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Summary 

The report comprises two contrasting and complementary approaches to the evaluation of the second-order 
aerodynamic side force and yawing moment on lifting wings when leading-edge and side-edge forces play an 
important r61e. 

In Part I the asual lifting-surface model, in which the vorticity is placed on a planar surface, is shown to 
lead to inconsistent results ; consistent results are obtained when the vorticity is placed on the camber surface 
while the standard lifting-surface integral equation takes its usual form. In a further supplementary momentum 
analysis involving the Trefftz plane, the side force and yawing moment are derived from approximate expressions 
which avoid calculation of any edge forces. 

In Part II the analysis oflinearised subsonic lifting-surface theory is extended to provide expressions for the 
leading-edge and side-edge forces. The side force and yawing moment under conditions of asymmetric spanwise 
loading are obtained as the sum of three contributions, from normal pressures, leading-edge suction and tip 
suction. These quantities are used to treat lifting wings in roll, and from a few numerical examples some general 
trends in the theoretical derivatives are observed. The related evidence from experiment and from semi-empirical 
methods is discussed, and one such method is transcribed for use in conjunction with the theoretical computa- 
tions. Much of the non-linear experimental behaviour of the side force and yawing moment due to rate of roll can 
be accounted for by the removal of an increasing proportion of the theoretical edge forces as the lift increases. 

* Replaces A.R.C. 34 689 and R.A.E. Technical Report 73030--A.R.C. 34 707 
? Now in Structures Dept., R.A.E. Farnborough. 
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Preface 
The relative importance of stability derivatives changes from one generation of aircraft to another. Because 

of trends in aircraft geometry and mass distribution, particular derivatives may assume increased significance 
in the determination of lateral stability. For example, the characteristics of the dutch-roll oscillation of highly 
swept or slender aircraft at moderate or high lift coefficient depend to a greater extent than hitherto on 
derivatives such as the yawing moment due to rate of roll and less on the direct damping in sideslip and yaw. 
It is therefore desirable to analyse the principles underlying the theoretical estimation of forces on a lifting wing 
in roll, and to study the nature of the contributory edge forces against a background of limited experimental 
data. 

The aerodynamic wing loading associated with lateral aircraft motions at subsonic speeds is usually treated 
more crudely than that relating to longitudinal flight. Until recent years rigorous treatment by lifting-surface 
theory has been discouraged by the amount of computation that would be necessary, and perhaps also by the 
lack of conviction as regards the validity of the edge forces. With the increased capability of lifting-surface 
methods of the present decade it is opportune to consider such problems afresh. 

Some contributions to lateral stability derivatives are of first order in wing motion and attitude, while others 
are of second order. The rolling moment on the wing due to rate of roll is of first order and correspondingly 
easy to calculate. On the other hand, the yawing moment due to rate of roll includes a second-order contribution 
from the wing surface, which becomes increasingly important at high lift notwithstanding a first-order contribu- 
tion from the fin. The wing contribution arises from an interaction between symmetric and antisymmetric parts 
of the spanwise loading and poses considerable theoretical problems. 

Estimation of these second-order derivatives raises, once again, the fundamental question of the validity of 
determining second-order quantities from a first-order or linearised theory. It is well-known that lift-dependent 
drag, or vortex drag, which is a second-order quantity compared with wing lift, can be estimated directly and 
unambiguously from lineariscd wing theory either by integration of the cross-flow kinetic energy in the down- 
stream Trefftz plane or by direct calculation of the components of normal surface pressures and the leading-edge 
suction force. But the basis for the calculation of the side force and yawing moment has not been so thoroughly 
assessed. 

In Part I of this report an attempt is made to clarify some of the fundamental aspects: emphasis is primarily 
on the understanding of the implications of various mathematical models rather than on the development of a 
rigorous mathematical model or on the production of numerical results. It is shown in Part I that the usual 
lifting-surface model in which all the vorticity is placed on a planar surface leads to inconsistent results, especi- 
ally for compressible flow ; it is argued that singularity distributions should be located on the camber surface 
so that the local loading is normal to the camber surface. With this interpretation the standard lifting-surface 
integral equation continues to take its usual form. In a further analysis involving consideration of overall linear 
and angular momentum the side force and yawing moment are derived from approximate expressions which 
involve integrals in the downstream Trefftz plane and which avoid any explicit calculation of edge forces. 

In Part II of this report, with the correct interpretation of the standard lifting-surface integral equation, 
existing computer programs have been applied to calculate the normal pressure distribution and hence the 
leading-edge and tip suction forces. This approach has the advantage that empirical corrections to the edge 
forces can be incorporated. The total forces on a rolling wing are calculated and then compared with related 
evidence from experiment and from semi-empirical methods, and it is concluded that a useful approximation 
to the non-linear experimental behaviour of the side force and yawing moment due to the rate of roll can be 
introduced quite simply in terms of the measured drag over the practical range of lift coefficient. 

Acknowledgement 
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Thomas. 



Part I 

General Principles and Mathematical  Models 

1. Introduction 

As a real fluid flows past and over a finite wing, vorticity, which is created in the boundary layers, is shed 
from the trailing edge and then convected downstream, forming the wake. Although a small proportion of the 
trailing vorticity is diffused and dissipated the remainder rolls up into two discrete vortices which remain intact 
and stable for long distances behind the wing. If the flow does not break away from the surface of the wing it 
may be assumed that at high Reynolds numbers the effects of viscosity are confined to the thin boundary layers 
and to the downstream vortex wake. Thus to a first approximation viscosity may be neglected so long as a 
system of trailing vorticity downstream of the wing is retained in the analysis. 

Assuming therefore an inviscid flow, linearisation reduces the overall problem to two separate problems: 
the first is the lifting problem associated with wing camber and incidence in which all the vorticity, namely the 
vorticity on the wing and the trailing vorticity, is placed on a surface in the vicinity of the wing and the wake : 
the second problem is the non-lifting problem associated with wing thickness. Only the lifting problem is 
considered in this report. 

Conventional linearised theory is based on a mathematical model in which all the vorticity is distributed 
on a plane surface, the wing vorticity is distributed over a planar surface parallel to the free Stream direction in 
the neighbourhood of the wing while the trailing vorticity is distributed over the extension of the (wing) planar 
surface from the trailing edge region to infinity downstream. This model is referred to as the planar model. 

It is shown in this report that the side force and yawing moment determined from this planar model are not 
necessarily the actual (inviscid) side force and yawing moment experienced by the wing itself. The reason is 
shown to be the fact that a significant side force and yawing moment are required to sustain and maintain the 
planar model itself in the vicinity of the wing; a side force and yawing moment are required to maintain the 
planar trailing sheet but these are shown to be small and negligible. 

However it is further shown that this anomaly can be reconciled by a reinterpretation of the basic mathematical 
model but retaining the main linearisation features. No ambiguity arises ifa non-planar model is used in which 
the wing vorticity is placed on the wing camber surface itself and the trailing vorticity on a surface extending 
from the wing trailing edge to infinity downstream. 

When compressibility effects are included it is shown that the planar model is not a valid model for the 
estimation of any second-order quantities, including induced drag; the only permitted model is a non-planar 
one. The reason is associated with the discontinuity in density across the lifting surface. 

The actual theoretical values of all the second-order forces and moments (i.e. vortex drag, side force and yawing 
moment) depend on the magnitude of the edge forces associated with singular behaviour of the vorticity at the 
leading edge and wing tips. These edge forces are difficult to evaluate numerically; care is required to ensure 
that values are sufficiently accurate. The evaluation of the various edge forces is described in Part II together 
with a discussion of their practical significance. 

In the case of the vortex drag the difficult calculation of the leading-edge thrust force can be bypassed by 
consideration of the conservation of linear momentum across the downstream Trefftz plane. In this report 
similar Trefftz plane analyses are investigated for the side force and yawing moment ; both the planar and non- 
planar models are shown to give consistent results ; the effects of compressibility are also considered. Although 
it is not possible to derive exact formulae in the Trefftz plane for the side force and yawing moment, approximate 
formulae are proposed. Numerical examples show that these approximate formulae give reasonable results. 

2. Planar Wing Theory at Low Speeds 

In this section the conventional mathematical formulation of linearised finite wing theory in low speed 
(ir~compressible) steady flow is introduced and discussed. The usual mathematical model comprises a discon- 
tinuity in velocity potential across a plane surface (parallel to the free stream) in the vicinity of the wing and 
wake; this model is referred to as the planar model. For the liftingcharacteristics the discontinuity in velocity 
potential is determined from the inversion of the standard lifting-surface integral equation when the camber 
surface is specified. Once the discontinuity in velocity potential is known the overall forces of lift, drag, side 
force, and the overall moments in roll, pitch and yaw can be found ; the edge forces associated with the singular 
behaviour of the velocity potential at the leading edge and wing tips are significant contributions to the drag, 
side force and yawing moment. Alternative expressions for the forces and moments can be obtained by 



consideration of the linear and angular momenta flux out of a large control surface surrounding the wing, 
resulting in the so-called Trefftz plane results. 

Although most of the present section is standard text book knowledge it is included here as a basis and 
reference for the later developments. 

2.1. Formulation of Planar Mathematical Model 

To define the wing geometry, cartesian axes are chosen as shown in Fig. 1 with the origin at the centre point 
of the leading edge ; the 0x axis is taken parallel to the free stream, the 0y axis is to starboard and the 0z axis 
completes a right-handed set. The equations of the leading and trailing edges are denoted by x = x~(y) and 
x = xt(y) reSpectively, while the wing span is taken to be 2s. The shape of the wing relative to this axis system 
can be expressed in the form 

z = Z(x, y) = Zc(x, y) _+ Z,(x, y) (1) 

where the _+ refers to the upper or lower surface respectively; Zc(x, y) represents the mean camber surface 
which includes incidence and spanwise twist, while Z,(x, y) represents the symmetric thickness distribution 
superimposed on the camber surface. 

The problem, as shown in Fig. 1, is to determine the load distribution on the wing, defined by equation (1), 
in a uniform low-speed stream of velocity U. 

If the perturbation velocities introduced into the uniform stream by the wing and trailing vorticity are 
denoted as (u, v, w) the equation of continuity for a low speed (incompressible) flow is 

O(U + u) Ov Ow 
Ox + 8yy + ~z = O. (2) 

Since the flow exterior to the wing and trailing vorticity is irrotational, a perturbation velocity potential q~ 
exists such that 

0~ 0~ 0~ 
u =~-x '  v = ~y,  w =  ~z '  (3) 

On substitution of equation (3), equation (2) becomes the standard Laplace equation 

020 020 02(I) 
v 2 ¢  = ~ + ~ + ~ = 0. (4) 

Equation (4) is to be solved subject to the boundary conditions: 
(a) that (I) vanishes at infinity upstream and laterally, i.e. at 

x =  - o e ,  y =  +oe and z =  _+oe; 

(b) that the flow normal to the wing surface is zero, that is 

OZ 8Z 
w(x,y,  Z(x,y))  = (U + u) ~ + v - - ;  (5) 

' Ox Oy 

(c) that no load is carried by the trailing vorticity. 
The usual linearisation approximation assumes that Z(x, y)/c R (where c R is the root chord) is small, and 

that perturbation velocities (u, v, w) are small compared with U; the basic equations and boundary conditions 
are then satisfied to first order only. 

Linearisation does not affect the fundamental equation (4). 
The boundary condition (5) is usually expanded in a Taylor series from z = _+ 0 and with the neglect of 

second-order terms the linearised boundary condition becomes 

w(x, y, +O) = l a x  + ~ x  t . 

(ozc oz, I 
w(x, y, - O) = U, 0~ Ox ! 

(6) 

At the same time it is assumed that the trailing vorticity is confined to the plane z = 0 where the condition of 
zero loading is applied. 



Thus the basic problem reduces to two independent problems. 
(i) The determination of a symmetric solution of Vzq~ = 0 (i.e. symmetric with respect to z) such that 

Oqb = _ 0~ = U (7) 
z =  + 0  z =  - 0  C3X 

on the wing plan form, denoted as Sw; there is no trailing vorticity in this problem. 
(ii) The determination of an antisymmetric solution of V2q5 = 0 (i.e. antisymmetric with respect to z) such 

that 

z=+O z = - O  ~X 

on Sw. The mathematical model  now includes a planar trailing sheet which extends from the trailing 
'edge of Sw to infinity downstream in the plane z = 0 and across which no-load is applied. This planar 
system is shown in Fig. 2. 

Problem (ii) gives rise to the overall forces and moments;  to first order, problem (i) only modifies the pressure 
distributions to account for thickness effects without contributing to the overall forces or moments. Only 
problem (ii), the antisymmetric lifting problem, is considered further in this report. 

The solution of the lifting problem involves a discontinuity in q~(x, y, z) across Sw and ST expressed in the 
form 

Aq)(x, y) = (I)(x, y, +0) - (I)(x, y, - 0 )  = 2(I)(x, y, +0) (9) 

by virtue of the antisymmetric nature of q). 
The discontinuity in pressure ac~'oss Sw and Sr is obtained by application of Bernoulli's equation for 

incompressible flow ; thus 

p ( x , y ,  - o )  - p ( x , y ,  +0)  = k p { [ ( u  + u) ~ + v ~ + w~L=+o - [ (o  + u) 2 + v ~ + w2L=_o} 

= pU(u+o - U-o) 

8A¢. 
= pU ~x ' (10) 

where the subscripts + 0, - 0  refer to the respective surfaces z = + 0  and z = - 0 .  It is noted that equation 
(10) is exact in the sense that no further linearisation has been invoked. 

Across Sr  the loading must be zero; thus, according to equation (10) AcI)(x, y) must be a function of y only; 
hence 

A(I)(y) on Sr = AgP(xt(y), y) = A~,(y). (11) 

It is well known that the antisymmetric problem reduces to an integral equation 

8Z~ 1 f ;  pU gA@/Sx F1 x -  ~ ] 
- k p v 2 ( y  - . )2  L + {(x - ¢)7-7- (y - d C d .  (12) 

Sw 

with the proviso that the discontinuity in pressure is zero at the trailing edge to satisfy the Kutta condition. 
It is not the intention to discuss or describe here the numerical solution of equation (12); the methods ofRefs. 2 
and 3 have been used for the numerical results quoted later. The main purpose of this report is to enquire in 
further depth about some of the implications of the planar model which has been formulated so far, in particular 
to discuss the determination of the forces and moments on the wing once Aq~(x, y) has been calculated from the 
integral equation (12). 

2.2. Load Distribution on Planar Model 

The discontinuity in (I)(x, y, z) across Sw and S T implies a system of load component distributions in the 
x, y and z directions. 

Consider a small control element abcda'b'c'd', as shown in Fig. 3, which straddles the plane z = 0. Its sides 
are of length fix, 6y, fiz. In the following analysis ~z tends to zero while 6x and by remain finite although small. 

First it is noted that there is continuity of mass flow through the control volume; as ~z ~ 0 the mass flow 
pw fix 6y in the direction across abcd equals that across a'b'c'd. This condition is trivial in the present case 
but not when the effect of compressibility is included (see Section 4). 



The load exerted by the fluid on the control volume abcda'b'c'd' in the z direction, in the limit as z ~ 0, is 
given by the difference between the pressures acting on a'b'c'd' and abcd since the momentum flux in the z 
direction across these surfaces are equal. Thus 

load in z direction = {p(x, y, - O) - p(x, y, + 0)} 6x ,~y 

= pu- -~-x~X 6~ (13) 

from equation (10). 
The load exerted on the control volume abcda'b'c'd' in the x direction in the limit as 6z -~ 0 is given by the 

difference in momentum flux in the x direction across a'b'c'd' and abcd. Thus 

load in x direction = {[pw(U + u)J~=-o - [pw(U + u)]z=+0} 6x ,~y 
8Aap _ 

= - p w ~ -  x 6x 5y. (14) 

By exactly the same argument, the load in the y direction on the control volume abcda'b'c'd' as z ~ 0 becomes 

~A* 
load in y direction = - p w ~  6x by. 

o y  
(15) 

Since the loads in the x and y directions are second-order terms it might be argued that these should be 
ignored in a linear representation of the problem. But the philosophy adopted here is that the model once 
formulated can be treated as exact. All second-order results then have validity within the framework of that 
planar mathematical model. The physical significance of such results is another matter which requires further 
assessment. 

Equations (13), (14) and (15) hold not only on th~ wing planform S w but also on the trailing sheet S r. As 
already stated ?AO/c?x is made zero across S r so the loading on S T in the x and z directions are zero. But 
because w and ~,AO/Oy are both non-zero on S T a sideways load distribution is inferred. This result violates 
the boundary condition that no load be carried by a planar trailing vortex sheet. Thus the planar trailing 
vorticity can only be maintained in its planar form if some external agency provides the necessary side force 
distribution to hold it there. This point is not new; it has always been recognised that some restraint has to be 
applied to the trailing vorticity otherwise the planar sheet rolls up. At this stage, however, an element of doubt 
appears for the question which now arises is whether or not this external agency also provides some of the side 
force distribution on S w to maintain the planar form of S w ; and if so, how much sideforce does this external 
agency provide ; and how is the actual side force on the wing itself calculated. These same questions and doubts 
also apply to the yawing moment. Before these points can be discussed further, it is necessary to discuss the 
edge forces which arise from the singular behaviour of 3AOi,/Ox and ~A~/Oy at the edge of S w + S T, for these 
edge forces contribute not only to the drag but also to the side force and yawing moment.  

