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Summary. —The present report gives a short account of a generalised 
type of Jankowski aerofoil which avoids the difficulty of extreme thinness 
near the trailing edge associated with the ordinary Jankowski aerofoils. 
Calculations have been made for three different aerofoils of this type 
which might form a suitable basis for an experimental test of the theory. 
Details are also given of a fourth aerofoil which should have a constant 
centre of pressure according to Munk's theory of thin aerofoils. 

1. Introduction.—The calculation of the characteristics of 
an aerofoil in two dimensional motion by the method initiated 
by Joukowski depends on the possibility of deriving the aerofoil 
shape from a circle by means of a suitable conformal trans-
formation. The general form of this transformation may be taken 
to be :— 

= z 	4-  4 ± 	 (I) 

where and z are the complex variables 

=e +J71 
S 	 y 

and the coefficients al, a2, etc., may also be complex quantities. 
An aerofoil shape in the plane can be derived by means of the 
formula from any circle in the z plane which encloses, within its 

periphery all the poles of cc zjIt will be noticed that the form 

of the transformation is such that the region at infinity is 
unaltered. 

The joukowski series of aerofoils is obtained from the simple. 
transformation 

e2 

and the circle in the z plane is chosen to pass through the pole 
z = —c and to enclose the pole z = c. The aerofoil then has 
a cusp at the trailing edge corresponding to the point z 
of the circle, and the circulation is chosen so that the flow j ves, 
the trailing edge smoothly. This implies that the rear ,station 
point on the circle must occur at the point z 
account of the Joukowc;ki aerofoils has been given by 3. 
(Journal of the Royal Aeronautical Society, July 1923). 	• 
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2. Generalised Joukowski Aerofoils.—The Joukowski aero-
foils are not suitable for use owing to the cusp at the trailing edge, 
but a method of obtaining more suitable aerofoil shapes has been 
suggested by Karman and Trefftz (Zeitsehrift fur Plugtechnik 
and Motortuft•schiffahrt, 1918). The Joukowski transformation 
(2) can be written in the alternative form 

— 2c 
+2c 

and may be generalised as 

nc 
nc 

  

(z 	cy2  
z+ CI 

 

(3) 

 

This generalised transformation leads to aerofoil shapes in which 
the upper and lower surfaces meet at an acute angle (2—n) v. 
Thus by choosing n slightly less than 2, a generalised form of 
Joukowski aerofoil can be obtained which does not suffer from 
the defect of being too thin near the trailing edge. The present 
report summarises the theoretical results for aerofoils of this type 
and gives the shapes of a few typical aerofoils which may be suit-
able for experimental investigation. 

Diagrams of the circle in. the z plane and of the aerofoil in 
the 	plane are shown in Fig. 1, where corresponding points are 
indicated by the same letters. In the z plane A and B are 
the poles of the transformation (z = 	c) and C is the centre 
of a circle of radius a passing through the point B and enclosing 
the point A. To determine the circle there are two arbitrary 
parameters, the radius a and the angle /3 between the lines B A 
and B C. The transformation formula also contains the arbi-
trary parameter n, while the value of c merely determines the 
scale of the figure. It is, therefore, possible to obtain a triply 
infinite series of aerofoils by use of the transformation (3). 

In the plane the points Al  and B1  are = ±nc, corre-
sponding to the points A and B of the z plane. Now let P be 
any point of the circle and P1  the corresponding point of the 
aerofoil. Denote the angles A P B and Al  P1  B1  by 95 and 0/  
respectively. Then the geometrical interpretation of the con-
formal transformation (3) is 

A1  P1 TA P\" 
Pi  — \B P) 

= 224 

  

