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A THEORY OF THIN AEROFOILS.

BY H. GLATJEKT of the R.A.E.
Presented by THE DIRECTOR OF RESEARCH.

Reports and Memoranda No. 910. February, 1924.
(Ae. 136.)

Summary.—The present report develops a theory of thin aerofoils
in two dimensional motion and simple integral expressions are obtained
for the angle of incidence and moment coefficient at zero lift. A graphical
method of integration is developed which can be used to determine the
characteristics of any thin aerofoil. The method is applied successfully
to three aerofoil sections and results are also derived for a tail-piano and
elevators.

1. Introduction.—The general theory of aerofoils in two dimen-
sional motion at small angles of incidence indicates linear relation-
ships between lift coefficient and angle of incidence, and between
moment and lift coefficients. Also the slope of these curves
does not show any considerable variation between different
aerofoil sections and so the problem of determining the character-
istics of a given aerofoil section is essentially that of determining
the angle of incidence at which the lift vanishes and the corre-
sponding value of the moment coefficient. In addition there is
the yet unsolved problem of determining the drag of an aerofoil
in two dimensional motion. When these characteristics are
known, the behaviour of any finite aerofoil or system of aerofoils
in three dimensional motion can be deduced by Prandtl's theory.

The present report develops a method of determining the
angle of no-lift and the corresponding moment coefficient for a
thin aerofoil of any given shape. A treatment of this problem
has been given by Munk in Report No. 142 of the National
Advisory Committee for Aeronautics, but the analysis is not
quite free from errors. The present report adopts the general
principles used by Munk but presents the analysis in a more
logical order.

2. General Analysis.—The basis of the two dimensional
aerofoil theory initiated by Joukowski depends on the possibility
of converting a circle in the z plane into the desired aerofoil
shape in the £ plane by means of a suitable conformal trans-
formation. The present analysis will be confined to the case of
a thin aerofoil in which it is possible to replace the aerofoil
approximately by a curved line which will be the mean of the
upper and lower surfaces of the aerofoil. This assumption
simplifies the analysis considerably and has been found to lead
to very satisfactory results for ordinary aerofoil shapes.
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The starting point of the analysis is the conversion of the
circle G (see Pig. 1) into the straight line A'B' by means of the
conformal transformation : —

where z and £ are the complex variables
z =x +iy
^=^+i-n

and a is the radius of the circle C whose centre is at the origin 0.
The straight line A'B' obtained by the transformation extends
on the real axis between the points £ = ± 2a.

Now consider a thin aerofoil represented by the curved line
A'S'B' which deviates only slightly from the straight line
A'B'. The corresponding curve in the z plane, related to the
aerofoil by the transformation (1), will be a curve S deviating
only slightly from the circle C and intersecting it at the points
A and B. The equation of this curve S may be taken to be

where r is a function of 9 and represents the difference of radius
between the circle C and the curve S.

Since the hypothesis

the corresponding point of the aerofoil is
£ = 2a (cos d + i r sin 8)

showing that the ordinate -q of the aerofoil at the abscissa
£ == 2a cos 9 is

t = 2 a r sin 9... ........................... 3^
To solve the problem we require also the transformation

from the circle C to the curve S. Now suppose that the point
z = a e1'* of the circle corresponds to the point z' = a (1 -f- r) eie
of the curve, where

^ =0 +e.....,...........,.,...,...,,....(4)

The transformation is then found to be

(5)
L £" i

where
r = 2 An sin n 9 \

and
O f71"

• sin n & d 9,.........................(7X,



Tiie trailing edge of the aerofoil is given by 9 — TT and so
corresponds on the circle to the position <f> — TT + e0 where

e0 = A! - A2 +A3- ......

