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Summary

The downwash induced by planar vorticity distributions has been computed by exact linear theory and by
the R.A.E. Standard Method to examine the accuracy of the approximate method. The results on wings of
infinite span with load distributions which are uniform across the span are used to derive a modification of
the downwash equation of the approximate method. It is shown that this modification can explain some of the
difference between the exact and the approximate results for the spanwise C, distribution of a plane wing of
infinite span at an angle of incidence. The downwash distributions on finite wings of constant chord, unswept
and sweptback by 45 degrees, with given load distributions, computed by the exact and the approximate method
are compared. The lift distribution for wings of given shape derived by the approximate method is also com-

pared with more accurate results.

* Replaces R.A.E. Technical Report 73044-A.R.C. 34 766
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1. Introduction

The ‘R.A.E. Standard Method’"? used for the design of swept wings with subsonic attached flow is based on
linear theory; some non-linear effects are taken into account using specific theoretical twodimensional and
threedimensional results.

In the original framework, developed at a time when fast electronic computers were not yet available, the
velocity field predicted by linear theory was not determined by exact computation but some approximations
were introduced. Recently, computer programs have been written, see e.g8. Refs. 3 and 4, for evaluating the
velocity field induced by given planar singularity distributions. We are, therefore, now able to examine the
validity of the approximations made in the Standard Method. We use in these notes the label ‘R.A.E. Standard
Method’ for the original approximate solution of lifting-surface theory, based on Kiichemann’s work.?> The
framework of the R.A.E. Standard Method can, of course, be retained when the velocity fields from planar
singularity distributions are computed exactly. In this Report, we compare downwash distributions calculated
by the approximate method with those calculated by exact linear theory ; we also examine the accuracy of the
approximate method when it is used to solve the direct lifting-surface problem (to find the Joad distribution for
a given downwash distribution).

The Standard Method makes use of the downwash induced by distributions of infinite swept vortices which
are of constant strength along the span. In the past, the induced downwash distribution away from the centre
section has not been computed exactly but only an approximation has been used. For the first two Birnbaum
distributions of the vorticity along the chord, we have therefore computed the downwash at various spanwise
stations for angles of sweep of 30, 45 and 60 degrees. These results are discussed in Section 2.

To evaluate the downwash on finite wings of given load distribution, we have used the computer program
developed by Sells.® The accuracy of the numerical results from the Sells program is such that, for the purpose
of the present study, we may call them ‘exact’. The results from Sells’ program have least accuracy near the
tip, but we shall see that there the difference between the approximate results and those from Sells’ program
are so large that small inaccuracies in the results from Sells’” program do not affect the comparison.

We consider two planforms:

(i) an unswept rectangular wing of aspect ratio 6,

(i) a swept wing, ¢ = 45 degrees, of constant chord and aspect ratio 6.

The chosen load distributions are such that the type of chordwise distribution is the same along the span but
C, varies spanwise. We have chosen two types of chordwise load distribution, namely, the first and second
Birnbaum distribution, and two spanwise C, distributions, namely, the elliptic distribution and one where C,
is constant over the inner 80 per cent of the semi-span and where C, decreases elliptically over the outer part of
the wing, see Table 1. (With the second type of C, distribution, i.e. for the load distributions (3) and (4), the
second spanwise derivative 82I(&, n)/0n? is discontinuous at n = 0-8. The Sells program is written for load
distributions for which the derivative 82I(&, #)/0n” is a continuous function. The discontinuity is important only
when computing the downwash at the position of the discontinuity. For the load distributions (3) and (4), we
do not therefore consider the downwash at the spanwise station # = 0-8.)

The downwash which these load distributions induce in the wing plane, z = 0, has been computed at the
nine chordwise stations

_x—lyltanq')__l—cosﬂ

¢ . ;o

with 0 = nn/8,n = 0,1,...,8, at various spanwise stations. The centre section, 7 = 0, has not been considered
since, for the chosen load distributions, the downwash for the swept wing in the plane z = 0 would be logarith-
mically infinite. l

The formulae used in the Standard Method to derive approximate values of the downwash are given in
Section 3.1. Numerical values from the approximate method are compared with the exact values, for the rec-
tangular wings in Section 3.2 and for the swept wings in Section 3.3.

The results obtained in Section 2, for wings of infinite span and uniform spanwise load distributions, suggest
a modification to the original basic downwash equation of the Standard Method. This modification entails also
a modification to the sectional lift slope used in the Standard Method in the derivation of the spanwise C,
distribution. These modifications are discussed in Sections 4.1 and 4.2.

For the special case of an uncambered wing of infinite span, sweptback by 45 degrees, at an angle of incidence,
Hui® has calculated the spanwise C;, distribution by solving the downwash equation of lifting-surface theory.
Away from the centre section, Hui’s values for C; are appreciably smaller than those of the Standard Method.
In Section 4.3, we examine the cause of this difference.



In Section 4.4, we consider how much the difference between the downwash from the exact and the approxi-
mate method affects the results for the inverse problem of finding the load distribution for a given wing, in
particular the spanwise C, distribution. For this purpose, we use the load distributions derived by Sells (Ref. 10
and unpublished work) by means of an iterative procedure, in which the accuracy of a load distribution is
checked by computing the downwash using the program of Ref. 3. We have also studied wings which are
warped such that the chordwise slope is equal to the difference between the approximate and the exact down-
wash induced by the load distributions (1) and (2) of Section 3.

We stress again that we examine in this Report the downwash only at spanwise stations away from the centre
section and only in the plane of the singularity distributions. We restrict the discussion to wings of constant
chord.

2. Downwash Induced on Swept Wings of Infinite Span by Load Distributions which are Uniform across the
Span

We use a system of rectangular coordinates x, y, z: the plane z = Ois the wing datum plane, theliney = z = 0
the centre section of a swept wing and the point x = y =z =0 the apex of the wing. ¢ denotes the angle of
sweep. We consider the velocity component v, parallel to the z-axis; v, is positive if the velocity vector is
directed upwards. We denote the downwash —v,/(x,y, z) by w(x, y, z).

The value of the downwash which is induced by a single swept vortex through x = y = 0 in the planez = 0
of strength T is given by the equation
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For y — oo, we obtain from equation (3) the value for the downwash of the infinite sheared vortex; w,, (¢, z):
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For the centre section y = 0, we obtain from equations (3) and (4):
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For y # 0, z = 0, we obtain

_ r tan ¢
" 2mcos ¢ E2ytan ¢ + &)

w(¢, ¥,0) — w,p(¢, 0)

x [\/y* + 2yEsin ¢ cos ¢ + £2cos? ¢ — y]. (6)



We consider wings of constant chord (which we choose as unity) and infinite span in a mainstream of velocity
V,. We choose ¥, = I so that in the following w denotes the ratio w/V, between the downwash and the velocity
of the free stream, We assume that the strength of the load distribution is constant along the span, i.e. l(x, y) =
—AC,(x, y) = I(¢). The vorticity is related to the pressure difference by the relation

(&) = cos $27(2), (7)
so that the strength of an elemental strip of vortices, which are parallel to the leading edge, is
W& dn = p(&) cos ¢ d& = 3U(¢) 4,

where dn is a length measured normal to the leading edge of the wing. Integration of equations (5) and (6) gives
for the downwash the equations:
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For large values of y and ¢ # 0, we may expand the integrand of equation (9) in terms of powers of (£ — £')/y
and we obtain
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where &ep = 5 EVE) dE/f§ (&) dE is the position of the centre of pressure of the load distribution I(¢).

Equation (10) shows that for large values of y the difference between the downwash from a distribution of
swept vortices and that of the corresponding infinite sheared distribution is to a large degree independent of
the chordwise distribution of vorticity and depends mainly on the total circulation, j A 9(E)dE, as would be
expected. Equation (10) shows further that, for a given distribution }5&) and large y, the term w(¢&, y, 0) — w, (&, 0)
is largest for ¢ = 45 degrees.

