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Summary

The report comprises two contrasting and complementary approaches to the evaluation of the second-order
aerodynamic side force and yawing moment on lifting wings when leading-edge and side-edge forces play an
important réle.

In Part I the usual lifting-surface model, in which the vorticity is placed on a planar surface, is shown to
lead to inconsistent results; consistent results are obtained when the vorticity is placed on the camber surface
while the standard lifting-surface integral equation takes its usual form. In a further supplementary momentum
analysis involving the Trefftz plane, the side force and yawing moment are derived from approximate expressions
which avoid calculation of any edge forces.

In Part II the analysis of linearised subsonic lifting-surface theory is extended to provide expressions for the
leading-edge and side-edge forces. The side force and yawing moment under conditions of asymmetric spanwise
loading are obtained as the sum of three contributions, from normal pressures, leading-edge suction and tip
suction. These quantities are used to treat lifting wings in roll, and from a few numerical examples some general
trends in the theoretical derivatives are observed. The related evidence from experiment and from semi-empirical
methods is discussed, and one such method is transcribed for use in conjunction with the theoretical computa-
tions. Much of the non-linear experimental behaviour of the side force and yawing moment due to rate of roll can
be accounted for by the removal of an increasing proportion of the theoretical edge forces as the lift increases.

* Replaces AR.C. 34 689 and R.A.E. Technical Report 73030—A.R.C. 34 707
T Now in Structures Dept., R.A.E. Farnborough.
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Preface

The relative importance of stability derivatives changes from one generation of aircraft to another. Because
of trends in aircraft geometry and mass distribution, particular derivatives may assume increased significance
in the determination of lateral stability. For example, the characteristics of the dutch-roll oscillation of highly
swept or slender aircraft at moderate or high lift coefficient depend to a greater extent than hitherto on
derivatives such as the yawing moment due to rate of roll and less on the direct damping in sideslip and yaw.
It is therefore desirable to analyse the principles underlying the theoretical estimation of forces on a lifting wing
in roll, and to study the nature of the contributory edge forces against a background of limited experimental
data.

The acrodynamic wing loading associated with lateral aircraft motions at subsonic speeds is usually treated
more crudely than that relating to longitudinal flight. Until recent years rigorous treatment by lifting-surface
theory has been discouraged by the amount of computation that would be necessary, and perhaps also by the
lack of conviction as regards the validity of the edge forces. With the increased capability of lifting-surface
methods of the present decade it is opportune to consider such problems afresh.

Some contributions to lateral stability derivatives are of first order in wing motion and attitude, while others
are of second order. The rolling moment on the wing due to rate of roll is of first order and correspondingly
easy to calculate. On the other hand, the yawing moment due to rate of roll includes a second-order contribution
from the wing surface, which becomes increasingly important at high lift notwithstanding a first-order contribu-
tion from the fin. The wing contribution arises from an interaction between symmetric and antisymmetric parts
of the spanwise loading and poses considerable theoretical problems.

Estimation of these second-order derivatives raises, once again, the fundamental question of the validity of
determining second-order quantities from a first-order or linearised theory. It is well-known that lift-dependent
drag, or vortex drag, which is a second-order quantity compared with wing lift, can be estimated directly and
unambiguously from linearised wing theory either by integration of the cross-flow kinetic energy in the down-
stream Trefftz plane or by direct calculation of the components of normal surface pressures and the leading-edge
suction force. But the basis for the calculation of the side force and yawing moment has not been so thoroughly
assessed.

In Part I of this report an attempt is made to clarify some of the fundamental aspects ; emphasis is primarily
on the understanding of the implications of various mathematical models rather than on the development of a
rigorous mathematical model or on the production of numerical results. It is shown in Part I that the usual
lifting-surface model in which all the vorticity is placed on a planar surface leads to inconsistent results, especi-
ally for compressible flow ; it is argued that singularity distributions should be located on the camber surface
so that the local loading is normal to the camber surface. With this interpretation the standard lifting-surface
integral equation continues to take its usual form. In a further analysis involving consideration of overall linear
and angular momentum the side force and yawing moment are derived from approximate expressions which
involve integrals in the downstream Trefftz plane and which avoid any explicit calculation of edge forces.

In Part I1 of this report, with the correct interpretation of the standard lifting-surface integral equation,
existing computer programs have been applied to calculate the normal pressure distribution and hence the
leading-edge and tip suction forces. This approach has the advantage that empirical corrections to the edge
forces can be incorporated. The total forces on a rolling wing are calculated and then compared with related
evidence from experiment and from semi-empirical methods, and it is concluded that a useful approximation
to the non-linear experimental behaviour of the side force and yawing moment due to the rate of roll can be
introduced quite simply in terms of the measured drag over the practical range of lift coefficient.

Acknowledgement

Both authors wish to acknowledge the constructive comments and continued interest of Mr. H. H. B. M.
Thomas.



Part I
General Principles and Mathematical Models

1. Introduction

As a real fluid flows past and over a finite wing, vorticity, which is created in the boundary layers, is shed
from the trailing edge and then convected downstrear, forming the wake. Although a small proportion of the
trailing vorticity is diffused and dissipated the remainder rolls up into two discrete vortices which remain intact
and stable for long distances behind the wing. If the flow does not break away from the surface of the wing it
may be assumed that at high Reynolds numbers the effects of viscosity are confined to the thin boundary layers
and to the downstream vortex wake. Thus to a first approximation viscosity may be neglected so long as a
system of trailing vorticity downstream of the wing is retained in the analysis.

Assuming therefore an inviscid flow, linearisation reduces the overall problem to two separate problems;
the first is the lifting problem associated with wing camber and incidence in which all the vorticity, namely the
vorticity on the wing and the trailing vorticity, is placed on a surface in the vicinity of the wing and the wake:
the second problem is the non-lifting problem associated with wing thickness. Only the lifting problem is
considered in this report.

Conventional linearised théory is based on a mathematical model in which all the vorticity is distributed
on a plane surface, the wing vorticity is distributed over a planar surface parallel to the free stream direction in
the neighbourhood of the wing while the trailing vorticity is distributed over the extension of the (wing) planar
surface from the trailing edge region to infinity downstream. This model is referred to as the planar model.

It is shown in this report that the side force and yawing moment determined from this planar model are not
necessarily the actual (inviscid) side force and yawing moment experienced by the wing itself. The reason is
shown to be the fact that a significant side force and yawing moment are required to sustain and maintain the
planar model itself in the vicinity of the wing; a side force and yawing moment are required to maintain the
planar trailing sheet but these are shown to be small and negligible.

However it is further shown that this anomaly can be reconciled by a reinterpretation of the basic mathematical
model but retaining the main linearisation features. No ambiguity arises if a non-planar model is used in which
the wing vorticity is placed on the wing camber surface itself and the trailing vorticity on a surface extending
from the wing trailing edge to infinity downstream.

When compressibility effects are included it is shown that the planar model is not a valid model for the
estimation of any second-order quantities, including induced drag; the only permitted model is a non-planar
one. The reason is associated with the discontinuity in density across the lifting surface. '

The actual theoretical values of all the second-order forces and moments (i.e. vortex drag, side force and yawing
moment) depend on the magnitude of the edge forces associated with singular behaviour of the vorticity at the
leading edge and wing tips. These edge forces are difficult to evaluate numerically; care is required to ensure
that values are sufficiently accurate. The evaluation of the various edge forces is described in Part II together
with a discussion of their practical significance.

In the case of the vortex drag the difficult calculation of the leading-edge thrust force can be bypassed by
consideration of the conservation of linear momentum across the downstream Trefftz plane. In this report
similar Trefftz plane analyses are investigated for the side force and yawing moment ; both the planar and non-
planar models are shown to give consistent results ; the effects of compressibility are also considered. Aithough
it is not possible to derive exact formulae in the Trefftz plane for the side force and yawing moment, approximate
formulae are proposed. Numerical examples show that these approxirnate formulae give reasonable results.

2. Planar Wing Theory at Low Speeds

In this section the conventional mathematical formulation of linearised finite wing theory in low speed
(incompressible) steady flow is introduced and discussed. The usual mathematical model comprises a discon-
tinuity in velocity potential across a plane surface (parallel to the free stream) in the vicinity of the wing and
wake ; this model is referred to as the planar model. For the lifting. characteristics the discontinuity in velocity
potential is determined from the inversion of the standard lifting-surface integral equation when the camber
surface is specified. Once the discontinuity in velocity potential is known the overall forces of lift, drag, side
force, and the overall moments in roll, pitch and yaw can be found ; the edge forces associated with the singular
behaviour of the velocity potential at the leading edge and wing tips are significant contributions to the drag,
side force and yawing moment. Alternative expressions for the forces and moments can be obtained by
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consideration of the linear and angular momenta flux out of a large control surface surrounding the wing,
resulting in the so-called Trefftz plane results.

Although most of the present section is standard text book knowledge it is included here as a basis and
reference for the later developments.

2.1. Formulation of Planar Mathematical Model

To define the wing geometry, cartesian axes are chosen as shown in Fig. 1 with the origin at the centre point
of the leading edge; the Ox axis is taken parallel to the free stream, the Oy axis is to starboard and the 0z axis
completes a right-handed set. The equations of the leading and trailing edges are denoted by x = x,(y) and

x = x,(y) respectively, while the wing span is taken to be 2s. The shape of the wing relative to this axis system
can be expressed in the form

z2=Z(x,y) = ZAx, ) £ Z[x, ) 1)

where the + refers to the upper or lower surface respectively; Z{x, y) represents the mean camber surface
which includes incidence and spanwise twist, while Z,(x, y) represents the symmetric thickness distribution
superimposed on the camber surface.

The problem, as shown in Fig. 1, is to determine the load distribution on the wing, defined by equation (1),
in a uniform low-speed stream of velocity U.

If the perturbation velocities introduced into the uniform stream by the wing and trailing vorticity are
denoted as (u, v, w) the equation of continuity for a low speed (incompressible) flow is

AU +u) ov oOw
T TutaT? @

Since the flow exterior to the wing and trailing vorticity is irrotational, a perturbation velocity potential ®
exists such that

oo oo oo
U = — — =

, V=, W= —, 3
0x dy 0z G)
On substitution of equation (3), equation (2) becomes the standard Laplace equation

>0 ’0 'O
VI =—— 4+ — +—5 =0. 4
oz T dy? g @)
Equation (4) is to be solved subject to the boundary conditions:
(a) that @ vanishes at infinity upstream and laterally, i.e. at

X = — 00, y= 4w and z= +w0;

(b) that the flow normal to the wing surface is zero, that is

0z oZ
W(xay’ Z(x’y)) = (U + u)é—- + v (5)
X dy
{c} that no load is carried by the trailing vorticity.
The usual linearisation approximation assumes that Z(x, y)/c, (where ¢ is the root chord) is small, and

that perturbation velocities (i, v, w) are small compared with U ; the basic equations and boundary conditions
are then satisfied to first order only.

Linearisation does not affect the fundamental equation (4).

The boundary condition (5) is usually expanded in a Taylor series from z = 40 and with the neglect of
second-order terms the linearised boundary condition becomes

oz 0Z
wix, y, +0) = U[— + =
Ox Ox
oZ 0z ©)
_ c T
wix, y, —0) = U E 0x)

At the same time it is assumed that the trailing vorticity is confined to the plane z = 0 where the condition of
zero loading is applied.



Thus the basic problem reduces to two independent problems.
(i) The determination of a symmetric solution of V2® = 0 (i.e. symmetric with respect to z) such that

oD o 0z,
(5‘;)2=+0_ (az)z——o_ Uax (7)

on the wing plan form, denoted as Sy ; there is no trailing vorticity in this problem.
(i) The determination of an antisymmetric solution of V2® = 0 (i.e. antisymmetric with respect to z) such

that
EI) oD oZ,
(b? z=+0 - (5—;)2=—O =v ox (8)

on Sy. The mathematical model now includes a planar trailing sheet which extends from the trailing
-edge of Sy to infinity downstream in the plane z = 0 and across which no-oad is applied. This planar
system is shown in Fig. 2.

Problem (ii) gives rise to the overall forces and moments ; to first order, problem (i) only modifies the pressure
distributions to account for thickness effects without contributing to the overall forces or moments. Only
problem (ii), the antisymmetric lifting problem, is considered further in this report.

The solution of the lifting problem involves a discontinuity in ®(x, y, z) across Sy and S expressed in the
form

AD(x, y) = B(x, y, +0) — ®(x, y, —0) = 2®(x, y, +0) 9)

by virtue of the antisymmetric nature of @.
The discontinuity in pressure across Sy and Sy is obtained by application of Bernoulli’s equation for
incompressible flow ; thus

px, y, =0} — p(x, y, +0) = 3p{[(U + u)* + v* + w?l,o o — [(U + 0)* + 0* + w?],=_o}

= pU(uyo — o)
OAD
S (10)
dx’
where the subscripts +0, —0 refer to the respective surfaces z = +0 and z = —0. It is noted that equation

(10) is exact in the sense that no further linearisation has been invoked.
Across Sy the loading must be zero ; thus, according to equation (10) A®(x, y) must be a function of y only;
hence

AD(y) on Sy = AD(x(y), y) = AD(y). (11
It is well known that the antisymmetric problem reduces to an integral equation
pU 0A®/dx l: x— ¢ ]
= 1+ < | dé d 12
oz 8nﬂ 1pUXy — 1)’ {x=8*+ (v —n?p - (12

with the proviso that the discontinuity in pressure is zero at the trailing edge to satisfy the Kutta condition.
It is not the intention to discuss or describe here the numerical solution of equation (12) ; the methods of Refs. 2
and 3 have been used for the numerical results quoted iater. The main purpose of this report is to enquire in
further depth about some of the implications of the planar model which has been formulated so far, in particular
to discuss the determination of the forces and moments on the wing once A®(x, y) has been calculated from the
integral equation (12).

2.2. Load Distribution on Planar Model

The discontinuity in ®(x, y, z) across Sy and Sy implies a system of load component distributions in the
x, y and z directions.

Consider a small control element abcda’b’c’d’, as shown in Fig. 3, which straddles the plane z = 0. Its sides
* are of length dx, oy, dz. In the following analysis dz tends to zero while dx and dy remain finite although small.

First it is noted that there is continuity of mass flow through the control volume; as 6z — 0 the mass flow
pw éx dy in the direction across abed equals that across @'b’c’d’. This condition is trivial in the present case
but not when the effect of compressibility is included (see Section 4).



The load exerted by the fluid on the control volume abcda’b’'c’d’ in the z direction, in the limit as z — 0, is
given by the difference between the pressures acting on a'b’c’'d’ and abed since the momentum flux in the z
direction across these surfaces are equal. Thus

load in z direction = {p(x, y, —0) — p(x, y, +0)} 6x 5y
= U0 6x 5
pU 5 0% ¥ (13)

from equation (10).
The load exerted on the control volume abcda’b’c’d’ in the x direction in the limit as 6z — 0 is given by the
difference in momentum flux in the x direction across a'b’c'd’ and abcd. Thus

load in x direction = {{[pw(U + 4)],- _o — [pw(U + u)],= 4o} 0x y

0

By exactly the same argument, the load in the y direction on the control volume abcda’b’c’d’ as z — 0 becomes

0AD
load in y direction = —pwa—y ox 6y. (15)

Since the loads in the x and y directions are second-order terms it might be argued that these should be
ignored in a linear representation of the problem. But the philosophy adopted here is that the model once
formulated can be treated as exact. All second-order results then have validity within the framework of that
planar mathematical model. The physical significance of such results is another matter which requires further
assessment.

