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NOTATION
p Powaer input
T Thrust
Q Tangential force
n Number of blades
Du2R Diameter (of rotor and shroud)
l Length of shroud
h=l/2R Length-diameter ratio of shroud
r Hub radius
r
a } Cylindrical coordinates
é
z=1r/R
} Nondimenzional cylindrical coovdivstes
% Velocity of approach
@ Angular velocity
A=vo/ul Advance coefficient
r Circulation
G-t Nondimensional circulaticn
v, D
%, ' Axial componont of induced velocity
w, Radial component of induced velocity
u, Tangential component of induced
velocity
e Sink density por unit ares
o Cavitation number
¢p Drag coefficient
¢ Lift coofficient
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Drag-h ¢ ratio

Thrust coefficient

Powar coefficient

Symbols for functions which sre
defined in the paper
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ABSTRACT

Tho flow and the forcos which are gonorated by a propuision system
consisting of rotor, shroud end guide vanos are analyzed. For this purpose,
the components of the system are replaced by proper singularities. From the
component velocity fields and from the characteristic conatents of the singu-
larities, the interaction forces between the components are determined from
which the net forces of the unit follow. Tho deduced expressions for thrust
and powsr input taken together with the pressure increase at the roter, which
arises from the action of the shroud, and with the condition of cavitation free
flow form the basis for a method of design of a propulsion unit. To apply this
method, knowledge of both lift versus angle of attack curves and of pressu-a
distribution curves of sections in cascado is necessary.

Comparison of experimental results fot the efficiency and for the inter-
action force between rotor and shroud aro in fair agreement with tho respective
analytical expressions taking into account the lack of knowledge relative to
the drag of tho shroud,

1. INTRODUCTION

Recent interost by the U.S. Navy in the possible application of shrouded propellers
to various types of naval vessels for the purpose of delaying cavitation and propeller noise
has led to a study of the av+ilable theory of such a propulsion system, It was found desir-
able to consider further the theoretical aspects of this problem which has resulted in the de-
velopment »f the theory represented here. It is planned to supplement this work with a pre-
sentation of the theory as sppliod to a specific dosign problam.

The forces on the components of the system and the design data are to be determined
for & given net thrust of & propulsion system consisting of rotor, shroud, and guidc vares
(the latter two components being stationary) and for given quantities of speed of advanco,
numbez of revolutions, rotor diameter, and pressure at the rotor (due to the action of the
shroud). For this problem, it is necessary to ascortain the mutual interaction between the
components of ths system which follows when these components, with respe.” to thair effect
on the flow, aro replaced by propce singularities. In ordor {2, deduco the component forces on
the basis o such a theory, it is necessary to know the component velocity fields. This re-
quires certain spproximations which will bo mentioned first ir. connection with the singuleri-
ties.

The shroud is considered to he an annuiar-shaped thin hydrofoil; all the sections,
determined by a meridien cut, are supposed to be of equal shape. This axisymmetrical hydro-
fail is replaced by a row of adjacent circular vortices. Furthermore, it is assumed that the
shroud is a circular cylinder with a diamoter equal to that of the rotor. This approx:imation

CONFIDENTIAL
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holds if both the ordinates of the camber line of the hydrofoil section as measured from the
cylinder and the sguare of the siope of the ordirates are small. Then, the circular vartices
can be arranged on the surface of the cylindez, i o., their diameter is conatant and equals
that of the rotor.

The gap between rotor and shroud is assumed to be very small and the length of the
shroud to be sufficiently great so that a radial flow around the tigs of tho rotor blades and
the equalizing of pressure which arises from such eadis! flow are prevented, Ther a circu-
lation which is independent of the radius is pousible at the votor for which free vortices are
not present., When the blades are replaced by lilting lines, the vortex system of the rotor
then consists merely of tho lifting lines and of a hub vortex of the combined circulation of
that of the lifting lines. Furthee, discontinuities of the velocity comporents occur within
the boundary of tke rear part of the jet. The introduction of helical vortex lines within the
boundary would be necossary to account for theso discontinuities.

With respect to the velocity field of the rotor, the influence of & finite number of blcdes
is neglected; by this simplification, the field of the absolute velocity becomes independent
of time. It is shown later that this assumption may be justified with the number of blades in
practicat application. Then the discontiuuity cf the velccity within the bu .ndary of the roar
jot is equivalent to s vortex sheet consisting of helical vortex lines. It is -« known that
such a sheet can be resolveil into two sheets, one consisting of steaight vorte. ines which
are parallcl to the sxis and the other one of ring voctices which are perpendiculsr to tha axis,

The first sheet producos valy tangential velocity components, as follows frun, :ho law
of Biot-Savart. Within the inside fluid, i.e., within the slipstream, the velocity from this
sheet aquals zero (as follows from Stokes’ law). The tangential velocity components pr.
ducad from this sheet on the shroud (which is withia the outside fluid) are without interest
for the interaction between rotor sud shroud. Hesce, the sheet consisting of straight vortex
lines need not be considered in the following.

The sheet of ring vortices can be replaced by singularities on the propeller disk, It
is well knowa that the velocity potential of a single closed vortex equals that of & unifcem
distribution of dipoles aver any surface bounded by the vortex, the axes of the dipolos being
perpendicular to the surface (e.g., see Lanb, Hydrcodynamics, Art. 160, 161, and 102). The
singularities on tho disk which correspond to a row of closoly adjaceat ring vortices behind
the disk follow when integrating the potential of a single ring vortex from 3 = 0 (at the rotor
disk) to infinity downstresm, as given in Lamb, Art, 161 (18). Tho result for the inflow is
that the potential of this row of ring vortices equals that of a uniform sink distribution over
the disk. The samo result has been obtained by Dickman in a different way, viz., from
Euler’s differentie!l equations,?!

Roferences sro {isted on page 43.
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In the following discussion, the rotor inflow is brsed on the flow of a sink disk by
which numerical calculations become simpler than from the valocity field of the cylindrical
vorlex sheet at the boundary of the rear jot, Tho force on the rotor,however, is not calcu-
lated from the forces which act on tho sinks but frcm thoso on the lifting vortices, permitting
the influence of a finite number of blades on the force to be approximated.

Analagously, the guide vanes are replaced by lifting lines in order to determine the
forces. The total circulation of these lifting linos is taken oqual to taet of the rotor in
which case, with a finite number of blades, the average of the tangential velocity component
within the slipstream equals zero at tho design advance coofficient. With respect to the
infiuence of the guide vanes on the axiai and radial inflow, which deperds on the thrust
louding, rotor and vanes are considered as a unit which causes tho sum of the componant
thrusts. Correspondingly, tho strength of the sinks at the rotor disk is determined from the
sum of the thrusts of rotor and vanes. This amounts to a noglect of both the finite distance
between rotor and vanes and of thu variation of the circulation with time which arises from
the interference betwoon rotor and vanes with a finita number of blades,

The vanes ate considered to be situatod behind the mtor. In this position, the vanes
cause a thrust which is in the same direction as the thrust ganerated by the rotor. On the
cther hand, due to the pressure increase which arises from the positive thrust, the losses
at the vanes are greater than when located in front of the rotor. In this latter arrangement,
a negative thrust arises et the vanes which leads to a pressure drop and, therefora, to small
losses. At the same time, the necessary lift coelficients at the rotor are smaller in the
latter arrangement bocause of a greater relative velocity; this advantage with cespect to the
onssot of cavitation may be offset by the smaller cavitation numbers of the sections of the
rotor.

The termination of the rotor shaft roquites singularities which are chosen so that
the meridian cut of tho shaft becomes a streamline of the combined flow. If this condition
is not satisfied, tho continuity equation is violated. Approximately, however, a single sink
on the axis may be sufficient to account for the effact of the shalt,

When the components of the system are replaced by the afore-mentionad singularities
within a uniform velocity field, which is idontical with the speed of advance, the fcrce act-
ing on any one singularity foliows from a goneral rule (Lagally). For the problem under
consideration, the main consequence of this genoral rule is that the interference velocity
on each of the singularities arising from tho other singularities prosent does not lead to a
resultant force but to interaction forces bstween tho singularities. From this, the reaction
between shroud and rotor, e.g., is determined either from the singularitios of the shroud and
the velocity induced at the shroud frem the rotor or from the singularities of the rotor and
the velocity induced at tho rotor from the shroud. The force follows from the product of the
characteristic constant of the singularity (e or I') times the velocity. In the case of a sink
singularity, the direction of the force equals that of the volocity; in the case of a vortex,

CORFIDENTIAL
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the forco is normal to the velocity and coincides with the vector product (v x curl v), This
latter special case of the general rule is the well-known law of ¥utta-Joukowsky.