For the first and second Birnbaum distributions, (&) = 2./(1 — £)/¢ and (&) = 8./&(1 — &), we have
calculated values of w(&, y,0) — w,,(€, 0) by equation (9). For ¢ = 45 degrees, some values are plotted in
Fig. 1. We note that, for y > 06 say, the values of w — w,, do not depend a great deal on the distribution
y(&); they are very similar to the approximate values given by equation (10) for large y, shown by the dotted
lines. The chordwise distribution of w — w,, is the more dependent on the distribution of y(&) the closer the
station is to the centre section. We have added in Fig. 1 values for w — w,,, at the centre section y = 0 at
the distance z = 0-04. Since the values of w(&, 0, z) — w, (&, 2) tend logarithmically to infinity for z — 0, the
values of w — w,;, vary rapidly with z. Therefore, the values at z = 0-04 are only to indicate the type of down-
wash induced at the surface of a wing with finite thickness.



In Fig. 2, we have plotted values of w — w,, for various angles of sweep. We have mentioned before that it
follows from” equation (10) that, with given (&) (i.e. given w, (&) but not fixed (&), see equation (7)) and large
values of y, the term w — w,, is largest for ¢ = 45 degrees; Fig. 2 shows that this is true for y > 0-4. For small
values of y, the value of ¢ for which w — w,, reaches a maximum depends on the values of £ and z and on the
distribution y(¢). To illustrate this, we quote from Ref. 7 the approximate relation for the additional downwash
at the centre section, w(&, 0, z) — w,p(&, z), when y(€) = A4 + B¢ and z is small compared with £,1 — ¢ and 1:

4¢(1

-9 1 + sin ¢
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For ¢ = 0-5, the maximum value of w — w,, is reached when cos ¢ = [—log z]~%. With z = 0-04 this gives
¢ =~ 56 degrees. We note that the value of ¢ increases with decreasing z. Fig. 3 shows for y(¢) = 2\/ (1 — &)/é
how w — w,j, at the centre section at z = 0-04 varies with ¢.

It follows from equations (8) and (9) that the function [¢/|¢|][w — w,p] is independent of the sign of ¢ for
y = 0 but not for y # 0. To demonstrate how much the function depends on the sign of ¢, we have plotted in
Fig. 4 some values of w — w,, for ¢ = 45 degrees and for ¢ = ~45 degrees.

We consider now how the results given above compare with those obtained from the approximate downwash
equation suggested by Kiichemann. The latter reads

sin ¢
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{(A + Bé)log

1 e
wlés . 2) = o L ¢ y)g—_ig, + 7 tan (AW)PN(E; y). (12)

(Within linear theory, this equation has been suggested for values of z appropriate to the surface of the wing
or {for y # 0) also for z = 0.) For the special case considered above, w — w,, is thus approximated at the centre
section and at y # 0 by the function

wx — Wap = 3 tan (A()d)(&) (13)
where
2
20) =\/1 + (znta;‘ d)y) - 27:%—%. (14)

This implies that the function wi(&, y,0) — w, (¢, 0) has the same shape for all values of y. We note from Figs. 1
and 2 that this is a rather crude approximation for y > 0-1. A comparison of values for w — w,,, from equation
(9) with those from equation (13) is made in Fig. 5. Some of the resulting changes to the twodimensional wing
shape

~

1
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are shown in Fig. 6. We note that (for both chordwise load distributions), for ¢ = 45 degrees, the approximate
equation (13) produces less twist than the exact equation (9). For the first Birnbaum distribution, the exact
camber lines for y = const. and y > 0-1 are very nearly circular arcs whilst the approximate camber lines
{which are of the type m = 0-5 given in Fig. 4 of Ref. 8) have the maximum ordinate further forward, at ¢ = 0-29.
To appreciate the difference in camber shafie, we quote the type of twodimensional load distribution related
to the camber lines: for the approximate camber line it is . /(1 — &)/¢é log [(1 — &)/&], whilst it is /&(1 — &)
for the circular arc.
The spanwise variation of the twist,

1
Au(y) = J [w(E, y,0) — wp(¢, 0)] d¢, (16)
0
is shown in Fig. 7, together with

Aogly) = 5 tan (H)). a7



We note that Aog(y) predicts the type of distribution quite well, but does not give the actual values of Aa accur-
ately. For the function A(y) not only the formula given by equation (14) has been used but also a function which
is independent of ¢, namely the limit for ¢ — 0 of the expression given by equation (14):

Ay) = /1 + Qny)* — 2my. (18)

We have, therefore, plotted the values of Aay for both formulae for . Fig. 7 may suggest that it is preferable
to use for A(y) the values given by equation (18). This would however not be advisable for ¢ > 60 degrees say,
because equations (17) and (18) produce values for A« which increase monotonically with increasing ¢ whilst
we have learnt that, for large y, the exact Ao has a maximum value at ¢ = 45 degrees. For small y, Fig. 2 sug-
gests that Ax has the maximum value for ¢ smaller than 90 degrees. We note further that the values of w — w;;
for y = 0, z = 004, plotted in Fig. 3, do not show the large increase with increasing ¢ as given by the term

3 tan ¢y(8).

3. Comparison of Downwash Distributions on Finite Wings with Given Load Distribution Computed by the
R.A.E. Standard Method with those from Exact Linear Theory

3.1. Prediction of the Downwash by the Standard Method

For an unswept wing of large aspect ratio, the Standard Method is identical with Prandtl’s theory of a lifting
wing. The vorticity vector is split into the spanwise and streamwise components. The downwash at a point
x, y produced by the spanwise vortices is approximated by the downwash induced by a twodimensional dis-
tribution of vorticity which has the same strength as the threedimensional distribution at the spanwise station y.
The contribution to the downwash which is induced by the chordwise component of the vorticity over the
wing and by the trailing vortices behind the wing is assumed to be nearly constant over the chord of the wing
and equal to half the downwash induced far behind the wing, i.e. in the Trefftz plane.

Thus for an unswept wing with a given load distribution (x, y) = 2y(x, y), the downwash w(x, y) is approxi-
mated by the sum w,p(x, y) + o,0(y) where

1 xrE(y) dx'
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x—x (19)
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This approximation can be derived from the exact equation of linear theory:
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the downwash can be written as the sum of two terms
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The Standard Method introduces some modifications to equation (23), but they are negligible for wings of
aspect ratio 6; we, therefore, ignore them here (they are of importance only for wings of small aspect ratio).

For a swept wing, the Standard Method derives an approximate value of the downwash by splitting the
vorticity vector again into a spanwise component and a chordwise component ; spanwise means here parallel
to the leading edge. (For a tapered wing a mean sweep angle is chosen.) The downwash induced by the spanwise
vorticity is again approximated by the downwash of a system of infinite kinked vortices for which the strength
does not vary along the span and is determined by the chordwise load distribution at the station under con-
sideration. The downwash from the chordwise vorticity (which includes the trailing vortices behind the wing)
is again approximated by half the downwash far behind the wing. (For this contribution to the downwash
Kiichemann? has proposed the use of 2n,x,, which, for wings of large aspect ratio, is equal to o;,. In Ref. 1
the use of 2n(y);, has been suggested, but it is shown below (see Section 4.4) that this does not necessarily
improve matters. In this Report, we have used 2n0 = 0;9.)

We have mentioned in Section 2 that Kiichemann has proposed to approximate the downwash induced by
a distribution of infinite kinked vortices, of constant strength along the span, by the term given in equation (12).
He has further suggested that, for a wing of finite span, the downwash from the spanwise vortices near the tip
is similar to that near the centre of a swept forward wing. For a wing of finite span, it has therefore been sug-
gested that for A(y) in equation (12) the relation

W) =1+ (271%)2—27%——{ I+

should be used, where s is the semispan and ¢ the local wing chord.

A load distribution which near the centre section is constant along the span produces at the centre section,
y = 0, an infinite downwash in the plane z = 0, but finite values for z # 0. The relation (12) has been suggested
as an approximation to the finite downwash at the surface of a wing with finite thickness. In this Report, we
want to compare only values of the downwash in the plane z = Q; we therefore exclude comparisons at the
station y = 0.

When we use relation (7) between y(&, y) and I(£, y) we obtain for the approximate values of the downwash on
a swept wing the equation:

— 2 —
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We note also that for a swept wing where the bound vortices are unswept at the centre section, as e.g. for a
plane wing at an angle of incidence, the following modification to equation (25) has been suggested in Ref. 2:
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This relation implies that the term w,, is derived from a system of vortices with a sweep angle ¢,.