Equations (13), (14) and (15) hold not only on the wing planform S, but also on the trailing sheet S;. As
already stated A®/dx is made zero across S; so the loading on S; in the x and z directions are zero. But
because w and éA®/dy are both non-zero on S; a sideways load distribution is inferred. This result violates
the boundary condition that no load be carried by a planar trailing vortex sheet. Thus the planar trailing
vorticity can only be maintained in its planar form if some external agency provides the necessary side force
distribution to hold it there. This point is not new; it has always been recognised that some restraint has to be
applied to the trailing vorticity otherwise the planar sheet rolls up. At this stage, however, an element of doubt
appears for the question which now arises is whether or not this external agency also provides some of the side
force distribution on S, to maintain the planar form of Sy ; and if so, how much sideforce does this external
agency provide; and how is the actual side force on the wing itself calculated. These same questions and doubts
also apply to the yawing moment. Before these points can be discussed further, it is necessary to discuss the
edge forces which arise from the singular behaviour of A®/éx and 6A®/dy at the edge of S, + Sy, for these
edge forces contribute not only to the drag but also to the side force and yawing moment.

2.3. Edge Forces

The linearised solution A®(x, y) has infinite rates of change at the leading edge, at the wing tips and along
edges of the trailing sheet S. These infinities give rise to finite edge forces which must be taken into account.
A derivation of edge forces in terms of a complex potential is given by Jones and Cohen®; a more direct method
is described here.

Consider an element of edge of length s swept locally through an angle A and enclosed in a small cylinder
ABCD of radius r, as shown in Fig. 4. Let n be the inward normal distance from the element in the plane z = 0.
Perturbation cartesian velocities (g,, 4,, w) are shown parallel to the (n, s, z) directions, while the perturbation
cylindrical velocities are denoted as (g,, g4, q,)- Near the element ¢, is finite and will not be considered further,
but the singular contributions to g, and g, must satisfy the two-dimensional equations of continuity and
irrotationality for incompressible flow

¢ dqs
5("%) + % =0
and 5 5 . (16)
qr
5("(10) TG0 J

Thus the perturbation potential and velocity components in the plane normal to ds are



® = 2kr* cos 30 + O(r),
q, = kr ¥ cos 30 + O(1) , a7
and .
gy = —kr ¥sin 6 + O(1)
where k is a constant independent of r and 6. Hence
Gn = 4, €08 B — ggsin @ = kr™* cos 30 + 0(1)}

w = g,sinf + gycos 8 = kr *sin 30 + O(1)

and

Singular terms in the perturbation pressure
Lo[2kr~*U cos A cos 30 + k*r™1]

do not contribute to the force on the control cylinder, but the flux of momentum in direction n from the cylinder
is equivalent to an edge force in the direction of the outward normal to the planform, thus

2n
edge force = {J 04u4,T dﬁ} os
0 r—0

od\ >
_ 250 o
= ntpk* 6s = mp {( ar)o=0r}mo ds

oD\2
= —_ S ds, 19
7rp{(a")z=+o "}an—vo ) (19

where §, is the normal inward distance from the edge.
Thus the component of edge force in the —x direction, known as the leading-edge thrust, on an element of
spanwise extent 8y = 6s cos A may be written as
2

oD
0T, = mp {(—— sec A) 0, COS A} dscos A
0x +0

80

oD\ 2 }
=np<|=— Oy sec A dy, (20)
P {( 0x) +0 50 Y

where §, is the distance from the leading edge measured in the x direction. Similarly the component of edge
force on the leading edge in the y direction on the element 4y, (6Y), is given by

(8%, = oT, (l) tan A, 1)
Iy

so that the resultant of 8T, and 8Y, is normal to the leading edge; the factor (y/]y) is required if in the usual

notation the sweepback A(y) is regarded as symmetric with respect to y. Since equation (19) holds in the limiting

case A = 7/2, the outward side edge force on an element of length 6x on the side edge of both Sy and Sz, (3 Y.),

is given by

.

2
(6Y,), = mp {(‘1‘)) ‘&} 5x. (22)
0y +o 5,0

Equation (22) holds for y = s, J, being the inward distance from the edge in each case.

2.4. Planar Wing Forces and Moments

In Section 2.2 expressions are given for the load distributions over planar areas Sy and S, while in Section 2.3
expressions are given for the edge forces acting on the boundary of S + S7. The total forces and moments
are obtained by integration of the load distributions and adding together the various contributions; these
forces and moments will be called the ‘planar’ forces and moments because they are derived from the planar
model and will be denoted by the subscript P.

The planar lift Lp on Sy is, from equation (13),

oA

(I) +s
Ly = j f pUS dxdy =f pU AD ) dy, 23)
Sw s

writing A®(y) = AD(x,(y), y). There is no planar lift on Sy since JA®/0x is zero on Sy.



The total planar drag Dp on Sy is, from equations (14) and (20),

+s
f 6Z aA(D f np {(6(1)) 5x} sec A dy, (24)
-5 0x | 40 60

where w(x, y) is replaced by U 8Z,/6x according to the boundary condition in equation (8) (remember that
0Z./dx < 0 implies positive incidence). There is no planar drag on S, since dA®D/0x is zero on S, while the
edge forces on Sy act in the y direction.

The total planar side force Y on (Sy + Sy) is written in the form

Yp = (Yplw + (Yp)r» (25)
where (Yp)y is the side force on 5, and (Y,); is the side force on S;; thus from equations (15), (21) and (22),
replacing w(x, y) on Sy by U 0Z /0x
0Z, 6A<I)
H / . (26)
where Y, is the total edge force on Sy given by

+s
Y, = f TP {(8(1)) (5,} sec A tan A2 dy +
-5 0x| 4o 5, —0 Iyl

Xe(5)
o, e e
xi(s) 5)’ +0 g:—»+os 8y +0 g:-’_os
OAD © [i)] o\ 2
e oo Ll 500, 1A
x¢(s) ay +0 %::’;kos ay +0 y=

3,20

Similarly,
] dx. (28)

The double integral in equation (28) for (Yp); cannot be simply reduced further because w(x, y) on S is now a
double integral over Sy, involving A®/dx, given by the right-hand side of equation (12) where the reference
point {x, y) is on Sy.

The planar aerodynamic moments can also be formulated. The signs of the moments have been made consist-
ent with the usual convention for aircraft stability and control.

The planar rolling moment on Sy, positive in the sense of port wing up, is

OAD v
P = ~fpry~a—x~ dx dy = —f pUy AQ(y) dy: (29)
Sw o

there is no rolling moment on S7.
The planar pitching moment on Sy, nose up about the axis x = x, becomes

OAD
sty = [[ Ut = 5927 vy (30)
0x
there is no pitching moment on S;.
The planar yawing moment about an axis parallel to 0z, through (x,, 0, 0) is taken to be positive in the sense
of port wing forward. Thus the total yawing moment on (Sy + S¢) is

M = (M + (M) a1)
where, on Sy ,
0Z.(  oA® oAD
(Ml = f 2 2k ay + N, (32)
J ox dy

with

s oD\ 2
N, = _f Tp {(——) (Sx} {y + (x(y) — xo)ltan A} secAdy —
—5 ax +0 8, =0 ‘yl

(s oD\ 0\ 2
- - =) s =) e 33
—[ms) P XO)[ {( dy )+ 0 y}>~=1 {( dy )+ o y} r= 'Os] =

dy

10



from the edge forces on Sy; and on Sy

IAD ® o0\ ? oD\ 2
o -5 o} -3, Jo o

6,-0

It is noted that in the above expressions for the forces and moments, lift, pitching moment and rolling moment -
are first order in A® while drag, side force, and yawing moment are of second order in A® and Z,.

2.5. Integral Relationships; Trefftz Plane Analysis

An alternative approach to the estimation of the total forces and moments on a finite wing is to apply the
principles of linear and angular momentum to a large control volume enclosing the wing. Such an approach
leads to the standard result for induced, or vortex, drag in terms of a simple single integral relationship in a
transverse plane far downstream, known as the Trefftz plane. The usefulness of this simple integral relationship
for the drag is that it bypasses the evaluation of the surface integral over Sy and the determination of the leading
edge thrust, as expressed in equation (24). The purpose of this section is to show that similar simple relationships
exist for side force and yawing moment.

A large control volume ABCDA'B'C'D’ is constructed, as shown in Fig. 5, enclosing Sy ; the planar trailing
sheet Sy cuts the downstream transverse plane DCC'D’ in a line of width 2s.

At the upstream transverse section ABB'A’ the normal velocity is U, the free stream velocity, and the static
pressure is the free stream static pressure p,,. It is assumed that the downstream transverse section DCC'D’
is sufficiently far downstream for the longitudinal perturbation u to be negligibly small so the normal velocity
across DCC'D' is again the freestream velocity U. However perturbation velocities v and w exist in the plane of
DCC'D’ due to the trailing vortex sheet S ; because of these perturbation velocities v and w the static pressure
pon DCC'D is less than p,,. Perturbation velocities and pressures on the four surfaces parallel to the stream
direction are small, but their effects are not necessarily negligible.

First the lift on the system is considered by application of the linear momentum principle in the z direction;
in the limit as ABB’A’ and DCC'D’ tend to infinity, the only contribution to the lift arises from the vertical
momentum flux crossing the downstream Trefftz plane (ie. DCC'D’); thus the lift, which is identical to the
planar lift as defined in equation (23), is given by

Lp=— jj pUw dy dz

DCC'D'

- H pUagdydz
oz

DCC'D'—

+s
“ pU A dy} (35)
it x— -+ oo

after integration with respect to z, remembering the discontinuity in @ across the slit |y| < sonz = Oandthat ®
tends to zero as |z] — co. It is noted that equation (35) is identical to equation (23). It should also be noted
that equation (35) can be derived from a large finite control volume .4BCDA’B'C'D'; it is not necessary for
this control volume to tend to infinity to obtain equation (35).

To obtain the drag the linear moment principle is applied in the x direction; in the limit as ABB'A’ and
CDD'C’ tend to infinity, the only contribution arises from the difference between the static pressure on the
upstream plane ABB'A’ and the static pressure on the downstream plane. Thus the drag, which is identical to
the planar drag as defined in equation (24), is given by

i

b= ([ o-praya: = [ 4w + waya:
DCC’'D’'— o0 DCC’'D’'—>
om\ 2 oo\ 2
_ 1192 o
[ (5 (&) o
DCC'D'=

| of. od éof cd
1,]_ il —d—
Ji[ Zp[ay((bé’y) + aZ((D az)jl dydz

DCC'D' >
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(since on DCC'D' 3*®/dy* + 0°®/6z% = 0)

+s aq)
= - {f 15 AD -~ dy} . (36)
-3 x— + oo

Equation (36) is the standard expression for vortex drag. As described in Ref. 5, the numerical equivalence
between equations (24) and (36) for vortex drag is a test of the accuracy of the numerical solution of the lifting
surface integral equation (equation (12)). It should be noted that equation (36) is only obtained in the limit as
the control volume ABCDA’B'C'D’ tends to infinity; if a large finite control volume ABCDA'B'C'D' is taken,
the linear momentum principle leads directly to equation (24) and not to equation (36).

The side force relationship follows by application of the linear momentum principle in the y direction, in the
same manner as for the lift. Hence the total side force, that is the combined side force ot Sy and S;, from
equations (25) to (28), is

Yo=Ypw + (Yp)r = — ff pUvdydz

DCC'D'> o

oD
— J:[ pU—dydz
ay

DCC'D"> o

=0 (37)

after integration with respect to y since @ tends to zero as |y| — oo. Thus the total planar side force is zero ; the
implications of this result are discussed in the following section.

Next the principle of conservation of angular momentum is applied about each axis.

The application of the principle of angular momentum about the 0y axis, to give the pitching moment .#p,
isnota fruitful exercise. The pitching moment appears as the difference of two large quantities namely, (x — x)Lp
(where x is the location of the downstream Trefftz plane and L, is the planar lift) and integrals over the stream-
wise planes ABCD and ADD'A’; this difference can be shown to reduce to the standard integral over Sw as
expressed in equation (30).

In the application of the principle of angular momentum about the Ox axis, in the limit as the control volume
becomes infinitely large, the only terms which remain appear in the Trefftz plane and the rolling moment
becomes

+s

Lp = J.f pU(wy — vz)dy dz = —f pUy AD(y) dy, (38)

DCC'D’ >

which tallies with equation (29).

Finally, when the principle of angular momentum is applied about an axis parallel to the 0z axis through the
point (x,, 0, 0), since the total side force is zero, in the limit of the control surface tending to infinity again the
only contributions appear in the Treffiz plane, and so the total yawing moment becomes

Ap = (Aphw + (Ap)r

(P — Py dydz

DCC'D’'~w

+s aq)
- {f 2Py AD— dy} (39)
-5 z x=+

where (4p)y and (.43); are the planar yawing moments on Sy, and S respectively, given by equations (31), (32)
and (34). The implications of equation (39) are discussed in Section 2.7.

Il

2.6. Discussion of Side Force

Equation (37) states that the overall planar side force ¥, is zero. It is now argued that (Yp)y, the planar side
force on the planar trailing sheet Sy, is negligibly small, implying that (Yp)y, the planar side force on Sy, is
virtually zero.

Consider first the side force (Yp)r on Sy aft of a rectangular wing (chord ¢, span 2s). Suppose that in Fig. 5a
transverse plane cdd'c’ is drawn parallel to the Trefftz plane, but upstream of the Trefftz plane, at the wing
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trailing edge. Then the side force on S, (¥p)7, is equal to the difference in the sideways momentum flux (in the y
direction) across cdd'c’ and across CDD'C’, thus

(Yp)r = Jf o(U + updydz — _U pUvdydz
cdd'c’— w0 COD'C'» @
= fj puv dy dz (40)
cdd’c’ = ©

where u, v are the perturbation velocities, since the integral over CDD'C' is zero.

Now in the integrand of equation (40) u is a continuous anti-symmetric function of z and so u vanishes on
z = 0. Also v is an antisymmetric function of z but v is discontinuous on the slit [y < s,z = 0 and the magnitude
of v decreases with increasing |z|. Furthermore, for any value of z, {2 vdyis zero. The combination of all of
these factors suggests that the second order integral in equation (40) is negligible to the order of approximation
of the present analysis.

For a swept wing the above argument suggests that the contribution to (Yp)y from the trailing sheet aft of
x,(s)is small ; unfortunately the above argument cannot be extended to that part of the trailing sheet between x,(y)
and x,(s). However it is assumed that for all wings

(Yp)r = 0. (41)

Numerical examples, given later, support this assumption.

It should be emphasised that although the total side force (Yp)r is taken to be negligibly small the actual
distribution of side force on Sy is not everywhere small. For example, the edge force distribution in the y direc-
tion on a side edge of Sy (ie. y = +s) is virtually the same as the wing tip force on Sy . All that equation (41)
states is that the overall side force on S; is negligible.

Thus the implication of equations (37) and (41) is that the planar side force on Sy is negligibly small, so

(Yehw = 0. (42)

It is necessary now to interpret equation (42).
As an example, consider a twisted rectangular wing whose camber shape is given by

Zixy) = —ocx(l ; {) (*3)
For this wing Z,(x, y) is zero at the leading edge (i.e. where x = 0); Z(x, y) is zero at the port wing tip (y = —5);
the wing incidence increases linearly with y from zero at the port wing tip (y = —s)to Zo at the starboard wing

tip (y = +s). Everywhere on this wing 0Z,/dy is negative.