2 THE VELOCITY FIELDS

2.3 THE VELOCITY FIELD OF THE SHROUD

The velocity field of the shroud is determined from its chordwise circulation distribu-
tions two casec can be considered in this zespect, viz., the shape of the shioud is given and
the circulation distribution is to bo determined or vice versa. In both of these cases, the
unknown quantity follows from the boundary condition of the flow, .viz., that the section of
the shroud is a streamline of the relativa flow at the shroud. This flow results from the
undistutbed flow, frcm the induction of rotor, guide vanes, and shaft sink, and from the self-
induction of the shroud,

The probiem of detemiining the circulation distribution, neglecting the thickness of
the shroug section and considering the camber line given, leads to a complicated integral
Zyuauch e whick Dickmann gives an approximate ¢ -lution.? Howevoz, 4iis solution be-
enmss very taborious when A = I/ 2R 2 1, A being the ratio of shroud leng% to its diameter.
This case cannot be excluded from considecation. Therofore, it is danirable to avoid begin-
ning with a given camber line and to begin instead with a rive. circulation disiribution
which necessitates the determination of the camber line alee ~arus such that the circulation
distribution is realized, i.o., that the afore-montioned boundary condition of the resultant
flow is satisfied. Proceeding in this way avoids the intagral equation, and the camber line
follows from a (irst-order diffarential equation.

The cizculation function over the chord length of the shroud is chosen to be a half
ellipse in order to avoid peaks of negative pressure. This circy’ .lion function requires
that the forwatd stagnation point be situated at the leading edge of the camber line (shock-
free condition). It is well known that this condition is aatisfied in the case of two-dimensional
flow at a flaz wing with a parabolic camber line at zero angle of attack, The camber line and
the geometric angle of attack of a ring-shaped wing which satisfy the shock-free condition
are not yet known. Both of these vnknowns ~an be determined after the component velocity
ficlds have been estsblished,

For the velocity field of the shroud, a cylindrical shaet of adjacent circular vortices
is considered corresponding to the afore-mentionad ussumptions. The stream function of a
single circular vortex of eadius R, width da’, and circulation (yda’) is, in cylindrical coor-
dinates, 7, @, and ¢, represanted by (e.g., seo Lamb, Art. 161)

L
dy== gk (' rRY K(2D-K) with p=KZE
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K and £ are the complete elliptic integrals of the first and second kind, respectively,
of moculus & which is determined by

2 4TR

k “la—a N+ (r+R)

where a’ fixes the location of tho vortex ring.
From thia expressioa for the stresm function, tho velocity components of a single

circular vortex ring are deduced when applying the following relations for the derivatives
of the complete elliptic integrals with rospect to the modulus

d(kD)  _d*E _K-D
dk dk*  1-k®

d(kK) E
dk 11—k
One obtains
dw,--zgf R {2rD+(R—r) Ez‘}
a-a')+(r+ R]E 1=k}
yda' R(a—a’) { E R
dw, = — —211}
T e-a') + (r+R)IE 1-k*

dw, =0 "
Because of the axial symmetry of the probiem, both the axial and radial components
are independant of the angular coordinate, and, {urther, tho tangential component equals

zm.
For a vortex cylinder of any circulation distribution, the velocity components follow

from the elementaty components of a vortex ring by integration. The result written nondimen-
aionally for an elliptic distribution is:

3
.1.,1'_ 1 .,_.Lj‘“z"'z' 1 —2?

1’0 Gs 2”’ -1 (1]
v (k
k’{(l-—z %%—)—i-kz:cl)(k)}dz'
3
Bl b b T
% Gy 2w~ 2]
k’{(—E,;(,—-;‘z)-—"D(k)}dz’
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{ are nondimensions! cylindrical coordinates,

where
Z =

wimlR o]

! is the length of the shroud,
is ‘: "
[h(z= 9] + (142)

k2
is 1 - k2,

(x7?
is the ratic of length to diameter of the shroud,

l
h=2m
is the variable of integration over the chord length of the shroud, and

a
z = —-
is the nondimensional total circulation of the shroud. This quantity is

positive if che focce which is genciated by s positive v, (in the direction
of positive g) is positive (in the direction of positive r),
The complete olliptic intograla within the velocity components have been expressed

by integrals over a product of the modified firat ordec Bessel functions in a paper by Stewart.3
For numerical purposes, however, the velocity components as written in Equations {1} snd

I
Gs = (2Rv,)

{2] are found to te more convenient.
Relative to the problem under consideration, the velocity components of interest are
those within the plane normal to the axis through the halfway point of the shroud length,
3 = 0, (in which plane rotor and vanss are supposed to be situated) and, further, at the vor-

For the plane 2 = 0, there is obtained from Equations {1} and (2]

tox sheet, 2= 1,
1 10 £
25_ o — — 2 - c’ 3 - ‘ .
( : Gs)uo ”,foz Vi-2* & {(1 Z)W + 2zD(k.} dz
.3 E (k)
(.‘fl_l.) SN et SO 1-2% k'{‘—-,—z - ZD(k)}dz‘ﬂ’O
v Ggl _, 2nt)a (k")

k2= 4z
(hz'¥ + (1+2)°
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The radial component in this plane becomes zero since the integrand is an odd func-
tion of 2°,

At the axis, z = 0, the irtogrand for w, can be oxpressed by known functions.
One obtains

w, 1

(3 8)usy =~ 5 B m m - A B0 a0 B - k()]
2
e

At stations 2 which are different from zero, the intogral for w _ can only be evaluated
by numerical calculations. The results of these calculations over a range of A ure represent-
ed on Figure 2. From this figure it {ollows that tho velocity distribution within the middle
plane becomes uniform for shrouds of a length greater than about twice the diameter. For
shorter shrouds, the axial velocity becomes increasingly less uniform the shorter the shroud
is, tho velocity increwsing frcm the axis towards tho wal! of the shroud.

It should be mentioned that different nctations for the same velocity component are
used in this report. For instance, the afore-deduced velocity component (w,),_ , is the

1.6 Q /
?v(n) /
~t.4
' +7 v//
- 1
2 I( ”\j 2 :‘ -2 // /
[t 3 ' Iydl] " /
-|e _ W
.0 / / *
1.0 <]
—'—o—b ! ke0L | % // -,
* » N
B I B e he0.73 L
a(n) “08ine 10
)
hs 1S
-08
' hs 2.0
he 2.8
o4 0 0.2 04 0.6 08 10
4
Figure 1 Figure 2 - Velocity Field of tha Shroud in

the Plane 3= 0

Middle plane normal to the axis.
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component induced at the plane 2 = 0, d.9., at the disk fri.m the shroud. In the application
of this work, ‘a notation with two indices is found more convenient. The first index fixing
the plane of reference and the second one the component of the system by which the respec-
tive velocity component is generated. Correspondingly, the velocily component (w,), . is
denoted on the diagrams and later on in this report by (w,)p s Analogously, (%) s, s denotes
the self-induction of the shroud,{w »s,p the axial component induced at the shroud from the
disk, and so on.

The self-induction of the shroud follows from Equations {1] and [2) with 2= 1

wy 1 1 [1-2 Z .8

= = - 1-2'° K D(k)d(z'—

2 Gb),, —"—,f_“")v 2 (k) dz'— 2)
wel - s B(R)
(”oGs);':; j‘ (z-2)V1-2 P{(“ — 2D(k) ¢ dz

4
e i T aa
[h(z—-z')] +4

Both of these integrals become improper integrals when a‘ approaches 3. In this case,
k approaches 1, £’ approaches zero, and K approaches infinity as nat log (1/(s ~ 2%]. - With
reznact to the integral for w,, the transformation (&°~ 3) = 2" is introduced. Then the product
(K ¢~ 1) spproaches zeto when 2’ appronches 3 provided that » > 1.
Correspondingly, n = 3 is chosen for the numerical evaluation of the integeal in order
to have teal vetues of ¢ for nogative quantities (2° - a); it follows that
w, 1

(__“.—-) -—- V_f pet WX | 2
v, G e 1-2°k*D{k) t2d¢

1] SZ=

Tho results of the numerical evaluation are represented in Figuro 8. The curves are
symmetrical about 2 = 0,
Relative to u,, the integral

+1 E(k)
Ha= [ —yt? ks Nk
.!‘-x (z z;‘/l z — d
(k)
is considered first; the integrand vecomes indefinite of form 0/0 when 2 approaches a,
Replacing (£°)? by (1 - £2) gives

Vx- 2 °E
Hu—— —--dz+ z—z)l/ 2% k3B d
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~ -oz I~ //J///
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16 -08 -0& ~0.4 -0.2 [+]
20t

]
Figure 3 - Self-Induction of the Shroud
Azisl Component

The first of thece two integrals is an improper integeal. To detormine its principal
value, we introduce 2’ = cos @, d3’= ~ sin @'d¢’, 2 = cos ¥ and resolve the numerator
(V1= 3'2Ek38in0) within the intetval, ¢’= x to @ =0, which corresponds to the interval
2=~1% 3=+1, into a Fourier-series

2? KEsing = KEsin’¢ =Za,,cosmp

nz0

Then it follows that

41 l’ 3 [od
J' V k dz ag%‘[ coscomw 40“24, sinng = m a,.sinmo

¥ —cosg et sing amw

| i a dn f ‘ z)’ 1 - z’z l 2 + 2 - ’, ’

Within the integral, the product K(2’~ 3) approaches zero when 2’ approaches a; thus
the integral can be evaluated numerically without difficulty. Relative to the first term within
the brackets, this term becomas indefinite of form 0/0 at the end points of the interval
2a-1and 2=+7% FromI'Hospital’s rule it follows that

CONFIDENTIAL
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w, 1 b [4 O 1 +1 .
forz--1: (;:E;)z” = 2—,':{?2’(-1)”.* na,,+J - .dz}

n=) -1

ar}

The numerical results as obtained by means of Fourier-expansions consisting of six
terms ¢, are roprosented on Figure 4. Since the radial component is an odd function of 2,
it is repressnted only for an interval of 2z from -1 to 0,

It should be mentioned that the main difference between a ring-shaped and a flat wing
lies in the axial component of the self-induced flow. This component is zero in the case of
a flat wing and arises from the lateral parts of the ring for a ring-shaped wing.