2.3. Edge Forces 

The linearised solution AO(x0 y) has infinite rates of change at the leading edge, at the wing tips and along 
edges of the trailing sheet ST. These infinities give rise to finite edge forces which must be taken into account. 
A derivation of edge forces in terms of a complex potential is given by Jones and Cohen4; a more direct method 
is described here. 

Consider an element of edge of length 5s swept locally through an angle A and enclosed in a small cylinder 
ABCD of radius r, as shown in Fig. 4. Let n be the inward normal distance from the element in the plane z = 0. 
Perturbation cartesian velocities (q,, q~, w) are shown parallel to the (n, s, z) directions, while the perturbation 
cylindrical velocities are denoted as (qr, q0, qs)- Near the element qs is finite and will not be considered further, 
but the singular contributions to qr and qo must satisfy the two-dimensional equations of continuity and 
irrotationality for incompressible flow 

(~qo = 1 
~ (rq~) + ~ 0 

and ~rO(rq° ) Oq~ " 
8 0  - 0J 

Thus the perturbation potential and velocity components in the plane normal to 6s are 

(16) 



= 2kr ~ cos½0 + O(r), ] 

q r = k r - ~ c ° s ½ 0 + O ( 1 )  I ' (17) 
and _, . 

qo = - k r  ~ sm ½0 + O(1) 

where k is a constant independent of r and 0. Hence 
_3_ 1 / 

q , = q r c o s 0 - q 0 s i n 0 = k r  ~cos30+O(1)  (18) 
and _, . " 

w q, sin 0 + qo cos 0 kr ~ sm ½0 + O(1)J 

Singular terms in the perturbation pressure 
l _1 ~p[2kr ~U cos A cos ½0 + k2r - a] 

do not contribute to the force on the control cylinder, but the flux of momentum in direction n from the cylinder 
is equivalent to an edge force in the direction of the outward normal to the planform, thus 

{f; } edge force = pq,q~r dO &s 
r--~0 

} r bs 

- + o 

where f ,  is the normal inward distance from the edge. 
Thus the component of edge force in the - x  direction, known as the leading-edge thrust, on an element of 

spanwise extent fly = fs cos A may be written as 

fT~ = zcp sec A f~ cos A &s cos A 
+ 0  ) g J x ~ O  

f[OdP~ z } (20) 
= rcP].l-~X]+o6~ ~--,o secAOy, 

where f~ is the distance from the leading edge measured in the x direction. Similarly the component of edge 
force on the leading edge in the y direction on the element @, (f Y~)t is given by 

diT~/Y / tanA, (21) (fY,), = 
~.~.Yl/ 

so that the resultant of f T  e and 6Y~ is normal to the leading edge; the factor (y/IYl) is required if in the usual 
notation the sweepback A(y) is regarded as symmetric with respect to y. Since equation (19) holds in the limiting 
case A = ~/2, the outward side edge force on an element of length fix on the side edge of both Sw and St,  (6 Y~)~ 

is given by 

I.~ Y l  +o ),~--,o 

Equation (22) holds for y = ___s, fy being the inward distance from the edge in each case. 

2.4. Planar Wing Forces and Moments 

In Section 2.2 expressions are given for the load distributions over planar areas Sw and Sr while in Section 2.3 
expressions are given for the edge forces acting on the boundary of Sw + St .  The total forces and moments 
are obtained by integration of the load distributions and adding together the various contributions; these 
forces and moments will be called the 'planar' forces and moments because they are derived from the planar 
model and will be denoted by the subscript P. 

The planar lift Lp on Sw is, from equation (13), 

LI,= pU_~_x dxdy = _ pU A~t(y)dy ' (23) 
s 

S w  

writing AOt(y) = AO(xt(y), y). There is no planar lift on Sr since aAO/Ox is zero on St .  



The total planar drag De on Sw is, from equations (14) and (20), 

6 sec A dv, (24) De = -,JJ ~x -~x d x d y -  -~ nO ~x +o o,,-o " 
S w  

where w(x, y) is replaced by U OZJSx according to the boundary condition in equation (8) (remember that 
~?Z~/Ox < 0 implies positive incidence). There is no planar drag on Sr since OA~/~?x is zero on ST while the 
edge forces on ST act in the y direction. 

The total planar side force Yp on (Sw + St) is written in the form 

Yv = (Yp)w + (Yv)T, (25) 

where (Ye)w is the side force on S w and (Yv)T is the side force on ST; thus from equations (15), (21) and (22), 
replacing w(x, y) on Sw by U OZ~/Ox 

_ f f  Oz~ OAa~ 
( )w = JJ pU OX -~y dxdy  + Y~, (26) 

Sw 

where Y~ is the total edge force on Sw given by 

Y~ = 6, secA tan A dy + 
+ 0  bx~O 

+ j=,(,) n O ~y +o6,. - ~yy +o y dx. (27) 

Similarly, 

( Yv)T = -- pW~-y dx dy + 6, -- 
sT By +o (lay/+o 'J ;ce Jx (28) 

The double integral in equation (28) for (Yv)r cannot be simply reduced further because w(x, y) on ST is now a 
double integral over Sw, involving ~3Acb/Ox, given by the right-hand side of equation (12) where the reference 
point (x, y) is on ST. 

The planar aerodynamic moments can also be formulated. The signs of the moments have been made consist- 
ent with the usual convention for aircraft stability and control. 

The planar rolling moment on Sw, positive in the sense of port wing up, is 

ff f+" ~e  = - p Uy dx dy = - p Uy A@,(y) dy; (29) 
S 

S w  

there is no rolling moment on St.  
The planar pitching moment on Sw, nose up about the axis x = X o ,  becomes 

f f  8A@ Jd e = - p U(x - X o ) ~ -  x dx dy" (30) 
S w  

there is no pitching moment on S r. 
The planar yawing moment about an axis parallel to 0z, through (Xo, 0, 0) is taken to be positive in the sense 

of port wing forward. Thus the total yawing moment on (Sw + St) is 

where, on Sw 

with 
S w  

J V ~ = - j _ ~  ( ~ X , + o 6 , t  ( y + ( x t ( y ) - x o ) ~ y ~ t a n A  s e c A d y -  
) O ~ - , O  t. 

np(x - 6r}~,~_+d e,-o - , ,  ~,,~,, [ , Oy ]+ o -- ( ' Oy ] + o fiY} ,= -~] 

(31) 

(32) 

(33) 

10 



from the edge forces on Sw; and o n  S T 

f f  dAqb ;oo Ij'[a@/2 &" ~ _ {(c3¢)+!,5 } _  r l d x .  (34) (~Arp) T = pw(x - Xo)--~y dxdy  - nO(X - Xo) [ l ~ y l +  ° ,j Oy o ~:-F¢ 
S T  

It is noted that in the above expressions for the forces and moments, lift, pitching moment and rolling moment 
are first order in A~ while drag, side force, and yawing moment are of second order in Aqb and Zc. 

2.5. Integral Relationships; Trefftz Plane Analysis 

An alternative approach to the estimation of the total forces and moments on a finite wing is to apply the 
principles of linear and angular momentum to a large control volume enclosing the wing. Such an approach 
leads to the standard result for induced, or vortex, drag in terms of a simple single integral relationship in a 
transverse plane far downstream, known as the Trefftz plane. The usefulness of this simple integral relationship 
for the drag is that it bypasses the evaluation of the surface integral over Sw and the determination of the leading 
edge thrust, as expressed in equation (24). The purpose of this section is to show that similar simple relationships 
exist for side force and yawing moment. 

A large control volume ABCDA'B'C'D' is constructed, as shown in Fig. 5, enclosing Sw ; the planar trailing 
sheet ST cuts the downstream transverse plane DCC'D' in a line of width 2s. 

At the upstream transverse section ABB'A' the normal velocity is U, the free stream velocity, and the static 
pressure is the free stream static pressure Poo. It is assumed that the downstream transverse section DCC'D' 
is sufficiently far downstream for the longitudinal perturbation u to be negligibly small so the normal velocity 
across DCC'D' is again the freestream velocity U. However perturbation velocities v and w exist in the plane of 
DCC'D' due to the trailing vortex sheet ST; because of these perturbation velocities v and w the static pressure 
p on DCC'D' is less than Po~- Perturbation velocities and pressures on the four surfaces parallel to the stream 
direction are small, but their effects are not necessarily negligible. 

First the lift on the system is considered by application of the linear momentum principle in the z direction ; 
in the limit as ABB'A' and DCC'D' tend to infinity, the only contribution to the lift arises from the vertical 
momentum flux crossing the downstream Trefftz plane (i.e. DCC'D'); thus the lift, which is identical to the 
planar lift as defined in equation (23), is given by 

Le = - ; f  pUw dy dz 
D C C ' D '  ~ oo 

OcI) 
= _ f f  P U ~ z d y d z  

D C C ' D "  "* m 

= p U Aop dy 
- - s  ) x - - * + m  

(35) 

after integration with respect to z, remembering the discontinuity in q) across the slit lYl ~< s on z = 0 and that qb 
tends to zero as [zl --. oo. It is noted that equation (35) is identical to equation (23). It should also be noted 
that equation (35) can be derived from a large finite control volume.ABCDA'B'C'D'; it is not necessary for 
this control volume to tend to infinity to obtain equation (35). 

To obtain the drag the linear moment principle is applied in the x direction; in the limit as ABB'A' and 
CDD'C' tend to infinity, the only contribution arises from the difference between the static pressure on the 
upstream plane ABB'A' and the static pressure on the downstream plane. Thus the drag, which is identical to 
the planar drag as defined in equation (24), is given by 

D, = f f  (po~ - p ) d y d z  = f f  ½p(v2 + w2)dydz 
D C C ' D "  ~ m D C C ' D '  ~ m 

D C C ' D ' - ~ o o  

D C C ' D ' ~ m  
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(since o n  D C C ' D '  ~ 2 0 / ( ~ y 2  Jr- ~ 2 0 / ~ Z 2  = O)  

= - ½ p A O  d y  (361 

Equation (36) is the standard expression for vortex drag. As described in Ref. 5, the numerical equivalence 
between equations (24) and (36) for vortex drag is a test of the accuracy of the numerical solution of the lifting 
surface integral equation (equation (12)). It should be noted that equation (36) is only obtained in the limit as 
the control volume ABCDA'B'C'D'  tends to infinity;if a large finite control volume ABCDA'B 'C 'D'  is taken, 
the linear momentum principle leads directly to equation (24) and not to equation (36). 

The side force relationship follows by application of the linear momentum principle in the y direction, in the 
same manner as for the lift. Hence the total side force, that is the combined side force off S w and S r ,  from 
equations (25) to (28), is 

YP = (Y~,)w + (YP)~ = - f f  
D C C ' D ' - ,  co 

p Uv dy dz 

= - pU-~y dy dz 

D C C ' D '  ~ co 

= 0 (37) 

after integration with respect to y since qb tends to zero as ]Yl --* ~ .  Thus the total planar side force is zero ; the 
implications of this result are discussed in the following section. 

Next the principle of conservation of angular momentum is applied about each axis. 
The application of the principle of angular momentum about the 0y axis, to give the pitching moment ~¢/e, 

is not a fruitful exercise. The pitching moment appears as the difference of two large quantities namely, (x - xo)L e 
(where x is the location of the downstream Trefftz plane and L e is the planar lift) and integrals over the stream- 
wise planes ABCD and ADD'A';  this difference can be shown to reduce to the standard integral over Sw as 
expressed in equation (30). 

In the application of the principle of angular momentum about the 0x axis, in the limit as the control volume 
becomes infinitely large, the only terms which remain appear in the Trefftz plane and the rolling moment 
becomes 

5tip = p U(wy - vz) dy dz = - p Uy AO,(y) dy, 
$ 

DCC'D'  ~ co 

(38) 

which tallies with equation (29). 
Finally, when the principle of angular momentum is applied about an axis parallel to the 0z axis through the 

point (xo, 0, 0), since the total side force is zero, in the limit of the control surface tending to infinity again the 
only contributions appear in the Trefftz plane, and so the total yawing moment becomes 

,% = (d/~;)w + (~)~ 

= f f  (p co - p ) y d y d z  
DCC'D'--* co 

~z dy (39) 
) x -~  + co 

whe're (./~,)w and (. 'f~,)r are the planar yawing moments on Sw and ST respectively, given by equations (31), (32) 
and (34). The implications of equation (39) are discussed in Section 2.7. 

2.6. Discussion of  Side Force 

Equation (37) states that the overall planar side force Ye is zero. It is now argued that (Ye)r, the planar side 
force on the planar trailing sheet St ,  is negligibly small, implying that (Yp)w, the planar side force on Sw, is 
virtually zero. 

Consider first the side force (Yp)r on Sr  aft of a rectangular wing (chord c, span 2s). Suppose that in Fig. 5 a 
transverse plane cdd'c' is drawn parallel to the Trefftz plane, but upstream of the Trefftz plane, at the wing 
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trailing edge. Then the side force on ST, (Yp)r, is equal to the difference in the sideways momentum flux (in the y 

direction) across cdd'c' and across CDD'C', thus 

(yp)r = f f  p(U + u)vdydz- ~ pUvdydz 
c d d '  c'  ~ oc C D D ' C ' - *  oo 

fl puvdydz (40) 

c d d ' c '  ~ o~ 

where u, v are the perturbation velocities, since the integral over CDD'C' is zero. 
Now in the integrand of equation (40) u is a continuous anti-symmetric function of z and so u vanishes on 

z = 0. Also v is an antisymmetric function ofz but v is discontinuous on the slit lYl <~ s, z = 0 and the magnitude 
of v decreases with increasing Iz[. Furthermore, for any value of z, j" + ~ v dy is zero. The combination of all of 
these factors suggests that the second order integral in equation (40) is negligible to the order of approximation 

of the present analysis. 
For  a swept wing the above argument suggests that the contribution to (Ye)r from the trailing sheet aft of 

x~(s) is small ; unfortunately the above argument cannot be extended to that part of the trailing sheet between x,(y) 
and xt(s). However it is assumed that for all wings 

(YP)T ~ 0. (41) 

Numerical examples, given later, support this assumption. 
It should be emphasised that although the total side force (Ye)r is taken to be negligibly small the actual 

distribution of side force on ST is not everywhere small. For  example, the edge force distribution in the y direc- 
tion on a side edge of ST (i.e. y = _+s) is virtually the same as the wing tip force on Sw. All that equation (41) 
states is that the overall side force on ST is negligible. 

Thus the implication of equations (37) and (41) is that the planar side force on Sw is negligibly small, so 

(Ye)w "~ O. (42) 

It is necessary now to interpret equation (42). 
As an example, consider a twisted rectangular wing whose camber shape is given by 

Zc(x,y)=-c~x(1 + ~ ) .  (43) 

For this wing Zc(x, y) is zero at the leading edge (i.e. where x = 0) ; Zc(x, y) is zero at the port wing tip (y = - s) ; 
the wing incidence increases linearly with y from zero at the port wing tip (y = - s) to Ze at the starboard wing 
tip (y = + s). Everywhere on this wing OZJOy is negative. 

When the wing defined in equation (43) is placed in a uniform low speed stream a differential pressure distribu- 
tion is created which acts normal to the camber surface Zc(x, y); and tip edge forces are produced. Now the 
total side force is made up from two contributions 

(i) the integrated component of the differential pressure in the y direction ; 

and 
(ii) the resultant of the edge forces. 
Now, since 8Zc/Oy is everywhere negative and since the loading distribution is expected to be everywhere 

positive (i.e. upward), contribution (i) must lead to a positive side force in the y direction. And since the present 
example is confined to a rectangular wing, only the wing tip edge forces contribute to the side force ; the incidence 
of the port tip (y = - s) is zero while the incidence of the starboard tip (y = + s) is 2a, so the larger tip force will 
act on the starboard tip and contribution (ii) above will also be positive. 

Thus an example has been given where the actual side force cannot be zero ; this result is at variance with 
equation (42). Denoting the actual (inviscid) side force experienced by the wing as Y, then Y is not identical to 
the planar side force (Ye)w, which has been shown to be virtually zero. An approximate relationship between 
Y and (Ye)w is established later in Section 3. 