When the wing defined in equation (43) is placed in a uniform low speed stream a differential pressure distribu-
tion is created which acts normal to the camber surface Z,(x, y); and tip edge forces are produced. Now the
total side force is made up from two contributions

(i) the integrated component of the differential pressure in the y direction;
and

(ii) the resultant of the edge forces.

Now, since 0Z,/dy is everywhere negative and since the loading distribution is expected to be everywhere
positive (i.e. upward), contribution (i) must lead to a positive side force in the y direction. And since the present
example is confined to a rectangular wing, only the wing tip edge forces contribute to the side force ; the iricidence
of the port tip (y = — s)is zero while the incidence of the starboard tip (y = +5) is 20, so the larger tip force will
act on the starboard tip and contribution (ii) above will also be positive.

Thus an example has been given where the actual side force cannot be zero; this result is at variance with
equation (42). Denoting the actual (inviscid) side force experienced by the wing as Y, then Y is not identical to
the planar side force (Yp),, which has been shown to be virtually zero. An approximate relationship between
Y and (Y,)y is established later in Section 3.

2.7. Discussion of Yawing Moment

Similar lines of reasoning to those presented for the side force in the preceding section can be applied to the
yawing moment. The planar yawing moment on Sy can be assumed to be negligible since the planar yawing
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moment on Sy arises from the drag on Sy, which is identically zero, and from the side force on Sr, which has
already been assumed to be negligibly small by equation (41), then it is consistent to neglect the planar yawing
moment on Sy. Thus

(Mp)r = 0. (44)

Again numerical results, which are presented later, support this assumption. On substitution of equation (44)
into equation (39) then the planar yawing moment on the wing becomes

+s L a@
Uiw~ =4[ doyaelal 43)
-5 Z x=+w

Since the actual (inviscid) side force ¥ cannot be identified with the planar side force ( ¥p)y it would be expected
that the actual (inviscid) yawing moment .4~ would differ from the planar yawing moment (A3)y . It is not
possible to give a simple physical example to illustrate this difference as in the case of side force in the previous
section, however approximate relationships for 4" and (Ap)w are given later in Section 3.

3. Non-Planar Wing Theory at Low Speeds

It is shown in Section 2 that the planar model described there leads to uncertainties in the estimation of side
force and yawing moment. In this section it is shown that by the reinterpretation of the results already obtained
in the solution of the planar model it is possible to explain and to relate, approximately, the actual (inviscid)
side force and yawing moment to their planar values.

A non-planar model is now formulated in which the discontinuity in velocity potential A®(x, y) is situated
across the wing camber (+ incidence) surface Z (x, y)and across a trailing surface which is formed at the trailing
edge of the wing Z(x = x,(y), y) with downstream generators parallel to the freestream direction. This model is
shown in Fig. 6.

In the formulation of the boundary conditions on the wing, with the assumption that u « U, the overall
problem again divides into two independent problems for (camber and incidence) effects and thickness effects.
However, neither of these two problems now is purely symmetric and antisymmetric with respect to z, although
the lifting problem is still associated with camber and incidence only. Restricting attention to the lifting problem
the appropriate boundary condition is

0Z
wix, y, Z(x, y)) = U_a?cs' (46)
If it is further assumed that,
(i) Z(x, y)/cg is small (where cg is the root chord)
and
(i) that on the trailing surface
AD = AD(x((y), y) = AD(y), : (47)

then the integral equation relating w(x, y, Z,) and (0A®/0x) can be taken to be the same equation as in the planar
model, as given by equation (12). Thus any standard numerical solution of the lifting surface integral equation,
namely equation (12), can be regarded as the solution of the non-planar model subject to the two assumptions (i)
and (i1) as above.

The pressure difference across the wing camber surface and across the downstream trailing sheet can be
determined, as before, by the application of Bernoulli’s equation. In this case

OAD OAD
p—pu=p U~ +v,— (48)
0x dy

where the subscripts [ and u refer to the lower and upper surfaces respectively and where v, is the mean side
velocity across the sheet discontinuity, i.e.
“}

_1{jod 4
U,,.—z 9y

For the planar model v,, is identically zero but for the non-planar model v,, is not zero. Hence the pressure
loading (p, — p,) consists of a first order term, depending on AD/0x and a second order term, depending on v,
and 0AD/dy.

oD
dy
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It has been assumed in equation (47) that 0A®/dx is zero on the trailing surface, thus from equation (48)
(p, — p,)is not zero on the trailing surface to second order. In particular, the Kutta trailing edge condition is not
satisfied to second order. It can be argued however that the solution of the standard lifting-surface equation (i.e.
equation (12)) will give a solution for A® correct to first order for both the planar and non-planar models.

Once A® has been determined the overall forces and moments on the wing can then be calculated. For the
non-planar model, by virtue of the boundary condition, the resultant velocity on the wing camber surface is
parallel to that surface, there is therefore no flow across Z(x, y); all the load distributions derive directly from
the resolution of the pressure loading. Thus

Lift = L = J f (7 — pJ)dxdy; (49)
wing
oz
prag =0 = [[ (- m)(— ax‘) dxdy — T, (50)
wing
where T, is the leading edge thrust given by the integration of equation (20);
Z
Side Force = Y = j (P — p,,)(— 65;) dxdy + ¥, (51)

wing

where Y, is the sum of the edge forces in the y direction as given by equation (27);

Rolling Moment = & = ff (p) — p)(—y)dxdy; (52)
wing
Pitching Moment = # = jj (p; — p)(xo — x)dx dy; (53)
wing
. oz oz
Yawing Moment = A" = J:[ (7 — pJ) {( —a—xc)y - (— ay”)(x - xo)} dxdy + A, (54)
wing

where 4 is the sum of all the yawing moments due to edge forces given by equation (33).

In the above expressions the lift L, the pitching moment .#, and the rolling moment % are correct to first
order ; the drag D, the side force Y and the yawing moment 4" are correct to second order.

Since to first order (p; — p,) is equal to pU dA®/0x, it is seen that the lift L, drag D, rolling moment % and
pitching moment .# given by equations (49), (50), (52) and (53) on the basis of the non-planar model are identical
to the planar expressions Lp, Dp, &p, and .#p as given by equations (23), (24), (29) and (30). But the expressions
for side force Y and yawing moment .4 given by equations (51) and (54) on the basis of the non-planar model
are not identical to the planar expressions ( Yp)w and (A3)w as given by equations (26) and (32); these differences
are discussed in the following sections. ‘

3.1. Side Force
The side force on a wing, according to the non-planar model, is given by equation (51); to a first order

OAD 0Z, o
Y = fj (pU—BX—)(—— ay)dxdy+ Y, (55)

wing

where Y, is the total edge force contribution in the y direction (given by equation (27)). On the other hand, the
planar side force condition is from equations (26) and (}42) :

ow =[]

where Y,, the side edge force, is the same in both equations (55) and (56).
A physical explanation of why the two models should give differént expressions for the side force is given
later, at this stage the algebraic relationship is developed.

pU ,
: X

BA(D) ( oz,

it )d;cdy+ Y, ~ 0, (56)
Oy
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Integration of equation (55) once by parts with respect to x gives

ts oz 02z
Y:f l:pUACD(— C):l dy—J]pUA@(~ ‘)dxdy+ Y,
s 0y | |x=xin o Ox Oy

and with a second integration by parts with respect to ¥y,

+s z w(5) oZ\ =t oAD| 0Z
Y:j [pUA(D(—a C)] dy —l—f I:pUA(D(— c” dx +J]pU—~(— C) dxdy + Y,.
-5 0)/ x = x¢(y) x¢(0) Ox ¥=—yix) ay Ox
Sw
(57)

The sign of the second line integral is plus assuming that the trailing edge is swept back; a swept forward
trailing edge requires a negative sign. Comparing equations (56) and (57) it is seen that

+s dz )
Y = f_ [pU A(D]x=x,(y)l:_Wj| dy + (Yp)w
dZ (x{y), y)
),

since ( Yp)y is taken to be negligibly small according to equation (56). Equation (58) is valid whether or not the
trailing edge is swept forward or backward.

Thus the side force is given purely in terms of conditions at the wing trailing edge, assuming that the side
force on the trailing sheet can be neglected. When Z(x{y), y) is independent of y then the side force Y is zero: in
such a case the side force contribution from the integration of the pressure distribution over the wing surface
cancels the side force due to the edge forces. When dZ(x(y), y)/dy is uniform, as in the example expressed by
equation (43), then

N f (U AD(y)] [— (58)

Y & (Lift)( - (59)

dy

In Part I1 Garner has evaluated the lifting surface characteristics (i.e. pressure distribution and edge forces) of
a number of wings with asymmetric twist. Results for a series of rectangular wings of aspect ratio 2 at low speed
with different camber surfaces, all of which have Z, zero along the trailing edge, are shown in Table 1. These
results are presented in terms of side force coefficients : the total side forcc coefficient Cy is made up from the side
force coefficient due to the integration of the normal pressure distribution (Cy,) and the side force coefficient
due to the wing-tip edge forces (Cy;, for consistency with Garner’s notation). Equation (58) suggests that the
total side force in all of these cases is virtually zero (i.e. Cy = Cy; + Cy; = 0) since Z(x(y), y) at the trailing
edge is identically zero. It is seen that the numerical values shown in Table 1 confirm this conclusion with
remarkable accuracy.

Results obtained when the effects of compressibility are considered are discussed in Section 4.4.

dZLx(y), y)) |

3.2. Yawing Moment

A similar process can be followed for the yawing moment as that presented in the previous section for the side
force.

The yawing moment on a wing, according to the non-planar model, is given by equation (54) namely

OAD oz oz
v (”U—a?){(‘ ) (‘_c)(""“"’} eyt A 0

dy

where .4; is the yawing moment due to the edge forces (given by equation (33)). The planar yawing moment on
the wing, according to the planar model, is, from equations (32) and (45)

3

o0 IAD) 52,
(Npw = ffPU{—ygz +(x — XO)W}E{M dy + A,
Sw
+s 0(1)
X {—f 3oy AD——~ dy} (61)
-5 z xX—=+ o0

where .4, the yawing moment due to the edge forces is the same in both equations (60) and (61).
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On integration of the second term in equation (60) by parts and by rearrangement it follows that

ts o *s dZ (x1y), ) Z,
wxd=[gppaeTa 4| U av) - x| LD gy ],
-s 02 x-* +co -s dy ay
(62)
Itis noted from equation (62) that when Z(x,(y), y)is zero or constant the yawing moment is virtually independ-
ent of yawing axis position x,.
Garner has also calculated the various terms which make up both sides of equation (62) for the same rect-
angular wings of aspect ratio 2 with the various camber surfaces as specified in Table 1 where the results for the
side force are presented. In non-dimensional terms the yawing moment C, is made up from

C,; = yawing moment coefficient due to the integration of the pressure loading over Sy,
C,, = yawing moment coeflicient due to leading edge thrust,

C,.; = yawing moment coeflicient due to wing tip edge forces.
The terms on the right-hand side of equation (62) are denoted:

C,; = yawing moment coefficient due to Trefftz plane integral (first term on right-hand side of equation (62) in
non-dimensional form)

C,1 = yawing moment coefficient from the line integral along the trailing edge (i.. second term on right-hand
side of equation (62) in non-dimensional form)

C.n = yawing moment coefficient from surface integral (i.e. third term on right-hand side of equation (62) in
non-dimensional form).

The numerical results are listed in Table 2.

It is noted that C,; is zero in all of these examples since Z (x,(y), y) is zero.

The agreement between (C,; + C,y) and (C,; + C,; + C,3) is reasonable, the difference being within 6 per
cent of the value of either term. It is thought that most of this difference is associated with the neglect of the
yawing moment on S, while the remainder is due to numerical deficiencies in the calculation of the wing-tip
edge forces.

Further results are quoted later when compressibility effects are described.

3.3. Integral Relationships; Trefftz Plane Analysis

In the analysis so far, integral relationships have already been obtained for the side force and yawing moment
(i.e. equations (58) and (62)) essentially by equating the actual side force and yawing moment on the non-planar
wing model to the Trefftz plane results for the planar model. Now it is axiomatic that the forces and moments
estimated from a large control volume analysis should be consistent with the forces and moments estimated
at the wing itself assuming the same model, thus equations (58) and (62) should appear from a Trefftz plane
analysis of the non-planar model. This analysis is not presented fully here, an outline is given to show how and
where the various terms arise.

Consider a'large control volume ABCDA’B'C’'D’ as shown in Fig. 5 enclosing the non-planar model. The
trailing sheet now cuts the down-stream Trefftz plane (surface CDD'C’) in a curved line

2y) = Z(x{y), y) (63)

as shown in Fig. 6 acrogs which the discontinuity Ad,(y) acts.
The same arguments as those presented in Section 2.5 are followed through.

First for the lift
OAD
JI pU(—w)dydz = — J] pU———dydz

CDD'C'— w CDD'C’'—»
+s
= f pU A®(y) dy (64)

assuming that 0Z /0y is small; this relationship is the standard formula for the lift.
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For the drag

+s o
H (P, — p)dydz = 'f 0 Ab v ©
—s z 2= Ze(x(9).3)

CDD'C' > X+

which, assuming Z_ small, is the standard form.
The expression for side force becomes, neglccting the side force required to maintain the trailing surface,

Y = J:[ pU(—v)dyd:z

CDD'C'—

0
fj pU—g) dydz
oy

CDD'C’' -

el +s)
J pU(—AD,) dz
Zc(—s)

(66)

_ f " U ACD,(y)(— 1Z (x{y) y)) J

dy

which is now identical to equation (58) as anticipated.

By the principle of conservation of angular momentum, the rolling moment and pitching moment analyses
follow similar lines to those described for the purely planar model.

The yawing moment derivation is far more complicated ; a complete analysis is not attempted here, only a
rough outline is presented. The contribution to the yawing moment from the Trefftz plane is

J] pydydz + (x — xq) b pU(—v)dyd:z.
CDD'C’'— CDD'C' >
There are now additional contributions from the streamwise surfaces ADD'A" and BCC'B’ (see Fig. 5) due to

the yawing moment from the momentum flux pUv. One term will combine with the second term in the above
equation (o give the overall side force contribution to the yawing moment, namely

dZ{x(y).y) ,
r—
dy
(This step is analogous to an equivalent step in the pitching moment analysis.) Another term arises on surfaces
ADD'A'and BCC'B' due to the fact that the trailing vorticity JA®/dy on the wing and trailing sheet is skew, since

8Z(x, y)/dy is non-zero, thus the velocity in the far field is no longer antisymmetric with respect to z. It is
conjectured that integration of this effect leads to the term

[froa

Sw

- [ et - xo 80,

which must arise to preserve conformity with the results already obtained from the alternative planar model,
as given by equation (62). ‘

It is now possible to explain why the planar side force ( Yp)y is not identical to the actualside force Y. According
1o equation (66) the side force Y can be regarded as the inclination of the lift distribution vector through the
angle — {dZ (x(v). y)/dy} in the non-planar model; thus if a planar model is postulated, a side force { Y — (Yp)w }
is required to set and maintain the trailing vorticity at the wing trailing edge in the plane z = 0. When the
trailing sheet in the non-planar model emanates from the trailing edge in the plane z = 0(i.e. when Z (x,(y), y) =
0) no additional side force is required to set and maintain the planar trailing sheet in the plane z = 0, thus

= (Yp)w = 0. However, even when Z(x,(y), y) is zero, the actual yawing moment .4" is not equal to the
pldnar yawing moment (.43)y ; the double surface integral over Sy in equation (62) still remains. This implies
that a disiribution of side force is required over Sy, to maintain the planar form of Sy in the planar model; and
this explains why the distributions, leading to Y and (Yp)w in equations (55) and (56) differ. The side force to
maintain the planar wake on Sy aft of the trailing edge, namely (¥p)r, has been shown to be negligibly small:
similarly the yawing moment (.43); required to maintain the non-planar wake aft of the trailing edge has also
been neglected. The difference in side force distribution between the actual and planar systems is to maintain
the planar wing model, not to maintain any shape of trailing vorticity.
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4. Linearised Wing Theory in Subsonic Compressible Flow
4.1. Basic Equations

To complete the present investigation it is necessary to ensure that the results derived so far for the low
speed (incompressible) flow problem can be extended to the higher subsonic Mach number regime. The deriva-
tion of linearised wing theory incorporating compressibility effects is presented in many textbooks as a routine
piece of work which is fully wrapped up. Such an attitude is reasonable if linearised wing theory is regarded
purely as a first-order theory. But there is a need to clarify the second-order quantities such as induced drag,
side force and yawing moment when compressibility effects become important. In the consideration of these
second-order quantities further insight is gained into the implications of linearised subsonic wing theory. The
following analysis is not fully rigorous, but it is hoped that the main points are adequately discussed.