The velocity which is induced at the shaft sink from the shroud is dotermined approxi-
mately by assuming the total circulation of the shroud I'; concenteatud in a single vortex at
2 =0, From the stream function of a single circular vortox, one obtains at the shaft sink
with coordinates z,, = 0 and 2, = a,,/(I/2)

wely b 4§ I“
Yo Gs)zan 2"’{"!{';"’, nan -1

Wy 1 . 1

5 G )/A,S = (———————Il ; gz‘k/,’)z f1a]
2.2 THE VELOC!TY FIELD OF ROTOR T l

AND GUIDE VANES
N
N
As mentioned previously, the effect 1.0 b I\
of rotor and guide vanes on the inflow is \\
deduced from that of an axisymmetrical sink L¢0.S
distribution over the rotor disk. For a disk « L
of small thickness §, the volume element ,_’L} \\
amounts to dV = ¢’ (dr’) {d ) §. sl® N
Lot ¢ be the strength of the sinks 0.5 ] 078 \j

per unit volume; then the strength of the L A AN ]
volume element becomos de = #’(dr") (d¢) A |,> \\
(¢58). Passing to the limit 5 = 0 in such a \1\\ ‘\ \\
way that the “‘surface density” e; = ¢8 T~ l% N\
remains constant, the elementary strength \?5_:_:\ N
of the surface element d 4 = r’(dr") (d¢) %5 =05 r
becomes (e, d 4) and induces, at a point :

with cylindrical coordinates (a,r,0), the
velocity element

CONFIDENTIAL
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2 = _eﬂié_ = -t L
(d*w) amp? in r'dr'de

where p is the distance betwecn the area element of the disk and the point of reference, If
the area element has coordinates (0, r’, ¢), it follows that

pt=a? +(r'sin @)’ + (r— r'cos @)’

For the components of (d i), there is obtained:

(d*w), = (d%0) 2
p

(@), = (¢*w) cos (v',p) = (d*w) (.i').'_ 7 con o)

Introduction of the expressions for (d 2«) and p into those relations and integration
over ¢ yield the following result for the velacity field of an annular sink ring, ¢, being in-
Gependent of ¢

2(ha)(£)? ER) ¢
() +(2'=2F Voo, (rh e 20F
dw'= - ‘el’. dz‘ 1.
205 Yhal + (2'+ 2 )

{K(k) - B(1- 22{22) ]} -t gy’ W
(h2l’ + (2'=z)?
‘The modulus 4 of the complete elliptic integrals has the value

2Vzz’

V(hz)’+(1"+ z)? .

The tangential component is zuro because of axial symmetry.
From these expressions, the velocity components of a sink disk follow when integrat-

dw, = Ly de’

; dr'w, (3]

k=

ing over 2°. Since ¢, may depend on 2*, there is obtained

10 w*,.
TE - —a
e = 5 z:u - {3a]
1 (' w',.
Wy = ~ 2n zhel) z' dz [431

where the nondimensional :adius of the hub 7,/R is denoted by z,,
Putting < = 1 in the expressions for £ % and «* gives the velocity components which
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are induced at the shroud from the disk. ¥For this case and for A « 1.0, the one factor of the
integrands, viz., (1%/2") 5.0 and ("’7/“"’3, p 18 represented on Figures 5 and 6, respectively,
In thesa representations, most of the numerical values ot the functions «* and w2 have been
taken from a paper by Kuechemann.4 With respect to the influence of 4, the determination of
tho cusves for one value of A is sufficient since «* and «*, from Equations (3] and (4], re-
spectively, depond merely on the product (4 3). That is, for different valuos of A, the curves
for « % and w$ shift so that the same ordinato belongs to a differant abscissa, which follows
from (4 3) = constant,

In order to determine (1) S,D wnd (v,) S,n? the veriation of ¢, over the radiue must be
known. 1f ¢, is indepondent of z ot can be replaced by s suitable avetage ¢, the expres-
sions become
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2 LT
) —_— = phl !
g, 37 Lh e dr (3b)
2r " wt .
(u,.)_\-‘,,e?" = - Lh - dx [4b]

which can be computed numerically from the quantities on Figures 5 and 6; the result1s

given in Figures 7 and 8, rospoctivoly, for a hub radius 2, = 0.4 and for a range of 4. With
respect to this latter variable, the curves are related in the seme manncr as the integrands.
Relative to the self-induction of the sink disk, tho axial compcnent of the induced

velocity is of interest because of its relation to the thrust. From Equation [3}, the compo-
nent would follow at each station 2 from:

!
(w,), ., = Lim J‘xhdw,,

Instead of detormining this limit of tho intogral, there is a more conveniont wry of

ascertaining (w,), _ o by representing w by 2 series of Logendre polynomisly
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Far a sink disk of radius £ with ¢;, assumod to bo indepondont of tho radius, the
velocity notentinl ¢ at any point r< # is reprosented in sphorical coordinatos r, ¢ ,¢ by

the serios
— 4 ¢
= % _r lLr ,_1r
.0 23(’ rE* s b 31?"’«*"')

P, =P, (cos4t) is the Logondre polynomial of n*" dogree. This potential satisfios Laplace’s
equation, the boundary conditions boing the values of the potential at infinity and at the
axis; the latter is known from a simple intogration over tho radius of the disk. By comparison,
it is seen that these boundary conditions are idontical with those of the gravitation potential
of the disk; the dotails of this deduction are available in standard toxtbocks.

From the afore-written series for ¢ (which is indepondent of ¢ and, therofore, axi-
symmetrical), the axial velocity componont at points arbitearily near the disk

(J = g ~¢€,e» 0) becomes

8¢
= };(Z‘J)azg_.
« >0

Walpp, = —‘g for r < R (5)

For points of referonce for which » > £, the potential is ropresentod by

= Sp(lR_1R, 1R
¢('.l” 2R(2 r B2 I;+E--;3-p‘__“,)

from which ther” is obtained for points arbitcarily noar the plane of tho disk

(105)y, 1 = 0 for r>R 1)

if e, is indepondent of tho radius, the axial velocity component is constant over the
disk and is zero outside of tho disk for points within its plane.

Now compare the velocity fiold of a sink disk with that of a rotor, At the disk, the
velocity jumps from -(ep)/2 to +(ey)/2: this follows from the afore-written velocity poten-
tials., Othorwise, the velocity field of the sink disk is continuous. In particular, with re-
pect to the axial component, it follows from Equation (3] that positive values of 2 (which
ara behind the disk) yicld a negative quantity (t ), €, being a sink donsity. As compared
to the absolute flow of a propeller, this holds for the velocity field behind the propeller
outside of the slipstroam but not within tho slipstream. To approximate the slipstream be-
hind the rotor with respect to the avial component, 1t is nocessary to suporimpose on the
sink flow behind tho disk a velocity field of magnitude |e pl which is in the direction of
pesitive z. Then the axial velocity component rigit bohind the disk bocomes

{lepl - 18p1/72) = fe,l /2 which equals the inflow into the disk. Infinitoly far bohind tho
disk, the effect from the sinks is ze.o and tho velocity cquuls IFDI. Hence, tho axial
velocity of the combined flow behaves like the axial velocity componont of a propeller, viz.,
it is continuous at the propeller and infinitely aft it increases to twice the valuo at the
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prupeller, Further, considering the axial component ii. the vicinity of & cylinder of radius
R, the axial component of the absolute flow is continuous when traveling through the cylin-
der in front of the disk but discontinuous behind it. This complies with the properties of
the axial velocity component of a propeller.

