. 1js-. »^ ^{P^i) Js^^^^CP-v^)

(14)

The new characteristic equation obtained by setting the stability

determinant (13) equal to 2sero is

-sS
(s) -^ e [fi^f^WiT, (s) F^csi ^^(^^] ^ o (15)

For stability analysis using the Satche diagram Equation (15) may
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be written

e -^ -- o (16)

v^here 9,Cb) and 92.^^) now correspond to the first and second

terms, respectively, of the above equation and may be plotted

separately on the Satche diagram. Stable motor operation is to be

assured by choosing the form of F, cs) and F^cs) so that the

stability criteria are satisfied. It should be noted that ^, c^^ , D:2.(s)

and X);cs^ are functions of the fixed motor parameters and are

independent of the feedback functions.

Generally, instability in the basic motor arises from the inter*

section of the g^Ctuo) curve with the unit circle as in Figure 3,

where the reduced angular frequency is in the order of unity at the

point of intersection. If for higher frequencies the function 9:!.Cs)

•hows no further instability as is generally the ease it is necessary

only to modify g^^cLuj) to move clear of the unit circle for sniall

values of o^ and to cause the gain of the amplifier to disappear at

higher frequencies.
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IV. SAMPLING CIRCUIT FOR FEEDBACK SYSTEM

The functions of the feedback circuit in this investigation will

be divided into two parts: one» to provide stabilization and control

the gain at different frequencies and the other, to transform the

pressure signed received from the combustion chamber in such a

manner that the compression stroke of the variable -capacitance will

be of the same frequency and the return stroke will take considerably

longer time. A sampling circuit v^ill be responsible for carrying out

this latter task while the stabilizing function will be carried out by the

amplifier.

As a representative example, let the pressure signals received

by the sampling circuit from the comibustion chamber be sinusoidal,

and the signals which the sampling circuit delivers to the amplifier

be represented by an asymm.etric function, as follows:

Into the sampling circuit

sin z

Out of the sampling circuit

c

= COS Z in4erVQl O < ? < TT

I i.l.\ \

The input and output functions are shown graphically on Figure 4.

Over a total interval of time 2.1TCJ there are q pressure cycles in

the comibustion chamber for each cycle of motion in the variable

capacitance.
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The function -f(^) may be expanded in a Fourier series

OO

U^) = \ (Q»,co5 -^ i + b sin — ^)

The coefficients are

I I

a.
TT Jo <l

ZTTcj^

^ TTQ J a
' o

Replacing f(z) by the required output functions in the above equations the

following general expressions for the coefficients are obtained

r.Ti'

^k =
TTc^

k \ \COS? C05 — ± d^ - -^
TTc^

"2Trq

COS COS — ^ di
I

2q-i S

A slo-k TT
TP a q"

US-'^'
_ k'

/TT

b =

a J

cos ? s.'o -H ^ d^ -

f^^q

a J

cos L 5 ; o -^ ^ d^

u"

cos -^TT
s

The second expressions for a^ and b above may be used to

evaluate the coefficients when qy k . For the case where q= k

the integral expressions used directly are more convenient.

-^ Anticipating the use of an illustrative example the coefficients

for the first eight terms of the Fourier series using a value of c^- A-

have been calculated and are tabulated below.
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k ^< b.

1 0.350 -0.821

2 0.226 -0.1731

3 0.174 0.0643

4 0.125

5 0.0794 -0.144

6 0. 0420 -0.0535

7 0.0154 -0.0303

8 -0.027

Now, it is necessary to obtain the transfer function of this

sampling circuit in tertns of the complex variable s eventually to

investigate the stability of the system. The transfer function is the

ratio of the Laplace transforms of the output and input functions of

the sampling circuit.

The Laplace transform of the output function is

kOO
~S2

oo

= I°K-r
S%-^.