2.7. Discussion of Yawing Moment 

Similar lines of reasoning to those presented for the side force in the preceding section can be applied to the 
yawing moment. The planar yawing moment on Sr can be assumed to be negligible since the planar yawing 
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moment on Sr  arises from the drag on St ,  which is identically zero, and from the side force on St ,  which has 
already been assumed to be negligibly small by equation (41), then it is consistent to neglect the planar yawing 
moment on St.  Thus 

( ~ ) r  ~ 0. (44) 

Again numerical results, which are presented later, support this assumption. On substitution of equation (44) 
into equation (39) then the planar yawing moment on the wing becomes 

c ~+s 0@ . ) 
( "ArP)w~ - l J_s½PyA*~-~zaY;x=+ ~ (45) 

Since the actual (inviscid) side force Ycannot be identified with the planar side force (Ye)w it would be expected 
that the actual (inviscid) yawing moment ,/V" would differ from the planar yawing moment (~f~) w. It is not 
possible to give a simple physical example to illustrate this difference as in the case of side force in the previous 
section, however approximate relationships for Jg" and (~4re) w are given later in Section 3. 

3. Non-Planar Wing Theory at Low Speeds 

It is shown in Section 2 that the planar model described there leads to uncertainties in the estimation of side 
force and yawing moment. In this section it is shown that by the reinterpretation of the results already obtained 
in the solution of the planar model it is possible to explain and to relate, approximately, the actual (inviscid) 
side force and yawing moment to their planar values. 

A non-planar model is now formulated in which the discontinuity in velocity potential A~(x, y) is situated 
across the wing camber ( + incidence) surface Z<(x, y) and across a trailing surface which is formed at the trailing 
edge of the wing Z,(x = xt(y), y) with downstream generators parallel to the freestream direction. This model is 
shown in Fig. 6. 

In the formulation of the boundary conditions on the wing, with the assumption that u << U, the overall 
problem again divides into two independent problems for (camber and incidence) effects and thickness effects. 
However, neither of these two problems now is purely symmetric and antisymmetric with respect to z, although 
the lifting problem is still associated with camber and incidence only. Restricting attention to the lifting problem 
the appropriate boundary condition is 

w(x, y, Z<(x, y)) = u--OZc 
Ox " (46) 

If it is further assumed that, 
(i) Zc(x, y)/CR is small (where cR is the root chord) 

and 
(ii) that on the trailing surface 

AO = AO(xt(y), y) = A(I)t(y), (47) 

then the integral equation relating w(x, y, Z,.) and (OAO/t?x) can be taken to .be the same equation as in the planar 
model, as given by equation (12). Thus any standard numerical solution of the lifting surface integral equation, 
namely equation (12), can be regarded as the solution of the non-planar model subject to the two assumptions (i) 
and (ii) as above. 

The pressure difference across the wing camber surface and across the downstream trailing sheet can be 
determined, as before, by the application of Bernoulli's equation. In this case 

P ' -  P. = P ~ U ~ x  x + --~-y f (48) 

where the subscripts I and u refer to the lower and upper surfaces respectively and where v,. is the mean side 
velocity across the sheet discontinuity, i.e. 

Vm 2 l 

For the planar model v,, is identically zero but for the non-planar model v,, is not zero. Hence the pressure 
loading (Pt - Pu) consists of a first order term, depending on c~AO/Ox and a second order term, depending on v,, 
and 0AO/@. 
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It has been assumed in equation (47) that 8AO/Ox is zero on the trailing surface, thus from equation (48) 
(p, - p,) is not zero on the trailing surface to second order. In particular, the Kutta trailing edge condition is not 
satisfied to second order. It can be argued however that the solution of the standard lifting-surface equation (i.e. 
equation (12)) will give a solution for AO correct to first order for both the planar and non-planar models. 

Once Aqb has been determined the overall forces and moments on the wing can then be calculated. For the 
non-planar model, by virtue of the boundary condition, the resultant velocity on the wing camber surface is 
parallel to that surface, there is therefore no flow across Zc(x, y) ; all the load distributions derive directly from 
the resolution of the pressure loading. Thus 

Lift = L = I (  (Pt - P,,) dx dy; (49) 

wing 

ff D r a g = D =  (P~ - P~) - 8x j dx dy - T~, 
wing 

where T e is the leading edge thrust given by the integration of equation (20); 

ff Side Force = Y = (Pz - P.) - ~Y-Y l dx dy + Y~ 
wing 

where Y~ is the sum of the edge forces in the y direction as given by equation (27); 

Rolling Moment = £P = I I  (Pl - p , ) ( - y )  dx dy; 
wing 

Pitching Moment = J / =  

YawingMoment=Jv'=ff(p,-p.){( 
wing 

(5o) 

(51) 

(52) 

f (Pl - pn)(Xo - x) dx dy; (53) 
wing 

-OZclYSx l - (-SZcl(Xay ] - x° )}  d x d y  + "/Ve' (54) 

where ~ is the sum of all the yawing moments due to edge forces given by equation (33). 
In the above expressions the lift L, the pitching moment J/g, and the rolling moment L,e are correct to first 

order ; the drag D, the side force Y and the yawing moment JV are correct to second order. 
Since to first order (Pi - Pn) is equal to  p U OAO/Ox, it is seen that the lift L, drag D, rolling moment £-~ and 

pitching moment ~//given by equations (49), (50), (52) and (53) on the basis of the non-planar model are identical 
to the planar expressions Lp, Dp, ~cae, and ~'p as given by equations (23), (24), (29) and (30). But the expressions 
for side force Y and yawing moment JV" given by equations (51) and (54) on the basis of the non-planar model 
are not identical to the planar expressions (Y.,,)w and (Jffp)w as given by equations (26) and (32); these differences 
are discussed in the following sections. 

3.1. Side Force 

The side force on a wing, according to the non-planar model, is given by equation (51); to a first order 

Y= f~[ aA~\( aZc / 
wing 

(55) 

where Y~ is the total edge force contribution in the y direction (given by equation (27)). On the other hand, the 
planar side force condition is from equations (26) and (42 ) 

(YP)w = ~f llpU~ )oAo~ ( --~x J oz~l dxdy + Y ~ O ,  

S w  

(56) 

where Ye, the side edge force, is the same in both equations (55) and (56). 
A physical explanation of why the two models should give differe'nt expressions for the side force is given 

later, at this stage the algebraic relationship is developed. 
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Integration of equation (55) once by parts with respect to x gives 

f + s  _ _  - -  - -  

-~ ~Y I d . . . .  (y) 8x ~y] dx dy + Ye, 
wing 

and with a second integration by parts with respect to y, 

_ + f,x.(,) ]y= + y,~x) 
8y 13 . . . .  (y) 8x ] +33 x,(o) j,=-~,(x, pUT~-y l -~xx  l dxdy + Y~. 

S w  

(57) 

The sign of the second line integral is plus assuming that the trailing edge is swept back; a swept forward 
trailing edge requires a negative sign. Comparing equations (56) and (5'7) it is seen that 

~ [ dZc(x'(y)' Y!] dY + (Y,)w Y = ~ [p U Aqb] . . . .  ~,) dy ] 

[ ] [pU AO,(y)] - dZc(xt(Y)' y). dy, (58) 
-~ dy 

since (Yp)w is taken to be negligibly small according to equation (56). Equation (58) is valid whether or not the 
trailing edge is swept forward or backward. 

Thus the side force is given purely in terms of conditions at the wing trailing edge, assuming that the side 
force on the trailing sheet can be neglected. When Zc(xt(y), y) is independent ofy then the side force Y is zero" in 
such a case the side force contribution from the integration of the pressure distribution over the wing surface 
cancels the side force due to the edge forces. When dZc(xt(y), y)/dy is uniform, as in the example expressed by 
equation (43), then 

Y ~ (Lift)( dZc(x'(y)'Y)l 
- dy 1" (59) 

In Part II Garner has evaluated the lifting surface characteristics (i.e. pressure distribution and edge forces) of 
a number of wings with asymmetric twist. Results for a series of rectangular wings of aspect ratio 2 at low speed 
with different camber surfaces, all of which have Zc zero along the trailing edge, are shown in Table 1. These 
results are presented in terms of side force coefficients : the total side forcc coefficient Cr is made up from the side 
force coefficient due to the integration of the normal pressure distribution (Cn) and the side force coefficient 
due to the wing-tip edge forces (Cr3 , for consistency with Garner's notation). Equation (58) suggests that the 
total side force in all of these cases is virtually zero (i.e. Cr = Crl + Cr3 = 0) since Zc(xt(y), y) at the trailing 
edge is identically zero. It is seen that the numerical values shown in Table 1 confirm this conclusion with 
remarkable accuracy. 

Results obtained when the effects of compressibility are considered are discussed in Section 4.4. 

3.2. Yawing Moment 

A similar process can be followed for the yawing moment as that presented in the previous section for the side 
force .  

The yawing moment on a wing, according to the non-planar model, is given by equation (54) namely 

8Aq) / ~ ~ ~ y ~ Zc ~ ~ x - Xo) t dxdy + ~ (60) 
wing J 

where ./~ is the yawing moment due to the edge forces (given by equation (33)). The planar yawing moment on 
the wing, according to the planar model, is, from equations (32) and (45), 

(,~)w = og -YTx  + (x - xo)-~-y ~-xx dXdy + ~ 
S w  

} - ½py A* O* dy (6 I) 
s (~Z x ~  + oo 

where . ~  the yawing moment due to the edge forces is the same in both equations (60) and (61). 
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On integration of the second term in equation (60) by parts and by rearrangement it follows that 

S w  

(62) 

It is noted from equation (62) that when Zc(xt(y ), y) is zero or constant the yawing moment is virtually independ- 
ent of yawing axis position x o. 

Garner has also calculated the various terms which make up both sides of equation (62) for the same rect- 
angular wings of aspect ratio 2 with the various camber surfaces as specified in Table 1 where the results for the 
side force are presented. In non-dimensional terms the yawing moment C, is made up from 

C,1 = yawing moment coefficient due to the integration of the pressure loading over Sw, 

Cn2 = yawing moment coefficient due to leading edge thrust, 

C.3 = yawing moment coefficient due to wing tip edge forces. 

The terms on the right-hand side of equation (62) are denoted : 

C,~ = yawing moment coefficient due to Trefftz plane integral (first term on right-hand side of equation (62) in 
non-dimensional form) 

C,H = yawing moment coefficient from the line integral along the trailing edge (i~e. second term on right-hand 
side of equation (62) in non-dimensional form) 

C.ni = yawing moment coefficient from surface integral (i.e. third term on right-hand side of equation (62) in 
non-dimensional form). 

The numerical results are listed in Table 2. 
It is noted that C.n is zero in all of these examples since Zc(xt(y), y) is zero. 
The agreement between (C.t + C,u 0 and (C,1 + C,2 + C,3) is reasonable, the difference being within 6 per 

cent of the value of either term, It is thought that most of this difference is associated with the neglect of the 
yawing moment on S T , while the remainder is due to numerical deficiencies in the calculation of the wing-tip 
edge forces. 
Further results are quoted later when compressibility effects are described. 

3.3. Integral Relationships; Trefftz Plane Analysis 

In the analysis so far, integral relationships have already been obtained for the side force and yawing moment 
(i.e. equations (58) and (62)) essentially by equating the actual side force and yawing moment on the non-planar 
wing model to the Trefftz plane results for the planar model. Now it is axiomatic that the forces and moments 
estimated from a large control volume analysis should be consistent with the forces and moments estimated 
at the wing itself assuming the same model, thus equations (58) and (62) should appear from a Trefftz plane 
analysis of the non-planar model. This analysis is not presented fully here, an outline is given to show how and 
where the various terms arise. 

Consider a large control volume ABCDA'B'C'D' as shown in Fig. 5 enclosing the non-planar model. The 
trailing sheet now cuts the down-stream Trefftz plane (surface CDD'C') in a curved line 

z(y) = Zc(x,(y), y) (63) 

as shown in Fig. 6 across which the discontinuity A~t(y) acts. 
The same arguments as those presented in Section 2.5 are followed through. 
First for the lift 

ff f f  OAcb L = pU( - w) dy dz = - p U - - ~ -  z dy dz 
C D D ' C "  ~ oo C D D ' C '  --* oo 

f 
' - s  

= p U A(I),(y) dy (64) 
$ 

assuming that OZc/Oy is small ; this relationship is the standard formula for the lift. 
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For the drag 

D= f f  ( p ~ - p ) d y d z = - f + ~ ½ p A ~ O ~ ] ~  dy (65) 
CDD'C '  ~ o o  

which, assuming Z~ small, is the standard form. 
The expression for side force becomes, neglccting the side force required to maintain the trailing surface, 

Y = f f  p U( - v) dy dz 
CDD'C '  ~ o v  

= - p U~y dy dz 
CD D'C '  ~ ~ 

f Z A  + s) 

= p u (  - AO, )  dz 
Zc(-s )  

= -~ pU dy (66) 

which is now identical to equation (58) as anticipated. 
By the principle of conservation of angular momentum, the rolling moment and pitching moment analyses 

follow similar lines to those described for the purely planar model. 
The yawing moment derivation is far more complicated; a complete analysis is not attempted here, only a 

rough outline is presented. The contribution to the yawing moment from the Trefftz plane is 

I I  - p /ydyaz  + (x - x0) p u l -  l)) dy dz. 
CDD'C '  ~ ~o C D D ' C '  ~ oo 

There are now additional contributions from the streamwise surfaces ADD'A' and BCC'B' (see Fig. 5) due to 
the yawing moment from the momentum flux pUv. One term will combine with the second term in the above 
equation to give the overall side force contribution to the yawing moment, namely 

- p U(xt(y) - Xo) Aq~, dZc(xt(y), y) dy. 
s dy 

(This step is analogous to an equivalent step in the pitching moment analysis.) Another term arises on surfaces 
A DlYA' and BCC'B' due to the fact that the trailing vorticity OA~/Sy on the wing and trailing sheet is skew, since 
~Zc(x, y)/~,y is non-zero, thus the velocity in the far field is no longer antisymmetric with respect to z. It is 
conjectured that integration of this effect leads to the term 

5f .u y)dx dy 
S w  

which must arise to preserve conformity with the results already obtained from the alternative planar model, 
as given by equation (62). 

I t is now possible to explain why the planar side force ( YP)w is not identical to the actual side force Y. According 
to equation (66) the side force Y can be regarded as the inclination of the lift distribution vector through the 
angle - {dZc(x,(y), y)/dy} in the non-planar model ; thus ira planar model is postulated, a side force { Y - ( YP)w} 
is required to set and maintain the trailing vorticity at the wing trailing edge in the plane z = 0. When the 
trailing sheet in the non-planar model emanates from the trailing edge in the plane z = 0 (i.e. when Zc(x,(y), y) = 
0) no additional side force is required to set and maintain the planar trailing sheet in the plane z = 0, thus 
Y = (Yp)w ~ O. However, even when Z~(xt(y), y) is zero, the actual yawing moment ,JU is not equal to the 
planar yawing moment (.~)w ; the double surface integral over Sw in equation (62) still remains. This implies 
that a distribution of side force is required over Sw to maintain the planar form of Sw in the planar model: and 
this explains why the distributions, leading to Y and (Yp)w in equations (55) and (56) differ. The side force to 
maintain the planar wake on ST aft of the trailing edge, namely (Yp)r, has been shown to be negligibly small : 
similarly the yawing moment ( -~) r  required to maintain the non-planar wake aft of the trailing edge has also 
been neglected. The difference in side force distribution between the aOual and planar systems is to maintain 
the planar wing model, not to maintain any shape of trailing vorticity. 
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4. Linearised Wing Theory in Subsonic Compressible Flow 

4.1. Basic Equations 

To complete the present investigation it is necessary to ensure that the results derived so far for the low 
speed (incompressible) flow problem can be extended to the higher subsonic Mach number regime. The deriva- 
tion of linearised wing theory incorporating compressibility effects is presented in many textbooks as a routine 
piece of work which is fully wrapped up. Such an attitude is reasonable if linearised wing theory is regarded 
purely as a first-order theory. But there is a need to clarify the second-order quantities such as induced drag, 
side force and yawing moment when compressibility effects become important. In the consideration of these 
sec.ond-order quantities further insight is gained into the implications of linearised subsonic wing theory. The 
following analysis is not fully rigorous, but it is hoped that the main points are adequately discussed. 

Again a lifting surface theory is proposed of the uniform flow past an infinitesimal thin wing, Zc(x, y), (with 
either the planar or non-planar representation at this stage) behind which extends a system of trailing vorticity. 
Axes are chosen as before (Fig. 1). 

The uniform free stream is denoted by U ; the perturbation velocities are u, v, w; the static pressure of the 
free stream is p~, the density of the freestream is Poo, the speed of sound in the free stream is a~. 