To determine e0 we have formally
9p-

e0 = - (Aj sin 9 +A2 sin 2 9 +...)(sin0 — Sin2# +...)dO
TTJO

and so e0 is the imaginary part of

i.e.,

giving finally

eQ = - \ r tan -. d8 =
TT

I 0

3. Lift of the aerofoil.—The circulation round the aerofoil is
determined by Joukowski's hypothesis that the flow must leave
the trailing edge smoothly. This implies that the rear stagnation
point on the circle must be situated at the point (f> = TT + efl
corresponding to the trailing edge of the aerofoil. If now the
undisturbed flow is inclined at angle a to the chord of the aerofoil
or to the real axis as in Fig. 1, the complex potential of the flow
past the circle will be

Va2 iK
w = Yze^— — e~M— 5— logs........ ....,....(9)

where K is the circulation which must be determined so that
the rear stagnation point occurs at the point <f> = TT + e0.

Now at the surface of the circle

dz

and vanishes for <f> = TT + e0 if
K =47raVsin(a + e0).. ..,,................(11)

Thus finally the lift of the aerofoil is
L = p V K = 4 TT a p V2 sin (a + e0)

and since the chord of the aerofoil is 4a and the angles a and e0
can be regarded as small, the lift co-efficient is

kL=7r(a+€0) (12)



The no-lift angle of the aerofoil is, therefore, a = —e0, where
e0 is determined from the shape of the aerofoil by means of
equation (8),

The slope of the lift coefficient against angle of incidence ih
TT per radian or 0 • 055 per degree in two dimensional motion.
The corresponding âlue for the rectangular aerofoil of aspect
ratio 6 is found to be 0-039 per degree by the method of report
R. & M. 824. This value refers to a thin aerofoil and may be
expected to vary slightly with the actual shape of the aerofoil
but it represents a good average value for ordinary aerofoils.

4. Pitching Moment of the Aerofoil.—From equations (10)
and (11) we deduce that the velocity at the point (f> = 8 -I- e
of the surface of the circle is

= 2 V/sin (a + </>) + sin (a + 6o)

= 2. V< sin 9 + (a + e) cos (9 + (a + e0) V ..... (IS

For the corresponding point 9 on the surface of the aerofoil
we have

3)

where

X z j
o2r y _Lt, = 3 i —
^

Thus
r/y'

- i 2 (« — 1) A,? e-'r'e

= 1 — ̂  (w — 1) A,j sin «0

and

de— ] _ —

(V

= 2 e~!'*/isi

,̂| =2sin0(l-r)|dz'|

sin 0 + r e~l6 V

givin
ĉ
!fe
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and

The pitching moment round the origin is now obtained as

M0 = I "2a2 p q2 sin 0 cos 8 dB
Jo

-= -2fi'2 p Y2 /sin 0 4 2 (a 4- e) cos 0 + 2 (a 4- e0)
. o I

<fe -+ 2^sin

where
e = — S An cos TI 9

de
^ = 2«Ansin^

and on integration
Mo = 2 a2 p V2 (27TO — TT A2 ̂  2 TT A2)

= 2 TT a2 p V2 (2a + A2)
To obtain the moment round the leading edge we must subtract
(2aL), and so obtain

M = 2 TT a2 p V2 (2a -f- A2) — 8 TT a2 p V2 (a 4- e0)
= 2 TT ffi2 p V2 (A2 - 2a - 4 e0)

giving the moment coefficient

Now put

u« =- - A2 — ̂  f sin 20 (iff
8 .0

1 jv
"= T^S ri cof, ti d9 .............. ......(15)

4/7 I

and then finally

A'm- -i*L-| €„+,*„.... .,..,.....,,.,..(18)

Thus the slope of the moment coefficient against the lift
coefficient is 0-250, but there will actually be small variations
in this value with the thickness of the aerofoil. The value

of the moment coefficient at no lift is (,«e — - e0) and is deter-
mined from the shape of the aerofoil by the two integrals (8)
and (15).