As stated in the introduction, we have chosen four load distributions, (1) to (4) (see Table 1), and have com-
puted for these the approximate downwash from equation (25). For the load distributions (1) and (2), which
involve an elliptic spanwise variation of C,, &,y = n/24; for the load distributions (3) and (4), a formula for
;0(#) is derived in the Appendix.

3.2. Discussion of Results for the Rectangular Wings

For the four load distributions considered in this Report, the values of the twodimensional contribution
w,pl(x. ¥) and values of «;4(y) are quoted in Table 1, so that for the rectangular planform the values of w(x, y)
according to the approximate equation (23) is known. The exact values of w(x, y) computed from equation (21)
are given in Table 2.



We may mention that, for the rectangular planform and the load distributions (1) and (2), Ray and Miller®
have computed values of the downwash by a more accurate method than the Sells program, the agreement
between the results of the two methods is excellent except very close to the tip.

In Fig. 8, we have plotted some exact downwash distributions together with the corresponding approximate
distributions. We learn from Fig. 8a that, for the load distribution (1), the difference between the approximate
and the exact downwash over the inner part of the wing, || < 0-5, is at most 7 per cent of the local downwash,
but at the outboard station 5 = 09, the maximum difference increases to 23 per cent. For the load distribution
(3), the corresponding values are 4 per cent and 29 per cent.

We note from Fig. 8b that, for the load distributions (2) and (4), the difference between the exact and the
approximate downwash is again small over the inner wing and larger on the outer wing. The exact downwash
is zero at certain points of the wing so that we cannot express the difference as a percentage of the exact value.

The aim of a threedimensional wing theory is to estimate the threedimensional effects, i.e. the difference
between the downwash on the finite wing and the local twodimensional downwash. For a general wing, the
latter is the downwash of an infinite sheared wing with the sweep and the chordwise load distribution of the
spanwise station under consideration. In the following we therefore examine the difference between the down-
wash on the wing, w(x, y), and the twodimensional value, w,p(x, y). When we examine the error in the three-
dimensional effect, i.e. the term w — w,p, — 0. then we have of course to remember that the error in the actual
pressure distribution on the wing caused by the error of the camber shape is related tow — wyp — a0 measured
in terms of w and not in terms of w — w,p. In Fig. 9, we have plotted the ratio between the difference w(x, y) —
w,p(x, y) and a;4(y). In the Standard Method this ratio is taken as equal to one. We note that near the centre
of pressure of the load distributions (xcp = 0-25 for the distributions (1) and (3). xcp = 0-5 for the distributions
(2) and (4)) the approximate results are close to the exact results. The chordwise distributions of (w(x, y) —
w,p(X, Y))/oo(y) for the load distributions (1) and (3) (and for the distributions (2) and (4)) are surprisingly
similar even though the spanwise distributions of &, for the load distributions (3) and (4) (some values of o;q
are quoted in Fig. 8 and in Table 1) differ a great deal from the constant value of o;, which corresponds to the
distributions (1) and (2).

Since the downwash upstream of the wing tends to zero and downstream tends to 2. it is to be expected
that the term w(x, y) — w, (X, y)increases along the chord. The chordwise variation of (w(x, y) — w, p(X, Y/ ot0(1)
is stronger on the outboard part of the wing than on the inboard part. To explain this, we consider a single
bound vortex at x = 0-25, —s < y < s of strength I'(y). The related trailing vortex sheet induces at x, y the
downwash

1 (s or -0 '
w(x,y)=w(x=0-25ay)+—j i N L >
4 -5 0¥ (y =y (x = 0257 + (v = )

Values of 2w(x, y)/w(x = oo, y) are plotted in Fig. 10 for the elliptic distribution I'(y) = / 52 — y? and for the
distribution T'(y) = const. We note the similarity of the curves for the two rather different distributions of
L(y).

For the load distribution (1) (or (2)) where the chordwise distribution is of the same type across the span, we
can use the results derived for an isolated bound vortex (equation (28) and Fig. 10) and determine by integration
with respect to x the value of the downwash, wsyp v, induced by the streamwise vorticity component related to
I(x, y). For the load distribution (1) and n = 0-5and 5 = 0:9, we have found that |w — w,p — Wsrg vl is less than
0-05, whilst w — w,;, — ;o = 021 for 7 = 09 and & = 1. These results and the general similarity between the
curves of Fig. 10 arid&hose of Fig. 9 suggest that, for the load distributions considered, the difference between
the exact downwash and the downwash computed by the approximate equation (23) is due mainly to an
inaccurate approximation of the part of the downwash which is induced by the chordwise vorticity and is due
less to an inaccurate approximation of the part of the downwash which is induced by the spanwise vorticity.
The figures suggest that for a rectangular wing we may improve the Standard Method by modifying the term
which is related to the chordwise vorticity by taking instead of «;4(n) a term of the form

(28)

(il + f(n; Ag(x)]
so that equation (23) would be replaced by the approximation

w(x, y) = wyp(x, ) + aoT + f (1. A)g(x)]- (29)

Even though a comparison of Figs. 9a and 9b shows that the function (w — w,p)/a; is somewhat dependent on
the type of chordwise load distribution, one may expect that, with the same function g(x), equation (29) would



give an improvement on equation (23). Such an improvement was demonstrated by Sells,!® when he solved
the inverse problem of calculating the load distribution of a rectangular wing of given shape. Sells has used for
g(x) the function

g(x) = —0-5 + 2.5x — x2, (30)

One can expect some benefit from varying the function /(. A) with the aspect ratio 4 of the wing. Sells'®
has suggested the function

1
f('?aA)=m(1—_~I—’7lj- G31)

Some further guidance for the variation of (37, A) may be obtained from the distribution of 2w(x, y)/w(x = o, y)
given by equation (28) for the distribution I'(y) = const. ; this reads

2w(x, y) -1 1 +7 (x = xcp)fs " 1—-p (x = xcp)/s .
w(x = 0, y) 2 X — Xcp\? 5 2 X — Xcp\? 5
S + (1 -7 —‘S*—) +(1+7)

We have mentioned above that the values of w — w, , differ somewhat from those for Wgygy- This is of course
due to the fact that the spanwise vortices are not infinitely long and that their strength varies along the span.
We have to remember that the results discussed refer only to load distributions where the chordwise distribu-
tions are of the same type across the span. For load distributions where the type of chordwise distribution
varies fairly rapidly along the span, we may expect that the twodimensional downwash is not such a good
approximation to the downwash from the spanwise vortices.

(32)

3.3. Discussion of the Downwash Distribution on the 45 degree Swept Wings

For the swept wings, some exact downwash distributions are plotted in Fig. 11 (see also Table 3) together
with the approximate results from equations (25) and (24). If we compare Fig. 11 with the corresponding figure
for the unswept wing, Fig. 8, then we note that the approximate method represents the sweep effect over the
inner wing fairly well.

To examine the threedimensional effects in more detail, we have again plotted the difference w(Z,y) — w,p(&, ),
see Figs. 12 to 14, where for a spanwise station y

1 1 dé'
Wap(E: y30) = mﬁ ey ¢ (33)

-
is the downwash of an infinite sheared wing with the sweep angle ¢ and a load distribution which is uniform
across the span and varies chordwise as the distribution I(£; y) of the station considered.

Fig. 12 shows that, for the inboard part of the wing, the additional downwash for the swept wing is larger
than for the unswept wing and that the mean value is fairly well predicted by the approximate method ; but
the chordwise distribution of the additional downwash is not so well represented. &

The difference between the exact and the approximate values for w — w,,, at the inboard station n =01,
i.e. y/c = 0.3, Fig. 12, shows a strong resemblance to the corresponding term for the wing of infinite aspect
ratio, see Figs. 5 and 1. We have therefore determined the difference

Ciy, 4 =06)

F(&n) =W — wyplyo — m(“’ ~ Wapla=on
C,(y;A=6
=w( y;4=06)— (/f—((y/l_—ooT)W(é,y;A = ), (34)
(A =

i.e. the difference between the downwash on the finite wing and the downwash on a swept wing of infinite
aspect ratio with uniform load distribution across the span which is the same as the chordwise load distribution
of the finite wing at the spanwise station # under consideration. For the unswept wing the function F(Z, #) is,
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of course, the same as w — w,;,. We have plotted some values of the function F(¢,) = w — w(4 = o) in Fig.
15. According to the approximate method, the values of the function F(&, ) for the inboard part of the wing,
0 < |y| < 05, are expected to be approximately equal to a,0(#), both for the swept wings and the unswept wings.
We have therefore plotted in Fig. 16 values of the ratio between F (&, ) and a;4(n).