Assuming an inviscid, isentropic flow the standard equations for the variation of speed of sound, pressure and 
density are 

2 {i  + ½(? - I )M~]  
a2 = a~°,l + ½(7 1)MZ ] (67) 

I + ½(T- I)M~'~ ~/(~-') 
P : P ~  ! + ½ ( 7 -  I) M 2 ]  ' (68) 

., {1] + ½(, - , )M: ]  "( , - ' )  
P = P~ + ½(~ I~M ~ - ]  , (69) 

where y' is the ratio of specific heats and 

M2 = (U -k- U) 2 -~- /.)2 ..~ W 2 
a2 (70) 

Division of equation (68) by equation (69) is equivalent to equation (67). 
The equation of continuity is 

+ u ] ) +  (p/))+ (pw)=O. 

Expafiding equations (67 to 71) in terms of the perturbation velocities 

2 ( 7 -  1)(u2 a 2 = a ~  - (7 - 1 ) U u  ~ + /)2 + w2), 

(71) 

(72) 

P = Poz - -  Pc~ U N  - -  _~(fl2/.,/2 + /)2 _~ W 2) j_ O(b/, U, W) 3, (73) 

and 

where 

p = p ~  1 - M ~ u  2~(1 - ( 2 - 7 ) M  2) + (/)2 + W 2) 1 
2a 2 + O(U, V, w) a (74) 

M2 -] 63/,/ 63l) 63w - UM (3U (75) 

f12 = 1 - M 2. 

Since the flow is irrotational outside of the wing and trailing vorticity a velocity potential • exists such that 

63~ 63O 630 
u -  63x' v - - ~  and w=,~-z.  (76) 
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Away from the transonic region the basic linearised flow equation takes the standard form 

f12 ~2(1) (~2 (I) 02(I)  
0 ~ -  + Oy~$- + ~ z  2 = 0. (77) 

It can be seen, by reference to equation (75), that the basic equation (77) is based on the assumption that 

2 U f12 

M~o~ << 3 - 2(1 - 7)M~" 

To the same order of approximation it would appear from equation (74) that it would be consistent to take 
p = p,, .  But although the change in density is small, it has the same order of magnitude as the change in 
pressure. Since first-order changes of pressure are retained in the analysis, the first-order changes in density 
should also be retained. Thus in addition to a first-order discontinuity in pressure across any lifting surface 
there is an associated first-order discontinuity in density. 

It is said in the literature that an appropriate co-ordinate transformation can reduce the linearised problem 
in compressible flow to one in incompressible fow. This statement is not altogether true, for the discontinuity 
in density is invariant with respect to the co-ordinate transformation so the ' incompressible'  problem retains 
a first-order discontinuity in density. 

The linearised boundary condition, as before, for the planar model, is 

~TZ ::o = uOZc& ' (78) 

while for the non-planar model 

~zz :=z~ c~Zc (79) 

To first order, the pressure loading becomes, from equation (73), 

0AO 
Pt - p, = p . o u - -  (80) 

Ox 

Equations (77 to 80) constitute the standard subsonic linearised wing theory problem. It is not disputed 
that a solution is valid within first-order theory as far as lift, rolling moment  and pitching moment  are concerned. 
But for the calculation of induced drag, side force and yawing moment  it is necessary to ensure that second- 
order terms are adequately covered.. 

4.2. Formulation of Mathematical Model 

As already stated there is a density discontinuity across the wing where for a planar model 

O(z= + 0 ) =  p~ 1 ME , p ( z = - - O ) = p ~  1 (81) 
g ~x ==+o g ax  ==_o" 

Suppose a planar model is considered as shown in Fig. 2 ; Sw is the wing planform ; ST is the planar trailing 
sheet ; A@(x, y) exists across Sw and Sr  ; equation (78) holds on Sw while OAO/~x is zero across ST. 

To calculate the load distributions in the (x, y, z) directions on this planar model, the small control volume 
abcda'b'c'd' of Fig. 3 is set up, as in Section 2. The load distributions are to be determined on the element 6x 6y 
as 6z tends to zero. 

First, however, it is necessary to check that continuity is preserved. As 6z ~ 0 it is necessary for the mass 
flow across abcd to equal the mass flow across a'b'c'd'; now 

mass flow across abcd = p w 6 x 6 y  = p ~ I 1 -  M Z u ] w 6 x a y ,  

and (82) 

mass flow across a'b'c'd' = pw 6x 6y = Poo 1 - M~-~  w 6x 6y. 
z = - 0  

While w is continuous across z -- 0 by virtue of the boundary condition, u is discontinuous. So continuity is 
only satisfied to first order, there is a second-order term which remains, equal to 

w ~Axx • 6x poeM 2 ay; 

this term is of the same order as the local streamwise force and so it cannot be dismissed lightly. 
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Without proceeding further the conclusion at this stage must be that the planar model is inadequate as a 
basis for estimating second-order terms in subsonic compressible flow. 

The next step therefore is to consider the non-planar model which can be defined in exactly the same manner 
as the model in Section 3 and shown in Fig. 6. The discontinuity A@ is situated on the camber surface Zc(x, y) 
on the wing, while the trailing surface is generated by the streamwise extension of the trailing edge Z¢(x,(y), y) 
downstream to x = + oo. 

In this case, since on the wing the camber surface is identified with the streamline, continuity of mass is 
automatically conserved. 

The only force distributions on the wing surface are due to normal pressure distribution; thus neglecting 
third and higher-order terms 

element of force in z direction = (Pt - P,) 6x @ = p ~ U-~£-  x 6x @, 

element of force in x direction = (Pl - P,) --~-x J 6x 6y, 

= p~oU-~x- x - 6x 6y, (83) 

element of force in y direction = (Pz - P.) c~y ] 

oAa,( i ax 
= p ~ v - ~ -  - ~ y  I 

In addition to these distributions of loads over the surface there are also the edge forces. Ideally it would be 
satisfying to formulate the edge force distribution directly in a similar manner to the treatment for incom- 
pressible flow as presented in Section 2.3. Unfortunately such a procedure introduces considerable difficulties 
which are all associated with the variations in density in the edge regions. However an indirect method is 
possible ; by using the fact that an infinite swept aerofoil has zero overall drag an estimation of the local leading 
edge force can be made. Garner presents this approach in Section 2.2 of Part II in full. 

Thus subsonic linearised lifting surface theory is applicable when equations (83) are used for the load distri- 
butions together with the appropriate edge forces, with the minor reservation that a strictly non-planar model 
is implied. 

4.3. Integral Relationships; Trefftz Plane Analysis 

Since the main theme of the earlier sections is the compatibility between forces and moments on the wing 
and conditions on a large control surface, it is necessary to confirm that compressibility does not affect the 
Trefftz plane formulae. As far as is known even the formula for vortex drag has always been taken for granted 
without proof. 

Consider the large control volume ABCDA'B'C'D'  as shown in Fig. 5 surrounding the non-planar model. 
On the Trefftz plane, plane CDD'C', there are transverse velocity components v and w induced by the trailing 
vorticity situated on the non-planar trailing sheet (i.e. on z = Zc(xt(y ), y). Now these transverse velocities v 
and w induce a change in density, for according to equation (74) 

I U V2-~W21-- p = p ~  1 - M ~ u  2a 2 + . . . .  (84) 

It is now argued that since induced drag depends on the integration of(v 2 + w 2) over the Trefftz plane then 
terms like (v 2 + w z) must be retained in all the parameters, thus the small change in density implicit in equation 
(84) must be retained. And if the density varies over the Trefftz plane then from continuity 

f f  {p(U + u) - p~U}  dydz  = 0, (85) 
CDD' C'-~ oo 

which gives 

ff p~o(fl2u v 2+w2 / U 2a2~ ] d y d z = O .  
CDD'C" ~ oo 

(86) 
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Equation (86) implies that a small longitudinal perturbation velocity u must exist in the Trefftz plane. The 
velocity u/U must be symmetric with respect to z, even for the lifting problem, and its order of magnitude is 
{(v 2 + w2)/u ~} M~//3 ~. 

It is of interest to note that even retaining the second-order term u/U in the Trefftz plane the basic differential 
equation again becomes 

t~2(I ) 02(I) 
o 7  + ~ = 0, ~87) 

to a first order. 
The overall forces and moments can be obtained by applying the arguments presented in Section 3. Neglecting 

third-order terms, the lift on the wing is 

j.+s 
L = p(U + u ) ( - w ) d y d z  = pooUAO,(y)dy,  (88) 

- - S  

C D D ' C '  ~ oo 

and the side force on the wing is 

Y ~ p(U + u ) ( - v ) d y d z  = p~oU AO,(y) - (x,(y),y) dy. 
S 

C D D ' C "  ~ oo 

(89) 

Neglecting the side force on the non-planar trailing sheet, it follows that the side force on the wing is given by 
the same approximate formula as in the incompressible case (i.e. equation (58)). 

The drag force on the wing is 

D = f ~  {(Po~ - P) - p(U + u)2+ P~o U2} dy dz 

C D D ' C '  ~ oo 

C D D ' C '  ~ oo 

[ ]} - p ~ U u  + p~fl2uU + p~o(l - 2M~)u 2 -- p o ~ S ~ ( v  2 + w 2) d y d z  

on substitution of equations (73) and (74). Hence with the aid of equation (86), 

l, = f f  e (v2 + w2) ay az + o(.2)x:+ 
C D D ' C '  ~ oo 

= - s  p~U ~ZJx=+~ oo (90) 

using equation (87). Thus the standard formula for the vortex drag can be derived, even when the density 
variations in the Trefftz plane are taken into account. 

Since the yawing moment .,,F is a combination of the above side force and drag terms, it is conjectured that 
the formula for ./~P is the same for both the incompressible and compressible cases, as given by equation (62); 
the numerical results presented in the following section support this assumption. 

4.4. Numerical Example 

Part lI includes a numerical solution for a tapered swept wing of aspect ratio 2 at M~o = 0-7806 ; the camber 
surface is 

(1 + y/s)(x - xt(y)) 
Z~(x, y) = 

C 

such that Zc(x,(y), y) is zero. 
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Thus 

The side force contributions are : 

Cy1 = side force coefficient due to integration of normal pressures 

= - 2.778, 

Cr2 = side force coefficient from leading edge 

= 1.759, 

Cya = side force coefficient from wing tips 

= 0.974. 

Cr = Cra + Cy2 + Cy3 = -0-045. (91) 

The inference from equation (89) that Cy is negligibly small when Zc(xt(y ), y) is zero is supported by the 
numerical result given by equation (91). 

For  the yawing moment  about  an axis through the leading apex of the wing, the contributions are : 

C.1 = yawing moment  coefficient due to integration of normal pressures 

= 1.920, 

C,2 = yawing moment  coefficient from leading edge 

- 1.467, 

C,3 = yawing moment  coefficient from wing tips 

= - 0.941. 

Thus 

C n = Cnl  "~ Cn2 "t- Cn3 = - - 0 " 4 8 8 .  (92) 

Now from equation (62) C, is also approximately equal to (C,~ + C.n + C,m) where, by reference to equation 
(62), 

C.~ = yawing moment  coefficient from Trefftz plane 

= 0.236, 

C.n = yawing moment  coefficient from line integral 

= 0, 

(;'.in = yawing moment  coefficient from surface integral 

= -0.710.  

Thus 

Cnl -I- C.I ! "~ Chili = --0"474. 

Again the agreement between equations (92) and (93) is reasonable. 

(93) 

5. Conclusions 

(1) It is shown that linearised theory can be used to predict second-order quantities such as drag, side force 
and yawing moment  as long as the mathematical  model is a non-planar model;  the forces should be 
calculated from the resolution of the pressure loading distribution, which acts normal to the wing surface, 
together with the edge forces. 

(2) Approximate alternative expressions are derived for the side force and yawing moment  which do not 
involve the edge forces. 
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LIST OF SYMBOLS 

aac 

Cy1, Cy2, Cy3 

Cnl, Cn2, Cn3 

Cnl, Cnll, Cnlll 

D 

Dp 

L 

Le 

..,oF 

.50e 

M , M ~  

.4/;, T 

,,die 

P 

Pt - P .  

q,, qo 

q., q~ 

r 

Sw 

Sr 

U 

U, l), W 

x , y , z  

XO 

x~(y) 

x,(y) 

Z~(x, y) 

Z,(x, y) 

O~ 

Speed of sound in free stream 

Side force coefficients due to normal pressure distribution, and leading edge suction 
force, and wing tips suction forces respectively 

Yawing moment coefficients due to normal pressure distribution, leading edge suction 
force, and wing tips suction forces respectively 

Yawing moment coefficient terms defined by the three terms in equation (62) 

Drag on wing 

Drag on planar surface Sw 

Lift on wing 

Lift on planar surface Sw 

Rolling moment on wing 

Rolling moment on planar surface Sw 

Pitching moment on wing 

Pitching moment on planar surface Sw 

Mach number of local flow and free stream respectively 

Yawing moment on wing 

Yawing moment on planar surface Sw + ST 

Yawing moment on planar surface Sw 

Yawing moment on planar surface S T 

Yawing moment due to edge forces from leading edge and wing tips 

Static pressure 

(Pressure on lower surface of wing) - (pressure on upper surface of wing) 

Perturbation velocity components in cylindrical co-ordinates on an edge 

Perturbation velocity components normal and parallel to edge in vicinity of an edge 

Cylindrical radial co-ordinate 

Wing planform on plane z = 0 

Trailing sheet on plane z = 0 

Free stream velocity 

Cartesian velocity components 

Cartesian axis system with origin at wing apex, 0x in free stream direction, 0y to starboard 

Position of either pitching axis or yawing axis 

Equation of leading edge of Sw 

Equation of trailing edge of Sw 

Wing camber surface 

Wing thickness distribution 

Incidence 

(1 - M ~ ) ~  
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6,, fix, 3r 

A 

P,P~ 

A~p 

A¢,(y) 

Distances away from nearby edge, normal to edge, in x direction, in y direction respec- 
tively 

Ratio of specific heats 

Local angle of wing sweep 

Local density and density of free stream 

Velocity potential 

Discontinuity in velocity potential 

= AO(x~(y), y) 
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TABL]~" 1 

Side Forces on Rectangular Wing of Aspect Ratio 2 

Case 

(a) 

(b) 

(c) 

Camber surface 
Zc(x, .v) 

(1 + ~ ) ( 1  _ x )  

:) 

.(x, y) 

1 +  y 
S 

s! ~c 

Side force due to 
normal pressures 

Cy1 

-1.9673 

- 1.1500 

- 1.0186 

Side force due to 
wingtip edge forces 

Cr3 

+ 1.9454 

+ 1.1448 

+ 1.0162 

TABLE 2 
Yawing Moment Contributions 

Case 

(a) 

(b) 

(c) 

Zc(x, y) C. 1 C. 2 C. 3 

:) 
(y)2(1 + y  + x ) (  1 _ x )  

XO 
0.6426 - 0.9781 

C 

0.2754 - 0.5750 x° 

0,2354 - 0.5093 x° 
C 

-0.2575 

-0.1009 

-0.0220 

-0.5637 + 0.9727 x° 
C 

-0.3237 + 0.5724 x° 
C 

-0-3349 + 0.5081 x° 
C 

Case 

(a) 
(b) 
(c) 

C.l C.m C.i + C,m 

0.2297 
0.0977 
0-0973 

-0.4195 
-0.2534 
-0.2210 

-0.1898 
-0.1557 
-0.1237 

Cnl -Jr- Cn2 + Cn3 

-0.1785 - 0-0054 Xo/C 
-0.1492 - 0.0026 Xo/C 
-0.1214 - 0.0012 Xo/C 
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FIG. 1. Basic problem. 
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FIG. 2. Planar mathematical model. 

FIG. 3. Small control volume. 

29 



c Y ~ , . D . , c . .  

A Y 'C"~"~  "c~ 

/ ~  PLANE Z=O 

q" qs 

B 
PLANE 

0 

W 

Z=O 

FIG. 4. Notation for edge considerations. 



B 

t ~  

A 

PRESSURE ~)~ 

U 

I 
I 
I 
I 
I 
I 
I i 

d, 

J 
J 

J 

Y 

J 
f 

f 

J 
J 

X 

f 
J 

J 
J 

f 
f 

f 
J 

f 

/ I f 

I 
I 
I 
I 
I 
I 

D I 

W 

J 
J 

PRESSURE 

P 

TREFFTZ 
PLANE 

C 

FIG. 5. Large control volume. 



U 

y=~S 

y=-S 

--B' 

I 

A z = Zc (x,z) A'  

WING CAMBER 
SURFACE 

J x=xt(Y). j /" 
fDISCONTINUITY IN} TRAILING SURFACE 

I 
B 

• '== 2 s  

I 
B' 

~T RAILI NG SURFACE 

FIG. 6. Non-planar model. 