5. Graphical Integration.—in denning the shape of an aerofoil
it is customary to measure the ordinates and abscissae as fractions

a 22530 A 2



of the chord and to take the leading edge as origin, To trans-
form the expressions to this form, we write

2 x = 1 — cos 0
4 a y ==f]

obtaining

where (, .,..,,..,.. ....(]7

7F (1 — X) Vx (I — X)

and

=- f
0 Jo 2

where y ...............(18)

Vx (1 -x)
When the form of the aerofoil is a simple mathematical

expression, the values of e0 and //,„ can be obtained by direct
integration. One example of this type is the aerofoil whose
shape is defined by the equation

y = h x (1 — x} (a — x)
which represents an aerofoil with reflex curvature towards the
trailing edge when a lies between J and 1. Direct integration
of the expressions (17) and (18) is carried out quite simply in
this case by the substitution x = sinz 0, and leads to the results

so that

Thus the aerofoil will have a constant position of the centre of
pressure if we take the value a = f. In report R. & M. 911.
aerofoil D has been designed on this basis in the hope of testing
the validity of the result.

In general, the form of the aerofoil necessitates the use of *
graphical method of integration a,nd for this purpose numerical
values of /x (x) and /2 (x) are given in Table 1. The determina-
tion of p,0 in this manner presents no peculiaritiess since y /2 (x)
is zero at both ends of the aerofoil, although /2 (x) tends to
infinity. In the case of e0, however, the value of y f± (x)
generally tends to an infinite value at the trailing edge x — 1,
This difficulty can be avoided by performing the graphical
integration from x =0 to x =0-95, and by estimating the
additional contribution from x =0-95 to x =1 analytically on
the assumption that this part of the aerofoil is linear. Tt can



easily be shown that this additional contribution is 2-9 y'.
whore y' is the value of the ordinate y ah x =0- 95.

6. Numerical examples.—As an example of the method, the
details of the calculation in the case of R.A.F. 15 are given in
Table 2 and Fig. 2. In Table 2 the ordinates«/-, and y2 of the upper
and lower surfaces are first tabulated, and the fourth column
gives the mean ordinate. These values are referred to the
standard chord, which is the tangent to the lower surface of the
aerofoil, and- from them the values of the ordinate y are deduced,
referred to the base line joining the leading and trailing edges.
This base line makes an angle 0°-2 with the chord. The last
two columns give the values of y /x (x) and y /2 (x), which are
used to prepare the diagrams of Fig. 2. By integration, the part
of e0 up to x =0-95 is found to be 0-029, while the additional
contribution is 2-9 X 0-0030 or 0-009. Thus, e =0-038 or
2°-2, so that the angle of no lift — 2°-2 referred to the base
line or — 2°-4 referred to the chord. Also, by integration, the
value of ju.0 is found to be 0-009, and so the moment coefficient
at no lift is predicted to be — 0-021.

A comparison with two sets of experimental results is shown
in Fig. 3. It will be noticed that the calculated values lie closely
011 the experimental curves obtained at LV = 100, but that the
curves obtained at LV =10 show a peculiar and characteristic
scale effect at small values of the lift coefficient. It appears that
the theory gives a good prediction of the actual values obtained
at a reasonably high value of LV. If the only experimental
values available were obtained at a low value of LV, it would be
necessary to ignore all values below &L = 0-15, and to compare
the calculated values with the general run of the curves above
this point.

This point is confirmed in the case of the aerofoils R.A.F. 14
and R.A.F. 18, for which calculations have also been made.
The comparison with experimental data is shown in Figs. 4 and 5.
The calculated points again agree excellently with the form of
the curves above kL =0-15, but below this point there is the
same peculiar scale effect on the model curves. It appears that
the method of calculation gives good predictions of the values
which may be expected from model tests at a reasonably high
value of LV. The method of calculation, however, deals with
thin wing sections only, and might need extension or modification
before it could be applied to thick sections.

7. Tail-plane and Elevators.—The method of analysis can also
be applied to the case of a tail-plane and elevator by inserting
the valuea

h x
y = r̂zrpi from x = 0 to (1 — E)

i Jii .x"*"",
fa n _ r\ X̂ - (j!'

y = —-^—-from z = (1 — E) to 1, /_^
where E is the ratio of elevator chord to total chord

!
,0.