Let us consider first the results for the inner part of the swept wings with the load distributions (3) and (4),
plotted in Figs. 15a and 16. We note that the values of the function F(&,1) = w — w(4 = o) for ¢ = 45 degrees
are much smaller than a;,, in contrast to the values for ¢ = 0, shown in Fig. 9. For |5| < 05, the ratio between
the values of F(£,7; ¢ = 45 degrees) and those of F({,77;¢ = 0) varies between 0-31 and 0-38.

The fact that the values of F for ¢ = 45 degrees are consistently smaller than those for ¢ = 0 is mainly
due to the fact that on the swept wing the trailing vortices are staggered (i.e. they start at different x-values).
This does not affect the downwash far downstream, i.e. w(x = 0, y) = 2a;0(), but it has an effect on the down-
wash at the wing. To demonstrate this, we have determined the-downwash from the trailing vortices which
originate from one swept bound vortex at £ =025, —s <y < of strength I'(y). In Fig. 17, we have plotted
2w(E, mw(E = 0, y) for the two cases T'(y) = /s* — y? and T(y) = const. For = 0-5, we have added the
curves from Fig. 10 for the unswept bound vortex. A comparison of the corresponding curves in Figs. 10 and
17 shows that the trailing vortices produce a smaller downwash on the swept wing than on the unswept wing.
For the constant I'(y) distribution, the ratio between the values of w(Z,#) for ¢ = 45 degrees and ¢ =0 is
about 0-3 for # = 0 and 04 for # = 0-5. These values thus explain the dependence of the function F(Z,7: )
on the angle of sweep for the load distributions (3) and (4). The curves in Fig. 17, for I'(y) = const., suggest
also that, as for the unswept wing, the downwash from the chordwise vortices increases with ¢ and with |»]
(see also Table 1 for o))

We consider now the values of the function F(&,#) for the load distributions (1) and (2). The trailing vortex
sheet which originates from a single swept bound vortex with the load distribution T'(y) = /1 — #* pro-
duces near ¢ = 0-25 an upwash which is logarithmically infinite at £ = 0-25. This infinity disappears, of course,
when we deal with a chordwise distribution of bound vortices. When we consider a chordwise distribution
of bound vortices for which the strength varies as /(1 — £)/¢ and use the values of 2w(&, n)/w(é = oo, 1)
given in Fig. 17 for T'(y) = /1 — % then we can compute values of that part of the downwash which is pro-
duced by the streamwise vorticity (the chordwise and trailing vortices), Wgrgy, of the load distribution (1).
Some values of wgrgy are plotted in Fig. 18.

Before we discuss the results given in Fig. 18, let us draw some general conclusions from Fig. 17. We have
mentioned already that the trailing vortex sheet which originates from a single swept bound vortex of strength
T'(y) = /1 — n* produces an upwash near £ = 025 (the position of the bound vortex), the magnitude of which
increases with the angle of sweep and with increasing values of |r]. This fact has several consequences with
respect to the downwash wgrg  from the streamwise vorticity of the load distributions (1) and (2): (i) the reduc-
tion in the downwash from the streamwise vortices due to the sweep of the spanwise vortices is larger for the
elliptic spanwise load distribution than for the constant spanwise distribution, (ii) for the elliptic spanwise
load distribution, the variation of the downwash wgyg, with & is stronger for the swept wing than for the un-
swept wing, (iii) for the elliptic spanwise load distribution and larger values of #, an upwash is produced at
the values of & where the strength of the spanwise vortices is large, which does not happen for the constant
spanwise load distribution (for ¢ > 0-6 say, the downwash of the trailing vortices originating from a single
bound vortex increases with || and this effect reduces to some degree the effect of the increasing magnitude of
the upwash with increasing |5|). The dependence of the downwash from the streamwise vorticity, Wgrgy, On
the angle of sweep and the type of load distribution explains to a large degree the variation of the function
F(Z#n) = w — w(4 = o) with £ and 4, with the angle of sweep and with the type of load distribution.

Fig. 18 shows that the values of F(¢, ) and wg; g differ somewhat and that the difference increases with the
angle of sweep and with |}. This difference is produced by the spanwise decrease of the strength of the spanwise
vortices. We note that, for the swept wing with load distribution (1), the spanwise variation of the spanwise
vortices produces an upwash. To explain this, we compare, at a point &, 1, the load distribution of a section
normal to the leading edge with the chordwise distribution at # = const. and find that the values of y forward
of the point considered are reduced and those rearward are increased. The twodimensional downwash related
to the load distribution of the section normal to the leading edge is smaller than the downwash for the load
distribution of the section || = const. For wings of given aspect ratio, this effect becomes larger with increasing
values of ¢. .

In the Standard Method, the tip of a swept wing is treated as if it had an effect on the downwash similar to
that of the centre of a swept forward wing. Some justification for this may be derived from Fig. 15 where it is
shown that the behaviour of F(&, 1) on the outboard part of the wing is somewhat similar to that of w — wy,
for swept forward wings of infinite aspect ratio with the centre section at the tip of the finite wing, see Fig. 4.

11



In the Standard Method, no explicit account is taken of the fact that the downwash at the wing, induced by
the streamwise vortices, depends on the angle of sweep. Thus, for a swept wing and an unswept wing with the
same load distribution I(Z, #), the total downwash is expected to differ by (1/cos ¢ — Dw,p(E, 77; ¢ = 0) and
a term proportional to the local load /&, #); for a wing of constant chord, the Standard Method assumes that
the factor to /&, #) in the second term changes sign at mid semispan, § = 0.5.

To show how far the latter term does arise in practice, and how it varies along the span, we have plotted
in Fig. 19 the term

KEn) = W&, m) — wapl&mly=ase — [WE 1) — wap(E, m)y=o- (35)

The figure shows that the distribution of k(£, n) over the outer wing is similar to that on the inner wing with
the sign reversed. We are not surprised that the chordwise distribution of k(. n) does not resemble strongly
the distribution of (£, #). For the part of the wing near the centre section, the term k(&, ) is mainly produced
by the central kink of the spanwise vortices and we have seen in Figs. 1 and 5, for the wing with infinite aspect
ratio, that, at least for n # 0, the term w — w,, does not vary as strongly along the chord as the load distribu-
tion, (&, n).

Finally, we have plotted in Fig. 20 the mean value

1
kin) = j k(. m) de
0

= Aaly; ¢) — Aaly; ¢ = 0), (36)
derived from the exact values of w together with the approximate term from equation (25),
tan (A(y)@)C(n)/4 cos ¢. We may note that for the present examples the approximate value of k at the centre
section has the value k( = 0) = 21; the exact value (derived from the downwash in z = 0) is logarithmically
infinite. Fig. 20 shows that over the inner part of the wing the exact value of k varies in a way similar to the
approximate curve; the similarity is stronger for the load distribution (3) than for the load distribution (1).
We have mentioned above, see Fig. 17, that, by ignoring the fact that the trailing vortices are staggered, the
approximate method derives for the swept wing too large a downwash from the trailing vortices. This error is
partly cancelled, at least over the inner wing, by the fact that the approximate downwash equation (12) produces
for the spanwise vortices a smaller value of Ax than the downwash from equation (9), see Fig. 7. The use of the
exact equation (9) for the spanwise vortices with the approximate value a;0(n) for the downwash from the trailing
vortices would thus increase the error in k(x), at least for the calculated examples.