J

L 	 (4) 
r 

The first relation shows that P1  lies on one of the family of coaxial 
circles having Al  and B1  as limiting points, and the second rela-
tion shows that P1  also lies on one of the family of coaxial circle 
passing through A1  and 	This geometrical property can be 
used to obtain the form of the aerofoil, but unless it is possible 
to work on a very large scale this method is not sufficiently 
accurate, and it is preferable to use an analytical method. 
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In the z plane, let C P make angle 6 with the x axis and let 
A P = r, 13 P = 8, Also write 

k= 	and A = 	 (5) 

Then P is the point 
z = a(eip ± e9) —c 

and the vectors A P, B P are respectively 
A P 	a(eifl cia) —2c 
B P = a(eip ei0) 

After a little reduction it can now be shown that 
b -4- t 

k(1 + bt) — (1 — bt) 

141 + bt 
A =

b 	
ssin9!, 

( 	t) 

where b = tan f3 
t = tan 0 

By means of these formulw it is possible to calculate the 
values of A and 0 corresponding to any point P of the circle. 

Turning next to the plane, we have in the first place 
from (4) 

81 An 
FL  ri  

0, = 

Also denoting the angle Al  B, P1  by 0, we obtain for the co-
ordinates of P/  

= 81  cos — ne = ne + r1  cos (01  + 0) 
n =sl sin0 =r1 sin (01  + al() 

from which we deduce the final forms 

(6) 

(7) 

TIC 	— 2/1 cos 4> + 1 

2p, Sin 01.  
7IC 	p.2  — 2p, cos Oi  + 
	 1 1 
	. ..... 	......... ....(8) 

In this way any desired number of points on the aerofoil 
can be calculated to determine the shape. 

One further point is worthy of attention. The point B of 
the circle transforms into the trailing edge B, of the aerofoil 
at 	— nc. Also the point Q of the circle transforms into 
the leading edge Q1  of the aerofoil. Now Q is given by 0 = 
and for this point 0 = o 

k cos p  BQ 	a cos p 
anti A = 

AQ 	a cos )3 c k eos g — 1 

Then tta  
if-40 + 1 
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Thus the full chord B/  Qi  of the aerofoil is 
• nc 

nc(1 	eo) 	
1.to 
	 (9) 

1  
which is slightly greater than 2 n c. 

3. Lift and Pitching Moment.—It has been shown quite gener-
ally by Mises (Zeitschrift fur Flugtechnik and Motortuftschil-
fahrt, 1917) that the lift of the aerofoil at incidence a is 

L =4 7r a p 	sin (a +R) 	  (10) 
and that the pitching moment round the centre Cis  

11/1c  = 2 7r b2  p V2  sin 2 (a + y) 
where the co-efficient as  of the general transformation (1) is 

= 62 e2i-e  

In the case of the generalised Joukowski transformation 
(3), we find on expansion 

1 
al 	

3
- (n2 — 1) c2 

and so it follows that 
2 
-3 (1i2  — 1) •71- c2pV2  sin 2a 	 (11) 

To proceed further we shall regard a, 13, (k —1), (2—n) and 
1/110  as small quantities whose squares may be neglected. The 
chord of the aerofoil then is 

4c 
 (

in + 1). 
flo 

The lift co-efficient of the aerofoil becomes 

kx, . irk 	i (2 	n) — — a ± /3). 	 .{ + 	--
Po 	

(12) 

and the pitching moment coefficient round the leading edge 
Q1  is found to be 

'77 	 5  
/cm  r---- — 72  p --- i II -1- -6- (2 ---

3  
n) -1- —} KT 	(13) 

ilo 
4. Typical Aerofoils.---Calculations have been made in the 

method described above for three aerofoil sections, defined by 
the following values of the arbitrary parameters. 

Aerofoil. 

A 	 - - 	1.050 1.950 0' 
B - 	1.025 1.975 3°  
0 	- 1.050 1.950 0' 

The general shape of these aerofoils is shown in Figs. 2 and 3, 
and numerical data are given in Table 1. A and B are aerofoils 
of different thickness and mean camber, and C is a symmetrical 
tailplane section. 