Similarly for the input circuit

,o<J

"S (a. Cosily ^b sio-^?)e cl=2.

o k=t

y u — - ") Co^q s -»- b k:)

-52

5 1 1-> t e d? ^
S^H. ,
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Therefore, the transfer function of the sampling circuit may-

be written as

F,(.) - Y -^^ (a^S5 - K^\ (17)

Introducing a term 2.C5 in (17) to take into account the damp*

ing which exists in a real circuit because of resistance elements the

function F. (S) will be modified as foUov^s:

V 4
\ -^ZCS -4- S

F,CS) ^mod.-f'.eci = 2. q ^^ ^^^cS^ ^ ^^^ ^ (18)

It is now possible to proceed to the development of the appro-

priate amplifier transfer function and to determine the overall

stability of the system.
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V. AMPLIFIER CtlARACTERISTICS AND STABILITY ANALYSIS

An appropriate procedure for determining the amplifier

characteristics is ^
, (1) to find the approximate behavior of F^cs)

for s^ Lcu <<.'l such that 3jCi uj^ does not intersect the unit circle

and (2) to determine the function F^c^) so that it has the prescribed

behavior for small values of <-o and vanish for large oo . The

first part of the procedure may be carried out in the follovving

manner. Each of the terms in the expression for Sz c^"^
^

e^c.i- - '- — (19)
Jj^CS) ^ F.(5) F2CS) D^C%)

obtained from Equation (16) may be expressed as a power series in

Thus

and . J3^(s) = B,s + B^s^ (20)

where B.= ^ (P-^^)
^ B, - J (21)

The B. are obtained by expanding the determinant of Equation (14).

The terms cO,(5)
^

jD^Cs) and X)^ C5) depend only on the fixed

parameters of the basic motor. Equation (18) representing the

transfer function F, cs) of the sampling circuit may be expanded

as follows

~=I
Ic^i

(l+2CS-l-S^) 1
_ _ (2.CS-1- S^)-t- - (2.CS-t- S ) +... 1+ s

k k^ k^ V b^k
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oO oO

Zc ('-^)
^ \

a^q

k

q
I + 2C —

k

kV b^ k

o^q
ZC+— I- 4.

q^

k"

z.

S -f (22)

It Is appropriate to choose the folloiwing form for the amplifier

transfer function

(23)
C-0

p.cs,~ C-; - K
U. + {'%

where the -f-i^ are unknown constants. The function 3^*^^^ rriay

now be written

(o) ,C»"^ (1) z

3xCs^ =

C J CO)
1 *.») J ' ' \

t d, -V. d, s -+- d, s )

drici;'\^(A„-.A.5.A.5^) (i'"'i cv4:^)(B.5-. e^sM
(24)

where, for brevity, A. represent the coefficients of s in the approxi-

mate expression for F, (s) , Equation (22). The reason for choosing

the form for F^cs) of Equation (23) becomes clear from inspection

of Equation (24), since, for s e

9,co) =
^,0. . rC-O

z +

and 9^(o) remains finite. Now the requirement that the

curve lie outside the unit circle for small co may be miet as

follows. Prescribe ^^Cvoj) by the polynomial

(25)

choosing the i>-^ so that stability will be obtained. Then there are

^
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two expressions for g^cs) valid for small s namely

g^cs^ = <. + Ts.s + 6, s^ (26)

and Equation (24). Since these two expressions are power series

expansions in s they are equal termi by term. The results of setting

coefficients of like powers of s equal to each other are expressions

relating the unknown constants 4-^ and the known coefficients from

which the values of -^^ may be calculated. Thus, after performing

the necessary operations and retaining terms in s of no higher

power than s the following expressions for the ~(^ are obtained:

,(->!
I

(0)— - O, (27)

C'-~

(.^

4r^
B.J

qw
t-

1

(o

L^

6.) —

2cu-9:u°'"-

t-0

(28)

-^4.
(o^

2c h- -1+ —

tri

q^ \ a^q
2i \\- - +

k / b. k

(<)")

oo
qb^

f j-.^

•.ItI'^ l^' / b,k

C-0

a.
CO

~f. \ r. k
(29)
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The second part of the procedure for determining the complete

amplifier transfer function is to obtain an expression which agrees

with Equation (23) for small values of s and will vanish for large values

of s so as to leave the original Satche diagram unchanged for large s.