4. The Load Distribution on Uncambered Wings at an Angle of Incidence
4.1. A Modified Approximate Downwash Equation

The Standard Method deals also with the task of determining the load distribution on a wing of given shape,
in particular with the task of determining the spanwise C, distribution. The method is based on equation (26).
We have seen for the wing of infinite aspect ratio with uniform spanwise load distribution that the downwash
given by the approximate equation (12) differs appreciably from the exact values, in particular near the trailing
edge. We know that in inviscid flow the slope of the wing near the trailing edge is decisive in determining the
circulation past a section. We would, therefore, like to assess the importance of this difference. In the following,
we want to examine how the C, distribution derived by Kiichemann’s method would change if we were to use
instead of equation (12) a different downwash equation.

We therefore retain Kiichemann’s approach and approximate the downwash, produced by the spanwise
vorticity of a load distribution which varies along the span, by the downwash produced by a distribution
which is constant along the span and has the same chordwise distribution as the varying distribution has at
the station considered.

A procedure of similar simplicity to Kiichemann’s method can be obtained from an approximation of the
form:

’

1 [t d L
w(c, y,0) = ﬂj nZ, y)é—_é? + 10 o0& ) + (80 ) — (€ ~ Eephly, d)] L W&y de, (37

0o

where the functions f(y, ¢), g(y. ¢), h(y, ¢) do not depend on ¢. Equation (37) is an approximation to the values
of the downwash given by equation (9). A possible set of values for the functions S, g. h have been derived from

the exact values of w, computed for y = 2, /(1 — f)/g and y = 8, /&(1 — &) for y/c = 0-1. These values have
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been extrapolated to y = 0. Some values are given in Table 4. A comparison of the approximate values for the
downwash from equation (37) with the exact ones and with the values from equation (12) (which corresponds
tof(y. ¢) = 1 tan (A(y)¢), g = 0, # = 0) is made in Fig. 5. Equation (37) can still give a poor approximation near
the leading edge ; for the first Birnbaum distribution, the exact w(&, y # 0, 0) is finite for £ = 0 whilst equation
(37) gives an infinite value. To improve the approximation, we would at least have to substitute for f(y, ¢) a
function which depends also on £. With given downwash, the equation for the unknown (¢, y) would still be
of the type studied by Carleman,!! so that a solution in closed form could be obtained. But this procedure
would be too complex for the present purpose.

4.2. Solution of the Approximate Downwash Equation (37) for Constant Downwash along the Chord

With the aim of determining the load distribution of an uncambered swept wing at an angle of incidence,
we want to derive a solution of the downwash equation (37) for the case when w(¢, y, 0) is independent of &.
When f(y, ¢) does not depend on &, then equation (37) is of the form

2x Jo &E=-¢

where ¢* is defined by 1 tan ¢* = f(y, ¢) and

1 (¢ d¢&’
—f WE=Z + Stan ¢*9(&) = FQ) (38)

F(&) =w(¢,»,0)—[g - (& - fcp)h]L WSy e

The solution of this equation, for which the Kutta condition at £ = 1 is satisfied, reads (see equations (3.4),
(3.6). (3.10) of Ref. 12):

_ . . . B . 1 . 6)11*1J\1 , ( é’ )n* dér
Y(€) = 2 sin ¢p* cos ¢*F(E) — 2 cos* ¢ ( ; 2. F(&) T 7 v ———.f iy (39
with
*
= %(1 _ -Zi/i) (40)
For F(¢) = A + BE (which implies that w is also linear in &), the solution is
YO = 2AA + B + n¥)] cos ¢* (1—;—5) @D
For this
1
J 1WE) dé = [24 + B(1 + n*)n*n (42)
0
and
1
J EYE) dE = [A + B3(1 + n®)n*(1 — n*)n (43)
o
so that
1 ES
J GO A it
0 —n 3
fCP= 1 = ) T (44)
f W& dé A+ B 5
0
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When w(, y,0) = 1, then we obtain from equations (37) to (44):

A

I - [g+ fcph]f &) d¢
0

I — 824 + B(I + n*)]n*n — h[A + B3 + n*)n*(1 — n¥*)m,

and

1
B = hf W& dg
0
= h[24 + B(1 + n*)]n*x.

From these equations we obtain

1 — (1 + n*n*hn

= 45
4 I+ 2n*gn — 2n*2hnf1 — L(1 — n*3hr) (43)
and
2n*hn
= . 4
B 1 + 2n*gn — 2n*2hafl — L(1 — n*hx) (46)
When we insert equations (45) and (46) into equations (42) and (44) then we obtain the relations:
! 2n*n
dé = 47
L nde =1 2n*gn — 2% 2kl — 51 — m*2)hr] “7
and
[ — n* 1
bep = 5 (1 + 3n*(1 + n*)hn]. (48)

With the values of f, ng and nh quoted in Table 4. we have evaluated n*, from equation (40) with ¢* = tan ! 2f,
and calculated f (1) WS y; @) dE and E.p(y; ¢). Some results are plotted in Figs. 21 to 23. It should be pointed
out that the ratio [ (1) E(&) dé/fé &) d¢ is the same as the centre of pressure if the sweep angle of the vorticity
vector is constant along the chord. In the following, we shall make this assumption. For the particular case
which we consider, when w(é, ,0) = 1, which represents a plane wing at an angle of incidence, the centre of
pressure is also the aerodynamic centre. We have, therefore, plotted the values from equation (48) as values for
the position of the aerodynamic centre.
We have also plotted in Figs. 21 to 23 the values from equation (12), i.e.

11
| @ = 2y =1 - 0% “9)
and
L= ) _1 ¢
e =52 3|1 | (50)

Figs. 21 and 22 show that with increasing y the term 1 /nf(l) (&, y) d¢ approaches the value of unity for the
sheared wing at a slower rate when equation (37) 1s used than when the downwash equation ( 12) is used, this
is the case whether A(y) is obtained from equation (14) or from equation (18). For ¢ = 45 degrees and y > 1
we obtain from equation (37),

1! 1 1
;L W&y de =1 —@+0(;2—) 61
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and from equations (12) and (14)

L Eydé=1 —1—+0—1— (52)
; 0 y( ’y) - _32y yZ :

Fig. 23 shows that the chordwise centre of the vorticity distribution y(&, y) approaches the value of the sheared
wing at a faster rate when y(&, y) is derived from equation (37) than when it is derived from equation (12).
To obtain from the vorticity distribution y(¢, y) the load distribution (&, y), we use the same approximate
procedure as Kiichemann and approximate the angle of sweep of the vorticity vector by a value ¢,(y) which
is taken as constant along the chord. Kiichemann’s suggestion for ¢,. equation (27), was to be an approxima-
tion to the sweep of the curve of the aecrodynamic-centre position. The use of a function ¢,(y) constant along
the chord is only a crude approximation ; therefore, Kiichemann has suggested the use of the simpler expression
given in equation (27) instead of ¢, derived from the aerodynamic-centre position. A crude relation between
(&, 1) and I(, n) seems justified for the present purpose, where we want only to explain, in Section 4.3, some
differences in the spanwise C, distribution computed by the Standard Method and a more exact method.
We do not intend to derive here a general improvement to the Standard Method, because the results of Section
3.3 suggest that it is not likely that, for a general load distribution, one can devise a simple method for deter-
mining a reasonably accurate approximation to the downwash from the chordwise and trailing vortices.
Using the approximate relation

I, y) = cos ¢,(2V(&. ¥), (53)

we obtain for the lift coefficient C,(y) the relation

1
CL(y) = 2 cos ¢v(y) JVO ’))(és }’) dé

(&) in equation (47) has been derived for the special case w(&, y) = a,(y) = 1. Thus we obtain for the sectional
lift slope

_C) 4n*(y)r cos ¢,(y)

=%0) ~ T+ I elin = 2 h()nll — 51 — n*2hm] 69

a(y)

For the infinite sheared wing (for which n* =05, g =h =0, ¢, = ¢) equation (54) gives the well-known
result

a, = 2ncos ¢. (55)

If we were to use the aerodynamic-centre position to determine cos ¢,(y). then we would find that the down-
wash equation (37) leads (for y > 0-1) to slightly smaller values of cos ¢, than equation (12). In the following,
we use with both downwash equations the same function for cos ¢,/cos ¢, namely the one used in the Standard
Method, 1/cos (A¢), with A(y) from equation (18); this means that for the values of a(y)/a,, we somewhat moderate
the difference between the two downwash equations.