32 



P a r t  II  

E d g e  F o r c e s  a n d  R o l l - R a t e  D e r i v a t i v e s  

1. Introduction 

As stated in the Preface, lifting-surface theory has not been extensively applied to the calculation of various 
lateral stability derivatives; approximate and simple expressions have played a major part in their estimation 
during the past two decades. For example, Toll and Queijo 1 used the concept of a sheared unswept wing to 
found the basis of rapid estimation of these lateral derivatives for swept wings in incompressible flow. Goodman 
and Fisher 2 have used experimental evidence on rolling stability derivatives at low speeds for untapered wings 
of varying aspect ratio and sweepback to devise a semi-empirical method, which incorporates tip suction and 
non-linear characteristics associated with drag at high lift. The effect of Mach number for a range of sweepback 
is considered experimentally and semi-empirically by Wiggins 3 and more recently by Queijo 4 in terms of 
simple theoretical formulae akin to those in Ref. 1, which only apply to linear conditions. 

As established in Part I, the standard lifting-surface integral equation can be applied to the calculation of 
side force and yawing moment with the correct interpretation of the pressure distribution. Here the approach, 
based on an extension to lifting-surface theory, 5'6 is to sum the separate contributions from the loading normal 
to the camber surface and from the leading-edge and side-edge suction forces. In reconciling two different 
concepts of lift-dependent drag from kinetic energy in the wake and from integrated forces at the wing, the 
author has stated in Ref. 7 that the accuracy of leading-edge suction is perhaps the severest requirement of a 
lifting-surface solution. However, it is quite as difficult to ascertain the distribution of tip suction, and hence its 
contribution to the side force and yawing moment under asymmetric spanwise conditions. In this respect the 
demands on lifting-surface theory are alleviated by the margin of error that can be accepted in the estimation 
of lateral stability derivatives. 

From the theoretical standpoint it is necessary to make the distinction between sideslip and yawing motion, 
which involve asymmetry of wing planform relative to the mainstream, and aileron deflection and rolling motion 
where the asymmetry is confined to the boundary conditions. The present investigation is restricted to problems 
of the latter type, including the lateral forces and moments on wings with asymmetric twist and camber. 

The purpose of the present report is threefold. Analytical and numerical studies of local and integrated 
edge forces are undertaken, in order to investigate their theoretical behaviour and importance. The contribu- 
tions to the roll-rate derivatives of side force and yawing moment are deduced for two rectangular wings and 
one tapered swept wing, to establish some general trends in these theoretical derivatives and to make comparison 
with the appropriate formulae and charts from the simplified methods ofRefs. 1 and 4. The related experimental 
evidence from Ref. 2 and the semi-empirical methods of Refs. 2 and 3 are used to provide some assessment of 
the validity of the present calculations ; in particular, the r61e of the edge forces in the non-linear experimental 
behaviour of the yawing moment due to rate of roll can be clarified. 

2. Steady Subsonic Wing Theory 

Under the usual assumptions in linearised lifting-surface theory the wing is taken to have zero thickness. 
The origin of co-ordinates is chosen where the centre line of the wing planform intersects the leading edge ; 
Fig. la  shows the right-handed system of stream axes with 0x in the direction of the stream depicted as horizontal, 
0y to starboard and 0z drawn vertically upwards. The stream of uniform velocity U, subsonic Mach number M 
and density p is supposed to be inviscid and irrotational and therefore subject to a perturbation velocity 
potential q). 

The planform occupies the region 

xz(r/) ~< x ~< xt(r/) = xl(r/) + c(q) ( - 1  ~< ~/~< 1) (1) 

where q = y / s  and s denotes wing semi-span. In terms of the geometric mean chord ~, the planform area is 
S = 2s6 and its aspect ratio is A = 2s /& The camber surface of the wing 

z = - ~ Z ( x / ~ ,  ~) (2) 

is so slightly displaced from the plane z = 0 that the boundary condition 

1 8~ 8Z 
- - ~(x,y) (3) 

u Oz a(x/~) 

may be satisfied on z = O. 
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In the usual mathematical model of the flow the potential ~ is antisymmetric in z with discontinuity 
AO(x, y) in crossing from below to above the plane z = 0 in the region (1) and also in the wake 

x,(7) ~< x ( - 1  ~< r/ ~< 1). (4) 

From Bernoulli's equation for compressible flow of a perfect gas the lift per unit area is obtained to first order as 

Ap = ½pu21(x, y) = P u ~ x ( A ~ ) .  (5) 

The vortex sheet in the wake does not sustain lift, and it follows from equation (5) that 

A¢(x, y) = AO(x,, y) (x >i xt). (6) 

It is well established s from the mathematical model that equation (3) leads to an integral equation 

[ l ~Z _ 1 s x, l(x', y') 1 + 
O(x/g) c~(x, y) = --~-~ , , ( y -~  y,)Z {(x -- x') z ~_-~T(y _ y,)2}~ dx' dy' (71 

where/32 = 1 - M 2. Subject to the Kutta condition that I = 0 along the trailing edge, equation (7) is sufficient 
to determine I(x, y) when Z(x/~, 7) is given. 

However, for the purpose of satisfying equation (3) to first order, there is no need to assume a planar vortex 
sheet. The discontinuity Aq~(x, y) should be regarded as occupying the camber surface (2). Likewise it should be 
recognised that in the wake the vortex sheet is a stream surface which is convected away from the plane z = 0; 
although the local vertical displacements tend to grow indefinitely with increasing x, their upstream influence 
at the wing can reasonably be ignored. As far as the flow at the wing is concerned, the rolling-up of the trailing 
vorticity is also of secondary importance• 

The pressure loading Ap of equation (5) acts normal to the camber surface (2) with components of force 
per unit area 

1 z OZ ] 
~pU l ( x , y ) ~  in direction 0x 

(8) 
0Z 

an direction 0y / ½pUZl(x, y)! 

Although both these components are of second order, it is clear that no further contributions of this order 
would result from higher-order terms in l(x, y). In other words, there is no inconsistency in the derivation of 
the second-order quantities for drag, side force and yawing moment from linearised subsonic wing theory• 

The mathematical procedures for obtaining solutions l(x, y) to the integral equation (7) are legion, and no 
attempt is made to review them. Most of the present calculations are based on the method of Ref. 6 with zero 
frequency. It is sufficient in Section 2.1 to define the various steady-flow solutions and to give the necessary 
equations for the subsequent analysis of local edge forces and total side force and yawing moment in Sections 2.2 
and 2•3• 

2.1. Lifting-Surface M e t h o d  

For a given planform, camber shape Z(x/?,  7) and subsonic Mach number, solutions for the wing loading 
by the method of Ref. 6 involve the choice of a trio of integers (N, m, a). The first two determine the location 
of points (Xpv, yv) on the planform where equation (7) is satisfied, 

xp~ = x,(Td + ½c(~/v)(1 - cos ~bp), 

c~p = 2rcp/(2N + 1), 

Yv = S7v ----- --SCOS 

p = I(1)N l . 

v l(1)mJ 

(9) 

The third one, a, controls the accuracy of the spanwise integration involved in equation (7). The integers N 
and m also determine the number of coefficients in the expression for the non-dimensional wing loading. Thus 

N cos (q - 1)4~ + cos q,# (10) 
8S 2 Fq(7) sin q~ ' l(x, y) - rrc(7) q = 1 
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where the angular chordwise parameter ~b is given by 

x = xt(tl) + ½c(q)(1 - cos 0); 

the spanwise loading functions are defined by the double series 

Fq(t/) - m + ~  Fq, sin/~0 sin #0, 
r = l  # = l  

with q = - c o s  0 and Fq, = Fq(rb), where 

t/, = - c o s  0, = - c o s  lr n + 1]' r = l(1)m. 

The solutions are the sets of m N  coefficients Fqr that determine l(x, y). 
It is convenient to define generalised force coefficients for certain standard modes 

Z~(~, q) or Zj(~, rl) = ~rl ~, 

where ~ = x/6 and the indices a and r relate to i (or j). The camber surface is taken in the form 

J 

j = l  

to produce the wing loading 

l(x, y) = 

The corresponding force coeffÉcient is defined by 

where 

J 

2 bflj(x, y). 
j = l  

1 Z Oi = ~ f f  i(~, rl)l(x, y) dx dy 
S 

J 
= Y, bfij, 

j = l  

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

1 
=  s.lJ z,(¢.)lj(x, y) dx dy. (is) 

s 

The modes with spanwise symmetry are treated independently of the antisymmetric ones, and equation (18) is 
replaced by 

l ! f  l 
(Qij)sym = ~ (Zi)sym(lj)sy m dx dy 

• (19) 

(OOao,i = ~ f f  (z3a,,dIA,,.dxdyJ 
S 

For  the present purposes it is sufficient to take the first ten symmetric modes and the first six antisymmetric 
modes from Table B1 of Ref. 6 and to numerate equation (14) as follows. 

i (or j) 1 2 3 

(Zi)sy~ a 0 1 2 
z 0 0 0 

(Zi)a.tl cr 0 1 2 
1 1 1 

4 5 

3 4 
0 0 

3 0 
1 3 

7 8 

1 2 
2 2 2 

1 - -  - -  

3 - - 

9 10 

3 0 
2 4 
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While Ref. 6 has been used in the present applications to rectangular wings, the calculations for a tapered 
swept wing are by the lifting-surface method of Ref. 5 with a similar trio of integers (m, N, q) including the 
quantity q analogous to a in Re['. 6. Although the solutions are transcribed to the present notation, there are 
certain complications on account of the sweepback. Additional force modes 

(Zl)sy m m-I~1 ] 
(Zll)sym ~--- glr/I ~ (20) 
(Z,)... = r//Ir/I { 

/ 
(Ill)anti ~r//l~l J 

arise in the evahmtion of yawing moment. The planform is rounded so that the true leading edge and chord in the 
region Ir/I < r/iR are replaced by 

xp/) = x~ + .1(2)Ex,lr/~R) - x~R]] 

c(rl) CR + f(R)Ec(rhR) - oR] J '  }" (21) 

where x~e( = 0) and cR denote the root leading edge and chord, and 

f().l = ~ + 2  2 - 3~-;.3, 0 ~ 2 <~ 1)  

)I A I~/I/r/,R, r/~R = ssin m +  1 
(22) 

2.2. Evaluation of Edge Forces 

The velocity potential difference A~(.,< 3') is easily obtained from the non-dimensional wing loading by 
equations (5), (10) and (I 1), whence 

A@(x,y) = ½U l ( x ' , y ) d x '  = ¼Uc(q) l (x ,y )s in05d05 
t 

2sU[-_ sin 0 5 ) ~  , [ s i n ( q -  1)0 si ~b}] 
-T/v,f !t05 + + _ + . 

With regard to edge forces the three-dimensionality of the problem is fully taken into account in the behaviour 
of AO. The local edge forces, acting normal to the edge and in the plane of the wing, arise from the infinite 
gradients of Acp normal to the leading and side edges, 05 = 0 and r/ = _ 1, irrespective of any local variations 
parallel to the edges. Thus we can use a two-dimensional argument without loss of generality, recognising 
that the edge force is a necessary approximation to a component thai arises naturally from normal surface 
pressures on a thick wing. 

The simplest approach to the formulation of these edge forces in terms of the behaviour of A@ on a lifting 
wing is to consider a two-dimensional thin sheared wing at uniform incidence ~ and to use the'condition that its 
drag is zero. Let c and A denote the wing chord and the angle of sweepback. Then the load distribution is that 
of an unswept two-dimensional wing of chord c cos A at uniform incidence 7 sec A in a stream of velocity U cos A 
and Mach number M cos A. Thus 

Ap = ½[)U 2 COS 2 A(I -- M 2 cos 2 A)- ~4c~ sec A cot ½05 

= 2pU2g(fl  2 + tan 2 A)-" cot ½05. (24) 

Denote the distance normal to the leading edge by 

n = ½ccos A(I - cos 05). (25) 

Then the discontinuity in velocity potential is 

~" Ap ¢ 
A O =  3 0 p U c o s A d n =  [" AP½csin05d0 

30 p u  

= Ucc~(fl z + tan 2 A)-~(05 + sin 05). (26) 

The lift force per unit length of leading edge is 

p U  cos A(Acl))4,_,~ = npUac~  cos A(fl 2 + tan 2 A) -~ 
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Since the pressure loading acts at the angle ~ sec A to the axis 0z the streamwise component of force must be 
balanced by the leading-edge suction force per unit length 

El = 7cpuZc0t2(/~ 2 + tan 2 A)- ~. (27) 

It remains to relate E¢ to the behaviour of AO near the edge 

A ~  = 2Uco;~)(fl 2 + tan 2 A) -½) 

~b 2 4(n/c) sec A ; '  (28) 

By equations (27) and (28) 

Ez = ~6gP c o s  A(fl 2 + tan 2 A ) - ~ [ ( a O ) Z / n ] , , o  . (29) 

The tip is treated as the limiting case when A tends to 90 °. Thus equation (29) gives the outward side-edge force 
per unit length 

E~ = ~ p [ ( A c b ) a / n ] , ~ o  (30) 

where now n / s  = I - [r/[. 
It may be observed that equation (29) also reduces to equation (30) in the limiting case of incompressible 

flow. An alternative derivation of this special result is given by Hancock in Part I. While the expression for 
tip suction is unaffected by compressibility, the leading-edge suction shows explicit dependence on Mach 
number. Moreover, just as Ref. 7 reconciles the lift-dependent drag from the Trefftz plane (x = ~ )  with 
components acting at the wing in incompressible flow, so with the aid of equation (29) the same equivalence 
can be demonstrated in subsonic compressible flow in accord with the Prandtl-Glauert similarity rule. 

The local edge forces can be deduced from equations (23), (29) and (30). Near the leading edge equation (23) 
becomes 

where 

A O  = ( 4 / = ) s U O e ~  + O(~b 3) (31) 

N 

o = ~ rq(,). (32) 
q = l  

If At(r/) denotes the local leading-edge sweepback, it follows from equation (11) that 

n = lcq~2 cos A t = 0(4'*). (33) 

4 p U 2 s 2 0 2  
(fi2 + tan 2 A3~. (34) 

rcc(r/) 

By equations (29), (31) and (33) 

E t - 

To evaluate E~, it is convenient to let 

(35) 

A general expression for Fq is obtained from equations (12), (13) and (35) in the limit as 0 ~ ~. It is found that 

[ ½.r / 
Fq(q) = (~ - 0) ,=1 ~ ( -  1)'- 1Fq' tan ~m + 1 / + O(u - 0) 3, 

whence 

r - 1  [ ~ r  Fq = ~=1 ~ ( -1 )  Fq, tan t ~ - ~ -  ]. (36) 

According as Fqr is symmetric or antisymmetric in r/,, the summation in equation (36) can be shortened to gwe 

( ~ ) s y m  = 2 ~ ( - l ) r - lFq ,  cosec - r'q,~,,+, 
r = l  

½(m-- 11 

= 2 ~ (-1)r-mFq(r/r)(1 - r/2)-~ - Fq(0) (37) 
t ' = l  
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o r  

½(m- 1) 

= 2 E 
r = |  

½(hi- 1) 
= 2  2 

r = l  

It follows from equations (23), (30) and (35) that 

( -  1)'Fq~ cot m + l  

( -  1) ~- ~Fq(rb)r/,(1 - r/~)-6. 

where 

(38) 

pU2sq~ 2 
E~ - (39) 

2~ 

q-' F,(q5 + sinqS) + ~ Fq{sin~q-_- ll'q~ siTq5 } -I- . 
q=2  

(40) 

Individual expressions for the outward edge forces per unit length acting at the two tips are then formulated as 

pU2s 
E~ - ~ (~lJsym m_ kIJanti) 2 for ~/ -- __ 1, (41) 

where ~y,,~ and W~., are defined by equation (40) in conjunction with Fq from equations (37) and (38) respectively. 

2.3. Side Force and Yawing Moment 

With the usual sign convention, illustrated in Fig. lb, the side force is positive to starboard and yawing 
moment is positive anticlockwise about the axis Oz. The yawing moment coefficient will be split into three parts 

C. = . f ' / (pU2Ss)= C.1 + C.E + C.3, (42) 

where C. l is the contribution from normal pressures, C.z and C.3 are derived respectively from the leading-edge 
and side-edge forces. There is no need to consider the side-force coefficient Cr separately, because C. is obtained 
as a linear function of the axis position x 0 : thus 

Cy = Y/(½pU2S) = 8C./a(Xo/2S) 

= A OC./O~o with ~o = Xo/& (43) 

The first term C. 1 is derived from the components of local force in (8) : with yawing axis through (x, y) = (Xo,0) 
they contribute 

I 1 
f r [: < 23 1 ¢, 8Z ¢ 

= l(x, y) d~ @ (44) 

where ~ = xt/? and (~ = x,/~. It can be seen from equation (44) that C.a can only be non-zero if the camber shape 
Z(~, q) and consequently the loading I(x, y) are asymmetric in ~/. We write 

z = (Zj).m + (zj)..,;~ 
(45) ( 

1 (/j)sym "+" (/))anti - '  

and take the force mode 

Z = (Zi)sy m -~- (Zi)anti  

with 

0(Zs)..ti 4(~AZ ~0)8(Zj)..ti] 
(Zi)sym = q 8~  3Y~ ~ .  (46) 

(~(gj)sy m 4(~ - ~o) O(Zj)sy m_l 
(Zi)anti  = /~ ( ~  A 2 Or/ ) 
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Then in the notation of equations (19) 

Cnl = (Qij)sym "1- (Qij)anti, 

where the modes i will be linear combinations of those defined below equations (19) or in equations (20). 
The leading-edge suction per unit length in equation (34) contributes 

Cn 2 m p U ~ s ~  E~{y + (x~ - Xo)f-yltanAt}dY 

af~7~ 1 ~)2(j~2 c(r/)/C+ tan2 A3~ { ½At/ + (4t - 4°)]~-1 tan A~} dr/" 

(47) 

(48) 

In the case of a straight sweptback leading edge with 

equation (48) reduces to 

41 = ½Air/[ tan At, 

c(r/)/? ½Ar/sec a At - tan A t dr/, (49) 

where it remains to substitute from equation (32) 
N N 

0 = ~)sym -I- Oanti = E [rq(r/)]sym 21- Z [Fq(r/)]ar'ti' 
q=l  q=l  

Hence 

= - - -  + tan 2 At) ~ ½A sec 2 At 1 ~symOantir/ 1 (~symOanti 
n c - ~  dr/ - 4o tan A t C/C dr~ . 