Behind the disk, the axial componert of the absolute propeller flow jemps from
[1€pl + w (+ 2)]inside to w (+ 2) outside of the race, and at the boundary it equals
[ep/2 v w (+ 2)]. Since w (+ 3) = - u (- 2) the axial component of tho intetference velocity
at the shroud from the rotor for positive 3 expressed in terms of the sink flow becomes

w2, = | L] - wal=2)5 (3c]

€~ 2 p following from Figure 7.

in addition to the axial and radial velocity components, there is also a tangential
velocity field from rotor and guide vanes which is caused by the hub vortices. When rotor
and guide vanes are considered separately and the blades are replaced by lifting lines, the
following conclusions are known from Stokea’ Law with respect o the tangential velocity
field of each of the components: The field is zero in {ront of the lifting lines and is

A
tT 4rm

(7]

at e lifting line, where I" is the circulation at one of the lifting lines and » is the number of
biades on rotor or number of vanes. In the flow behind the respective componant, the tan-
gential velocity equals twice this value, 21
The velocity which is induced at the T, (v,)”’o
shaft sink from the sink disk follows from
Equations [3a] or [3b] when introducing

Ton = ¢ /|.5

R M Y W ><‘/ =
" U lfo 24
/ \ 1.0
and when adding the (negative) quantity so @ 0.5
>< /

obtainad to the uniform velocity fiold |¢,|.
(Relative to the position of tho shaft sink on

the axis, see Section 2.3.) 1 5y 0.9
When & sink density at the disk whick 505 075 0
is independent of the radius ¢/, is assumed, tsh / 11..
the nondimensional axial component at the Figure 9
shait sink becomes
2” ! lwn.l ’ »
’?”- (wa),,,’” = 2 th 7- dz ", (34}
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This function #, is ropresented on Figure § for a racge of the ratio ¢, /(¢/2). i.e.,
the ratio of the shaft length mezsutad from 2 - 0 to tho length of half the shroud, and for
several values of 4, z, boing chosen 0.4.

2.3 THE VELOCITY FIELD OF THE SHAFT SINK

The termination of the shaft requires a sink-sonrce distribution on the axis. When
this distribution is approximately zeplaced by a single sink, it follows frem well-known
relations, 2, =R /R being the nondimensional radius of the shaft, that

for the strength of the sink ‘h = Rin 2t {8}

2 { 1 2
for the position of tho sink 2o = 'l‘/'; = l_;; -2 ‘f‘ [9})

Theso relations huld when the velocity v, is uniform. With the rotor and shroud
working, the difficulty arises that the velocity field within which the shaft is situated is no
longer uniform but aopends on both the radial and axial coordinates. As an approximation,
the sum of the velocity of approach and of tho axial components which are induced at the
place of the shaft sink from shtoud and rotor will be introduced for v,

vl’l : G\' 1 C-[,
-8 = -— + — | 23R 10
Yo Qs 3’2hh2)% 2 o 1 [10)

the function F, being represented on Figuro 9.

‘This approximation doos not satisfy the boundary condition that the normal component
of the flow relative to the shaft is zero. The etrors which arise should be checked after-
wards by calculating the normal componert of the combined flow on tho given shaft contour.

With these rolations for the sheft sink, ono obtains for the velacity components which
aro induced at the shroud from the shaft sink

(B) —-Lie g RETie) l110)
Vo /s,8h 4 v, A [ 1+ hz( 2 -"2,1,)2]-:2

(wr) = e l 2'_‘ x L -}' 3 b
T ] o 212
v, S, 04 4 vy [ 1+ h° (2 ~ z“)‘]z (1 }

The forogoing considerations and numerical ovaiuations give a sufficient knowledge
of the velocity field of the shrouded propeller. This velocity field forms the basis for ascer-
taining the force compononts,

CONFIDEKTIZL


http://www.abbottaerospace.com/technical-library

F )

[ 70,:, o

19 CONFIDENTIAL

3. THE FORCES

As mentioned on page 3, the interaction forces result from the mutual interference
velocities between the singularities, The interactions with the shaft sink will be omitted
whon determining these forces since these interactions are very small. Furthermore, these
quantities cannot bo determined very accurately because of the approximations for the strength
of the sink. (The velocity field of the shaft sink will, however, bo taken inw account for the
camber line of the shroud since in this case it is esaential in order to satisfy the continuity
equation,)

Disregarding the interactions with the shaft sink, the net thrust of the system will be
obtained when the axiai force on the shroud is subtracted from the thrust of rotor and guide
vanes.

3.1 THE FORCES ACTING ON THE SHROUD

The axial force on the shroud vortices I'g arises from the radial velocity component
which is induced at the shroud from other 2'ngularities present.

In this case, the singularities present are the oinks at the disk (which replace rotor
£ad guide vancs) and the hub vortices. Since the direction of the velocity induced from the
latter coincides with the diraction of the vortex lines of tho shroud, the cffect on the fotce
is zero. Then with the radial component from the sink disk (ic,)5 5, the axial force becomes

+*1
Ty, = 20R'mh|  siziw,)

o -y

Se »d {12a)

With a positive y(3) [which represents the circulation per unit length over the shroud)
and with an inward radial velocity component from the sink disk, the axial force on tho shroud
is directed backwards, i.e., this force represents a resistance.

Introducing for y(a) the elliptical distribution which is assumed in this papez, viz.,

y(z)=%v°9,;£ 1-2°

one obtains for the nondimensional coefficient of the axial fotce on the shroud which is in.
duced from the disk

(erls, = ,T“"’ = f _‘V -2 (% Toh @ 1120)

g(R - ":) muy 1 - z,

Aa alternative expression for this force can be deduced when considering the reaction
of the sink disk to the interfereuce velocity from the shroud vortices. From the rematks on
page 3, this reaction force is equal to but opposite to that which is caused by the interference
velocity from the sink disk at the shroud vortices and which is expressed by Equation {12a}.
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For this reaction force (denoted by '), o) in verms of quantities of the disk, th) following is
obtained

1
Tps = 2an’] enl2) (), zdz (13a)
z, ’
(cT)I;\ = 1_ z, J‘ —"'gi) 130)“ ‘xd:r {13b]
I(CT)S’D, = “cT)b':,-l {14}

Both of the expressions [12b] and [13b] depend on Lhe cadial distribution of the sinks
over the disk, Equation [13b] in a diroct way and Equation [12b] by (w,)s' p Which, from
Equation {43], is rolated to e o3 In order to evaléate Equetions [12b] and [13b), the distri-
bution e p(z) must be known. In the case that ¢, is independent of z or can be replaced by
an average ¢, p» the force coefficients can be evaluated once and for all. In this case if fol-
lows that

e ey 2| I ATl (CEWN - FE LY

and that

b 4 J‘ (fway 1 ]
("T)n,s G5 = sk . l.( "o)” s Go zdz {13c)

The factors in brackets are known from Figure 8 and Figure 2, respectively. The representa-
tion of these exprossicrns on Figure 10 shows that Fquation {14) holds within the accuracy
of numerical integration which is limited by the properties of the integrands when 2 approaches
zero and when z approaches 1. In the first case, the integrand becomes infinite since X be-
comes infinite as nat log (I/2) which necessitetoa, for numerical evaluation, the transforma-
tionz=¢"n>1

In the following, the absolute value of the function which is defined by Equation {12¢]
or {13c] is denoted by Fz‘

The radial fuece componant on the shroud is determined from the axial velocity compo-
nents which are induced at the shcoud. Since this force is normal to the velocity of advance
4 it does not affect the transformetion of power input within the shrouded propoller and 1s,
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Figure 10 - Axial Reaction Force Between Shroud and Rotor

therefore, not evaluated. This force is significant, however, for considerations of the
strength of the shroud.

3.2 THE FORCES ACTING ON THE ROTOR

As mentioned previously, the rotor is replaced by lifting lines in order to determine
the forces at the totor. Then the total force (including the reaction with the shroud) follows
from Kutta’s law, taking into account the resultant velccity field at a rotor lifting line,

The tangential velocity component is generated by the hub vortex of the rotor n g,
and there ave no parts within the tangential component either from the shroud (because ot
axial symmetey of the induced flow) or from the guide vanes (from the law of Stokes if the
vanes are arranged behind the rotor). Then, from Equation [7], for the tangential velocity
induced at tho rotor

= Ml G b
‘w')" drm x 2n [15]

With respect to the axia) velocity component induced at & lifting line of the rotor, this
component results from the shroud vortices and the sinks at the disk; the latter includes
effects from the lifting lines of the guide vanes. Accordingly
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(edy = (wady (0, = 2+ (1)

DS

Within this expression, (v o D,D follows from Equation (5] and (w ) D,s from Figure 2,
It is seon from this diagram that (i o)p,s 18 8 negative quantity when the sense of circula-
tion at the shroud is such that a pressure increaso arises within the shroud, i.e., when y
is positive. Then (v ) D.D is of the same direction as v, but (v ) D.$ is opposite.

With these expressions for the induced velocity components, the force elements at
the rotor become

in axial direction @7),. = p(nkl;,)[wr - (w,)k] dr {16}
in tangential direction (dQ), = o ( n,,l},)[vo +| f;él = (w,),, s‘] dr (17}

Absolute velues for the velocity components are introduced into the latter relation in otder
to avoid mistakes in the signs.

33 THE FORCES ACTING ON THE GUIDE VANES

Again, from Kutta’s law, these forces follow from the velocity components. The
exial velocity component being continuous, it equals the axial component at tho rotor

(o), = (wa), = |%| = W), ol

The tangential force component at the vanes which follows from the axial velocity
component is without interest for the propulsion of the system.