Again a lifting surface theory is proposed of the uniform flow past an infinitesimal thin wing, Z(x, y), (with
either the planar or non-planar representation at this stage) behind which extends a system of trailing vorticity.
- Axes are chosen as before (Fig. 1).

The uniform free stream is denoted by U ; the perturbation velocities are u, v, w: the static pressure of the
free stream is p,, , the density of the freestream is p,,, the speed of sound in the free stream is a,, .

Assuming an inviscid, isentropic flow the standard equations for the variation of speed of sound, pressure and

density are
az = az M (67)
U+ 3y - DM?

1+ 4y — lMi, yi(y— 1)
p = podn 2t = DM [T (68)
1+ 7('}1 - M
1+ 4y =1 Mﬁo Yey-1
P =P —21@*%‘ , (69)
1430y — )M
‘where y'is the ratio of specific heats and
2 2 2
M2=(U+u)—i2—v +w- (70)
a
Division of equation (68) by equation (69) is equivalent to equation (67).
The equation of continuity is
) d G,
—(p[U — = = (.
5o PLU +u) + ay(;ov) + 5 low) =0 (7
Expanding equations (67 to 71) in terms of the perturbation velocities
y — 1
a®=at — (y — NUu — C=D 5 )(uz + v + w?), (72)
P = o = Pl — BB + 02 4+ W) + 0w, v, W), (73)
u M? u\? @+ w?
= 1 — M2 — — —2(1 — (2 - yM2)|— T 5, w) 7
p pw[ v Ty L= 2=) w)(U) + 2z + O(u, v, w) (74)
and
i) 0 0
B2 — M2 — 2 — pM2) |2+ L O, uw, w?) = 0 (75)
U dx dy oz
where
B>=1-— M.
Since the flow is irrotational outside of the wing and trailing vorticity a velocity potential @ exists such that
oD o o0
= — = — d =—. 7
u i v 3y and w 3, (76)
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Away from the transonic region the basic linearised flow equation takes the standard form

82(1) (’32 azcl)
27 = =0 77
It can be seen, by reference to equation (75), that the basic equation (77) is based on the assumption that

Bz
M? 7
°°U “3- 2(1 — M2’
To the same order of approximation it would appear from equation (74) that it would be consistent to take
p = p, . But although the change in density is small, it has the same order of magnitude as the change in
pressure. Since first-order changes of pressure are retained in the analysis, the first-order changes in density
should also be retained. Thus in addition to a first-order discontinuity in pressure across any lifting surface
there is an associated first-order discontinuity in density.

It is said in the literature that an appropriate co-ordinate transformation can reduce the linearised problem
in compressible flow to one in incompressible flow. This statement is not altogether true, for the discontinuity
in density is invariant with respect to the co-ordinate transformation so the ‘incompressible’ problem retains
a first-order discontinuity in density.

The linearised boundary condition, as before, for the planar model, is

o0 0z
— = U—, 78
aZ ~=0 5)( ( )
while for the non-planar model
o . 0Z, (79
0z|.-p.  Ox° )
To first order, the pressure loading becomes, from equation (73),
OAD
Pi= Pu=pul—7—. (80)
X

Equations (77 to 80) constitute the standard subsonic linearised wing theory problem. It is not disputed
that a solution is valid within first-order theory as far as lift, rolling moment and pitching moment are concerned.
But for the calculation of induced drag, side force and yawing moment it is necessary to ensure that second-
order terms are adequately covered..

4.2. Formulation of Mathematical Model

As already stated there is a density discontinuity across the wing where for a planar model

MZ 00 M2 0D
fz=+0)=p |l — — =— \ pz==-0=p l1 - —— . (81)
U 0x].=+0 z=-0

Suppose a planar model is considered as shown in Fig. 2; S, is the wing planform; Sy is the planar trailing
sheet ; AD(x, y) exists across Sy and Sr; equation (78) holds on Sy while JA®/8x is zero across Sy.

To calculate the load distributions in the (x, y, z) directions on this planar model, the small control volume
abeda'b’¢’d’ of Fig. 3 is set up, as in Section 2. The load distributions are to be determined on the element dx dy
as oz tends to zero.

First, however, it is necessary to check that continuity is preserved. As 6z — 0 it is necessary for the mass
flow across abcd to equal the mass flow across a'b’'c’'d’; now
u
mass flow across abed = pw 0x éy = pw|:1 - MZ% E] w dx 0y,
and (82)
u
mass flow across a'b’'c’'d = pw dx dy = p,, |:1 — Mia] wdx Oy.
=-0
While w is continuous across z = 0 by virtue of the boundary condition, u is discontinuous. So continuity is

only satisfied to first order, there is a second-order term which remains, equal to

w 0AD
MZ
“U ox

this term is of the same order as the local streamwise force and so it cannot be dismissed lightly.

—— 0x dy;
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Without proceeding further the conclusion at this stage must be that the planar model is inadequaie as a
basis for estimating second-order terms in subsonic compressible flow.

The next step therefore is to consider the non-planar model which can be defined in exactly the same manner
as the model in Section 3 and shown in Fig. 6. The discontinuity A® is situated on the camber surface Z(x, y)
on the wing, while the trailing surface is generated by the streamwise extension of the trailing edge Z.(x(y), y)
downstream to x = + 00.

In this case, since on the wing the camber surface is identified with the streamline, continuity of mass is
automatically conserved.

The only force distributions on the wing surface are due to normal pressure distribution ; thus neglecting
third and higher-order terms

~

()
element of force in z direction = (p; — p,) éx oy = pwUW 0x 0y,
. .. 0Z,

element of force in x direction = (p, — p,){ — E ox oy,
V4
_ pwu?§(_aa_xf 5x b, (83)
. L 0Z,
element of force in y direction = (p, — p,}| — 3 ox 8y
y
0AD | 0Z,
=P, —-éx—(—ay ) ox Oy.

In addition to these distributions of loads over the surface there are also the edge forces. Ideally it would be
satisfying to formulate the edge force distribution directly in a similar manner to the treatment for incom-
pressible flow as presented in Section 2.3. Unfortunately such a procedure introduces considerable difficulties
which are all associated with the variations in density in the edge regions. However an indirect method is
possible ; by using the fact that an infinite swept aerofoil has zero overall drag an estimation of the local leading
edge force can be made. Garner presents this approach in Section 2.2 of Part II in full.

Thus subsonic linearised lifting surface theory is applicable when equations (83) are used for the load distri-
butions together with the appropriate edge forces, with the minor reservation that a strictly non-planar model
is implied.

4.3. Integral Relationships; Trefftz Plane Analysis

Since the main theme of the earlier sections is the compatibility between forces and moments on the wing
and conditions on a large control surface, it is necessary to confirm that compressibility does not affect the
Trefftz plane formulae. As far as is known even the formula for vortex drag has always been taken for granted
without proof.

Consider the large control volume ABCDA'B'C'D’ as shown in Fig. 5 surrounding the non-planar model.
On the Trefftz plane, plane CDD'C’, there are transverse velocity components v and w induced by the trailing
vorticity situated on the non-planar trailing sheet (i.e. on z = Z(x/(y), ). Now these transverse velocities v
and w induce a change in density, for according to equation (74)

2
2a;,

It is now argued that since induced drag depends on the integration of (v? + w?) over the Trefftz plane then
terms like (v* + w?) must be retained in all the parameters, thus the small change in density implicit in equation
(84) must be retained. And if the density varies over the Trefftz plane then from continuity

2 2
p=pw|:1-—Mi%——m—+...]. (84)

{p(U + 1) = p,U} dydz = 0, (89)
CDD'C’'—+

which gives

2 2
ﬂ . (ﬁz-l“7 - %) dydz = 0. (86)

@
CDD'C'» o
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Equation (86) implies that a small longitudinal perturbation velocity u must exist in the Trefftz plane. The
velocity u/U must be symmetric with respect to z, even for the lifting problem, and its order of magnitude is
{(0? + WU} M2/,

It is of interest to note that even retaining the second-order term u/U in the Trefftz plane the basic differential

equation again becomes
e 9o
P + P 0, £87)

to a first order.
The overall forces and moments can be obtained by applying the arguments presented in Section 3. Neglecting
third-order terms, the lift on the wing is

L= ﬂ p(U + u)(—w)dy dz = f P U AD() dy, (88)

CDD'C’'>
and the side force on the wing is

i) . )
Yy

J] p(U + w)(—v)dydz = fj:pooU A(Dz(y)(“

CDD'C'» 0

Neglecting the side force on the non-planar trailing sheet, it follows that the side force on the wing is given by
the same approximate formula as in the incompressible case (i.e. equation (58)).
The drag force on the wing is

D= ﬂ'«%—m—MU+W+me@¢

CDD'C' >

= J] {[pwUu + 2B + v? + wz)]

CDD'C'—
M2
— [pOOUu + pBPul + p (1 — 2M2)u? — prm(v2 + wz)]} dy dz

on substitution of equations (73) and (74). Hence with the aid of equation (86),

J‘[ —(v + widydz + O?), - . »

CDD'C’'>

+s a(D
- f {pwu A“’b‘z’} B 0 (90)

using equation (87). Thus the standard formula for the vortex drag can be derived, even when the density
variations in the Trefftz plane are taken into account. -

Since the yawing moment .4 is a combination of the above side force and drag terms, it is conjectured that
the formula for .4 is the same for both the incompressible and compressible cases, as given by equation (62);
the numerical results presented in the following section support this assumption.

4.4, MNumerical Example

Part II includes a numerical solution for a tapered swept wing of aspect ratio 2 at M, = 0-7806; the camber
surface is

(1 + y/s)x — x(y)
¢

Zc(xa y) = -

such that Z (x(y), y) is zero.
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The side force contributions are:
Cy, = side force coefficient due to integration of normal pressures
= —2.778,
Cy, = side force coefficient from leading edge

1.759,

Cy; = side force coefficient from wing tips
= 0:974.
Thus
Cy = Cyy + Cyy + Cy3 = —0-045. (91)

The inference from equation (89) that C, is negligibly small when Z(x(), y) is zero is supported by the
numerical result given by equation (91).
For the yawing moment about an axis through the leading apex of the wing, the contributions are:

C,: = yawing moment coefficient due to integration of normal pressures

= 1.920,

C,, = yawing moment coeflicient from leading edge
= —1.467,

C,3; = yawing moment coeflicient from wing tips
= —0:941.

Thus
Cn = Cnl + CnZ + Cn?, = —0'488. (92)

Now from equation (62) C, is also approximately equal to (C,; + Cyy + C,yp) where, by reference to equation
(62),

C,, = yawing moment coefficient from Trefftz plane

= (-236,

C.i = yawing moment coefficient from line integral
=0,

C,m = yawing moment coefficient from surface integral
= —0710.

Thus
Cn[ + Cnll + CnIIl = —0474 (93)

Again the agreement between equations (92) and (93) is reasonable.

5. Conclusions

(1) It is shown that linearised theory can be used to predict second-order quantities such as drag, side force
and yawing moment as long as the mathematical model is a non-planar model; the forces should be
calculated from the resolution of the pressure loading distribution, which acts normal to the wing surface,
together with the edge forces.

(2) Approximate alternative expressions are derived for the side force and yawing moment which do not
involve the edge forces.
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Cnl ’ Cnll ® Cn]ll

u, v, w
X, V., z
Xo
x({y)
x{y)
Z{x,y)
Z{(x,y)

LIST OF SYMBOLS

Speed of sound in free stream

Side force coefficients due to normal pressure distribution, and leading edge suction

force, and wing tips suction forces respectively

Yawing moment coefficients due to normal pressure distribution, leading edge suction

force, and wing tips suction forces respectively

Yawing moment coeflicient terms defined by the three terms in equation (62)
Drag on wing

Drag on planar surface Sy

Lift on wing

Lift on planar surface Sy

Rolling moment on wing

Rolling moment on planar surface Sy

Pitching moment on wing

Pitching moment on planar surface Sy,

Mach number of local flow and free stream respectively

Yawing moment on wing

Yawing moment on planar surface Sy + Sy

Yawing moment on planar surface Sy

Yawing moment on planar surface Sy

Yawing moment due to edge forces from leading edge and wing tips
Static pressure

(Pressure on lower surface of wing) — (pressure on upper surface of wing)

Perturbation velocity components in cylindrical co-ordinates on an edge

Perturbation velocity components normal and parallel to edge in vicinity of an edge

Cylindrical radial co-ordinate
Wing planform on plane z = 0
Trailing sheet on plane z = 0
Free stream velocity

Cartesian velocity components

Cartesian axis system with origin at wing apex, Ox in free stream direction, Oy to starboard

Position of either pitching axis or yawing axis
Equation of leading edge of Sy

Equation of trailing edge of Sy

Wing camber surface

Wing thickness distribution

Incidence

(1 — M%)
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Oy Oy» O Distances away from nearby edge, normal to edge, in x direction, in y direction respec-

x> Yy

tively
y Ratio of specific heats
A Local angle of wing sweep
PP Local density and density of free stream
D Velocity potential
AD Discontinuity in velocity potential
AD(y) = AD(x,(y), y)
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TABLE 1

Side Forces on Rectangular Wing of Aspect Ratio 2

Camber surface Side force due to Side force due to
Case Z(x,y) o(x, y) normal pressures | wingtip edge forces
CYI CY3
(a) 1+ X)(1 - i‘) 147 ~1.9673 +1.9454
S ¢ S
(b) oy X)(l - f) 3(1 + X) — 11500 411448
) S c S N
»\? x .y x wWi2x oy
(©) Nhr+Z+4=2 AE4t — 10186 +1.0162
N C N ¢ S C N
TABLE 2
Yawing Moment Contributions
Case Z(x,y) Cu C, Caa
(a) (1 ¥ %)(1 - 3;-) 06426 — 0-9781% —02575 | —0-5637 + 0972722
.
(b) %(1 ¥ %) (1 - 3;-) 02754 — 0-5750’—22 —01009 | —0-3237 + 0.5724°
.
2
(©) (3) (1 +2 4 f) (1 - ’f) 02354 — 0-50932° 00220 | —0-3349 + 0-50812°
S S C ¢ C C
Case Ca Coam Ca + Canr Coi + Gz + Cps
(@) 0-2297 —0-4195 ~0-1898 —0-1785 — 0-0054 x,/c
(b) 0-0977 —0-2534 —0-1557 —0-1492 — 0-0026 x,/c
© 0-0973 —0-2210 —0-1237 —0-1214 — 00012 xo/c
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LEADING EDGE
X=X, (y)

TRAILING EDGE

X=X, (y)
]
Al TA
z 2= 2,y +Zx,y)

z=7 (xy) -Z‘(x,v)

Fi1G. 1. Basic problem.
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PLANAR TRAILING SHEET
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y=-s

FiG. 2. Planar mathematical model.