Values of a/a,, derived from the downwash equation (37) are plotted in Fig. 24 together with the values
of the Standard Method, 2n/sin 7. The curve derived from equation (37) has not been extrapolated to y = 0,
because the procedure of this Report cannot give reliable values for y = 0, since the downwash equation (37)
is derived from values in z = 0 for vortices of constant strength and sweep angle for which the downwash in
y =0, z = 0 is infinite. We shall examine in the next section how important the difference of the values for
a/a,, may be when one computes the spanwise C distribution.

4.3. The Spanwise Lift Distribution of an Uncambered 45 degree Swept Wing of Infinite Span at an Angle of
Incidence; Comparison of Various Results

The case considered in this section differs from the one of the previous section in that we have to include
also the effect of trailing vorticity.

Hui® has determined the load distribution for an uncambered 45 degree sweptback wing of infinite aspect
ratio at an angle of incidence by solving the integral equation of lifting-surface theory, equation (21), by an
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iteration procedure. Values of the lift coefficient C,(y), obtained by Hui, are plotted in Fig. 25. We have also
plotted the values obtained by Kiichemann (taken from Fig. 14 of Ref. 5). We notice that Hui’s values are every-
where lower than Kiichemann’s values. We are here not interested in the differences in the values near y = 0,
where it is known that Hui’s values are not reliable, but we are interested in the values at y > 1 say.

There existed some uncertainty about the accuracy of Hui’s results, since he has satisfied the boundary
condition at relatively few spanwise stations on the outer wing, To determine the accuracy we have used
Sells’ program? and have calculated for a load distribution, similar to Hui’s, the downwash at certain spanwise
stations. For this purpose, we have taken the computed values of K&, y), C.(y), &,.(y), kindly given to us by Hui.
We have found that it is possible to approximate Hui’s values of (&, y) (except for y = 0) by

4 1=
e, y)=-C»| (1 =2, 1-c + 204, — DV = O) | + fF(Q), (56)
n ¢

f 'R de =
0

where

and

J ¢F(dE = 0.
0

Based on Hui’s results, we have determined numerical values for the functions f(y) and F(¢), modified Hui’s
values for C,(y), as shown by curve II in Fig. 25, and similarly derived smooth values for ¢, (y). With these
smooth values of I(¢, y), we have computed by Sells’ program?® the downwash at the spanwise stations y = 1, 2, 3.
{For these calculations we have used equation {56} also for the neighbourhood of the centre section, because
we wanted to ensure that the derivatives of i{£, y) are smooth functions and a local error in (¢, y) has no im-
portant effect on the downwash sufficiently far away.) The results, plotted in Fig. 26, suggest that the values

of C,, given by curve II of Fig. 25, for y > 1 say, are correct to about 1 per cent and, therefore, that the values
from the Standard Method are too high.

Part of this error is probably a consequence of the difference between the values of the sectional lift slope
derived from the original downwash equation, (12), and from the modified equation, (37), shown in Fig. 24.

We have added in Fig. 25 the values of a/a , derived from equation (37). To examine whether the difference
between C,;/C, and g/a, . for y > 1. can be explained by the downwash induced by the chordwise and trail-
ing vortices, we have derived approximate values for wg, g .. For this purpose, we have computed the downwash
produced by a trailing vortex sheet starting from one bound vortex at x = |y| tan ¢, — o0 < y < oo of strength

I'(y) = T, Cy)/Cr = mcos pC(y)/Cp

with C,(y)/C,  given by curve 1l of Fig. 25. The chordwise distribution of the downwash for the spanwise
stations y = 1-5 and y = 3 is plotted in Fig. 27. The figure shows that a;o(y} = Iw(é = 0, y) is an under-
estimate for the downwash from the trailing vortices. To derive an approximate value for the downwash
from the streamwise vorticity of the load distribution (&, y) of equation (56), we have considered a chordwise
distribution of bound vortices of strength I'(y)(2/7)/(1 — £)/¢ (the fact that we have ignored the difference
between (&, y) from equation (56) and (2/7)C,(y) \/(1 — &)/¢ implies of course that the related downwash is
in error for small values of y). Approximate values for the downwash from the streamwise vortices are given
in Fig. 28 ; we quote also values of a;,(y) and values for the difference between a/a, and C;/C, . We note that
the magnitude of wgrp 4 is comparable to the values of a/a  — C,/C; . (The agreement is somewhat improved,
if we take account of the fact that the total downwash computed for the load distribution of equation (56)
differs somewhat from one, see Fig. 26.)

4.4. The Spanwise Lift Distribution of Finite Wings

The wing of infinite span is a rather special case, so that it is difficult to draw a conclusion about the error
in C,(y) for the plane swept wing of finite span from the results for the wing of infinite span. This is due to the
different systems of trailing vortices; the trailing vortices on the finite wing are, at least for most of the outer

16



part of the wing, of opposite sign and of greater strength than those for the wing with infinite span. The effect
of ignoring the stagger of the trailing vortices varies with the aspect ratio of the wing and the spanwise station
considered. We can, therefore, not expect to obtain a generally applicable estimate about the error in the C,
distribution derived by the Standard Method.

In the present Report, we examine only the C; distribution of the plane wings of constant chord and aspect
ratio 6 at an angle of incidence. The fact that we do not yet have a solution for the thin lifting swept wing,
which is correct at the centre section and close to the tip, need not be too important for the present purpose.

Using an approximation to the load distribution by a vortex lattice, Carr—Hill (unpublished work) has written
a computer program for determining an approximation to the load distribution of a wing of given shape.
Sells (unpublished work) has used this program and has derived a first approximation I'Y(x, y) to the load
distribution of a plane wing of constant chord, aspect ratio 6, swept by 45 degrees. Using his computer program,?
Sells has then computed the downwash related to [*)(x, y) and thus derived values for the error in the down-
wash, Aw(x. y), at the control stations. By means of the Carr-Hill program, a modification of I*{(x, y) can be
found and the accuracy of I'¥(x, y) = I'Y(x, y) + Al(x, y) can be checked by computing the downwash. Sells
has used various arrangements of the chordwise and spanwise control stations. He found that two steps of the
iteration were sufficient to produce the spanwise distributions of the lift coefficient and the chordwise position
of the aerodynamic centre within an accuracy sufficient for the present purpose. (The various symbols in
Figs. 30 and 31 refer to different arrangements of control stations; one particular symbol refers to one set of
control stations.)

We have already mentioned in Section 3.2 that, for wings of rectangular planform, Sells'® has written a
program to derive the load distribution for a wing of given shape, where he uses also an iterative method but
with a different technique for determining an approximate load distribution for a given downwash distribution.
For a plane rectangular wing of aspect ratio 6, the spanwise C, distribution is given in Ref. 10.

In Figs. 29 and 30, we compare the results obtained by Sells with those from the Standard Method. Fig. 29
demonstrates the known fact that the Standard Method gives, for the unswept wing, values of C; which are
everywhere too high.

For the special case of a plane rectangular wing, Brebner'? has shown that one can interpret the change
in chordwise load distribution near the tip as becoming similar to that on wings of small aspect ratio. When the
sectional lift slope, a, is locally modified, the Standard Method produces a C, distribution which is close to
the exact one.

We can derive the ‘small-aspect-ratio effect’ from the modified downwash equation (29). If we were to use
equation (29) with

g(x) = a + bx + cx?, (57)

then we would ebtain for the plane rectangular wing at an angle of incidence, o = 1, the load distribution

lx,y) = '/ ! ; x[l — agly) — a0 fMa + 3B + 30)] — A4 /x(1 — x)o f(b + 3¢} — 4x/x(1 — X fe  (58)

with
Cp =2mll — ayp ~ o0 f(a + 3b + 30, (59)
_ %0 f G + 15¢)
Yoo = 4|:I [ — oy —of(a+3b+3¢) | (60)
where

oy} = o=

1 dCyly) dy
8nj_s dy y-—y

differs, of course, from the a;, derived with f(y} = 0. For the function g(x) given by equation (30} we obtain
. 5.
X, = %[1 - M_]_ 61)

1 — ool +31)
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This means that the aerodynamic centre is forward of the quarter chord similar to the position on a wing of
small aspect ratio.