The tangential velocity component at the vanes (w,),, is determined from the condition
that the guide vanes cancel the tangential velocity field of the votor (which, however, is
possible only vith an infinite number of blades.) Behind the rotor, the tangeatial velocity
equals 2(v ), and bahind the vanes, it equals 2{w,),. Thereforo, to kave the resultant
tangential volocity zero in the slipstream, the following must hold

2(w)y, = ~2(wy),

That is, the total circulation at the guide vanes n, ", is equal but opposite to that of the
rotor ag ['p, and the circulation of the respective hub vorticas is equal but epposite. Then,
the tangential component induced at tho vanes from the hub vortex of the rotor equals

2(w )z and that from the hub vortox of the vanes -(i,)p; hence, the resultant tangential
velocity at the vanes equals
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l(wg)yl = |(w¢);¢| B em———— = e [18]

From the last relation, one obtains for an element of the thrust at the vanes

(dT)y = p(nvr;;)(w‘)vdr [19]

which is 1n the same direction 22 tk5 thrust element on the rotor.

3.4 THE NET FORCE OF THE SYSTEM AND THE SINK DENSITY AT THE DISK

Viith the relations which have been established 0 far, expressions for both the net
thrust of the system and for the power input can be established,
The et thrust T equals

T= TR+TV+7’S'

T, from Equation [12a}, being a negative quantity for a positive y.

Introducing Equations {13c}, [15], (16}, {18}, and [19] gives for the coefficiont of the
net thrust

T

¢ n,,G
T 2 2
%(R ~n2) Y,

A

=-2-
w

ehl Fz [201

the negative sign being necessary when introducing the sbsolute values |¢,| and F,.
An expression for the power input P is deduced from Equation [17] in connection
with Equation {13c]

on = P 2 II”GR
? -%(R’-— ) wy

[1+ -;é] - %Gs] (21]

In order to establish an expression for the sink density at the disk, we refer to the
law of momentum which states that the time rate of change of momentum equals the net
thrust of the system, Since the scheme which has been constructed for representing tho
rotor flow leads to the result that the absolute axial velocity equals l?;[ in the final wake,
the cizange of momantum of the mass per unit time dm equsals (%d m). With

dn = p2r1rdr[vo +(w4),,] = p2r1rdr[v., + | 322] - |(w.),,.sl-j

the law of momentum yialds the relation

T= ZpRJ‘h.e, o0+ |2 | = Wwansl) rdr
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In general, e, will be a function of the radial co.rdinate z. To maintain the simple
scheme of a circulai sheot of vortices which is concentrated within the boundery of the rear
jet, it is necessary (0 introduce an average of e, over the radius. The reason for this is
that a concentrated circular vortex sheet is equivalent to e uniform sink density over the
disk, as mentioned previously. Qtherwise, to account for a radially varying sink density,
additional free vortex sheets, i.e., a radially varying circulation at the bound vortices, must
be introduced which complicates the calculations considerably.

The average ?D is determined such that the net thrust from Equation [20], which is
the arithmetic sum of the axial forces on the substitutad bound vortices, equals the net
theust from the law of momentum. This leads to the relation

=V1+2 wle (22]

‘n
vO

3.5 RELATIONS FOR THE CIRCULATION AT ROTOR,
SHROUD, AND GUIDE VANES

When the required net thrust of the system is a given quantity, Equation {20] repre-
sents a ralation betwoen ¢ and the unknowns G and G¢. The same holds for Equation
{21] when the power input is a given quantity.

A condition for G is found from the required pressure increass in the plane of the
rotor Ap = pp - P, This pressure incresse is related to the flow within which the rotor is
located and whose axial component in the plane of the rotor amounts to v, - |(¢«,)p, stk
The:, it follows from Bernoulli’s eguation that

a
—— T _‘.l-G\-

(5 &), 1 123

from which the circulatior at the shroud is represented by

‘/ ap
= 1— 1—P/21'02

N

‘8

Gy {23b]

Since the induced velocity [(,/2,) (1/G4)]p ¢ depends on the radius, the required
pressure increage should be related «0 a certain radius.

The loading coefficient ¢, or cp and, further, A p/(p/2Y% , ng, and A are considered
given quantities. Then one obtains the circulation at the shroud G from Equation [23b]
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and, with this value for ¢ g the circulation G, from Equation [20] or [21] together with
{22]. The equation for (n, G ) so obtained reads in terms of the thrust coefficient

(268e)’ - (2k)  [ter - G m“’}p e T term2am) =0

or in terms of the power coefficient

(»,G,,) +(::,,G,.) erFz(l-gizﬁ)+ "RAGR)”CP(I GSF;)—%ac,?-O [25])

The circulation at the rotor being knowr, the circulation &t the guide vanes aquals the
total circulation at the rotor from reasons mentioned previously. Therefore

ny Gy = upGy {26]

4. DESIGN DATA FOR ROTOR, GUIDE VANES, AND SHROUD

4.1 ROTOR

Expressing the lift 0% an element of a rotor biade by the law of Kutta-Joukowsky and,
on the other hand, by the lift coefficient, and eruating the expressions, the following obtains

Iy
ety =2 3k

where the resultaat relative velocity at the station 7 of the blade is expressed by

V' = [ ‘*‘I%l - l(wa)o,sl]g*' le, = (w)))*

Nondimensionally, these expressions read

2 = v 42
() = [1+ 512 - el &), 17+ [5 - 2]

The density e D/"o is known from Equation [22], the axial induction from the shroud
[w,/v4) (1/Gg)p g from Figure 2. ‘

In connection with the last two relations, the direct.on of the relative velocity by
which the position of the soction is fixed follows from the relation (see Figure 11) :

(27)
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Cpd

(dr'),A

L " Wy

Figure 11 - Velocity and Force Diagram at a Section of the [otor

llf‘._lzl 25.1 “
tan B = *3 Vo G s/D,S

3 o (28)
_ 16
A 22w

Further, in the design of the -ctor, its local cavitation aumber must be known., This
is given by the oxpression

k 2dr
(Ps- pf w'

oy =

-G % - o374}
Gflor s
g =4 T8
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where g is the cavitation number of the undisturbed flow,
Cavitation will not take place on a section of the rotor if

o 2 |2mre
J2A v02
2 min

where the term on the right-hand side denotes the ¢bsolute value of the nondimensional mini-
mum of tho pressure on the section.

By moans of theso formulas, the design of the rotor follows usual procedure, viz., to
determine ¢; and / so that the calculated product (¢, {) is satisfied and that, : . the same
time, the onset of cavitation is avoided. This requires knowledge of both lift versus angle
of attack curves and pressure distribution curves of sactions in cascade. On the other hand,
the knowledge of two-dimensional cascade effects on the sections is sufficient for this prob-
lem since the flow at the rotor for a constant circulation is essentially two-dimensional (in
contrast to the unshroudoed propolier whore the flow i3 essentially three-dimensional).

4.2 GUIDE YANES

Analogously as for the rotor, there is obtained

L _ o,

(e,l)y = 2 V( T e Ve

since the condition of Equation [26] must be true in order to cancel the tangential velg ity
field of the rotor by means of the vanes. In this flow condition, the resultant rolative veloc.
ity at the vanes V, is oxpressed by

I3 o 2
2 e 2
Vo= [vo+!J-2'.‘ - (u',,),,.s‘] + (10,),,

Nondimensionally, the last two relations become

(CLI)L . "__R Vo )G”

D B ng\Yy
22 = 2 v (2 301
(o = o403 2 ), 1 (42

The angle B, of the resultant relativo velocity at the vanes with the plane of tho
rotor is determined from the following equation (see Figure 12)
1+l 7 l— G

,.('.’"’ -L) I

21, S ), .

tan By, = 2mr - v, elp,s (31)
ng G
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Figure 12 - Velocity and Force Diagram ot a Section of the Guide Vanes

For the local cavitation number at the vanes, the following obtains

R 2dr
"I

A o) o

if the approximation p;, = pp is applied,

43 SHROUD

In accordance with thin airfoil theory, the shroud section isconsidered to consist
of an infinitely thin,camber line section (which produces circulation) and of a superimposed
thickness form, the combined effect of which on the velocity distribution is obtained when
adding the individual effects. In the following treatment, the shape of the camber line and
its position relative to the undisturbed flow, i.e., its goometric angle of attack, are first de-
termined so that an elliptic distribution of circulation is realized on the shroud, and then a
thickness function in axisymmetrical flow is considered,

The shape of the camber line follows from the boundary condition that the velocity
vector at the camber line is tengent to this line, i.e,, that this line represents a streamline
of the flow. The flow at the camber line is a result of the velocity of approach, the self.
induction of the shroud, and the inductioae from both the sink disk and the sheft sink. Con-
soquently, the axial component of the resultant flow amounts to

v + (wa)s,s +( wa)S,D + (“'a)s,ch
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and the radial compononut to

( "’r\_\-'_\ +( “'r),\,l' +( "'r).\.;h

The camber line , with coordinates a and (r ~ &), is a streamline if

i" - ("r_)_\,\ + (“r)\»h + (" r)\uh
da ot (1l o + (u,,)\ ,,+(u,,)\ o

In this relation, the induction from the shaft sink has been allowed for in order to have tho
continuity oquation satisfied.
introducing the nondimensional coordinates

r-K _
y = l/' and < = [/2

gives a first-order differontial equation for the shape of tho camber line y = y(2)

R w. 1 “n il I
dy _ U" G ) ”T '. [( ?Ur)\ I) ‘,‘ (Q")\,,[, dz [33]

1+ (’S(i:‘j' ("!—x).s',s+ 2111' ’y [ ")\ b ;’] ("”) L)

in which relation the terms aro dotermined by the equations or diagrams as listed in the table
on page 30, The table also indicates the sign of the rospective velocity components for a
positive citculation at the shroud nnd for a sink density at the disk.