FiG. 3. Small control volume.
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Fi1G. 6. Non-planar model.
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Part 11
Edge Forces and Roll-Rate Derivatives

1. Introduction

As stated in the Preface, lifting-surface theory has not been extensively applied to the calculation of various
lateral stability derivatives ; approximate and simple expressions have played a major part in their estimation
during the past two decades. For example, Toll and Queijo' used the concept of a sheared unswept wing to
found the basis of rapid estimation of these lateral derivatives for swept wings in incompressible flow. Goodman
and Fisher? have used experimental evidence on rolling stability derivatives at low speeds for untapered wings
of varying aspect ratio and sweepback to devise a semi-empirical method, which incorporates tip suction and
non-linear characteristics associated with drag at high lift. The effect of Mach number for a range of sweepback
is considered experimentally and semi-empirically by Wiggins® and more recently by Queijo* in terms of
simple theoretical formulae akin to those in Ref. 1, which only apply to linear conditions.

As established in Part 1, the standard lifting-surface integral equation can be applied to the calculation of
side force and yawing moment with the correct interpretation of the pressure distribution. Here the approach,
based on an extension to lifting-surface theory,¢ is to sum the separate contributions from the loading normal
to the camber surface and from the leading-edge and side-edge suction forces. In reconciling two different
concepts of lift-dependent drag from kinetic energy in the wake and from integrated forces at the wing, the
author has stated in Ref. 7 that the accuracy of leading-edge suction is perhaps the severest requirement of a
lifting-surface solution. However, it is quite as difficult to ascertain the distribution of tip suction, and hence its
contribution to the side force and yawing moment under asymmetric spanwise conditions. In this respect the
demands on lifting-surface theory are alleviated by the margin of error that can be accepted in the estimation
of lateral stability derivatives.

From the theoretical standpoint it is necessary to make the distinction between sideslip and yawing motion,
which involve asymmetry of wing planform relative to the mainstream, and aileron deflection and rolling motion
where the asymmetry is confined to the boundary conditions. The present investigation is restricted to problems
of the latter type, including the lateral forces and moments on wings with asymmetric twist and camber.

The purpose of the present report is threefold. Analytical and numerical studies of local and integrated
edge forces are undertaken, in order to investigate their theoretical behaviour and importance. The contribu-
tions to the roll-rate derivatives of side force and yawing moment are deduced for two rectangular wings and
one tapered swept wing, to establish some general trends in these theoretical derivatives and to make comparison
with the appropriate formulae and charts from the simplified methods of Refs. 1 and 4. The related experimental
evidence from Ref. 2 and the semi-empirical methods of Refs. 2 and 3 are used to provide some assessment of
the validity of the present calculations; in particular, the réle of the edge forces in the non-linear experimental
behaviour of the yawing moment due to rate of roll can be clarified.

2. Steady Subsonic Wing Theory

Under the usual assumptions in linearised lifting-surface theory the wing is taken to have zero thickness.
The origin of co-ordinates is chosen where the centre line of the wing planform intersects the leading edge:
Fig. 1a shows the right-handed system of stream axes with Ox in the direction of the stream depicted as horizontal,
0y to starboard and 0z drawn vertically upwards. The stream of uniform velocity U, subsonic Mach number M
and density p is supposed to be inviscid and irrotational and therefore subject to a perturbation velocity
potential .

The planform occupies the region

() < x < xfn)=x{n) +cy)  (-1<n<1) 1)

where # = y/s and s denotes wing semi-span. In terms of the geometric mean chord ¢, the planform area is
S = 2s¢ and its aspect ratio is A = 2s/¢. The camber surface of the wing

z = —cZ(x/¢,n) )
is so slightly displaced from the plane z = 0 that the boundary condition
1 o0 0z
Toz- ad — (X, y) (3)

may be satisfied on z = 0.
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In the usual mathematical model of the flow the potential @ is antisymmetric in z with discontinuity
A®(x, y) in crossing from below to above the plane z = 0 in the region (1) and also in the wake

xtm<x (-l<p<) (4)
From Bernoulli’s equation for compressible flow of a perfect gas the lift per unit area is obtained to first order as
0

Ap = 3pUl(x, y) = pUZ(AD). (3)
The vortex sheet in the wake does not sustain lift, and it follows from equation (5) that

AD(x, y) = AD(x,,y)  (x = x;). (6)

It is well established® from the mathematical model that equation (3) leads to an integral equation

¥4 * J(x',y) [ x—x :|

—— =X, y) = J f + - —— | dx' dy’ 7

e R = M N s IR (P ey s R ?

where 2 = 1 — M2, Subject to the Kutta condition that / = 0 along the trailing edge, equation (7) is sufficient
to determine {(x, y) when Z(x/c, 5) is given.

However, for the purpose of satisfying equation (3) to first order, there is no need to assume a planar vortex
sheet. The discontinuity A®(x, y) should bg regarded as occupying the camber surface (2). Likewise it should be
recognised that in the wake the vortex sheet is a stream surface which is convected away from the plane z = 0:
although the local vertical displacements tend to grow indefinitely with increasing x, their upstream influence
at the wing can reasonably be ignored. As far as the flow at the wing is concerned, the rolling-up of the trailing
vorticity is also of secondary importance.

The pressure loading Ap of equation (5) acts normal to the camber surface (2) with components of force
per unit area

oz
1 2 . . .
spU*l(x, y)—a ) in direction Ox .

oz
oU2(x, y)g o in direction Oy

Although both these components are of second order, it is clear that no further contributions of this order
would result from higher-order terms in I(x, y). In other words, there is no inconsistency in the derivation of
the second-order quantities for drag, side force and yawing moment from linearised subsonic wing theory.
The mathematical procedures for obtaining solutions I(x, y) to the integral equation (7) are legion, and no
attempt is made to review them. Most of the present calculations are based on the method of Ref. 6 with zero
frequency. It is sufficient in Section 2.1 to define the various steady-flow solutions and to give the necessary

equations for the subsequent analysis of local edge forces and total side force and yawing moment in Sections 2.2
and 2.3.

2.1. Lifting-Surface Method

For a given planform, camber shape Z(x/¢, ) and subsonic Mach number, solutions for the wing loading
by the method of Ref. 6 involve the choice of a trio of integers (N, m, a). The first two determine the location
of points (x,,, y,) on the planform where equation (7) is satisfied,

xpv = xl(nv) + %C(”U)(l — COos ¢p),
¢, = 2np/(2N + 1), p=1(1)N] . (9)

= sy, = —§COS Y = 1(1)
—sp = —s T ; v = m
y\/ ¥

The third one, a, controls the accuracy of the spanwise integration involved in equation (7). The integers N
and m also determine the number of coefficients in the expression for the non-dimensional wing loading. Thus

N

_ 8 cos(g — 1)¢p + cos g¢
l(x, y) - 7CC(71) q;l rq(r’) Sin d) ’

(10)
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where the angular chordwise parameter ¢ is given by
x = x{{n) + Fe()(1 — cos ¢);

the spanwise loading functions are defined by the double series

Ln) = [Fq, Y sin pfsin ,uﬂ,]

- p=1

with # = —cos 8 and T, = T (n,), where

m +

T
1), r = 1{1)m.

7, = —cos B, = —cos (

The solutions are the sets of mN coefficients I, that determine /{x, y).
It is convenient to define generalised force coeflicients for certain standard modes

Z{&n) or Zf&n) =<,
where ¢ = x/¢ and the indices ¢ and 7 relate to i (or j). The camber surface is taken in the form
J

Z(En) =Y bZ

to produce the wing loading

l(x’ J’) - bjlj(xa Y)

1

ek”

J

The corresponding force coefficient is defined by

1
Q= —Sf L& mMix, y) dx dy

S

J
Z Qi
where

1
0y = g || 246 i ) dxay
M

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

The modes with spanwise symmetry are treated independently of the antisymmetric ones, and equation (18) is

replaced by

1
(Qij)sym = ﬁ Sf (Zi)sym(lj)sym dx dy

@0l = 2 [[ @ty x|
N

(19)

For the present purposes it is sufficient to take the first ten symmetric modes and the first six antisymmetric

modes from Table B1 of Ref. 6 and to numerate equation (14) as follows.

i(or)) 1 2 3 4 5 A 7 8 9 10
(Z) a 0 1 2 3 4 d 1 2 3 0
Heym T 0 0 0 0 0 2 2 2 2 4
1 2 3 0 1 - - - -

Z), ..
( l)antl T 1 1 1 1 3 — — - —
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While Ref. 6 has been used in the present applications to rectangular wings, the calculations for a tapered
swepl wing are by the lifting-surface method of Ref. 5 with a similar trio of integers (m, N, g) including the
quantity ¢ analogous to « in Ref. 6. Although the solutions are transcribed to the present notation, there are
certain complications on account of the sweepback. Additional force modes

(Zl)sym = |’ﬂ

Z sym =

(Z1Dsym = €Il 0)
(Z D)o = 1/

(ZDans = Sn/lnl

arise in the evaluation of yawing moment. The planform is rounded so that the true leading edge and chord in the
region |n| < 5, are replaced by

x(m) = x;g + f(DIxdnig) — Xm]}’ o)
cln) = cg + f(A)clnig) — cgl
where x,z(= 0) and ¢, denote the root leading edge and chord, and
fhy =4 4+ 12 =123, 0<i<gl
. (22)
£ = nl/ng. Hig = s8N M+I)

2.2. Evaluation of Edge Forces

The velocity potential difference A®(x, v) is easily obtained from the non-dimensional wing loading by
equations (5). (10) and (11). whence

x ]
AD(x, y) = %UJ. X, y)dx' = iU('(q)f I(x, y)sin ¢ dop
X1 0

Ve N : _ H
7f.g|:l“l(;7)(¢ +sing) + 3 rq(n){sm (g = D¢ sin "4’}]. (23)
T =2 L g-1 q

With regard to edge forces the three-dimensionality of the problem is fully taken into account in the behaviour
of A®. The local edge forces. acting normal to the edge and in the plane of the wing, arise from the infinite
gradients of A® normal to the leading and side edges, ¢ = 0 and # = + 1, irrespective of any local variations
parallel to the edges. Thus we can use a two-dimensional argument without loss of generality, recognising
that the edge force is a necessary approximation to a component that arises naturally from normal surface
pressures on a thick wing.

The simplest approach to the formulation of these edge forces in terms of the behaviour of A® on a lifting
wing is to consider a two-dimensional thin sheared wing at uniform incidence « and to use theTondition that its
dragis zero. Let ¢ and A denote the wing chord and the angle of sweepback. Then the load distribution is that

of an unswept two-dimensional wing of chord ¢ cos A at uniform incidence a sec A in a stream of velocity U cos A
and Mach number M cos A. Thus

Ap = 5pU? cos® A(1 — M? cos? A)™ *4asec A cot 3¢
= 2pU?x(B* + tan® A)~ ! cot 3¢. (24)

Denote the distance normal to the leading edge by
n = 4ccos A(l — cos ¢). (25)

Then the discontinuity in velocity potential is

an A ¢ A
AD = - ._.7,,77[)7* d” = J‘ l%(' Sll’l ¢ d(b
Jo pUcos A o pU

= Uca(p? + tan® A) " (¢ + sin ). (26)
The lift force per unit length of leading edge is
pU cos A(AD), -, = npU?cacos A(f* + tan? A) ™%
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Since the pressure loading acts at the angle « sec A to the axis 0z the streamwise component of force must be
balanced by the leading-edge suction force per unit length

E, = npU%co®(p? + tan®> A)~ % 2n

It remains to relate E, to the behaviour of A® near the edge

AD = 2Ucad(p? + tan® A)‘%}. o8)
¢ = 4n/c)sec A
By equations (27) and (28)
E, = t57p cos A(B® + tan® A)[(AD)Y/n], . 9

The tip is treated as the limiting case when A tends to 90°. Thus equation (29) gives the outward side-edge force
per unit length

E, = {6np[(AD)*/n], -, (30)

where now n/s = | — |y|.

It may be observed that equation (29) also reduces to equation (30) in the limiting case of incompressible
flow. An alternative derivation of this special result is given by Hancock in Part 1. While the expression for
tip suction is unaffected by compressibility, the leading-edge suction shows explicit dependence on Mach
number. Moreover, just as Ref 7 reconcilds the lift-dependent drag from the Trefftz plane (x = oo) with
components acting at the wing in incompressible flow, so with the aid of equation (29) the same equivalence
can be demonstrated in subsonic compressible flow in accord with the Prandtl-Glauert similarity rule.

The local edge forces can be deduced from equations (23), (29) and (30). Near the leading edge equation (23)
becomes

AD = (4/n)sUBG + O(¢®) (31)
where
N
© =3 I (32)
q=
If A{n) denotes the local leading-edge sweepback, it follows from equation (11) that
n = 4cp? cos A, = O(¢p*). (33)
By equations (29), (31) and (33)
4 UZ 2@2 .
E =222 27 (82 1 tan? A (34)
ne(n)
To evaluate E, it is convenient to let
T, =01 = g 4Ty (35)

A general expression for I is obtained from equations (12), (13) and (35) in the limit as § — =. It is found that

n lT[
G = =0 3 (=17 tan (S 4 o - o
r=1
whence
m 1
L= Y (=1y 'T,tan |22 ],
= Lo =

According as [, is symmetric or antisymmetric in 7,, the summation in equation (36) can be shortened to give

_ tm~1) . nr
(T ym = 2 21 (—1)"'T,, cosec (m " 1) — s+ 1)

im—-1)

=2 Zl (= 1y I )(1 = 12)™F — T,0) (37)
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or

3m—-1)

I nr
Tans =2 Y, (=1)T,cot (m - 1)

r=1

im—1)

=2 Z )r 1r nr)nr(l - nr) % (38)

It follows from equations (23), (30) and (35) that

UZsy?
E =5 (39)
where

_ N -1

~Ty¢ +sing) + 3 T {sm (g~ ¢, sin ng} (40)
q=2 q— 1 q
Individual expressions for the outward edge forces per unit length acting at the two tips are then formulated as
UZ

E, =P (W & Wand? forn = 1, (41)

where W, and V,,,; are defined by equation (40) in conjunction with I, from equations (37) and (38) respectively.