(50) 

(51) 

Like C.1, this contribution vanishes if the spanwise loading is symmetric or antisymmetric. 
The side-edge forces per unit length in equation (41) combine to give 

2 /x,1) 
-- -- kI/symkI'/anti(X -- XO) dx. C"3 nS .1~(1) 

If we substitute the functions • from equation (40) and put 

(52) 

x = ?4tr + ½CT(1 -- COS qS) (53) 

along the tip chord, equation (52) becomes 

Cn3 - 
1 f f [  N ~-sin(qz1)q~ sinqqSl~ [ 

~-A r,(~b + sin ~b) + q=~2 rq~ q - 1 + x Fl(q5 + sin 4) + 
= q )Asym 

{sin~q_ ll'~b siTq~}] { ~  llCTI2 } 
+ q~"=2 ~ + anti X (4tr - 40) + 5/-~- ] (1 - cos ~b) sin 4) d4 

(4tr -- 40) I..Fqr. + Z Z ~(Iq. - Jqa)rqF a . 
q,a= 1 q,a= 1 

(54) 

Here the subscripts q and a are used to denote symmetry and antisymmetry, so that the summations are taken 
over the N 2 combinations of 

Fq = (Fq)sym f r o m  equation (37)~ 

r a = (rq)anti f r o m  equation (38))' 
(55) 
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and the integrals l~a = laq and Jqa =- Jaq are defined below. 

I , ,  = (~b + sin q~)2 sin ~b dq~ = 2~z 2 - 8  

1,2 = (~b + sin 4~)(sin 4 + ½ sin 240 sin ~b d4 = ¼~2 + 

f ' "  . . . .  (sin (a - 1)q5 sin a~b) . _ 
la" = J0 I q~ + sxncp)?- a - -1- -  + a ~ s,n q)d4, 

U ( s i n ( q -  l)~b sin qqS) ( s i n ( a -  l)~b Sinaa--~ } s in+dO 
Iq. J0 t-q:]- + q J ~ - a : l  + 

_ _ 

( q + a -  3 ) ( q + a +  l ) ( q - a -  1 ) ( q - a +  l) L a n d e v e n ]  

= _  8 

( q + a - 2 ) ( q + a ) ( q - a - 2 ) ( q - a + 2 )  L and odd ] J  

The integrands of J~. include the extra factor cos q5 in each case and give 

J l l  = _~/~2 _ 8  

J12 : @66 7z2 - ~5 

8 { ( q - a )  2 - 3 }  
Jq" = -{ (q  + a - -  1) 2 -  4}{(q -  a) 2 -  1 } { ( q - a )  2 -  9} 

8{(q + a -  1) 2 - 3} 
{ ( q - a )  2-4}{(q + a -  1) 2 -  1}{(q + a -  1) z -  9} 

Iq = a = 2 or 1 

q+a>~6 I 
and even ] 

[ q + a ~ > 5 ]  

and odd J 

(56) 

(57) 

For an arbitrary camber shape Z(~, r/) indicated in equation (45), the yawing moment coefficient may be 
calculated as the sum of equations (44) or (47), (48) or (51) if A l is independent of r/, and (54). Given the values of 
Fq at the positions ~/r in equation (13) and the necessary generalised force coefficients of equation (19), the 
computations are straightforward with the aid of equations (37), (38), (46), (50), (56) and (57). 

3. Asymmetrically Twisted Wings 

The side force and yawing moment in linearised potential flow arise from interactions between the symmetric 
and antisymmetric parts of the spanwise load distribution. Practical situations in which the two components 
are present occur on a lifting wing with ailerons deflected or in rolling flight, and the latter will be discussed in 
Section 4. In the case of ailerons it is questionable whether lifting-surface methods can yet provide reliable 
edge forces. The artificial problem of a thin wing, whose camber shape Z(~, q) and local incidence 8Z/8~ are 
asymmetric in r/, provides a convenient medium for numerical studies relating to the preceding analysis. The 
results are presented in Tables 1 to 6, and some of these are relevant to rolling flight. 

3.1. Rectangular Wings at Low Speeds 

The main examples are for the rectangular wing of aspect ratio A = 2 in incompressible flow and with camber 
shapes 

(a)  Z ( ~ , ~ / )  = (l + r/ ) (~  - 1) 

(b) Z(~,q) q(1 + r/)(~- 1) / " 
(c) ZG, )  C ( l + ~ + ~ ) ( ~ - l )  

(58) 
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The loadings correspond to distributions of incidence 

OZ 
c~ - - 1 + q, y/2 + r/, 2~/2 + 73, (59) 

and in the notation of equation (16) and the table following equation (19) they are respectively 

(a) l(x, y) = (/2)sym q- (/2)anti / 
! 

(b) l(x,y) (/7)sym "-~ (/2)anti~' (60) 
/ 

(C) l(x, y) (18)sym -t- (/6)antiJ 

Each solution has been obtained to sufficient accuracy by the method of Ref. 6 with N = 4 chordwise terms, 
m = 15 spanwise terms and spanwise integration parameter a = 6. The symmetric and antisymmetric solutions 
are presented separately in Tables 1 and 2, each in terms of the coefficients Fq, = Fq(~/,)(r/,/> 0) defined in 
equations (10) to (13). The necessary generalised forces from equations (19) with the associated table are recorded 
in Table 5a. 

For each of the three camber shapes the yawing moment is calculated in the notation of equation (42). From 
equations (44) and (54) C,~ and C,3 are linear functions of the arbitrary axis position ~o, but for the unswept 
leading edge C,z in equation (48) is independent of~o. With the aid of the table below equation (19) the procedure 
of equations (44) to (47) leads to 

(a) 

(b) 

+ / 
Cnl IQ67 -t- ~{Q27 - Q37 -k- ~0(Q27 - Q17)}lsym -~- 

8 
+ [Q52 -1--~-~{Q22 - Q32 + ~0(Q22 - Q12)}]ant i 

C,, = Q10,s + ~ { Q T s - Q s 8  + ~o(Qvs-Q6a)} + 
sym 

[ 8 1 + 2Q66 + h--~{Q26 - Q46 + ~o(Q36 - Q16)} ..,i 

(c) 

(61) 

in the three cases. The negative contributions to the yawing-moment coefficient from the edge forces, C,2 and 
C,a, are easily evaluated from equations (51) and (54) to (57). The results for arbitrary ~o are given in Table 6a. 

It is interesting to note that the total C. is practically independent of ~o, as the linear terms in C.1 and C,3 
are of opposite sign and only differ in magnitude by about ½ per cent. Thus the side force Cy from equation (43) 
practically vanishes. In Part I Hancock deduces that Cy becomes very small whenever 

OZ 
= 0 at the trailing edge, (62) 

a condition that has been satisfied in equations (58). The addition of some quantity F(q) to Z(~, t/) would leave 
c~, I(x, y) and the edge forces unchanged, but it could greatly alter Cy through the coefficient of 4o in equation 
(44) for C,1. Hancock argues that equation (62) provides an overall condition for small side force in linear 
potential flow. 

From Table 6a it can be observed that C,2 and C,a oppose C,1, so that for small ~o the edge forces cause the 
yawing moment on the rectangular wing of aspect ratio A = 2 to change sign in each of the three cases of 
asymmetric twist. The reality of these contributions will be discussed in relation to rolling derivatives in Section 
4.2, for it certainly matters whether or not the edge forces can be sustained in viscous flow. 

The other example at low speeds is a rectangular wing of higher aspect ratio A = 4 with camber shape (a) 
from equation (58). The formulation of each contribution is general in aspect ratio, and equations (51) and (54) 
suggest that - C,2 should increase gmd - C.3 decrease. The results obtained from the solutions in Table 3 and 
the generalised forces in Table 5b are included as case (ii) in Table 6b. The contributions to C,~ and C,3 pro- 
portional to 4o are both much smaller and cancel each other within 1 per cent to give negligible side force 
under the condition (62). The total coefficient C, has changed from negative to positive as a result of the increase 
in aspect ratio, notwithstanding the large increase in - C.2 from the leading-edge suction. 
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Although the resultant edge forces would be linear in any factors applied to'the symmetric or antisymmetric 
parts of Z(~, r/), this is not true of local edge forces. The local leading-edge force corresponds to equation (34) 
and is proportional to ®2 : likewise from equations (39) and (40) the local side-edge force is proportional to ~2 
and quadratic in Fq. In the case A = 4 with the camber shape (a), the distribution of edge force depends only 
on the distribution of incidence c¢ = 1 + q in equation (59). The symmetric distributions of edge force for 

= 1 and :~ = q and the combined asymmetric distribution are shown to scale in Fig. 2. The local leading-edge 
and side-edge forces are of the same order of magnitude. When the incidences are superposed to give ~ = 1 + r/, 
the resulting local side-edge force from equation (41) is 

E s = [(Es)~y m Jr  (Es)ant i ]  2 according as 1/= 4- 1. (63) 

The non-linear construction of E.~ explains the marked reduction in side force in Fig. 2 at the port tip, where 
there are opposing contributions, in strong contrast to the starboard tip where (E~)~ym and (E,)~m ~ are reinforcing. 
The resulting local force from equation (63) can be up to four limes the larger of (E,)~y m and (E~)~,t~. 

3.2. Tapered Swept Wing in Compressible Flow 

The planform of the tapered swept wing is that used in Fig. 1 and is defined by 

4,(rt) = x , / ~  = .f31~l ] 

4,(~) = x,/O ¼ + ½,,//3 + ½lr/[/' (64) 

s = ½A/: = 

It has been chosen for the present investigation, because both symmetric and antisymmetric solutions for wing 
loading at M = 0.7806 were already available to fair accuracy from the lifting-surface method of Ref. 5 with 
(m, N, q) = (15, 4, 6). For the purpose of these solutions the central cranks in the leading and trailing edges 
have been rounded according to equations (21) and (22) with r/zR = 0.19509: thus the leading edge is displaced 
by 0.113/~ and the root chord cR = 1.616/: is replaced by c(0) = 1-536g. The loading coefficients for c~ = I and 
:¢ = q are recorded in Table 4 in the notation of equations (10) to (13). 

The yawing moment  coefficient is again calculated from equation (42) as the sum of three parts, and we first 
consider C,l .  To keep the trailing edge of equation (64) in the plane z = 0 and to provide e = (?Z/(?~ = 1 + t 1, 
the camber shape is taken as 

Z(4, q) = (1 + q)[~ - 4,(r/)]. (65) 

Then in the notation of equation (45) 

(Zj)sy m = _ ( 3  _~_ ½N/~ ) + 4 -- ½1r/I / 
l 

(Z~)a.ti _ (3  + ½X/~)r I + 4r/ -- ½r/lr/l~. (66) 

J l (/2)sym + (12)anti 

The force modes of equation (46) become 

(Z , ) s . m  = + - -  4 2 + + 
! 

- go[(~ + ~,~/3) - ~ + I;ll] (67) 

(Z3,°,~ ~ + 14~/I~1 - 4o[½~/1'113 

Hence by equation (47) and with reference to equations (19) and (20) 

C,, = [(¼ + ½x/33)022 - Q32 + Ot,2 + 0,.2 - 40{(¼ + ½,,/#J)Q,2 - Q22 + Ql2}]sym ~- 

+ [Q12 + ½QII2 1 - 4 o { ~ Q , 2 } L . , .  t68) 

where the generalised force coefficients are evaluated in Table 5c. 
The remainder of C, comes from the edge forces. Because of the straight sweptback leading edge from 

equation (64), C,2 is given by equation (51) whose linear term in 4o no longer vanishes: in the calculation ®~ym 
and ®~nt~ are obtained from equation (50) and Table 4, 1~ = 0.625 and sec A t = 2. The side edges contribute 
C,3 from equations (54)to (57) with CT/C = 5 - -  kN//3 and 4IT - ~  N ~ / ~ "  

The results for arbitrary 4o appear as case (iv) in Table 6b. The side force coefficient Cr = -0"045 from 
equation (43) is considerably larger than any of the corresponding values for rectangular wings, but it still 
amounts to less than 2 per cent of the contribution from normal pressures. In this sense it remains true that 
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equation (62) provides a condition for small side force. The yawing moment is only slightly dependent on axis 
position, and for small ~0 the edge forces are seen to dominate. The negative C, includes large contributions 
from the leading-edge and side-edge forces despite the considerable taper. 

The distribution of edge force has been calculated from equations (34) and (41) and compared in Fig. 3 
with that on the rectangular wing of the same aspect ratio in incompressible flow. The two most prominent 
features for the tapered swept wing are the loss of suction force near the root leading edge and the maintenance 
of large values on both the leading and side edges (r/> 0) at quite small distances from the leading tip corner 
where the suction must vanish. The inverse square root singularity in l(x, y) would be expected to disappear 
at a leading apex ; although this characteristic is removed from the numerical solution as a result of rounding 
the central crank, the tendency remains apparent. High leading-edge suction is a recognised feature of the 
outward portion of an uncambered tapered swept wing; coupled with this is a forward movement of the local 
aerodynamic centre as J / ~  1 and the associated tendency for the side-edge force to be fairly constant along the 
tip chord. Although for swept wings the lifting-surface method is least accurate near the leading edge at the 
root and tip, the local edge force must vanish at these positions. The present method seems to treat the difficult 
numerical problem of edge forces to an acceptable approximation for the purpose of estimating lateral stability 
derivatives. 

4. Roll-Rate Derivatives 

It is supposed that the rolling motion is slow enough for the helical wake to be treated as planar. Within the 
framework of linear theory the stability derivatives may be regarded as arising either from a steady rate of roll 
or from rolling oscillations of low frequency, as considered in Section 2.6 of Ref. 5. The damping forces in the 
latter case are identified with those from the steady state. 

Wing forces due to rolling motion can be obtained by the straightforward application of quantities that have 
already appeared in Sections 3.1 and 3.2. This particular field of study has been the subject of earlier theoretical 
investigations t,4 and semi-empirical methods 2'3 based on wind-tunnel measurements, as mentioned in Section 
1. While the experimental data and the existing comparisons are expressed in terms of aerodynamic body axes, 
called stability axes in the American literature, it is customary now to use standard 'body axes' in calculations of 
lateral stability. Both systems of axes are therefore included in the theoretical formulations of Section 4.1, and 
there are different expressions for the yawing moment due to rolling motion in the two cases. In Section 4.2 this 
derivative is referred to aerodynamic body axes, when the present calculations are compared with other esti- 
mates and related to experimental evidence. 