Feom Equations [3] and [4], the integrands uf both (wy)s,p and (w)s,p bocome in-
finite for z = 1 when 2 becomes zero, i.e., whon the point of reference coincides with the
edge of the sink disk. These infinities arise from the assumption that the vortices of the
shroud are situated on the disk cylinder instead of heing arranged on the camber line, This
means that in the neighborhood of z = 0, the finite distance d/2 between cainbor {ine and
disk cylinder should be takon into account although it can be neglected cutside of a certain
interval around z = 0. For this roason, the induction at the stroud from the disk as repre-
sented on Figures 7 and 8 can be considered accurate in an interval of z botween X 1 and
2 about % 0,2, the last figure being obtained from comparative calculations of the velocity
components at lines r= R + d/2 and r = &

Boiwaen 2 - +0,2 and z = -0,2, the induced veiocily componerts as represented on
Figwas 7 and 8 are exaggerated. With rospect to the integrand of Equation [33] which
must be known within the entire interval from 2 = -1 o z = + 1, 8 clogo approximation 18
obtained when reading off (« 5.0 between 2 = ~0,2 and 2 - 0 on the dotted curves of Fig-
ure 8. For these dotted curves, tho radial distance of the points of referen: . squals
(2 + d/2), i.e., 2= 1+ (d/l) h; these poit t= are vory close to the cambar line arpund 2 = 0.
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Velocity Component Sign for
~3 +3
wp 1 .
Yo Gs)s.s Figure 4 + -
(w.) 24 Figure 8
Wrls,0 & Figure 8a

( _z_o_,_)s' ) Equations [10]

Yo znd {11b]
w, 1 .
(2 &) Figwes - ]
2 Tigure 7,
(W)e. p=— "
woe Equation {3c] + (Figuze 7) + (Eig:l‘) >

(‘!_0_.,. Equaticns [10]

vo.)_,-,,,, and [11a) + when 3<3,, - when 8>s,,

To aliow for the influence of the thickness of tho shroud, the calculations have been made
for d/! = 0,04 and d/! = 0,06 (Figwe 8a); thess curves are 50 relatad that oqual coozdinates
are obtained for equnl quantities (d/7)A.

For (v,)g p» this component equsls zero at the point with coordinates s = 0 and
z =1 +(d/l)A. Since this component occura within & sum, together with the relatively great-
er number 1, it is sufficiently accurate to intacpolste this sum belween 3= -0.2 and s = +0.2
from the known values at 3 = ~0,2 and o = +0.2,

In this way, a closer approximation to the velocity field at the camber line of the
shroud is obtained than by replacing the eink disk by & point disk at the axis, the strength
of which is such that the sink disk and the point sink are acted on by an equal interaction
force from the shroud, This spproximation has bosen proposed by Horn for the purpose of de-
termining the circulstion at & Kort nozzle.¥ The two velocity fields, however, differ groatly
in the vicinity of the shroud and become sufficiently coincident only at a great distance from
the disk.

The integration of Equation [33] roquires the determination of an integeation constant
from tho given ordinate of the camber line at an arbiteary station 2. Corresponding to the
geometric configuration of the propulsion system, this constant is chogen so that y = d/2
for 3 = 0. With this, a first approximation for the shape and for the geometric angle of attack
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of the camber line is obtainod whob intograting Equation [33] by numerical mothods. A sec-
ond approximation follows whon arranging the vortices of the shroud on the first approxima-
tion for the cambor lino and whon calculating tho velocity components which occur in Equa-
tion [33] on the camber line instoad of on the rotor cylinder. The previously mentioned

tables by Kuechemann are very usoful for this purpose.* The velocity components which

aro induced &t the first approximation of the shroud, both from the sink disk and from the
shroud itself, can be ascertained within a reasonable amount of time hy applying these tables,

The maximum velocity (or the minimum pressure) on the shroud must be known in ordet
to detarmine t:e cavitation number of the shroud. Following tho procedure with thin airloils,
& close approimation to the velocity distribution on the shroud is obtained when adding the
velocities ot the infinitely thin camber line soction and those on the thickness shape. An
sdditional velecity <istribution associated with angle of attack need not be considered since
the shroud is suppossd to work in the shock-free flow condition.

By definition, the thickness form produces no lift at zero angle of attack. Therefore,
in twe-dimensioral flow, it is symmetrical about the direction of the undisturbed velocity.
For tho same reason, the velocity field of the thickness shapo can be represented by a suite
able sink-source distribution on the axis of symnietry of the section. This method is also
applicable to the thicknoss function of a ring-shaped hydrofoil (in contrast to the mothod of
conformal mapping which is restricted to two-dimensionsl flow). Kuechemann has investi.
gated the effect of axial symmetey in this way, assuming ring-shaped sink-source distribu.
tions by which, in the case of two-dimensional flow, symmetrica! Joukowsky profiles are
generated.® In the axisymmetrical case, the generated annular soctions are no longer syme
metricat about the direction ¢f the undisturbed flow but have a curved middle line; the camber
increases when the ratio of thickness to chzrd-length o/f increases. The influence on the
pressure distribution is shown by Kuechemann on annular half-bodies (which are generated
by a ring source within the undistutbed flow) from which it follows that the pressure distrie
bution on the body is no longer syinmetrical in & meridian plane but the pesk of suction is
greater inside than outside, the asymmetry increasing with thickness.

it follows from these investigations that when taking a thicknsess form whose pressuce
disizibution is known in two-dimensional flow (e.g., cne of the NACA basic thickness forms),
we cannot rely immodiately on the two-dimensional pressure diswibution ia saxisymmetnical
flow. In order to ascertain the difforence of the prossure distribution for the same section in
these vwo ceses, it has been attempted, by means of Equations [3) sad (4], to dotermine a
distribution of ring-shaped sinks aas sources on the axis so that the thickness form becomes
a streamline. In the analogous two-dimensional problem, the sink-source disteibution follows
from an integral equation. In the case of axial symmetry, it has not been possible yot to
establish the correaponding integral equation becauso of complications wnich arise from the
expressions [3] and {4},

Although present knowledge does not permit comparison of sections of equal shape

CONFIDENTIAL


http://www.abbottaerospace.com/technical-library

CONFIDENTIAL 82

in the two fiow conditions, an idea of the order of magnit.de of tho influence of axial syme
metry is obtained when comparing sections of equal sink-source distribution. Since the in-

fluenca on both the shape and the prossure distribution increases with increasing thickness,
it is of interest to know whether ot not a thickness can bo determined helow which these in-

flvances are so small that thoy can bo neglected. Taking tho afore-mentioned sink-source
distributions wl.ich, in the two-dimensional case, lead to symmetrical Joukowsky profiles,
the rosuits are as follows: Bolow d/! about 0,08, the differeaces in pressure distribution as
compaced with the two-dimensional section of equal thickness chord-length ratio are negli-
gibly small in the range of h investigated (0.7 to 2.1). Further, within this range of d/i and
h, the deformaiion of the contour is allowed for with sufficient acc sracy by a curvature of the
middie line of the section without sppreciable change of the ordinates, the latter being re-
feered to the middle line. The curvature is small and in the interval investigetod, it depends
linearly on d/l, increasing slightly when A increases (Figuro 13).

0.02
wje 0.01
+h 2. _-g-d\’_/ 0.7
‘-ﬂ‘d——y‘
0 0.25 0.10
1

Figure 13 - Camber of Thickness-Forms in Axisymmetrical Flow

It is concluded from these calculations that the two-dimensionel presaure distribution
of a thin thickaness form (d/! being not greater than about 0,06) canbo applied for axisymme-
trical flow if the thicknoss form is given a slight curvature corresponding to Figure 13,

An expression for the minimum preseure on the shroud can be deduced on this basis.
Within the assumptions of linearized thin airfoil theory, the velocity at any point of the
shroud is the sum of the veiocities from the circulation distribution on the camber line and
ftom the thicknsss form: V= Vgs+ V.