2.3. Side Force and Yawing Moment

With the usual sign convention, illustrated in Fig. 1b, the side force is positive to starboard and yawing
moment is positive anticlockwise about the axis 0z. The yawing moment coefficient will be split into three parts

Cn = ./V‘/(pUsz) = Cnl + an + Cn3, (42)

where C,,, is the contribution from normal pressures, C,, and C,; are derived respectively from the leading-edge
and side-edge forces. There is no need to consider the side-force coefficient Cy separately, because C, is obtained
as a linear function of the axis position x;; thus

Cy = Y/(GpU?S) = 0C,/d(xo/2s)
= AJC,J0¢, with &, = xo/e. 3)

The first term C,, is derived from the components of local force in (8) : with yawing axis through (x, y) = (x,,0)
they contribute
| O e 0Z oZ¢
Coi = o x, V| —=y — ——(x —
" sz_Jx, (x y)[aéy e xo)} dx dy

(e nozZ §—4&,0Z
= f—1 L, I(x, y) [4& RyrE aﬂ]di dy (44)

where ¢, = x,/¢ and §, = x,/¢. It can be seen from equation (44) that C,, can only be non-zero if the camber shape
Z(&, 1) and consequently the loading I(x, y) are asymmetric in 1. We write

Z = (Zj)sym + (Zj)anti} (45)
l = (lj)sym + (lj)anli
and take the force mode
Z = (Zi)sym + (Zi)anli
with
a(Zj)anli 4('5 - 60) 5(Zj)anli
(Zi)s m =1 - 2
v A 0
i &) Z Z ' 4o
_ a(Zj)sym (é 0) sym
(Zi)anti =n 66 - AZ 611
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Then in the notation of equations (19)

Ca1 = (Qidsym + (@i ansi> (47)

where the modes i will be linear combinations of those defined below equations (19) or in equations (20).
The leading-edge suction per unit length in equation (34) contributes

1 $ y
Cp=——| E — xo) Y tanA,b d
2 pU?Ss J‘_ l{y + (% xo)|y| an z} y

2/n2
__4 f Al “a“ AY {~An+(éz—€o)%tan/\z} dn. (43)

In the case of a straight sweptback leading edge with

&= 2A|’1| tan A,,

equation (48) reduces to

1 2702 2 A
C, = _éf O + ta_n i { An sec* A} — éﬂtan A,} an, (49)
TJ_y cn)e Inl
where it remains to substitute from equation (32)
N N
@ = ®sym + ®anti = Z [Fq(”)]sym + Z [rq(r/)]ami' (50)
g=1 q=1
Hence
44 ; ! ;
C,, = ——(p% + tan? A)*| $4sec? A, J L‘"_“—""n dn — &y tan A,f M—“«“du . (51)
T c/¢ 0 c/c

Like C,;, this contribution vanishes if the spanwise loading is symmetric or antisymmetric.
The side-edge forces per unit length in equation (41) combine to give

2 xe(1)

Cn3 = -

TIS 1) lIlsym\IJanti(x - xO) dx' (52)

If we substitute the functions ¥ from equation (40) and put
x = ¢&p + el = cos ¢) (53)

along the tip chord, equation (52) becomes

_;Z_IZJ ':Fl(qﬁ + sin ¢) + i {sin g = )¢ + sin qqﬁ}} X [Tl(qb + sin ¢) +

]

Cn 3

q=2 qg-—1 q
N J—
Ly I_“q{sm(q 1)¢+smq¢}] X{C—_T(én Eo) + ( )(l—cosd))} sin ¢ d¢
q=2 q—‘l q anti c
= ‘r D30 70 o8 ST (4 B BV
= ~ﬂ ?(EZT—‘fO)q’Za; aal o + | %:;7(“— ) 0N O § (54)

Here the subscripts g and a are used to denote symmetry and antisymmetry, so that the summations are taken
over the N? combinations of

= ([ )ym from equation (37)} 5
= (T,)ui from equation (38))
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and the integrals I, = I,, and J,, = J,, are defined below.

L= [ @ +sing?sing o = 32 - 5
0

1, = fn(gb + sin ¢)(sin ¢ + %sin 2¢)sin pdp = in® + §

0

I, = J"(d) + sin ¢) {Si“ (a= D¢  sin aq&} sin ¢ dep
0 a

a-—1
. (o | . . | . (56)
I :J' sin (g — )¢7+ sin g¢) (sin{a — )¢+ sin ag sin ¢ do
! 0 g-—1 q a—1 a
8 g+az=4
"~ g+a-3g+a+Dla-a-NDlg—a+1) | andeven
8 [q +az 5]
(gt a-2@+alg-a-2g—-a+?2) and odd
The integrands of J,, include the extra factor cos ¢ in each case and give
Ji = _%nz _%
Ji2 = Ten’ — 45
Jis =1’ + 75
—q =a=2or}|.
8{(g — a)® — 3} (57)

T = T T — A g = 1l {g —a — O g+azs6

L and even

— 8{(q +a — 1)* = 3} q+a>5]
T -t —4{gra—-1P -1} {(g+a—1>=9) | and odd

For an arbitrary camber shape Z(£. ) indicated in equation (45), the yawing moment coefficient may be
calculated as the sum of equations (44) or (47), (48) or (51) if A, is independent of #, and (54). Given the values of
I, at the positions 5, in equation (13) and the necessary generalised force coefficients of equation (19), the
computations are straightforward with the aid of equations (37), (38), (46), (50), (56) and (57).

3. Asymmetrically Twisted Wings

The side force and yawing moment in linearised potential flow arise from interactions between the symmetric
and antisymmetric parts of the spanwise load distribution. Practical situations in which the two components
are present occur on a lifting wing with ailerons deflected or in rolling flight, and the latter will be discussed in
Section 4. In the case of ailerons it is questionable whether lifting-surface methods can yet provide reliable
edge forces. The artificial problem of a thin wing, whose camber shape Z(&, ) and local incidence 8Z/0¢ are
asymmetric in #, provides a convenient medium for numerical studies relating to the preceding analysis. The
results are presented in Tables 1 to 6, and some of these are relevant to rolling flight.

3.1. Rectangular Wings at Low Speeds

The main examples are for the rectangular wing of aspect ratio 4 = 2 in incompressible flow and with camber
shapes

() Z(Eng) = (1 + g — 1)
(b) Z(Em) = n(l + )E — 1) : (59)
© ZEm=nl+E+nE -1
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The loadings correspond to distributions of incidence

V4
w=gg =10’ 02+, (59)

and in the notation of equation (16) and the table following equation (19) they are respectively
(@ Ix,») = (sym + U2y
(b Ax,p) = (7)sym + (2)anui ¢ - (60)
(© xy) = (Ugdym + (Uo)anu

Each solution has been obtained to sufficient accuracy by the method of Ref. 6 with N = 4 chordwise terms,
m = 15spanwise terms and spanwise integration parameter a = 6. The symmetric and antisymmetric solutions
are presented separately in Tables 1 and 2, each in terms of the coefficients I, = L), = 0) defined in
equations (10)to (13). The necessary generalised forces from equations (19) with the associated table are recorded
in Table 5a.

For each of the three camber shapes the yawing moment is calculated in the notation of equation (42). From
equations (44) and (54) C,,, and C,; are linear functions of the arbitrary axis position &,, but for the unswept
leading edge C,, inequation (48) is independent of £,,. With the aid of the table below equation (19) the procedure
of equations (44) to (47) leads to

4
(@) Cu = [Qez + F{QZZ — Q33 + $o(Qs2 — Q12)}j| + [@12)and

sym

4
b Gy = [Q(ﬂ + ?{QZ'/ — Q37 + £o(Q27 — Q17)}] +

sym

8
+ [Qsz + ZE{sz — Q35 + $o(@2s — Q1z)}] (61)

anti

12
© Cu= |:Q10,8 -+ F{Qn — Qgs + &o(Q75 — Qas)}:' +

sym

8
+ |:2Q66 + ';4—2{Q26 — Que + &o(Q36 — Qlﬁ)}:|

anti

in the three cases. The negative contributions to the yawing-moment coefficient from the edge forces, C,, and
C,;, are easily evaluated from equations (51) and (54) to (57). The results for arbitrary &, are given in Table 6a.

It is interesting to note that the total C, is practically independent of &, as the linear terms in C,; and C,;
are of opposite sign and only differ in magnitude by about § per cent. Thus the side force Cy from equation (43)
practically vanishes. In Part I Hancock deduces that Cy becomes very small whenever

%—j = 0 at the trailing edge, (62)
a condition that has been satisfied in equations (58). The addition of some quantity F(y) to Z(&, n) would leave
o, I(x, y) and the edge forces unchanged, but it could greatly alter Cy through the coefficient of £, in equation
(44) for C,,. Hancock argues that equation (62) provides an overall condition for small side force in linear
potential flow.

From Table 6a it can be observed that C,, and C,; oppose C,,, so that for small &; the edge forces cause the
yawing moment on the rectangular wing of aspect ratio 4 = 2 to change sign in each of the three cases of
asymmetric twist. The reality of these contributions will be discussed in relation to rolling derivatives in Section
4.2, for it certainly matters whether or not the edge forces can be sustained in viscous flow.

The other example at low speeds is a rectangular wing of higher aspect ratio 4 = 4 with camber shape (a)
from equation (58). The formulation of each contribution is general in aspect ratio, and equations (51) and (54)
suggest that — C,; should increase and — C,; decrease. The results obtained from the solutions in Table 3 and
the generalised forces in Table 5b are included as case (ii) in Table 6b. The contributions to C,, and C,; pro-
portional to &, are both much smaller and cancel each other within 1 per cent to give negligible side force
under the condition (62). The total coefficient C, has changed from negative to positive as a result of the increase
in aspect ratio, notwithstanding the large increase in — C,, from the leading-edge suction.
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Although the resultant edge forces would be linear in any factors applied to the symmetric or antisymmetric
parts of Z(£, i), this is not true of local edge forces. The local leading-edge force corresponds to equation (34)
and is proportional to ®2:; likewise from equations (39) and (40) the local side-edge force is proportional to ¥?
and quadratic in T,. In the case A = 4 with the camber shape (a), the distribution of edge force depends only
on the distribution of incidence & = | + 5 in equation (59). The symmetric distributions of edge force for
o = | and « =  and the combined asymmetric distribution are shown to scale in Fig. 2. The local leading-edge
and side-edge forces are of the same order of magnitude. When the incidences are superposed to givea = 1 + #,
the resulting local side-edge force from equation (41) is

E, = [(E)ym £ (E)ins)® accordingasn = +1. (63)

The non-linear construction of E explains the marked reduction in side force in Fig. 2 at the port tip, where
there are opposing contributions, in strong contrast to the starboard tip where (E ), and (E ),,,; are reinforcing.
The resulting local force from equation (63) can be up to four times the larger of (E,),,, and (E),n.i-

3.2. Tapered Swept Wing in Compressible Flow
The planform of the tapered swept wing is that used in Fig. 1 and is defined by
&) = x/¢ = /3l
&l = x/e =3+ 1/3 + dinl; (64)
s=34¢=7¢

It has been chosen for the present investigation, because both symmetric and antisymmetric solutions for wing
loading at M = 07806 were already available to fair accuracy from the lifting-surface method of Ref. 5 with
(m.N.q) = (15,4, 6). For the purpose of these solutions the central cranks in the leading and trailing edges
have been rounded according to equations (21) and (22) with #;z = 0-19509 ; thus the leading edge is displaced
by 0-113¢ and the root chord ¢x = 1:616¢ is replaced by (0) = 1-536¢. The loading coefficients for « = 1 and
a = p are recorded in Table 4 in the notation of equations (10) to (13).

The yawing moment coefficient is again calculated from equation (42) as the sum of three parts, and we first
consider C, ;. To keep the trailing edge of equation (64) in the plane z = 0 and to provide « = ¢Z/0& = 1 + p,
the camber shape is taken as

ZE ) =1+ e - Eml (65)
Then in the notation of equation (45)

(Z)gm = =G +4/3) + ¢ =

(Z)ans = — G + 3/30 + &1 — Sninlp . (66)

[ = (12)sym + (IZ)an(i
The force modes of equation (46) become
Zdom = G+ 31/E =& + 07 + &nl)
L CEENE RS I | (67)
(ZDani = 1 + &0/l — Eol2n/Il]
Hence by equation (47) and with reference to equations (19) and (20
Co =[G+ %\ﬁ)sz — 032 + Qo2 + Oz — &o{@ + %\/g)Qn — Q22 + Qu2}liym+
+[Q12 + 30u2 — &o{2012} lanui» (68)
where the generalised force coefficients are evaluated in Table 5c.

The remainder of C, comes from the edge forces. Because of the straight sweptback leading edge from
equation (64), C,, is given by equation (51) whose linear term in &, no longer vanishes: in the calculation Oym
and 0,,,, are obtained from equation (50) and Table 4, 8 = 0-625 and sec A; = 2. The side edges contribute
C,; from equations (54) to (57) with ¢4/¢ = § — /3 and &7 = /3.

The results for arbitrary &, appear as case (iv) in Table 6b. The side force coefficient Cy = —0-045 from

equation (43) is considerably larger than any of the corresponding values for rectangular wings, but it still
amounts to less than 2 per cent of the contribution from normal pressures. In this sense it remains true that
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equation (62) provides a condition for small side force. The yawing moment is only slightly dependent on axis
position, and for small &, the edge forces are seen to dominate. The negative C, includes large contributions
from the leading-edge and side-edge forces despite the considerable taper.

The distribution of edge force has been calculated from equations (34) and (41) and compared in Fig. 3
with that on the rectangular wing of the same aspect ratio in incompressible flow. The two most prominent
features for the tapered swept wing are the loss of suction force near the root leading edge and the maintenance
of large values on both the leading and side edges (n > 0) at quite small distances from the leading tip corner
where the suction must vanish. The inverse square root singularity in /(x, y) would be expected to disappear
at a leading apex ; although this characteristic is removed from the numerical solution as a result of rounding
the central crank, the tendency remains apparent. High leading-edge suction is a recognised feature of the
outward portion of an uncambered tapered swept wing; coupled with this is a forward movement of the local
aerodynamic centre as y — | and the associated tendency for the side-edge force to be fairly constant along the
tip chord. Although for swept wings the lifting-surface method is least accurate near the leading edge at the
root and tip, the local edge force must vanish at these positions. The present method seems to treat the difficult
numerical problem of edge forces to an acceptable approximation for the purpose of estimating lateral stability
derivatives.

4. Roll-Rate Derivatives

1t is supposed that the rolling motion is slow enough for the helical wake to be treated as planar. Within the
framework of linear theory the stability derivatives may be regarded as arising either from a steady rate of roll
or from rolling oscillations of low frequency, as considered in Section 2.6 of Ref. 5. The damping forces in the
latter case are identified with those from the steady state.

Wing forces due to rolling motion can be obtained by the straightforward application of quantities that have
already appeared in Sections 3.1 and 3.2. This particular field of study has been the subject of earlier theoretical
investigations'** and semi-empirical methods?'® based on wind-tunnel measurements, as mentioned in Section
1. While the experimental data and the existing comparisons are expressed in terms of aerodynamic body axes,
called stability axes in the American literature, it is customary now to use standard ‘body axes’ in calculations of
lateral stability. Both systems of axes are therefore included in the theoretical formulations of Section 4.1, and
there are different expressions for the yawing moment due to rolling motion in the two cases. In Section 4.2 this
derivative is referred to aerodynamic body axes, when the present calculations are compared with other esti-
mates and related to experimental evidence.