4.1. Theoretical Calculations 

The rolling moment L,¢ is defined in Fig. lb as positive about the forward (negative x) axis and has its co- 
efficient 

Ci = &W/(pUZSs). (69) 

The surface of an untwisted and uncambered wing at incidence ~ and with angular rate of roll, p, about the same 
axis is 

z = Y~(Xo - x)  - py t  (70) 

at time t. On the boundary the required upward velocity in the fluid is 

~z u O Z  
- -  + = - U ~  - py, 
Ot Ox 

which corresponds to an incidence distribution 

= ~ + (ps/U)~1. (71) 

In the notation of equation (66) the non-dimensional wing loading under these conditions is 

I(X, y) ----- ~(/2)sym -1- (ps/U)(12)anti. (72) 

The rolling moment coefficient in equation (69) is equivalent to the generalised force coefficient Qi in equation 
(17) with the force mode 

Zi(¢,  q) = - ~ / =  --(Z1)anti. (73) 

43 



Thus 

Ci = - ( Q t ) a n t i  = - (ps/U)(Q12)anli (74)  

with the loading from equation (72), and hence the damping-in-roll derivative is 

?~/~p  ?,Ct 
lp - -  - -  - -  (Q 12)anti" (75) pUSs  2 ~(ps/U) 

In accord with current practice the derivatives are first referred to body axes, the co-ordinate system of Fig. 1 
being rotated about 0y through the angle ~ to keep 0x in the plane of the wing. Since there is no contribution 
from normal pressures, the yawing moment about the negative z body axis only involves the edge forces. 
Therefore in place of equation (42) 

CnB = Cn2 + Cn3 (76) 

for the wing without camber and twist, where C,2 and C,3 are calculated from equations (51) and (54) with the 
loading from equation (72). Both contributions are proportional to ~ and (ps/U), and equation (76) may be 
written as 

CnB = ~(ps/U)[Cn2 "q- C n 3 ] ~ = l + . ,  (77 )  

whence the derivative of yawing moment is 

np~ - a(ps/U) - ~ [ C n 2  + Cns]ct= l+q" (78) 

If, however, the axis 0x remains parallel to the direction of the stream, the yawing moment about the negative 
0z axis includes a second-order component of the rolling moment in equation (75), since the normal pressures 
act about the inclined 'body axis' 0x. Referred to aerodynamic body axes the yawing moment coefficient is 

C, = C.~ - ~Cl, (79) 

whence 

r / p  = r t p B  - -  ~lp + higher order terms* 

= ~-{(Q12)anti -~- [Cn2 -~ Cns]m=l +rl}" (80) 

This derivative is usually related to the lift coefficient. Since the lift curve slope is 

OCL/88 = 2(Q12)sym, 

equation (80) may be rewritten as 

(81) 

% = (Q12)..,i + [C.2 + C.3].:1+, (82) 
Cr 2(Qlz)sym 

From equation (43) the side force due to rolling motion is given by 

~Cr _ A ~ V OC, 1 ~Sn, 
YP - O(ps/U) C3~o m~q(ps/U)_ ] = A a~o, (83) 

where np may be referred to body or aerodynamic body axes in equation (78) or (82) respectively. Since (Q 12)~ym 
and (Q 12),,, do not depend on ~o, the location of the yawing axis, equation (83) becomes 

Yv A c3 
[Cn2 -'~ C n s ] a =  1 +rl ( 84 )  

CL -- 2(Qlz)sym 0~o 

for either axis system. 

* In terms of roll-rate derivatives Ip and np and yaw-rate derivatives lr and n, for aerodynamic body axes, 
the transformation to body axes gives the relationship 

npn = np cos 2 ~ + (Ip - nr) sin ~ cos ~ - l, sin z 

,.~ np -+- ~lp 

for the wing contributions when ~ is small. 
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The derivatives I v, Yv, npn and np have been calculated from equations (75), (84), (78) and (82) for each of the 
four cases in Table 6b. The coefficients (Qlz)sym, (Q 12)anti, C,,2 and C.3 are taken from Tables 5 and 6b. Case (iii), 
the rectangular wing of aspect ratio 4 at M = 0-8660 (fl = ½), has identical solutions to those in Tables 1 and 2 
for A = 2 and M = 0, but the coefficients in Table 5a require the factor fl- 1 = 2 ; on account of the factor A- 
in equation (54), C,3 is half that for case (i), while for zero leading-edge sweep the first term of equation (51) 
gives a value of C,,2 twice that for case (i). The final results are recorded in Table 7. 

A few trends in the rolling derivatives from linearised potential flow can be observed ; for example, I v depends 
more on aspect ratio than anything else. For the A = 4 rectangular wing at a fixed incidence ~, Yv is subject 
to greater changes with Mach number than Ip or n v, but in the form yv/CL the side-force derivative appears 
to be the least susceptible to compressibility effect. Moreover, yp/CL seems to grow according to the streamwise 
extent of the leading and side edges, increasing as aspect ratio decreases or assweepback increases. The following 
table shows similar trends in the magnitude of the yawing-moment derivatives when the yawing axis passes 
through the aerodynamic centre. 

Wing 

Rectangular A = 2 
Rectangular A = 4 
Rectangular A = 4 
Tapered swept A = 2 

M 

0 
0 
0.8660 
0.7806 

~Q12/sym 

0.2094 
0.2319 
0.2094 
1.0812 

npB 
CL 

- 0.250 
-0 .168 
-0 .140 
-0 .365 

r/p 
CL 

-0-173 
- 0.075 
-0 .064  
- 0.292 

Unlike C, in Table 6b for wings with asymmetric twist, nJCL remains negative, although its magnitude is 
appreciably smaller for aerodynamic body axes than for body axes ; there is a fairly constant difference between 
nvB/C L and nJCL, because I v is roughly proportional to the lift curve slope. 

4.2 .  R e l a t e d  E x p e r i m e n t a l  E v i d e n c e  

The wind-tunnel evidence is from two sources. Data for low-speed flow are taken from Ref. 2, for which the 
rolling-flow equipment of the Langley stability tunnel was used. Qualitative comparisons are made with test 
data from Ref. 3 obtained in subsonic compressible flow by the forced-roll sting-support system described in 
that paper. No relevant evidence for non-slender wings in oscillatory rolling motion appears to be available. 

Low-speed experimental results for - Iv  and --nu/CL on rectangular wings of aspect ratios A = 1-34, 2.61 
and 5.16 are included in Fig. 4. For each derivative the mean values over the range 0.2 < CL < 0-4 have been 
taken, and in each case approximate theoretical curves against A have been reproduced from charts in Figs. 8 
and 10 of Ref. 1 and in Figs. 9d and 1 l d of Ref. 4. The comparisons of rolling moment call for little comment; 
the present theory is in close agreement with the predictions of both Refs. 1 and 4, and all the experimental 
data lie convincingly just below the theoretical results. 

Before discussing the comparisons of yawing moment in Fig. 4, we consider the evidence of - n v against CL 
for four particular wings in Fig. 19 of Ref. 1 and in Fig. 18 of Ref. 4. The approximate formulae of Ref. l are 
based on the simplified concept of strip theory, in which the forces are related to those on a two-dimensional 
sheared wing with correction for aspect ratio. It is not surprising, therefore, that Ref. 1 achieves its greatest 
success for the A = 5.16 rectangular wing. Fig. 18a of Ref. 4 for a swept-forward wing also shows Ref. 1 in 
a more favourable light than Ref. 4, which uses a system of bound and trailing vortices that becomes unrealistic 
with high forward sweep. For the two remaining untapered sweptback wings of aspect ratios 2.61 and 1-34, 
the method of Ref. 4 provides a great improvement on the older method. A similar pattern emerges in the 
lower half of Fig. 4. There are large differences between the methods of Refs. 1 and 4, for which no satisfactory 
explanation can be offered. Neither predicts the rapid increase in - n / C  L as A decreases, which is a common 
feature of the present theory and experiment. The explanation in the case of the theory is provided by the 
dominant r61e of the side-edge force through C,3 in equation (82), a contribution that has been ignored in 
Refs. 1 and 4. In this respect it is important to note that the present theory without the side-edge force is in 
close agreement with Ref. 1. 

The side force on rectangular wings without camber or twist arises entirely from suction at the side edges. 
The upper illustration of Fig. 5 shows the side force on rolling rectangular wings of variable aspect ratio. The 
empirical result from Ref. 2 

yp _ 1 (85) 
CL A 
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is an expression of the reality of about two thirds of the resultant side-edge force from the present calculations. 
The mean experimental values over the range 0.2 < CL < 0.4 give rough confirmation of equation (85). 

The lower illustrations of Fig. 5 concern the yawing moment on tapered swept wings in rolling motion under 
different lift conditions. As there are no experimental data for the present example (A = 2, M = 0-7806), 
results for a similar taper ratio and sweepback are taken from Fig. 17c of Ref. 2 (A = 2.61, M = 0). The 
satisfactory agreement between the empirical method of Ref. 2 and the experimental variation of n~ with CL 
is reproduced in Fig. 5. The added theoretical result from equation (7) and Figs. 5 and 6 of Ref. 4, referred to 
the aerodynamic centre, is equally satisfactory while CL < 0.5. When the method of Ref. 4 is applied similarly 
to the present example, the result in Fig. 5 is found to correspond to the present theory with about half the 
side-edge force omitted. These calculations suggest that, just as the extra lift-dependent drag at high lift 
is accompanied by a loss of leading-edge suction, it may be worthwhile to examine to what extent the non- 
linearity in np against CL can be accounted for by means of a progressive removal of edge forces from equation 
(82) as CL increases. 

Curves of yp and np have been drawn in Fig. 6 for the A = 2 rectangular wing with yawing-moment axis 
~0 = 0.25 on the hypothesis that equations (82) and (84) hold for CL < 0.1, above which the edge contribution 
(C,2 + C,3) gradually falls to half its theoretical value at CL = 0-5 and then smoothly to zero at CL = 0'7. 
Low-speed experimental points are taken from Fig. 7 ofRef. 2 for A = 1-34 and A = 2.61 rectangular wings 
with leading-edge spoiler. For both side force and yawing moment the two sets of points straddle the modified 
theoretical curve for intermediate aspect ratio up to CL = 0.5. As the stall is approached the curves of Fig. 6 
become less convincing, but the change in the sign of np is adequately explained by the persisting contribution 
- ~lp at the higher lift coefficients. Since for rectangular wings the whole of yp derives from side-edge forces, 
the occurrence of negative yp near the stall seems to imply that a positive rate of roll precipitates the stall on 
the starboard wing and delays it on the port wing, so that the outward force at the port tip dominates the 
normally larger and positive contribution to yp from the starboard tip. Such a reversal of the resultant leading- 
edge and side-edge forces could account for the high measured values of np near CL = 0.6, but their subsequent 
decrease is probably associated with the sharp fall in -41p at the stall (Ref. 2, Fig. 7). The detailed behaviour 
of np might be expected to defy simple treatment, but the semi-empirical methods of Refs. 2 and 3 achieve a 
remarkable degree of success. 

Both of these methods involve empirical corrections dependent on the measurement of the drag coefficient 
C o over the required range of C t .  The method of Ref. 2 is well illustrated in Fig. 5, but there are advantages in 
considering Ref. 3, which has greater success at high lift and is tested up to high subsonic Mach numbers. 
In the present notation equation (1) of Ref. 3 may be written as 

with the empirical factor 

n p =  - £~lp -- K [ -  41p - V/p]Ref. 1 + 4 [ C n 3 ~ =  1 + (86) 

K = t3/O4(CL tan 4) -- 0/~4(C o - Coo ) 
~/O4(CL tan 4) -- O/O4(C~/TcA) ' (87) 

where Coo is the drag coefficient at zero lift. The tip-suction term at the end of equation (86) was treated 
empirically by Wiggins, but he preferred to omit it altogether in most of his applications. We have already 
seen in Fig. 4 that as regards np the theory ofRef. 1 is approximately equivalent to the present theory without 
the side-edge contribution. Thus, with the omission of the last term, equation (86) becomes 

[ r /p lem p = - - 4 1 p  - -  K 4 [ -  C,2]~= 1 +n, (88) 

which should be just as successful as the method of Ref. 3 without tip suction. Correspondingly the side-force 
derivative becomes 

[Yp]emp ---- KA4[OC,2/O~o]~ = 1 +~. (89) 

The progressive removal of edge forces to half value at C L = 0.5 and to zero at CL = 0'7 is illustrated in Fig. 7 
for the A = 4 rectangular wing at M = 0 and 0.866. The derivatives yp, np and npn from the respective equations 
(84), (80) and (78) are calculated for aerodynamic body axes and body axes through the aerodynamic centres 
~0 = 0.232 at M = 0 and ~0 = 0.209 at M = 0.866. The results bear out the theoretical indications of Ref. 4, 
that these derivatives are not subject to large compressibility effects. As the edge forces are reduced, the non- 
linear effects are reasonably consistent with the behaviour of the measured low-speed derivatives yp and np 
for the sweptback wings in Figs. 8 and 11 of Ref. 2. Zero yp occurs at a somewhat higher CL than does zero np, 
but these values of C1, decrease with increasing sweepback. The loss of edge forces, artificially aided by leading- 
edge spoilers in Fig. 6, occurs naturally at lower CL on wings of higher sweepback. The same patterns of 
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behaviour are found for A = 4 and over ranges of sweepback and high subsonic Mach number in Figs. 24 
and 22 of Ref. 3, which include semi-empirical curves equivalent to equations (89) and (88). Typically y~ changes 
sign near CL = 0.5, while for np this occurs before CL = 0.3. Thus the loss of edge forces appears to be hastened 
by compressibility, but the associated non-linear dependence of these second-order roll-rate derivatives on 
CL or ~ is qualitatively unchanged. 

The semi-empirical method of Ref. 3 without tip suction has notable success beyond the range of CL for 
which yv is positive. The negative experimental values of yp, which usually occur at high CL and have been 
tentatively explained in terms of a reversal of the resultant edge forces, arise from equation (89) on account of 
negative K. This is the inevitable consequence of relating K in equation (87) to the rates of change of the 
lift-dependent drag coefficient (CD - CDo) and of its theoretical upper and lower bounds CL tan c~ and CaL/z~A. 
As (CD - CDo) begins to approach the upper bound, the numerator of equation (87) becomes negative before 
it eventually tends to zero. At the same time through equation (88) negative K accounts for values of np in 
excess of - ~Ip. Moreover, the observed maximum in this derivative, which cannot arise simply from progressive 
removal of edge forces, is obtained in Fig. 22 of Ref. 3 whether the derivative lp is taken from calculation or 

experiment. 
Nevertheless, the success of the semi-empirical method poses an anomaly as regards side-edge forces. 

Comparisons of the values of Cn2 and C, a in Table 6 and the distributions of edge force in Figs. 2 and 3 suggest 
that leading- and side-edge forces are of similar importance : at very small lift the semi-empirical method for 
np would probably be improved by the inclusion of side-edge forces: furthermore, from the fact that for 
rectangular wings np vanishes while yp is still positive in Fig. 6, the side-edge forces can be as persistent as 
the leading-edge forces on unswept wings in incompressible flow. Yet on tapered swept wings at high subsonic 
speeds the neglect of side-edge forces is insufficient to reduce yp to the small positive values measured at low 
CL (Fig. 24 of Ref. 3). It seems that sweepback and taper, both of which tend to boost the loading near the tip 
leading edge, also combine to suppress the side-edge force through incipient leading-edge flow separation. 
The process appears to be hastened by the additional influence of compressibility. 

5. Conclusions 

Of the following conclusions (1) to (3) are mainly concerned with edge forces in potential flow, (4) and (5) 
relate to the calculated roll-rate derivatives, (6) and (7) deal with semi-empirical approaches to the estimation 
of these stability derivatives at moderate or high lift coefficient. 

(1) The local edge forces are shown to be quadratic functions of the loading coefficients and to have the 
same order of magnitude on the leading and side edges. All the integrated contributions to side force and 
yawing moment involve products of the symmetric and antisymmetric parts of the spanwise loading and are 
linear with respect to the coeffÉcients in either part. 

(2) Unlike drag, the total yawing moment in potential flow and its contribution from normal pressures 
can have opposite signs. The edge forces become increasingly dominant as aspect ratio decreases or as sweep- 
back increases. 

(3) Ifa  thin wing is deformed in camber and twist in such a manner that the trailing edge lies in a streamwise 
plane, then the resultant lateral force in that plane is found to be small if the theoretical edge forces are included. 

(4) The rolling moment due to rate of roll is calculated to be in good agreement with charts based on 
approximate theoretical methods. The values correlate satisfactorily with experimental data for rectangular 
wings of varying aspect ratio. 

(5) While the rolling-moment derivative depends mainly on aspect ratio, the magnitudes of the theoretical 
derivatives of side force and yawing moment for a given lift seem to grow according to the streamwise extent 
of the leading and side edges as a fraction of wing span. 

(6) Experimental evidence of the side force and yawing moment due to rate of roll invariably shows a non- 
linear dependence on lift. It is demonstrated that prior to the stall this non-linearity can be accounted for by 
removing an increasing proportion of the edge forces as the lift increases. 