The latter is agsumed to bo known, e.g., from one of the NACA thickness forms; the
former is the valecity just outside or inside of the camber line, i.e., just outaide or inside
of tho vortex sheet. Let u;, bo the velocity at a point of the outside surface with axial
coordinate 3, and u, the volocity at a point of the inside surface with the same axial coor-
dinate. Then
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Wo— W; = VY

where y is the cicculation per unit longth at 3. Further, just on the outside of the vortex
cylinder, the relation

w, = + '

Sheet
holds, and juﬁ& on the inside at a point of equal 2

wi = wSheet— w
where w’is the inccement of velocity as compared to the velocity within the vortex sheet at
equal 2, From those relations, it follows for the unknown velocity v’

w'=14w-—wl~l
2 (1 1"2

Then, at a pc’ "t on the outside of the camber line where, with a positive y, the smallest
pressures o jound, the following obtains

(;;) —[1+G(’::(;\)“ |( ot ”‘i 1—z=ma]
1 1|e; 2 2 G 2 (341
w, e n P .
(65 Ghs* B ';f,"l(“"f,,)s,,,‘ s 7V1- 4 aina]

The angle a is the declination of the camber line with respect to the z-axis which is small,
Relative to the values of (u &s.D and of ()s,p in the interval of 2 between 2 = ~0,2
and z ~ +0.,2, see the explanation given in conncction with Equation [33],
The velocity cistribution V /v, is known for the thickness form. Then the maximum
of the velocity at a shroud of finite hut amall thickness becomes

-(E+ %)
120'-:

In order to avoid the onset of cavitation on the shroud, the following relation must be satis-
fied for the cavitation number of the oncoming flow

—n® 2
W=tz () -1 [34a)
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5. INFLUENCE OF VISCOUS FLOW ON THE FORCES AND ON THE EF FICIENCY

From Figure 11, it follows for the rotor when the respective forces in viscous flow are
denoted by a prime

(dT), = (dT), - (dD), #in B, = (dT), — e;(dL), sin B,

(dQ), = {dQ), + (dD)y cos B, = (dQ), (1 + _“_‘;REI;)

Within these expressions, ¢p is the drag-lift ratio at the section of the rotor under considera-
tion.

Analogously, one obtains from Figure 12 for a section of the guide vanes
dT), = (dT), — (dD), sin B, = {dT), (1— ¢, tan §;)

At the shroud, the viscous deag of the shroud and the (nonviscous) interaction forces ate in

the same direction when y is a positive quantity. In this case, the total drag of the shroud
becomes

Ts' = Ts + Ds
or, nondimensionally,
, Ts 4h
s =g ™ + s T %
(CT)', -2-([?2"' rkg) 7”)0' (Cr)s (Cp)q 1 z’.g

if (cp)gy as usual, is referred to the surface of the shroud 2R n !,

The fozces on rotor and vanes can be integrated when it is assumed that the drag-lift
ceofficients are independent of the radius. Introducing relations {16}, {17]. and [19] for the
nonviscous parts of the forces, and relations [28) and {31] for the angles, one obtains

Virw, 1

(ep)p = (er)y — e,,% Gy [(1 + llfle)(l -z~ st o CTs)u,s‘ dz] (35)

1"'2,,’ 2 vo

Tp

(Cp),ﬂ(cp)+ekg’;%"fi‘%[%(l“:’")_ 35”2&(1—:,,)] (36}
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. _ _ . 413Gy 11ep _ _ j‘ W 1
(er)y = (cp)y valoz} {(1+ 2| ol)(l ) -G s (ls n Jd:cl (37)
it follows for the coefficient of the net thrust ¢ that
c'_(c)'+(c)'_( )' 4"‘1‘.(1&
T = \Criy Tly rly = (fk""\) 1—r2
A
1)p) ! i 44 138)
~|en - - LR - _Aan_
[(1+ 2! ”ol)( 1-2) GSJ.’A Yy ("s)n.s d:e] (enls 1-22

With these expressions for ¢y and cg, the efficiency of the systom becomes

c

o
n= "r =M,

where the ideal efficiency 5; is obtained when the expressioas {20] and [21] for ¢4 and cp
are introduced

5058
_ °r _ 2 Ny G“

77. = ¢ = iie G.: [39]
L — ../ I
+2| A2 A

For G¢ = 0 (unshrouded propeller), this expression for 5, equals that from simple momentum
theory. This is necessary becsuse of the assumptions that the guide vanes cancel the tan-
gential volocity field entirely and that the circulation is independent of the radius; these
are just the assumptions of simple momen.um theoty,

For ths reductizn of the ideal efficiency due to deag, one obtains

(‘R+ ‘y)"}g(l‘l{[(l"' It" (l—z,,)—(:\_[ !(.tvgﬁ(l | ‘d.r]-f-(c,,) mh
0 NTH, N
1-2 --
. ny;: Gy 7
- (l—zh)(-’x— -(,J-}I 'I)
e = 2y 3y el o 401

14—k gil-m) - == -0 [

1-z l,‘:’!& -G

1+ 4 G g

Assuming the conditions of an unshroudsd propsller without guide vanes, viz.,
Gg=0, (cD) s=0, ¢y =0and, further, pulting z, = 0, it follows from the last relation that

% 14.3:__6."_’.__._._ -~ ¢ ny Gk
3 1'?_;; K 1_ €
A 1+2!"o!) 1+2 "o!

PRl AT AT &
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The third term in the donominator is small compared to 1 and can be neglected.
Further,

A(1+%|§E)= A(1+'§':)%A,

Then, from the above expression, the well-known approximato formula r 5 ¢ of an unshrouded
propeller which has been deduced by von Kfrmén and Bienen is obtain: «:
s 1—-26A;
e = 2 ¢
1+~ —
3 A,
It is difficult to draw genera, .s10ns {ron. the relations for the efficiencies. For
a special case, viz., that for the low-speed pumpjet for DD 710, Mcdel 3248, the following
design data are given

4 _
P 2--0.3.!:—-1.2

— l'
2 1]
By means of successive approximations as described in section 7 of this report, the follow-
ing obtains

¢ =1.08, A= 0.45,

€ = (%l;)k = 0.028, ¢, = (—?:)V = 0.022

For determining those drag-lift coefficients, the drag coofficients (cp)p = 0.010 and
(cp)y = 0.024 have been introduced, cacresponding to the respective Raynolds numbers and
angles of atteck. The latter figure is grester thun the former since the sections of the vanes
work at a great lift coefficient with which a grost pressure resistance is corpected. In addi-
tion, the Reynolds aumber of the sections of the vanes is smaller than chat of the rotor; be-
cause of this, the frictional coefficient becomus greater,

Assuming (eplg = 0.013 (which figure, however, is uncertain) and using Equations
[39] and {40}, the following values are derived

ny=0.808, n =0.841, 75=0.67

From model tests, p has been determined as 0.656. Further, a value of 0,77 is obtained
from these calculations for the ratio of the net thrust to the thrust at the rotor and a vaiue
of 0,725 from the model tests. These differences between calculations and test results may
anse from the uncertainty of (¢p)s which probably is greater than assumed because of sop-
aration which arises from the shape of the shroud and from the pressure increase at the
roto.
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6. INFLUENCE OF A FINITE NUMBE:: OF BLADES

The schomo which has buen introduced for the action of the rotor has baen chnsen as
simple as possible, viz., constant circulation along the lifting lines, a hub vortex of the
combined strength of the lifting lines, and a systewm of vortices within the boundary of tho
rear jot. Furthermore, it has been assumed that the number of blades is infinite. In this
section, the last assumption will not be made but the velocity components which are induced
at a lifting line by np helical tip vortices togother with a straight hub vortex of strength
(ng T ) will be considered.

Without going into details of the deduction (e.g., sec Kawada?), it is stated that the
ratio of both the tangential and axial velocity components at a lifting line for a finito number
of blades to the respective quantity for an infinito number of blades is oxpressed by the
following relation

0 Hh -1 - _J_.zn S

where
. < o ’ mnpg
s —.Z ml"‘k(un'fsi.’ Kang t.-.nﬁ“)
=

-

Within these expressions, tan B p, 13 the pittu wuple of the tip vortices, [ and K are the
modified Bessel functions of the first and sect n.d kind, respectively, and the prime indicates
the derivative with respect to the argument  Wh.... varying the numbor of blados, it is assumod
that both the total circulation (n, ') and the prtch angle B are kept constant, This im-
plios that the loading coefficient varies when the number os blades is varied.

The sum § depends on the pitch angle g5 and on the number of blades ng. For
ng = 5, the quantity ¢, which s rolated w § by

, 1 tanf.
2 r- 1t ")‘.“

is reprosented on Figure 14. This quantity ¢, is donoted as the *‘induction factor.” Then,
the ratio of the velocity womponents becomes in terins of the induction factor

B, the use of single up vortice | the snd, “ed <clutity components are exaggerated
near the tip since, whun « - 1, both w, and u | Locomc infinite. Beyond a certain distance
from the up, however, this fornula 15 sattable for obtaining an order of magnitude for the
influence of a finite number of Llades. For g, 33 dogiecs, e.g., tho right-hand side be-
comes LU 8t ¢ - 6.6, ahe o it oo Rl v sunge T wounuing in practice, the

influcee ¢ LE o finito pundes F Tlades o of o ey dupotaatce, This holde for the
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assumption that the circulation at the lifting lines is independent of the radius tut is differ-
ont when the circulation distribution depends on the number of blades (as it does with an un.
shrouded optimum propelier),

The same considerations are applicable for guide vanes with a finite number of blades.
The influence of the number of blades on the induced velocity component is greater for the
guide vanes than f{ur the rotor since 8, > 8. The induction factor increases when 8 increas-
es, hence the factor is somewhat greater for the guido vanes than for the rotor. For 8 = 33
degrees and A = 0.45, e.g., B, bocomos 58 degrees, with which quantity the correction to the
velocity components from an infinite number of blades is 1,028 for n, = 6 and z = 0.8, When
the number of blades is increased, the percent correction decreases fairly rapidly, ronghly
to half its valuo when one blade is added (e.g., to 1.018 for n;, = 7).
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7. METHOD OF DESIGN

The method of design of a shrouded unit from the foregoing considerations is analo-
gous to that of the application of the ususl propelier theory for design purposes,

The given quantities are loading coefficient cy{or cp), advance coefficient A, presaure
increase at the rotor pp/p,, and the cavitation number of the oncoming flow
o, = (p,— p")/ —;: vy, When a value of A = #/2R is chosen, the circulation at the shroud,
required, in order to reulize the pressure increase vecomes known from Equation [23b] and
Figure 2.