4.1. Theoretical Calculations

The rolling moment & is defined in Fig. 1b as positive about the forward (negative x) axis and has its co-
efficient

C, = Z/(pU?Ss). (69)

The surface of an untwisted and uncambered wing at incidence & and with angular rate of roll, p, about the same
axis is

z = &(xg — X) — pyt (70)

at time t. On the boundary the required upward velocity in the fluid is

oz 0z
L uZ - _ua-py
otV x-py

which corresponds to an incidence distribution
o =&+ (ps/Uhn. (71)

In the notation of equation (66) the non-dimensional wing loading under these conditions is

l(xa }’) = &(ZZ)sym + (pS/U)(IZ)ami' (72)

The rolling moment coefficient in equation (69) is equivalent to the generalised force coeflicient Q; in equation
(17) with the force mode

Zi(é’ '1) = —-n= _(Zl)anti' (73)
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Thus
Ci= —(Q i = = (ps/U)(Q12)ami (74)

with the loading from equation (72), and hence the damping-in-roll derivative is

_ajop  aC,

= S USs = s/ 0) = —(Q12)ami- (75)

In accord with current practice the derivatives are first referred to body axes, the co-ordinate system of Fig. 1
being rotated about Oy through the angle & to keep 0x in the plane of the wing. Since there is no contribution
from normal pressures, the yawing moment about the negative z body axis only involves the edge forces.
Therefore in place of equation (42)

CnB = Cn2 + Cn3 7 (76)

for the wing without camber and twist, where C,, and C,; are calculated from equations (51) and (54) with the
loading from equation (72). Both contributions are proportional to & and (ps/U), and equation (76) may be
written as

CnB = &(pS/U) [CnZ + Cn3]zx=1+m (77)
whence the derivative of yawing moment is

aCnB
n =
P8 a(ps/U)
If, however, the axis Ox remains parallel to the direction of the stream, the yawing moment about the negative

0z axis includes a second-order component of the rolling moment in equation (75), since the normal pressures
act about the inclined *body axis’ Ox. Referred to aerodynamic body axes the yawing moment coefficient is

= &[CnZ -+ Cn3]a=1+11' (78)

C,=C,y—acC, (79)
whence
n, = n,p — @l, + higher order terms*
= @{(Q12)anii + [Cp2 + Cuslaz144)- (80)
This derivative is usually related to the lift coefficient. Since the lift curve slope is

acL/ao_( = 2(Q12)sym7 (81)

equation (80) may be rewrilten as

Ny (Q12)ani + [Coz + Cozlaz14y

== (82)
CL 2(Q12)sym
From equation (43) the side force due to rolling motion is given by
C 0
ypzacy :Ai[an]:Aﬁ’ (83)
ops/U) 0%, | 0(ps/U) 9o

where n, may be referred to body or aerodynamic body axes in equation (78) or (82) respectively. Since (Q, )
and (Q,).n; do not depend on &, the location of the yawing axis, equation (83) becomes

o A4 0
CL 2(Q12)sym afo

sym

[CnZ -+ Cn3]a= 1+7n (84)

for either axis system.

*In terms of roll-rate derivatives I, and n, and yaw-rate derivatives /, and n, for aerodynamic body axes,
the transformation to body axes gives the relationship

N, = n,cos’ & + (I, — n,)sin& cos & — I, sin® &
~n, +al,

for the wing contributions when & is small.



The derivatives [, y,, 1,5 and n, have been calculated from equations (75), (84), (78) and (82) for each of the
four cases in Table 6b. The coefﬁc1ents (Q12)sym> (Q12)anti» Coz and C,3 are taken from Tables 5 and 6b. Case (iii),
the rectangular wing of aspect ratio 4 at M = 0-8660 (8 = 3), has identical solutlons to those in Tables 1 and 2
for A = 2and M = 0, but the coefficients in Table 5a require the factor §~! = 2; on account of the factor A~
in equation (54), C,; is half that for case (i), while for zero leading-edge sweep the first term of equation (51)
gives a value of C,, twice that for case (i). The final results are recorded in Table 7.

A few trends in the rolling derivatives from linearised potential flow can be observed ; for example, [, depends
more on aspect ratio than anything else. For the A = 4 rectangular wing at a fixed incidence &, y,, is subject
to greater changes with Mach number than [, or n,, but in the form y,/C; the side-force derivative appears
to be the least susceptible to compressibility effect. Moreover, y,/C, seems to grow according to the streamwise
extent of the leading and side edges, increasing as aspect ratio decreases or assweepback increases. The following
table shows similar trends in the magnitude of the yawing-moment derivatives when the yawing axis passes
through the aerodynamic centre.

. sz) Npp "y

Win M £ = (._ yp "y

g o Q 12[sym CL CL
Rectangular A=2 0 02094 —0-250 —0-173
Rectangular A=4 0 0-2319 —0-168 —-0-075
Rectangular A=4 0-8660 0-2094 —0-140 —0-064
Tapered swept A = 2 0-7806 1-0812 —0-365 —-0-292

Unlike C, in Table 6b for wings with asymmetric twist, n,/C; remains negative, although its magnitude is
appreciably smaller for aerodynamic body axes than for body axes ; there is a fairly constant difference between
n,5/Cy, and n,/C,, because [, is roughly proportional to the lift curve slope.

4.2. Related Experimental Evidence

The wind-tunnel evidence is from two sources. Data for low-speed flow are taken from Ref. 2, for which the
rolling-flow equipment of the Langley stability tunnel was used. Qualitative comparisons are made with test
data from Ref. 3 obtained in subsonic compressible flow by the forced-roll sting-support system described in
that paper. No relevant evidence for non-slender wings in oscillatory rolling motion appears to be available.

Low-speed experimental results for —I, and —n,/C; on rectangular wings of aspect ratios A = 1-34, 2:61
and 5-16 are included in Fig. 4. For each derivative the mean values over the range 0-2 < C; < 0-4 have been
taken, and in each case approximate theoretical curves against A have been reproduced from charts in Figs. 3
and 10 of Ref. 1 and in Figs. 9d and 11d of Ref. 4. The comparisons of rolling moment call for little comment ;
the present theory is in close agreement with the predictions of both Refs. 1 and 4, and all the experimental
data lie convincingly just below the theoretical results.

Before discussing the comparisons of yawing moment in Fig. 4, we consider the evidence of —n, against C|,
for four particular wings in Fig. 19 of Ref. 1 and in Fig. 18 of Ref. 4. The approximate formulae of Ref. 1 are
based on the simplified concept of strip theory, in which the forces are related to those on a two-dimensional
sheared wing with correction for aspect ratio. It is not surprising, therefore, that Ref. 1 achieves its greatest
success for the A = 5-16 rectangular wing. Fig. 18a of Ref. 4 for a swept-forward wing also shows Ref. | in
a more favourable light than Ref. 4, which uses a system of bound and trailing vortices that becomes unrealistic
with high forward sweep. For the two remaining untapered sweptback wings of aspect ratios 2-61 and 1-34,
the method of Ref. 4 provides a great improvement on the older method. A similar pattern emerges in the
lower half of Fig. 4. There are large differences between the methods of Refs. 1 and 4, for which no satisfactory
explanation can be offered. Neither predicts the rapid increase in —n,/C, as 4 decreases, which is a common
feature of the present theory and experiment. The explanation in the case of the theory is provided by the
dominant réle of the side-edge force through C,; in equation (82), a contribution that has been ignored in
Refs. 1 and 4. In this respect it is important to note that the present theory without the side-edge force is in
close agreement with Ref. 1.

The side force on rectangular wings without camber or twist arises entirely from suction at the side edges.
The upper illustration of Fig. 5 shows the side force on rolling rectangular wings of variable aspect ratio. The

empirical result from Ref. 2
Yo _ 1
Ie o 5
A (85)
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is an expression of the reality of about two thirds of the resultant side-edge force from the present calculations.
The mean experimental values over the range 0-2 < C, < 0-4 give rough confirmation of equation (85).

The lower illustrations of Fig. 5 concern the yawing moment on tapered swept wings in rolling motion under
different lift conditions. As there are no experimental data for the present example (4 = 2, M = 0-7806),
results for a similar taper ratio and sweepback are taken from Fig. 17c of Ref. 2 (4 = 2:61, M = 0). The
satisfactory agreement between the empirical method of Ref. 2 and the experimental variation of n, with C,,
18 reproduced in Fig. 5. The added theoretical result from equation (7) and Figs. 5 and 6 of Ref. 4, referred to
the aerodynamic centre, is equally satisfactory while C; < 0-5. When the method of Ref. 4 is applied similarly
to the present example, the result in Fig. 5 is found to correspond to the present theory with about half the
side-edge force omitted. These calculations suggest that, just as the extra lift-dependent drag at high lift
is accompanied by a loss of leading-edge suction, it may be worthwhile to examine to what extent the non-
linearity in n, against C, can be accounted for by means of a progressive removal of edge forces from equation
(82) as C, increases.

Curves of y, and n, have been drawn in Fig. 6 for the 4 = 2 rectangular wing with yawing-moment axis
¢o = 0-25 on the hypothesis that equations (82) and (84) hold for C, < 0-1, above which the edge contribution
(Ch2 + C,3) gradually falls to half its theoretical value at C;, = 0-5 and then smoothly to zero at C, = 0.7.
Low-speed experimental points are taken from Fig. 7 of Ref. 2 for A = 1-34 and A = 2.61 rectangular wings
with leading-edge spoiler. For both side force and yawing moment the two sets of points straddle the modified
theoretical curve for intermediate aspect ratio up to C, = 0-5. As the stall is approached the curves of Fig. 6
become less convincing, but the change in the sign of n, is adequately explained by the persisting contribution
—al, at the higher lift coefficients. Since for rectangular wings the whole of ¥, derives from side-edge forces,
the occurrence of negative y, near the stall seems to imply that a positive rate of roll precipitates the stall on
the starboard wing and delays it on the port wing, so that the outward force at the port tip dominates the
normally larger and positive contribution to y, from the starboard tip. Such a reversal of the resultant leading-
edge and side-edge forces could account for the high measured values of n,near C; = 0-6, but their subsequent
decrease is probably associated with the sharp fall in —al,, at the stall (Ref. 2, Fig. 7). The detailed behaviour
of n, might be expected to defy simple treatment, but the semi-empirical methods of Refs. 2 and 3 achieve a
remarkable degree of success.

Both of these methods involve empirical corrections dependent on the measurement of the drag coefficient
Cp over the required range of C, . The method of Ref. 2 is well illustrated in Fig. 5, but there are advantages in
considering Ref. 3, which has greater success at high lift and is tested up to high subsonic Mach numbers.
In the present notation equation (1) of Ref. 3 may be written as

np = _&lp - K[_d.lp - np]Ref.l + &[Cn3:]z=1+n (86)

with the empirical factor

_0/0a(Cy ran &) — 3/0x(Cp — Cpy)
© 9/0a(Cy tan &) — 3/6x(C2/nA)
where C is the drag coefficient at zero lift. The tip-suction term at the end of equation (86) was treated
empirically by Wiggins, but he preferred to omit it altogether in most of his applications. We have already

seen in Fig. 4 that as regards n,, the theory of Ref. 1 is approximately equivalent to the present theory without
the side-edge contribution. Thus, with the omission of the last term, equation (86) becomes

[nplemp = -o—dp - K&[_CnZ]a=1+n? (88)

which should be just as successful as the method of Ref. 3 without tip suction. Correspondingly the side-force
derivative becomes

(87)

[yp]emp = KA&[aCnZ/aéo]a=1+n' (89)

The progressive removal of edge forces to half value at C; = 0-5and to zeroat C;, = 0-7 is illustrated in Fig.7
for the A = 4rectangular wing at M = 0and 0-866. The derivatives Yps 1y and n,; from the respective equations
(84), (80) and (78) are calculated for aerodynamic body axes and body axes through the aerodynamic centres
o =0232at M = 0and & = 0209 at M = 0-866. The results bear out the theoretical indications of Ref. 4,
that these derivatives are not subject to large compressibility effects. As the edge forces are reduced, the non-
linear effects are reasonably consistent with the behaviour of the measured low-speed derivatives yp and n,
for the sweptback wings in Figs. 8 and 11 of Ref. 2. Zero yp occurs at a somewhat higher C; than does zero n,,,
but these values of €, decrease with increasing sweepback. The loss of edge forces, artificially aided by leading-
edge spoilers in Fig. 6, occurs naturally at lower C, on wings of higher sweepback. The same patterns of
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behaviour are found for 4 = 4 and over ranges of sweepback and high subsonic Mach number in Figs. 24
and 22 of Ref. 3, which include semi-empirical curves equivalent to equations (89) and (88). Typically y, changes
sign near C; = 0-5, while for n, this occurs before C;, = 0-3. Thus the loss of edge forces appears to be hastened
by compressibility, but the associated non-linear dependence of these second-order roll-rate derivatives on
C, or & is qualitatively unchanged.

The semi-empirical method of Ref. 3 without tip suction has notable success beyond the range of C; for
which y, is positive. The negative experimental values of y,, which usually occur at high C, and have been
tentatively explained in terms of a reversal of the resultant edge forces, arise from equation (89) on account of
negative K. This is the inevitable consequence of relating K in equation (87) to the rates of change of the
lift-dependent drag coefficient (Cp — Cpo) and of its theoretical upper and lower bounds C; tan & and C 2/nA.
As (Cp, — Cpo) begins to approach the upper bound, the numerator of equation (87) becomes negative before
it eventually tends to zero. At the same time through equation (88) negative K accounts for values of n, in
excess of —&l,. Moreover, the observed maximum in this derivative, which cannot arise simply from progressive
removal of edge forces, is obtained in Fig. 22 of Ref. 3 whether the derivative /, is taken from calculation or
experiment.

Nevertheless, the success of the semi-empirical method poses an anomaly as regards side-edge forces.
Comparisons of the values of C,, and C,3 in Table 6 and the distributions of edge force in Figs. 2 and 3 suggest
that leading- and side-edge forces are of similar importance: at very small lift the semi-empirical method for
n, would probably be improved by the inclusion of side-edge forces: furthermore, from the fact that for
rectangular wings n, vanishes while y, is still positive in Fig. 6, the side-edge forces can be as persistent as
the leading-edge forces on unswept wings in incompressible flow. Yet on tapered swept wings at high subsonic
speeds the neglect of side-edge forces is insufficient to reduce y, to the small positive values measured at low
C, (Fig. 24 of Ref. 3). It seems that sweepback and taper, both of which tend to boost the loading near the tip
leading edge, also combine to suppress the side-edge force through incipient leading-edge flow separation.
The process appears to be hastened by the additional influence of compressibility.

5. Conclusions

Of the following conclusions (1) to (3) are mainly concerned with edge forces in potential flow, (4) and (5)
relate to the calculated roll-rate derivatives, (6) and (7) deal with semi-empirical approaches to the estimation
of these stability derivatives at moderate or high lift coefficient.

(1) The local edge forces are shown to be quadratic functions of the loading coefficients and to have the
same order of magnitude on the leading and side edges. All the integrated contributions to side force and
yawing moment involve products of the symmetric and antisymmetric parts of the spanwise loading and are
linear with respect to the coefficients in either part.

(2) Unlike drag, the total yawing moment in potential flow and its contribution from normal pressures
can have opposite signs. The edge forces become increasingly dominant as aspect ratio decreases or as sweep-
back increases.

(3) Ifa thin wing is deformed in camber and twist in such a manner that the trailing edge lies in a streamwise
plane, then the resultant lateral force in that plane is found to be small if the theoretical edge forces are included.

(4) The rolling moment due to rate of roll is calculated to be in good agreement with charts based on
approximate theoretical methods. The values correlate satisfactorily with experimental data for rectangular
wings of varying aspect ratio.

(5) While the rolling-moment derivative depends mainly on aspect ratio, the magnitudes of the theoretical
derivatives of side force and yawing moment for a given lift seem to grow according to the streamwise extent
of the leading and side edges as a fraction of wing span.

(6) Experimental evidence of the side force and yawing moment due to rate of roll invariably shows a non-
linear dependence on lift. It is demonstrated that prior to the stall this non-linearity can be accounted for by
removing an increasing proportion of the edge forces as the lift increases.