The aerodynamical characteristics for two dimensional motion 
can be deduced from equations (12) and (13). In equation (12) 
the angle of incidence is measured from the base-line, while it 



is more customary to use the tangent to the lower surface. This  
small correction has been made in the case of aerofoils A and B 
in the following table of the theoretical characteristics of the 
aer of oils. 

Aerofoil. A 

Angle of zero lift 
caratwo dimensions 

—6.7 
0.059 
0.013 

—0.082 

—0.262 

00 —3-4 
0.057 
0.042 

—0.041 

—0.256 

0 
0 
0.059 
0,043 
0 

—0.262 

W., aspect ratio 6 
km  at kr 	0 
cam  
dkL  

Details are also given in Table 1 and Fig. 3 of an aerofoil D. 
This aerofoil has the same thickness at every point as the sym-
metrical section 0, but its central axis is taken as the curve 

y 0•05 x(1—x) (7-8x) 

According to the theory of Munk given in report 142 of the National 
Advisory Committee for Aeronautics this Aerofoil D should have a 
practically constant position of the centre of pressure and a no-
lift angle of —0°• 7 relative to the base line given in the figure. 

TABLE I. 

x 

Aerofoil A. Aerofoil B. 

Y1 Y2 Jx Yz 

0 0 0 0 0 
-05 • 0330 — • 0120 • 0163 — • 0067 
-10 • 0495 — • 0115 • 0252 —.0064 
-15 • 0630 — • 0095 •0321 — • 0056 
-20 • 0730 —.0065 •0379 — -0043 
• 25 -0810 — • 0035 •0421 — • 0029 
-30 -0870 0 • 0450 --0013 
• 35 -0910 -0030 •0470 + • 0002 
• 40 -0930 -0055 •0480 • 0019 
-45 -0930 -0080 •0480 -0034 
-50 • 0020 -0010 -0472 -0048 
• 55 -0895 • 0130 -0456 -0059 
-60 •0850 -0140 -0431 - 006 7 
-65 • 0790 -0150 -0400 -0071 
•70 -0715 -0155 • 0364 -0074 
•75 •0630 • 0] 50 -0318 -0072 
-80 • 0530 • 0140 • 0266 -0069 

' • 85 -0410 .0120 -0207 -0059 
• 90 .0285 -0090 -0142 • 0043 
• 95 -0145 -0050" -0074 -0024 

1.00 	 0 	 0 	 0 	 0 

Radius of curvature at leading edge :— 
Aerofoil A 	0.0043 
Aerofoil B 	0-0012 
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TABLE I.--continued. 

x 

Aerofoil C. Aerofoil D. 

111 Y2 yl Y2 

0 0 0 0 0 
-05 • 0237 — • 0237 • 0394 — -0080 
-10 -0328 — • 0328 • 0607 — • 0049 
15 •0390 — • 0390 • 0760 — • 0020 

-20 • 0428 — -0428 -0860 + -0004 
-25 -0451 — • 0451 -0920 • 0018 
• 30 • 0467 — • 0467 -0950 -0016 
• 35 -0470 — • 0470 • 0948 • 0008 
• 40 -0463 — .0463 • 0919 — • 0007 
-45 .0450 — - 0450 • 0870 — - 0030 
-50 -0429 --0429 •0804 — • 0054 
-55 -0403 —•0403 -0725 —•00.81 
- 60• -0372 — • 0372 •0636 — • 0108 
• 65 -0335 — -0335 •0540 — • 0130 
-70 -0292 — • 0292 -0439 —.0145 
•75- -0245 — • 0245 • 0338 — • 0152 
-80 -0196 —•0196 -0244 — .0148 
• 85- • 0147 — • 0147 -0160 — • 0134 
•90 -0098 --•0098 • 0089 — .0107 
.95 -0049 —.0049 .0035 — • 0063 

1.00 0 0 0 0 

Radius of curvature at leading edge is 0.0054 for both aerofoils. 
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