By direct integration the values of e0 and /j,0 are found to be

arc cos
~W(T̂ E) f

2E -_̂ _ _L _n^ _ arc cos
)̂ ' 2̂  Ell -E) "/

so that, regarded as an aerofoil, we have the characteristics

It is more usual, however, to express the lift coefficient of a
tail-plane in the form

&L = a1 a j -j- a2 a 2
where ax is the angle of incidence of the front part of the tail-
plane, and <x2 is the angle between the front and rear parts. In
this form the theoretical result is found to be

2 r _ ______ ~\
- < arc cos A/E — A/E (1 — E) >
TT {_ J

and the numerical results deduced from these formulae are given
in Table 3 and Fig. 6. The values of a2/ai found in this way are
higher than those which have been deduced from various experi-
mental tests. It seems probable that the sharp angle at the
junction of the tail-plane and elevator exerts a harmful effect
which is not allowed for by the theory, while, on the other hand,
the experimental tests refer to elevators which are divided in
the middle and therefore lose a certain part of their efficiency.
No fair comparison between theory and experiment is therefore
possible, but the theoretical curve probably represents the best
possible result which could ever be expected from an elevator
011 a symmetrical tail plane.

TABLE I.
Graphical determination of efl and p0.

x = distance from leading edge.
y = ordinate.

ti f (/y\ /7-r1 i ('nf*\ — 1 ITT (~\ _ rv\ \lnp /I rv\ŷ 11 \ / "̂  J1 \ ) —— J- il 1-5- vt/) V i t / S J . —— <AJ \
0

i? i/ 2 V / t/ 2 \ / \ ' I ^ /
0

^ Jl (&) /2 (%)

0-025 2-09 6-10
0-05 1-54 4-13
0-10 1-18 2-67
0-20 1-00 1-50
0-30 0-99 0-87
0-40 1-08 0-41
0-50 1-27 0
0-60 1-62 -0-41
0-70 2-31 -0-87
0-80 3-98 -1-50
0-90 10-6 —2-67
0-95 29-2 -4-13



In obtaining e0, graphical integration should be used from
x = 0 to x =0-95, The contribution to e0 of the part from
x — 0 • 95 to x = I may be taken to be 2-9 y1; where yi is the
ordinate at x =0-95,

TABLE II.
Calculations for E.A.F. 15.

X

0
0-025
0-05
0-10
0-20
0-30
0-40
0-50
0-60
0-70
0-80
0-90
0-95
1-00

2/i

0-0381
0-0495
0-0601
0-0669
0-0669
0 • 0645
0-0607
0 • 0553
0-0481
0-0389
0-0284
0-0215

———

2/3

0-0036
0-0012
0-0001
0 • 0043
0-0084
0 • 0080
0-0056
0-0021
0 • 0002
0-0003
0-0023
0-0040

, ——

i (2/1 + 2/2)

0-0127
0-0208
0-0253
0-0301
0-0356
0-0376
0-0362
0-0332
0-0287
0-0242
0-0196
0-0153
0-0127
0-0095

y

0
0-0082
0-0128
0-0177
0-0235
0-0259
0-0248
0-0221
0-0179
0-0137
0-0094
0-0055
0-0030

0

2/A (x)

0
0-017
0-020
0-021
0-024
0-026
0-027
0-028
0-029
0-032
0-037
0-058
0-087

—— -

Vft (*)

0
0 • 050
0-053
0-047
0-035
0-023
0-010
0

— 0-007
-0-012
— 0-014
-0-015
—0-012

0

Angle between chord and base line = 57°-3 X 0-0032 =. 0°-2.

TABLE 3.
Tail-plane and Elevators,

E = ratio of elevator chord to total chord.

E.

0-05
0-10
0-20
0-30
0-40
0-50
0-60
0-70
0-80
0-90
1-00

^

4-86
3-30
2-19
1-72
1-45
1-27
1-15
1-06
1-00
0-95
1-00

— 1cm „/

4-36
3-00
2-00
1-53
1-22
1-00
C-82
0-65
0-50
0-33
0

a1/ai

0-282
0-396
0-550
0-661
0-748
0-818
0-876
0-923
0-960
0-986
1-000
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