(7) From the present analysis some simple formulae, equivalent to the semi-empirical method of Wiggins?
without tip suction, are obtained in equatiors (88) and (89) for the roll-rate derivatives of yawing moment and
side force respectively. These should be reasonably successful in conjunction with subsonic wing theory and
measured drag over the whole practical range of lift coefficient.
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LIST OF SYMBOLS

a Factor controlling spanwise integration (Ref. 6)

a Integer 1(1)N used in equations (55) to (57)

A Aspect ratio of planform ; 2s/¢

b, Coeflicient of downwash mode in equation (15) with j = 1(1)J

(n) Local chord

¢ Geometric mean chord; §/2s

Cr»Cp Root chord, tip chord

Cp Drag coefficient ; drag/(3pU2S)

Coo Drag coefficient at zero lift

C, Rolling moment coefficient ; £/(pU?Ss)

C, Lift coefficient ; lift/(2pU2S)

C, Yawing moment coefficient ; .4'/(pU?Ss)

C. Contribution to C, from normal pressures in equations (44) to (47)
C,, Contribution to C, from leading-edge forces in equation (48)

Cos Contribution to C, from side-edge forces in equation (54)

c, Side force coefficient; Y/(3pU2S)

E, Leading-edge force per unit length in equations (29) and (34)

E, Side-edge force per unit length in equations (30) and (39)

i Integer denoting force mode in equation (14); 1 or II in equations (20)
I Integrals in equations (56) with ¢ = 1(1)N and a = 1(1)N

j Integer denoting downwash mode: see table below equation (19)
Joa Integrals in equations (57) with g = 1(1)N and a = 1(1)N

K Empirical factor in equation (87)

I(x, y) Non-dimensional wing loading in equations (5) and (10)

I Loading in equation (16) for downwash mode j (< J)

[, Damping-in-roll derivative in equation (75)

£ Rolling moment (Fig. 1b)

m Number of collocation sections

M Mach number of stream

n Normal inward distance from edge of planform

n, Roll-rate derivative of yawing moment about aerodynamic body axis in equations (79) and (82)
Ny Roll-rate derivative of yawing moment about body axis in equation (78)
N Number of chordwise loading functions

A Yawing moment (Fig. 1b)

p Angular rate of roll in equation (70)

g Factor controlling spanwise integration (Ref. 5)

q Integer I(1)N denoting term in chordwise loading
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Cir

Force/(pU?S) in mode Z; in equation (17)

Generalised force coefficient in equation (18) {(Table 5)
Semi-span of wing

Area of planform ; region of integration

Time

Velocity of stream

Ordinate in streamwise direction (Fig. 1a)

Location of yawing axis (Fig. 1b)

Ordinate of leading edge

Ordinate of collocation point in equation (9)

Ordinate of trailing edge

Ordinate in starboard direction (Fig. 1a)

Roll-rate derivative of side force in equations (83) and (84)
Ordinate of collocation point in equation (9)

Side force (Fig. 1b)

Ordinate in upward direction

Camber surface in equations (15) and (58); —z/¢
Force mode in equation (14), (20) or (46)

Downwash mode in equation (14)

Local incidence Z/d&; see also equation (71)
Uniform incidence of rolling wing

Compressibility factor: (1 — M?)?

Spanwise loading function in equation (12) with ¢ = I{1)N
Local value I (3,)

Quantity in equation (55) for antisymmetric spanwise loading
Limit in equations (35) and (36); see also equation (53)
Lift per unit area

Discontinuity in ® from below to above z = 0
Non-dimensional spanwise ordinate: y/s

Extent of central rounding in equations (21) and (22)
Loading station in equation (13) with r = 1(1)m
Angular spanwise parameters cos ' (—#), cos ™! (—#,)
Leading-edge force parameter in equation (32)

Angle of sweepback, value at leading edge
Non-dimensional streamwise ordinate ; x/¢

Xo/€

x,/¢, x,/¢

x(1)/¢

Density of stream
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Indices related to i (or j} in table below equation (19)
Angular chordwise parameter in equation (11)
Perturbation velocity potential

Side-edge force parameter in equation (40)

Subscript denoting spanwise antisymmetry in « or Z,
Subscript denoting body axes at inclination &
Subscript denoting empirical formula

Subscript denoting spanwise symmetry in « or Z,
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TABLE 1

Symmetrical Solutions for Rectangular Wing A =2, M = 0
Calculations by method of Ref. 6 with (N, m, a) = (4, 15, 6)

a=1 (sym.j=2)

4 I I, I, I,
0 0-77587 0-09332 0-01150 —0-00069
0-19509 076275 0-09552 0-01266 —0-00054
0-38268 0-72325 0-10148 0-01644 +0-00011
0-55557 0-65725 0-10905 0-02345 0-00204
070711 0-56522 0-11405 0-03363 0-00641
0-83147 0-44895 0-11019 0-04382 001336
0-92388 0-31204 0-09069 0-04583 001869
098079 0-16002 0-05216 0-03062 001461

a=7n" (sym.j=7)

n I I, I I,
0 0-11441 —0-01029 —0-00759 - 0-00230
0-19509 0-12492 —0-00395 —0-00590 —0-00216
0-38268 0-15182 +0-01387 —0-00055 —0-00151
0-55557 0-18271 0-03917 +0-00894 +0-00044
070711 0-20170 0-06470 0-02219 0-00489
0-83147 0-19492 0-08038 0-03555 0-01196
0-92388 0-15555 0-07602 0-04044 0-01751
0-98079 0-08654 0-04688 0-02793 0-01391

o= 2n? (sym.j = 8)

" ry r, I; r,
0 0-16700 —0-05877 —0-00409 0-00280
0-19509 0-18591 —0-07445 —0-00280 0-00233
0-38268 0-23506 —0-11645 +0-00111 0-00078
0-55557 0-29388 —0-17063 0-00768 —0-00215
070711 0-33494 —0-21651 0-01640 —0-00662
0-83147 0-33246 —-0-23200 0-02503 -001170
092388 027121 —0-20015 0-02830 —0-01434
0-98079 0-15324 011727 001982 —0:01047
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TABLE 2

Antisymmetrical Solutions for Rectangular Wing A =2, M =0
Calculations by method of Ref. 6 with (N, m, a) = (4, 15, 6)

o =7 (anti.j=2)

n Iy I, Iy r,
0 0 0 0 0
0-19509 009145 0-02768 0-00516 0-00007
0-38268 0-16945 0-05471 0-01147 0-00059
0-55557 022227 007920 0.01996 0-00233
070711 024163 009712 0-03067 0-00637
0-83147 022412 0-10223 0-04065 0-01276
092388 017204 0-08795 0-04247 0-01756
0-98079 0-09327 0:05165 0-02826 0-01365

a=pnd (anti.j=6)

n Iy I, I's r,
0 0 0 0 0
0-19509 0-02384 0-00205 —0-00190 —0-00113
0-38268 0-05381 0-01044 —0-00108 —0-00170
0-55557 0-08940 0-02790 +0-00478 —-0-00072
0.70711 012113 0-05082 0-01638 +0:00321
0.83147 0-13439 0-06897 0-03025 001034
092388 0-11740 0-06935 003699 0-01643
0-98079 0-06878 0-04429 002643 0-01347
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Solutions for Rectangular Wing A =4, M =0

TABLE 3

Calculations by method of Ref. 6 with (N, m, a) = (4, 31, 6)

a=1 (sym.j=2)
n I, I I'y r,
0 0-54943 0-01959 0-00137 —0-00013
0-09802 0-54769 0-01993 0-00142 —0-00013
0-19509 0-54244 0-02095 0-00158 —0-00014
0-29028 0-53354 0-02269 0-00186 —0-00017
0-38268 0-52076 0-02519 0-00232 —0-00019
0-47140 0-50382 0-02850 0-00303 —0-00021
0-55557 0-48238 0-03260 0-00411 —0-00019
0-63439 0-45606 0-03740 0-00571 —0-00008
0-70711 0-42456 0-04258 0-00805 +0-00027
077301 0-38764 0-04761 0-01130 0-00106
0-83147 0-34523 0-05162 0-01543 0-00256
0-88192 0-29748 0-05348 0-01996 0-00493
092388 0-24477 0-05191 0-02366 0-00779
0-95694 0-18772 0-04576 0-02459 0-01001
0-98079 012719 0-03447 0-02087 0-00997
099518 0-06422 0-01859 0-01207 0-00659
a=1# (anti.j=2)
n Iy I, I I,

0 0 0 0 0

0-09802 0-03937 0-00403 0-00036 —0-00003
0-19509 0-07749 0-00821 0-00076 —0-00007
0-29028 0-11313 0-01266 0-00123 —0-00011
0-38268 0-14508 001751 0-00183 —0-00014
0-47140 0-17216 0-02284 0-00264 —0-00017
0-55557 0-19328 0-02868 0-00376 —0-00016
0-63439 0-20748 0-03493 0-00534 —0-00005
0-70711 0-21397 0-04129 0-00755 +0-00027
0-77301 0-21221 0-04721 0-01053 0-00100
0-83147 0-20200 0-05183 0-01425 0-00237
0-88192 0-18350 0-05402 001824 0-00448
092388 0-15730 0-05256 0-02141 0-00698
0-95694 0-12438 0-04635 0-02209 0-00882
0-98079 0-08606 0-03489 0-01868 0-00853
0-99518 0-04399 0-01880 0-01080 0-00533
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Solutions for Tapered Swept Wing at M = 0-7806

TABLE 4

(A=2,A=60°A =tan"105)
Calculations by method of Ref. 5 with (m, N, q) = (15, 4, 6)

e=1 (ym.j=2)
] Iy I I's Iy
0 0-78499 —0-40702 —-0-01222 —0-00489
0-19509 0-77803 —0-26660 —0-03132 +0-00614
0-38268 0-74456 —0-12828 —0-03287 0-01309
0-55557 0-68231 —0-04052 —0:04149 001332
0-70711 0-59093 +0-03786 —0-04836 0-00719
0-83147 0-47156 0-11140 —0-03896 —0-01940
0-92388 0-32861 0-15575 +0-02929 —0-02236
0-98079 0-16860 0-12275 0-07999 +0-03848
¢ =7y (antij=2)
h I Iy I Iy

0 0 0 0 0

0-19509 0-08554 —0-04352 +0-00323 0-00010
0-38268 0-16148 —0-05059 —0-00325 000410
0-55557 021528 —0-03250 —-001503 0-00737
070711 023711 +0-00427 —0-02692 0-00465
0-83147 0-22167 005145 —002388 —0-01083
0-92388 017108 008384 +0-:01410 —0-01349
0-98079 0-09291 0-07015 0-04581 + 002167
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TABLE 5

Generalised Forces Q,; for Three Wings
(a) Rectangular wing A =2, M =0 (Tables 1 and 2)

Symmetrical Antisymmetrical
force mode j=2 =17 j=38 force mode j=2 i=6
i Z; o =1 o = n? o = 2&n? i VA o=y o =n’
1 1 1-23717 0-31385 0-50367 1 f 0-18971 0-09511
2 £ 0-25907 0-06226 0-19791 2 &n 0-02799 001325
3 &2 0-12004 0-02840 0-11800 3 &y 0-01082 0-00502
6 n? 0-31386 0-11204 0-18756 4 &3 0-00588 0-00271
7 én? 0-06204 0-01828 0-07785 5 n3 0-09511 0-05380
8 E2n? 002834 000773 0-04741 6 &n? 001324 0-00674
10 n* 0-15806 006443 0-10955
(b) Rectangular wing A =4, M =0 (Table 3)
Symmetrical Antisymmetrical
force mode . force mode
! Zi o = 1 i Zl' o = }7
1 1 1-80597 1 ] 0-33598
2 ¢ 0-41888
3 & 0-20301
6 n? 0-47205
(c) Tapered swept wing A = 2, M = 0-7806 (Table 4)
Symmetrical Antisymmetrical
force mode . force mode .
j=2 j=2
i Z, o =1 i A a=1n
1 1 1.27598 1 n 0-18540
2 14 1-37965
3 &2 1-71838 n/\n| 031171
6 n? 0-32748 11 En/lnl 0-40052
1 Inl 0-55053
1§ &inl 0-69597
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TABLE 6
Calculated Yawing Moment on Wings with Asymmetric Twist

(a) Rectangular wing(A =2, M =90)

Camber surface Normal pressures
Case Z a Cy
(@) T+aE-1 1 +n 0-6426 — 0.9781¢&,
(b) n(l +m(&—1) n? +n 0-2754 — 0-5750¢&,
(© (1 + &+ mE - 1) 292 + 0-2354 — 0-5093¢,
Leading edge Side edge
Case C,2 C.s Cop +Chpy +Cps
(a) —02574 —0:5637 + 0-9727¢, —0-1785 — 0-0054¢&,,
(b) —0-1009 —0:3237 + 0-5724¢&, —0-1492 — 0-0026¢,,
(c) -0-0220 —0-3349 + 0-5081¢, —0-1214 — 0-0012¢&,
(b) Four examples with Z = (1 + y)(& — &)
Case Wing M Cu
(1) Rectangular A =2 0 0-6426 — 0.9781¢&,
(ii) Rectangular A4 =4 0 0-8620 — 0-3468¢,
(i) Rectangular A4 =4 0-8650 1.0767 — 0-4891¢&,
(iv) Tapered swept A = 2 0-7806 19203 — 1.3888¢,
Case Crz Chus Cos + Gz + Co3
(i) —0-2574 —0-5637 + 0:9727¢, —0:1785 — 0-0054¢&,
(ii) —0-4853 —0-2027 + 0-3436¢, +0:1740 — 0-0032¢&,
(iii) —0-5147 —0-2819 + 0-4864¢, +0-2801 — 0-0027¢&,
(iv) —1-4668 + 0-8793¢, — 09410 + 0-4872¢, —0-4875 — 0-0223¢&,
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TABLE 7

Theoretical Rolling Derivatives of Untwisted Wings
(a) Rolling moment and side force

Wing M [, V& C./a v,/CL
Rectangular A =2 0 —0-1897 1-945 2-474 0-786
Rectangular A4 =4 0 —0-3360 1.374 3612 0-380
Rectangular A =4 0-8660 —0-3794 1.945 4.949 0-393
Tapered swept 4 = 2 0-7806 —-0-1854 2.733 2.552 1.071

(b) Yawing moment
Wing M n,/Cy n,/Cy.
Rectangular A =2 0 —~0-332 + 0-393¢, —0:255 + 0-393¢,
Rectangular A =4 0 —0-190 + 0-095¢, — 0097 + 0-095¢,
Rectangular 4 = 4 0-8660 —0-161 + 0-098¢, —0-084 + 0-098¢,
Tapered swept 4 = 2 0-7806 —-0:944 + 0-535¢, —0:871 + 0-535¢,
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a. System of co-ordinates
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b. Definition of lateral forces

F1G. la and b. Definition of co-ordinate and lateral-force systems.
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Rectangular wing
M=0
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M=0-7806

Tapered swept wing

F1G 3. Edge forces on two wings of aspect ratio 2 witha = 1 + #.
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Experiment (Ref.2, Fig.7, leading - edge spoiler)
A= 1 34
A =

o)
+ 2-6l

"
-

+
S
+

0]

—————— Linear calculations, A=2,M=0

With progressive removal of edge forces

£o=0325

1]

Without any

-1—
al
edge Forccs\‘ 4’/‘,..-”

Potential
thaory

o o2 O 4 06 08 I-O

F1G. 6. Effect of edge forces on rectangular wings in rolling motion.
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F1G. 7. Roll-rate derivatives with progressive removal of edge forces.
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