Consider the following choice of i^-z <-^)

where a, b, and h are constants. For small values of s

Fz (s) = -^-
( 1+ as + bs^ )

s

and the coefficients a and b must become

in order that (\(&^ may agree with Equation (23). For large s,

I

F, (s) will behave as , causing the second term in the

denominator of ^^Cs) in Equation (19)» that is, the product

F, lb) F^(5) 0^(5^ , to behave as s° so that the value of ^z.^^)

becomes nearly that of the basic motor without feedback. The value

of h must be such that stability will be obtained for all values of s

and will be determilned largely by trial and error.

The exact expression for the function ^^C^) becomes then,

for all values of s

-
( d, 4- d, 5 ->- d. S )

g^(s) =

ci. +d. s + ) —^ B.S+ B,s )

'' ^^ (32)
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To illustrate the application of the stabilization procedure

consider the unstable motor for which the Satche diagram is shown

on Figure 3. To provide stabilization at low values of co the curve

of <^^aoo) must be moved away from unit circle. Choosing the

following values of ^^

!5„ = -1.25
^ V, a -2.0 ^^a -0.25

and using Equation (25) for <:^^ci<^) the dashed line on Figure 3 is

obtained. From Equations (27)« (28) and (29)* using a vadue of

c B 0. 1, and summing over the first eight terms of the Fourier

coefficients, the jz' are

{,^"'^« 0.304 -f'°a 0.032 -fj'^= 5.34

which fixes the feedback loop for small values of od . To obtain the

general expression for the amplifier transfer function the constants a

and b are, from Equations (31),

a a 3.395 b= 17.48

and F^cs^ becomes

O3o4. (^ -^- 3.3SSS + <1.A&^)

Choosing arbitrarily a value of ha 1 the function gjCs) becomes

- ( I + 3. I 5 H- l.bS^ )
9,cs^=—

2.5^0.q5^ -i-) I (1.55 - i.Ss^)

V--1 16 ^ '
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For the condition where s = i uj

- (I - I. 5 co^ -V 3.1 i oo )

Z.S* O.qioj -* — )
^

- \C-i.5u7"+ l.5ioj)

This function Is plotted on Figure 5 and shows failure to provide

complete stability since It cuts through the unit circle.

For a value of h=io however, the function (^^ciuu) stays

clear of the unit circle for small values of co , as shown on

Figure 6 (on this plot also are shown the unstable curves of the motor

without feedback and the curve for the approximate behavior of

with feedback for smiall values of co ). As oo Increases, c^^uco)

moves down toward — ooi ; as s traces the arc In the right-half

plane shown on Figure 2, g^cs) proceeds In a large clockwise arc

In the left half -plane and returns to the positive Imaginary axis and

finally traces a mirror Image of the contour below the real axis. The

closed contour, therefore, does not enclose the unit circle.

To check for unconditional stability the Nyqulst criterion must

be applied to the denominator of gjfS) , namely ^^(S)+- f^,cs]FiCs)C^csV

As shown on Figure 7, the plot of this function makes no revolutions

around the origin demonstrating unconditional stability for all values

of tittle lag.

Of special Interest Is the behavior of Q^^ci-oo) In the vicinity of

CO ss 0. 9. For frequencies close to this value the proxlmilty of the

curve to the unit circle shows that pressure oscillations In the com-

bustion chamber nnay be poorly damiped.
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VI. CONCLUDING REMARKS

The scheme of introducing a sampling circuit in the feedback

loop to transform the pressure signals in a certain nnanner and

alleviate probable tnechanlcal difficulties in the variable capacitance

does not appear to make the problem of designing a stabilizing

circuit more difficult than usual. The question now arises as to the

possibility of designing a practical sampling circuit iwith real

components that will transfortn symmetric signals to non-synnmetric

signals. It is necessary to introduce an actual nonlinear circuit into

the problem and to analyze its stability and perform,ance. In all

probability the technique of analysis must be modified.
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