1~ 22

1- ie %'
TIE, =

v Glp,s

The quantily 4p/(p/2)3 is related to pp/p, and o, by

__‘LP_ pk_l)

= g, | =&
2.,,: D,

(]

The next step is to determine the loading coefficient of the system when cperating in
nonviscous flow; this reguires the determination of the dreg-lift coefficients of the compo-
neats of the system. This problem can be solved by succeasive approximations when putting
in a first step, c; = cp (with the power coefficient given, the method is entirely analogous).
Then, the circulation st the rotor follows from Equation {24]

2 G G Ry 2
(57) - (230) m (er =GR 4 2] e (er =205 =0,
F, ia known from Figure 10 as a function of A.

Pulting c1 = c;, o first spproximation is obtained for (ng Gp) with which a first

approximation for the sink density follows

B - Vi TB% - =
0 ¥

At this point, @ check is mede as to whether or not the quantity 4 chosen together
" with the given quantities are consistent with a cavitation-free flow on the shroud. The
condition for this is that

wz(=) -1 (358}
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where
(L) (k. %
Vg / max Y V! max
and where
G = [ al3g), « gl g« 25T wme]

[34]

[G\ t‘:’: Gs) T 27!’ :l;i( e[) )s U-% % '/r]__——z_z sin a]z

(Relative to (x,) p, see the discussion on page 17 {or positive values of 2.)

In Equation [34a], the cavitation rumber of the oncoming flow o, is a given quantity.
Further, V /v, is known if & certain thickness form of the shroud is selected. Within Equa-
tion {34], G and |e pl kave already been determined and the velocity functions are known;
see the table on page 30. In these first steps, the declination of the camber lino « is
assumel zero.

If the value of A selected does not satisfy Equation [34a], a greater length of the
shroud, i.0., a groater A, is chosen and Lhe calculations are repeated,

Assuming that the A satisfies the cavitation condition of Equation [34a], first approxi-
mations of the cavitation number on both the rotor and the guide vanes are obtained from

o = (%’;)2[% ;- (28 (4 1)) [29]
and from
= ou (%) (32 )
where
(%= (1 32 of 2 ) I+[5-%2]
and where
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In these first approximatinns, both op 8nd vy, are calculated oniv ot i vl
z = 0.7, which is sufficient for determining the drag-lift coelficients.

The maximum values of the lift coofficients which are permissible [rom the point of
view of onset of cavitaticn un both the rotor and the guide vanes follow from these cavitation
numbers together with diagrams on the critical cavitation number or on the minimum pressure
of a family of smtable sections. In ordei .0 obtain approximations for the drag-li{t coefficients,
the drag coofficients (cp), and (cp);, must bs known for the type of sections chosen, A
reasonable first assumption for the rotor is cp < 0.008. For the vanes, c¢j is obtained as
the sum of the frictional coefficient and the pressure drag coefficient, the lattrr depending on
the angle of.attack which is usually great at the vanes. At the shrov3, the drag coofficient
(cp)s may be groater than the frictional coefficient, in spite of the shock-free flow, as a
consequence of separation inside of the shroud which arises from its action as a diffusor
and from the action of the rotor., No information on this effect could be found in the literature.
Measurements ou the drag coefficient of annular-shaped wings are restricted Lo accelerated
flow, i.e., the nozzles. in this case and for a thickness ratio of the saction of about 20 per-
cent, & value of 0.015 for ¢;) at Reynolds number 4.105 has been determined. This figure is
somewhat greater than would be expected for a two-dimensional wing of equal section.

The drag-1ift coefficients of the componsnts of the system being known approximately,
the loading coefficient of the system in nonviscous fiow ¢ follows from

M|)(l x,,)—(xj lw"' ldz]

n, G,
= —-—J‘—R +
er = ¢r + (eg+€) [(1 v Gl

T
{38

+ @l T2
The approsimation is repeated in a second step with this value of c,. Subsequent
steps are necessary until the value of ¢, which results in a certain step does not differ
appreciably from that which was assumed fcr that stop.
When e has been dotermined in this way, tho oxact values of Gg Gpy ?D/vo,
(Vg/vg) and (V,/v,)can be ascertained, the last two quantities as functions of the radius
z. Then the products (c, ) at both rotor and vanes follow as functions of 2 from

legine _ o(Ta
Ll = 2(31) Gy 27}
and from
{cr.l) Wi {0
eIl g KL
S =2 n,,(VV) G (30}
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Further, at oach radius, the cavitation numbers oz and a, bocome known from Equa-
tions {29] and {32}, respectively. With the aid of the afore-mentioned diagrams for critical
cavitation numbers of families of sections {which should include the two-dimensional cas-
cade effect), the products (c 1 %) are so split up into their factors ¢, and ! that ¢, equals or
bacomes smaller than that lift coefficient for the respective local cavitation number which
is permissible relative o the onset of cavitation. With this lift coofficient, the angle of
attack of the respective section against tho resultant relative velocity is determined when
the 1ift versus angle of attack curves of tho sections, including the cascado offect, aro
known. The direction of the resultant relative velocity against the plane of the rotor is ¢b-
tained for the rotor from

1 + .!. .’_ 1_
tan 8, = 2 \v,; _ (G G, )1),3‘ (28]
e 27r:r

and for the guide vanes from

b -al4), |

v = vn "b
My G
21r2

{31}

The design of the shroud requires the integration of Equation [33] for the determina.
tion of the shape of the camber line and its orientation with respect to the axis, In this
equativn, ail quantities ere known from the preceding numerical caleulations. The influence
of axisymmetrical {low on the pressure distribution of the thickness form is approximately
compensated f{or by an additional camber, from Figure 13, to be superimposad on the shape
which follows from an integration of Equation {33]. At least two steps are necessary for
determining the shape and the geometric angle of attack of the camber line from Equation
{33], viz., arranging the vortices firat on the rotor cylinder and, afterwards, on the camber
line. Tables by Kuechemann in which tio velocity components from both vortex and sink
rings have been tabulated are very useful for the second and higher approximations, &

Finally, the efficiency of the system is obtained from Equations [39] and {40). In the
latter relation, the drag-lift retios ¢, and ¢;, aro considered indopendent of ». In genoral,
it will be sufficient to introduce the respeciive quantities at ¢ = 0,7 as a suitablo average.

8. COMCLUSION

The considerations of this papur are based on a circulation at the bound vortices of
the rotor which is indepondent of the radius, This case represents the vptimum with respoct
to efficiency for a shrouded propeller. The flow for circulation distributions which differ
from the optimum can bo determined in principle from the effocts of tho free vortex shuuts

fanurineiivs it
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which are a consequence of a radially varying circulation and from their interfetence with
the shroud vortices. Such problems srise when, e.g., a shrouded unit is given which satis.
fies the optimum circulation in the design condition and when the circulation distributions
of both rotor and shroud are to bo determined in an off-design condition. For a finite number
of blades, this probiem leads to an integral equation which can orly be solved by approxi-
mate methods. The velocity fiela of vortex sheets with an arbilcary pitch distribution must
be known in otder to obtain a solution. The necessary numerical quantities of this velocity
field have been ascertained at the lifting lines for a range of biade numbets. The determina-
tion of the induced velocities at the shroud, however, would recuite a great deal of addition-
al numericsal work

In addition to this theoretical work on units with a radially varying circulation, it is
the opinion of the author that the following experimental work is necessary for a further de-
velopment of shrouded propellecs:

a. Studies of prezsure distribution, separstinn, and radial distribution of the inside flow
of annular-shaped wings whose flow is retarued. The availsbie experimental papers 910
give information on pressure distribution, but no systematic information could be found either
on the drag or on the velocity distribution of the inside flow. In addition, ths influence of
the shaft on the afore-mentioned quantities should be ascertained.

b, Studies on shrouded propellers with a transparent shroud are needed in order to in-
vestigate the cavitation performance of shroud, rotor, and guide vanes. Such investigations
would be instructive both with regard to predictions from theory and to a judgment of the
performance of the shrouded unit as a noise source in comparison with an unshrouded pro-
pellec.
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