For a wing of 45 degree sweep, 4 = 6, Fig. 30 shows that the Standard Method gives an overestimate of the
lift over the inboard part of the wing and an underestimate over the outboard part of the wing, The difference
between the approximate and the exact values of the lift coefficient over the inner part of the span is somewhat
similar to that shown in Fig. 25 for the wing of infinite aspect ratio. The fact that the Standard Method pro-
duces too low values for the lift coefficient over the outer part of the span can be explained by the fact (see for
example Figs. 16 and 17) that the Standard Method assumes too large a contribution to the downwash from
the trailing vortices of a swept wing. For the plane wing at an angle of incidence, the trailing vortices near
the centre section may be of opposite sign to those ori the outer wing, but their strength is so small that we can
expect that ignoring the stagger of the trailing vortices produces too large a downwash, i.e. too small values
of C, for most of the span. It seems that one cannot generally improve matters by using instead of o;,(y) (or
2na;o(y) as in Ref. 2) the term 2n(y)a,o(v) (as suggested in Ref. 1) since this would still further increase the down-
wash from the streamwise vorticity near the wing tips.

[t is also doubtful whether one obtains for a wing of given shape an improved estimate of the C,(y) distri-
bution if one replaces the sectional lift slope of the Standard Method by the term derived from the modified
downwash equation (37) (i.e. from equations (54), (27), (18); see Fig. 24), because the error in a(y) has generally,
at least inboards, an effect of opposite sign to the error in the downwash from the chordwise and trailing
vortices. For the outer part of the wing, it is certainly not worthwhile to introduce a better estimate for the
sectional lift slope of a swept forward wing without an improvement in the estimate of the downwash from the
trailing vortices.

To examine how well the Standard Method estimates the type of chordwise load distribution, we have
plotted in Fig. 31 the chordwise position of the aerodynamic centre, £,.(y), derived by the Standard Method
and the values derived from the load distributions I?X(x, y), computed by Sells. The agreement is good for the
inner part of the span. For the outer part of the span, the aerodynamic centre is further forward than for the
central part of a swept forward wing of infinite aspect ratio (which corresponds to the estimate of the Standard
Method). This means a ‘small-aspect-ratio effect’ is again present near the tips of a swept wing, similar to the
one mentioned above for the rectangular wing.

When we modify the sectional lift slope a(y) near the tips of a swept wing to represent the small-aspect-ratio
effect, then, on the outer wing, the difference between the exact C,(y) and the approximate C,(y) is larger than
without the modification, as shown in Fig. 30, in contrast to the beneficial effect of the modification for an
unswept wing shown in Fig. 29. The discrepancy is of course affected by the poor estimate of the downwash
from the chordwise and trailing vortices for a swept wing, This means again that we should refrain from modi-
fying the sectional lift slope of the Standard Method without improving the estimate of the downwash from
the trailing vortices.

With the aim of giving some further examples for the magnitude of the possible error in the C, values derived
by the Standard Method, we have considered the warped wings discussed in Section 3. We have determined
the AC,(y) distributions of the wings which have the warp z(x, y) for which

_ az(g; ) _ Aw(x, y)

= Wexact(x’ y) - wappmx(xﬂ )’) (62)

with w,,.,, given by equation (25).

For determining the AC,(y) distributions we have used the approximate method, i.e. equation (25). (We
have used equation (25) and not equation (26), i.e. used ¢, = ¢ because the load distributions (1) to (4) are such
that at the centre section ¢, = ¢.) The unknown load distribution Al(¢, y) is written as the sum of two terms

AE, y) = AL(C. y) + Aly(E. y). (63)

The first term is the solution of the equation for the ‘bound’ (spanwise) vorticity (see equations (7) and (12)):

1 '
1 J AlE ) dé¢ +tam(/l(y)¢>)

drcos ¢ Jo F—¢ " dcose A&, y) = Aw(C, y) (64)
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with A(y) from equation (24). The solution of this equation is known, see equations (38) and (39). Using the
relation

J“(l——,x’)" dx’/= n__m fl—x"’ 65)
0 x x~—x' sinmn  tan Tcn\ x
it is found that the lift coefficient related to Al is
1 f n(y)
AC, (y) = 4cos ¢ cos A¢ f Aw(é, y)(—l-—g) dé (66)
o _
with
1 Mg
n(y) = 2[1 n :l 67

Al (& y) is the load distribution which satisfies equation (12) for wi(l, y) = —Aw(y). Using the relation

1 - n
f (1 x)dx= m_ (68)
o | X sin nm

it is found that the lift coefficient related to Al (&, y) is

AC,,,(y) = —Ad;p(yWnn(y) cos ¢, (69)
where Agy, is related to the lift coefficient
AC(y) = ACL(y) + ACL,,(¥) (70)
by equation (20). To obtain AC,(y) we have thus to solve the equation

dAC(y) dy

’ I (71)
ay y-—y

1 S
AC{y) = AC,,(y) — 4=n(y) cos ¢§; f )

(This equation differs somewhat from the corresponding relations of Ref. 2, (i) because we have ignored the
effect of finite aspect ratio on n(y), i.e. the difference between ny(y) and n(y) of Ref. 2; (ii) because we have used
equation (25) instead of equation (26). If we were to use equation (26) then AC,, and AC,  from equations
(66) and (69) would be multiplied by cos ¢,(y)/cos ¢ = cos (1¢). The factor cos (A¢) is nearly one except close
to the centre section and the tip.) Equation (71) has been solved by Multhopp’s method (see, e.g. paragraph
VIIL19 of Ref. 14).

Values of AC,,(y)/2n are plotted in Fig. 32 for the rectangular wings of Section 3.2 and in Fig. 33 for the
swept wings of Section 3.3; we have divided AC,, by 2z since C,(n = 0) = 2z for the basic wings. To obtain
values of AC,, close to the tip of the rectangular wings, we have used the exact values of w(x, y) at # = 0-95 and
n = 1 given in Ref. 9 for the load distributions (1) and (2). For the load distributions (3) and (4), we have refrained
from extrapolating AC;, towards the tip because we have an insufficient number of values and because AC,
varies so rapidly on the outer wing, due to the rapid variation of the basic C, distribution. For the swept wings
and load distributions (1) and (2), we have extrapolated AC, towards # = 0 and # = 1, as shown in Fig. 33.
(We have not chosen the logarithmically infinite value at # = 0 which would correspond to the infinite values of
Wl &1 = 0, z = 0) and Aw(£, n = 0), because such infinite values would not arise for practical wings of
given shape.)

The values of AC; (), computed from equation (71), are also plotted in Figs. 32 and 33.

Fig. 32 shows that, if we were to compute by the Standard Method the load distribution of the rectangular
wing which has the exact downwash related to the load distributions (1) or (2), then we would obtain values of
C;(n) which are everywhere too high. The error is thus of the same sign as for the plane wing at an angle of inci-
dence, see Fig. 29. For the cambered wings, the error varies less across the span than for the plane wing; the
maximum value of AC,(n)/C,(n = 0) is largest for the plane wing where it is about 0-08 near n = 0-9.
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For swept cambered wings, the C, values derived by the Standard Method are too low for most of the wing,
as is also the case for the plane wing at an angle of incidence, compare Figs. 30 and 33. The magnitude of the
error over the outer wing is larger for the cambered wings ; this feature depends of course on the type of span-
wise loading,

5. Conclusion

The comparisons made in this Report between the downwash computed by the Standard Method and
results from exact linear theory suggest that the Standard Method represents the effects of sweep and finite
aspect ratio qualitatively fairly well, but that it does not give the details with sufficient accuracy. We have not
been able to suggest a modification of the simple procedure of the Standard Method except for the design
of the inboard part of such wings, where the effect of the chordwise and trailing vortices is relatively small.