(7) From the present analysis some simple formulae, equivalent to the semi-empirical method of Wiggins 3 
without tip suction, are obtained in equatiops (88) and (89) for the roll-rate derivatives of yawing moment and 
side force respectively. These should be reasonably successful in conjunction with subsonic wing theory and 
measured drag over the whole practical range of lift coefficient. 
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LIST OF SYMBOLS 

Factor controlling spanwise integration (Ref. 6) 

Integer l(l)N used in equations (55) to (57) 

Aspect ratio of planform ; 2s/g 

Coefficient of downwash mode in equation (15) with j = l(1)J 

Local chord 

Geometric mean chord; S/2s 

Root chord, tip chord 

Drag coefficient ; drag/(½pUz S) 

Drag coefficient at zero lift 

Rolling moment coefficient ; £P/(p U2Ss) 

Lift coefficient ; lift/(½pUZS) 

Yawing moment coefficient; ,Ar/(p UZSs) 

Contribution to C, from normal pressures in equations (44) to (47) 

Contribution to C, from leading-edge forces in equation (48) 

Contribution to C, from side-edge forces in equation (54) 

Side force coefficient ; Y/(½p U2S) 

Leading-edge force per unit length in equations (29) and (34) 

Side-edge force per unit length in equations (30) and (39) 

Integer denoting force mode in equation (14); 1 or II in equations (20) 

Integrals in equations (56) with q = I(1)N and a = I(1)N 

Integer denoting downwash mode; see table below equation (19) 

Integrals in equations (57) with q = I(I)N and a = I(1)N 

Empirical factor in equation (87) 

Non-dimensional wing loading in equations (5) and (10) 

Loading in equation (16) for downwash modej  (~< J) 

Damping-in-roll derivative in equation (75) 

Rolling moment (Fig. l b) 

Number of collocation sections 

Mach number of stream 

Normal inward distance from edge of planform 

Roll-rate derivative of yawing moment about aerodynamic body axis in equations (79) and (82) 

Roll-rate derivative of yawing moment about body axis in equation (78) 

Number of chordwise loading functions 

Yawing moment (Fig. l b) 

Angular rate of roll in equation (70) 

Factor controlling spanwise integration (Ref. 5) 

Integer I(I)N denoting term in chordwise loading 
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X0 
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Y 

Yp 

Y~ 

Y 
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Fq(~) 

['qr 
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Fq 

Ap 
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® 
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4 

4o 
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Force/(pU2S) in mode Z i in equation (17) 

Generalised force coefficient in equation (18) (Table 5) 

Semi-span of wing 

Area of planform : region of integration 

Time 

Velocity of stream 

Ordinate in streamwise direction (Fig. la) 

Location of yawing axis (Fig. 1 b) 

Ordinate of leading edge 

Ordinate of collocation point in equation (9) 

Ordinate of trailing edge 

Ordinate in starboard direction (Fig. l a) 

Roll-rate derivative of side force in equations (83) and (84) 

Ordinate of collocation point in equation (9) 

Side force (Fig. l b) 

Ordinate in upward direction 

Camber surface in equations (15) and (58): - z / ?  

Force mode in equation (14), (20) or (46) 

Downwash mode in equation (14) 

Local incidence 8Z/8~: see also equation (71) 

Uniform incidence of rolling wing 

Compressibility factor: (1 - M2) ~ 

Spanwise loading function in equation (12) with q = I(1)N 

Local value Fq(qr) 

Quantity in equation (55) for antisymmetnc spanwise loading 

Limit in equations (35) and (36): see also equation (55) 

Lift per unit area 

Discontinuity in (I) from below to above z = 0 

Non-dimensional spanwise ordinate : y/s 

Extent of central rounding in equations (21) and (22) 

Loading station in equation (13) with r = l(1)m 

Angular spanwise parameters cos - 1 ( _ t/), cos- 1 ( - qr) 

Leading-edge force parameter in equation (32) 

Angle of sweepback, value at leading edge 

Non-dimensional streamwise ordinate: x/g 

Xo/~ 

xj& x,/~ 

x,(1)/8 

Density of stream 
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0"~ 2" 

,f 

¢I) 

,.p 

anti 

B 

emp 

sym 

Indices related to i (or j) in table below equation (19) 

Angular chordwise parameter in equation (11) 

Perturbation velocity potential 

Side-edge force parameter in equation (40) 

Subscript denoting spanwise antisymmetry in c~ or Z i 

Subscript denoting body axes at inclination 

Subscript denoting empirical formula 

Subscript denoting spanwise symmetry in ~ or Z i 
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TABLE 1 

S y m m e t r i c a l  So lut ions  ['or Rectangular  W i n g  A - -  2, M ----- 0 
Calculations by method of Ref. 6 with (N, m, a) = (4, 15, 6) 

= 1 ( s y m . j  = 2) 

F1 F2 F3 F4 

0 
0.19509 
0.38268 
0.55557 
0.70711 
0.83147 
0.92388 
0.98079 

0.77587 
0.76275 
0.72325 
0-65725 
0.56522 
0.44895 
0-31204 
0-16002 

0.09332 
0.09552 
0.10148 
0.10905 
0-11405 
0.11019 
0.09069 
0.05216 

0.01150 
0.01266 
0.01644 
0-02345 
0.03363 
0.04382 
0.04583 
0.03062 

-0.00069 
-0.00054 
+0.00011 

0-00204 
0.00641 
0.01336 
0.01869 
0.01461 

= ~2 ( s y m . j  = 7) 

Ft Fz F3 F4 

0 
0.19509 
0.38268 
0.55557 
0.70711 
0.83147 
0-92388 
0-98079 

0-11441 
0.12492 
0-15182 
0.18271 
0.20170 
0.19492 
0.15555 
0.08654 

-0.01029 
-0-00395 
+0-01387 

0-03917 
0.06470 
0.08038 
0.07602 
0-04688 

-0-00759 
-0.00590 
-0.00055 
+0-00894 

0-02219 
0.03555 
0.04044 
0.02793 

-0.00230 
-0.00216 
-0.00151 
+0.00044 

0.00489 
0.01196 
0-01751 
0.01391 

= 2~q 2 ( s y m . j  = 8) 

FI F 2 F 3 F4 

0 
0.19509 
0.38268 
0.55557 
0.70711 
0.83147 
0.92388 
0.98079 

0.16700 
0-18591 
0-23506 
0-29388 
0-33494 
0.33246 
0,27121 
0.15324 

-0.05877 
-0-07445 
-0.11645 
-0.17063 
-0.21651 
-0-23200 
-0-20015 
-0.11727 

-0.00409 
-0-00280 
+0-00111 

0.00768 
O-O1640 
0.02503 
0.02830 
0.01982 

0.00280 
0-00233 
0-00078 

-0.00215 
-0.00662 
-0.01170 
-0.01434 
-0.01047 
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TABLE 2 

Antisymmetrical Solutions for Rectangular Wing A -'- 2, M = 0 
Calculations by method of Ref. 6 with (N, m, a) = (4, 15, 6) 

= q (anti.j = 2) 

F1 F2 F3 F4 

0 
0.19509 
0.38268 
0.55557 
0.70711 
0.83147 
0.92388 
0.98079 

0 
0.09145 
0.16945 
0.22227 
0.24163 
0.22412 
0.17204 
0.09327 

0 
0.02768 
0.05471 
0.07920 
0.09712 
0.10223 
0.08795 
0,05165 

0 
0-00516 
0.01M7 
0.01996 
0.03067 
0.04065 
0.04247 
0.02826 

0 
0.00007 
0.00059 
0.00233 
0.00637 
0.01276 
0.01756 
0.01365 

= q3 (anti.j = 6) 

F1 F2 F3 F4 

0 
0.19509 
0.38268 
0.55557 
0.70711 
0.83147 
0.92388 
0.98079 

0 
0-02384 
0.05381 
0.08940 
0.12113 
0-13439 
0-11740 
0-06878 

0 
0.00205 
0-01044 
0-02790 
0-05082 
0-06897 
0-06935 
0-04429 

0 
-0.00190 
-0-00108 
+0.00478 

0.01638 
0.03025 
0.03699 
0.02643 

0 
-0.00113 
-0.00170 
-0.00072 
+0.00321 

0.01034 
0.01643 
0.01347 
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TABLE 3 

Solut ions  for Rec tangu lar  W i n g  A = 4, M --- 0 
Calculations by method of Ref. 6 with (N, m, a) = (4, 31, 6) 

= 1 (sym.j  = 2) 

F1 F2 F3 F4 

0 
0.09802 
0.19509 
0.29028 
0.38268 
0.47140 
0.55557 
0.63439 
0-70711 
0.77301 
0.83147 
0.88192 
0.92388 
0.95694 
0.98079 
0.99518 

0-54943 
0-54769 
0.54244 
0.53354 
0.52076 
0-50382 
0.48238 
0.45606 
0.42456 
0.38764 
0.34523 
0.29748 
0.24477 
0.18772 
0-12719 
0.06422 

0.01959 
0-01993 
0-02095 
0.02269 
0-02519 
0.02850 
0.03260 
0.03740 
0.04258 
0.04761 
0.05162 
0.05348 
0.05191 
0.04576 
0.03447 
0.01859 

0.00137 
0-00142 
0-00158 
0.00186 
0.00232 
0-00303 
0.00411 
0.00571 
0.00805 
0.01130 
0.01543 
0-01996 
0.02366 
0.02459 
0-02087 
0-01207 

-0-00013 
-0-00013 
-0.00014 
--0.00017 
-0.00019 
-0.00021 
--0.00019 
--0.00008 
+0.00027 

0.00106 
0.00256 
0.00493 
0.00779 
0.01001 
0.00997 
0.00659 

0 
0.09802 
0.19509 
0-29028 
0.38268 
0.47140 
0.55557 
0.63439 
0-70711 
0-77301 
0-83147 
0.88192 
0.92388 
0-95694 
0.98079 
0.99518 

Fl 

0 
0-03937 
0-07749 
0.11313 
0.14508 
0.17216 
0.19328 
0.20748 
0.21397 
0.21221 
0.20200 
0.18350 
0.15730 
0-12438 
0-08606 
0-04399 

= q (ant i . j  = 2) 

Fz F3 F4 

0 
0.00403 
0.00821 
0.01266 
0.01751 
0.02284 
0.02868 
0.03493 
0.04129 
0.04721 
0.05183 
0.05402 
0.05256 
0.04635 
0.03489 
0.01880 

0 
0.00036 
0-00076 
0.00123 
0-00183 
0.00264 
0.00376 
0.00534 
O.00755 
0.01053 
0.01425 
0.01824 
0.02141 
0.02209 
0.01868 
0.01080 

0 
-0.00003 
-0-00007 
-0.00011 
-0.00014 
-0.00017 
-0.00016 
- 0.00OO5 
+ 0.00027 

0.00100 
0.00237 
0.00448 
0.00698 
0.00882 
0.00853 
0.00533 
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TABLE 4 

Solutions for Tapered Swept Wing at M = 0-7806 
( A =  2, A l =  60 ° , A t =  tan-10.5) 

Calculations by method of Ref. 5 with (m, N, q) = (15, 4, 6) 

= 1 (sym.j = 2) 

Ft F2 F3 F4 

0 
0-19509 
0.38268 
0.55557 
0.70711 
0.83147 
0-92388 
0.98079 

0.78499 
0.77803 
0.74456 
0-68231 
0.59093 
0.47156 
0.32861 
0.16860 

-0.40702 
-0.26660 
-0.12828 
-0.04052 
+0.03786 

0.11140 
0.15575 
0.12275 

-0-01222 
-0-03132 
-0-03287 
-0.04149 
-0.04836 
-0.03896 
+0.02929 

0.07999 

-0-00489 
+0.00614 

0.01309 
0.01332 
0-00719 

-0-01940 
-0.02236 
+0.03848 

= q (anti .j  = 2) 

F1 F2 F3 F4 

0 
0.19509 
0.38268 
0.55557 
0.70711 
0.83147 
0.92388 
0.98079 

0 
0.08554 
0-16148 
0.21528 
0.23711 
0.22167 
0.17108 
0.09291 

0 
-0.04352 
-0.05059 
-0.03250 
+0.00427 

0.05145 
0.08384 
0.07015 

0 
+0.00323 
-0.00325 
-0.01503 
-0.02692 
-0.02388 
+0.01410 

0.04581 

0 
0.00010 
0.00410 
0.00737 
0.00465 

-0.01083 
-0.01349 
+0.02167 
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(a) 

TABLE 5 

Generalised F o r c e s  Qii  for  T h r e e  W i n g s  
Rectangular wing A = 2, M = 0 (Tables 1 and 2) 

Symmetrical 
force mode 

i Z i  

1 1 
2 
3 ~2 
6 ?]2 
7 ~2 
8 ~2~2 

10 74 

j = 2  

c t = l  

1-23717 
0-25907 
0.12004 
0.31386 
0.06204 
0.02834 
0.15806 

j = 7  

0~=?] 2 

0.31385 
0.06226 
0-02840 
0.11204 
0-01828 
0.00773 
0-06443 

j = 8  

= 2~?] 2 

0.50367 
0-19791 
0.11800 
0-18756 
0.07785 
0.04741 
0.10955 

Antisymmetrical 
force mode 

i Z i  

1 q 
2 ~?] 
3 ~2r/ 
4 ~37] 
5 ?]3 
6 ~?]3 

j = 2 j = 6 

0.18971 0.09511 
0-02799 0.01325 
0.01082 0.00502 
0.00588 0.00271 
0.09511 0.05380 
0.01324 0.00674 

(b) Rectangular wing A = 4, M = 0 (Table 3) 

Symmetrical 
force mode 

i Z i 

1 1 
2 
3 42 
6 q2 

j = 2  

~ = 1  

1-80597 
0.41888 
0.20301 
0.47205 

Antisymmetrical 
force mode 

i Zi 

1 ~/ 

j = 2  

( x = q  

0.33598 

(c) Tapered swept wing A = 2, M = 0.7806 (Table 4) 

Symmetrical 
force mode 

i Z i 

1 1 
2 
3 ~2 

6 ?]z 

1 Inl 
i i  ~lnl 

j = 2  

~ = 1  

1:27598 
1.37965 
1-71838 
0-32748 

0-55053 
0-69597 

Antisymmetrical 
force mode 

i Z~ 

1 q 

I ?]/]q] 
II ~n/Inl 

j = 2  

0.18540 

0.31171 
0.40052 
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Case 

/a) 
(b) 
(c) 

T A B L E  6 

Calculated Yawing Moment on Wings with Asymmetric Twist 
(a) Rec tangu la r  wing (A = 2, M = t3 

C a m b e r  surface 
Z 

(1 + 7 ) ( g -  1) 

7( 1 + 7 ) ( ~ -  1) 
72( 1 + ~ + 7)(~ - 1) 

1 + 7 
72 + 7 

2472 + 7 3 

N o r m a l  pressures 

C, 1 

0.6426 - 0.9781~o 
0.2754 - 0.5750¢o 
0.2354 - 0.5093¢o 

Lead ing  edge Side edge 

Case C,2 C,3 C,~ + C,z + C,3 

(a) - 0 . 2 5 7 4  - 0 . 5 6 3 7  + 0.97274o - 0 . 1 7 8 5  - 0-0054~o 
(b) - 0 . 1 0 0 9  - 0 . 3 2 3 7  + 0.5724~ o -0 -1492  - 0.0026~o 
(c) - 0 . 0 2 2 0  - 0 . 3 3 4 9  + 0.5081~o - 0 - 1 2 1 4  - 0-00124o 

(b) F o u r  examples  wi th  Z = (1 + r/)(4 - ~,) 

Case Wing  M C,1 

(i) 
(ii) 
(iii) 
(iv) 

Rec tangula r  A = 2 
Rec tangula r  A = 4 
Rec tangula r  A = 4 
Tapered  swept A = 2 

0 
0 
0-8660 
0.7806 

0 .6426- -0 .9781~o  
0-8620 - 0'3468~o 
1-0767 - 0.4891~o 
1.9203 - 1"38884o 

Case Cn2 Cn3 Cnl + Cn2 + Cn3 

(i) 
(ii) 
(iii) 
(iv) 

- 0 . 2 5 7 4  
- 0 . 4 8 5 3  
- 0 . 5 1 4 7  
- 1.4668 + 0.8793¢o 

- 0 . 5 6 3 7  + 0.97274o 
- 0 . 2 0 2 7  + 0.3436~o 
- 0 . 2 8 1 9  + 0.4864~o 
- 0 - 9 4 1 0  + 0.4872~o 

-0 -1785  - 0.0054~o 
+0-1740 - 0.0032~o 
+0-2801 - 0-0027¢o 
-0 -4875  - 0-0223¢o 
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TABLE 7 

Theoretical Rolling Derivatives of  Untwisted Wings 
(a) Rolling moment and sid~ ~, force 

Wing M lp yp/~ CL/~ yp/CL 

Rectangular A = 2 
Rectangular A = 4 
Rectangular A = 4 
Tapered swept A = 2 

0 
0 
0.8660 
0.7806 

-0.1897 
-0 .3360 
-0 .3794 
-0 .1854 

1.945 
1.374 
1.945 
2.733 

2-474 
3.612 
4.949 
2.552 

0.786 
0.380 
0.393 
1.071 

(b) Yawing moment 

Wing M npB/C L np/C L 

Rectangular A = 2 
Rectangular A = 4 
Rectangular A = 4 
Tapered swept A = 2 

0 
0 
0-8660 
0.7806 

-0 .332  + 0.393~o 
-0 .190  + 0-095~o 
-0.161 + 0.098~o 
-0 .944  + 0.535~ o 

-0 .255 + 0.393~o 
-0 .097 + 0.095~o 
-0 .084  + 0.098~o 
-0.871 + 0.535~o 
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FIG. l a and b. Definition of co-ordinate and lateral-force systems. 
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