In the preliminary stages of designing a swept wing, the Standard Method is thus useful for understanding
the effects of changing the shape of a wing and for finding major errors in more elaborate computer programs;
in the later stages, it seems essential to compute the downwash produced by a given load distribution by a
more accurate procedure, for example by Sells’ program.?
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i(x, y)
Cul)

LIST OF SYMBOLS

Aspect ratio

Wing chord, taken as unity

Semispan

Rectangular coordinate system, z-axis normal to wing plane
=x —|yltan ¢

Position of aerodynamic centre

Position of centre of pressure

=y/s

Velocity of free stream, taken as unity

Component of perturbation velocity parallel to z-axis, positive upwards
= — v,, downwash

Downwash in twodimensional flow

Downwash induced by streamwise vorticity

=dw(x = w0,y,z =0)

See equation (16)

Leading-edge sweep

Angle of sweep of bound vortices

= — AC,(x, y), coefficient of pressure difference across the wing
Local lift coefficient

See Section 4.4, equation (66)

See Section 4.4, equations (69) and (70)

Sectional lift slope

Lift slope of infinite sheared wing

Local strength of spanwise vorticity

Circulation ¢

_U
—5[1 l(y)fr/Z]

Interpolation function, see equations (12), (14) and (18)

See equation (34), difference between the downwash of a finite swept wing and of a swept wing of
infinite aspect ratio with uniform load distribution across the span and with the same chordwise
load distribution as at the spanwise station y of the finite wing

See equation (335)

= j k(¢,n)dg
0
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APPENDIX
Induced Incidence for the Load Distributions (3) and (4) of Table 1

The induced incidence a;4(y) is according to equation (20) given by

L [T AC,00ey) dY
aio(y) - g;i_J\_s dy/ y _ y;‘
For a wing of constant chord:
1 ["1dCy(y) dn
() = ) A-
alo(rl) 4TEA J-l dﬂ; 71 _ r’; ( 1)

For the load distributions (3) and (4) of Table 1

C,=2n for0<lyl <08

Inl — 08)\*
= 1 —
C,=2=n ( 03
= 10n/— n* + 1.6y — 0-6 for 0-8 < |y} < 1. (A-2)
From equations (A-1) and (A-2) we obtain
5 1 [ n+08 75— 0-8:‘ dy’
ai ) =37 2 - ' ’ .
ol 24 Jo.s n+n n-n 1 /-n*+ 16y — 06

Evaluation of the integral gives for |y < 0-6:

o) = 3 {7: 08 1 [E sin~! 02 }
i0 24 W% + 164 + 06/ 2 08 + 7

for 06 <yl < 1:

o ("I)*i{n— 08 + [E-—sin‘lm——o2 ]—i—
0 24 /n® + 167 + 06| 2 08 + 7
08 — g |0-8 — #l }

+ fog
=+ 16 —06 02+ /- + 16y — 06

For A = 6, values of o;4(1) have been computed and are tabulated in Table 1.
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TABLE 1

Load Distributions Considered

T —
(1) Ixy) = —?ﬁl—#
N2
Wap cos ¢
%o = = 0262

24

@ Ix.y) =16/ - &) /1 - #*
_ 22¢ - 1) /1 —;12

cos ¢

2D

%o = 0262

3) Ix,y) =4 /L:{:E for 0 < |yl < 08

1
Wsyp = m for 0 € |T’” < 08

1 I_Whos

2
Wyp = E(/) 02 ) for |y > 0-8

%o = see below.

4 Ilx,y) =16./&1 — £) for 0 < || < 0-8

— 0812
Ix,y) = 16 /&1 = &). /1 — (l'” 0.208) for || > 0-8
228 - 1)
Wyp = m’— for0 < ll’]l < 08
2 -1 Il — 081
Wop = cos 1 - 02 for #| > 0-8
o, = see below.
1 005 0.1 02 0.3 Q0.3 0.7 08 09
%io
for (3) 0-1750 0-1765 0-1826 0-1936 0-2436 0-3880 0-7020 10162
and (4)
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94

Downwash on Rectangular Wing Computed by Sells’ Program>

Load

distributi 0 0-0381 0-1464 0-3087 0-5 0-6913 0.8536 0-9619 1
istribution n
(1) 0-05 1.233 1-238 1-251 1-268 1.287 1-304 1.317 1.325 1-328
0-1 1.229 1.234 1-247 1-265 1.284 1-301 1-314 1-322 1-324
02 1.213 1.218 1-232 1-250 1.270 1.287 1-300 1-308 1-311
03 1.186 1-191 1-205 1-224 1.245 1-263 1-277 1-285 1.288
05 1-092 1-098 1-115 1-139 1-163 1-185 1-200 1-210 1-213
07 0925 0934 0959 0992 1.027 1-055 1-075 1-086 1-089
08 0-792 0-805 0-840 0-886 0-931 0966 0-989 1-001 1-005
09 0-582 0-606 0-670 0-746 0-813 0-861 0-889 0901 0-905
(2) 01 —-1.772 —1-622 —1-183 ~0-523 0-258 1-041 1-704 2-150 2:304
03 —1-694 —1-550 ~1-128 - 0493 0-258 1-012 1-649 2:077 2-226
05 —1.528 —1.397 — 1011 ~0-430 0-258 0949 1-533 1-924 2:060
0.7 —1250 —1-140 —~0-816 -0:325 0-259 0-845 1-337 1-667 1-780
09 —0-786 -0-715 —0-498 —-0-156 0-262 0-681 1-024 1-244 1-318
3) 0-05 1-167 1-168 1-172 1177 1-183 1-189 1-194 1.197 1-198
0-1 1-168 1-170 1-173 1-178 1.184 1.190 1-196 1-199 1.200
02 1-174 1-175 1-179 1-185 1.191 1-198 1-204 1-207 1-209
03 1.183 1-185 1-190 1-196 1.204 1.212 1-219 1.223 1-225
05 1-223 1-226 1-234 1.246 1-260 1-274 1-285 1.292 1-294
0.7 1-333 1.342 1-365 1-402 1-443 1-480 1-508 1.524 1.530
09 1-484 1-567 1-783 2.051 2295 2:474 2-582 2-634 2-648
“) 0-05 —1-834 —1-686 —1-251 -0-599 0-172 0-944 1-599 2-040 2-193
01 —1-833 —1-684 ~1-250 -0:597 0-173 0-945 1-601 2-042 2-195
02 —1.829 —1-679 —1-245 ~0-592 0-179 0952 1.608 2:049 2:203
03 —1-821 - 1671 -1-236 -0:582 0-190 0964 1-622 2-063 2217
05 —1.788 —1-638 —1-199 —0-540 0-238 1.018 1-681 2-126 2-280
07 —1.710 —1-555 —~1.104 —0-423 0-384 1-192 1-876 2-334 2-492
09 —1-348 —1-191 —-0-711 0-065 1025 1.986 2:765 3-252 3412
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TABLE 3

Downwash on 45 degree Swept Wing Computed by Sells’ Program’

Load 0 0-0381 0-1464 0-3087 05 0-6913 0-8536 09619 1
distribution
(1) 005 2-600 2.595 2551 2451 2:320 2191 2.093 2039 2023
01 2084 2.081 2066 2033 1-986 1-940 1907 1-889 1-884
02 1727 1.728 1-731 1732 1732 1732 1733 1-735 1735
03 1543 1-547 1-557 1572 1-589 1-605 1619 1628 1-631
05 1-229 1-237 1-259 1-291 1-329 1-365 1396 1-416 1-423
07 0-819 0-833 0871 0927 0992 1057 1110 1-145 1-157
08 0-519 0-538 0-592 0672 0-765 0-856 0-930 0977 0993
09 0046 0081 0179 0-323 0-483 0-625 0-732 0-796 0817
) 01 —2143 | —1927 | -1308 | —0398 0-647 1672 2:542 3132 3338
03 ~2442 | —2248 | —1678 | —0816 0212 1254 2147 2752 2962
05 ~2346 | —2173 | —1665 | —0888 0050 1:009 1-840 2-406 2604
07 ~2051 | —1915 | —1512 | —0884 | —0.08 0-704 1-420 1-914 2088
09 —1483 | —1421 | —1216 | —0857 ~0:356 0-221 0-760 1-144 1-284
(3) 005 2.587 2:580 2:529 2419 2:277 2137 2030 1-970 1952
01 2.088 2082 2060 2015 1955 1896 1-852 1-827 1-819
02 1.786 1-784 1775 1760 1743 1726 1713 1-705 1703
03 1682 1-681 1678 1672 1666 1660 1-656 1-654 1-653
05 1-611 1-611 1-612 1614 1617 1620 1624 1-627 1628
07 1609 1-611 1-619 1632 1652 1-678 1-704 1-723 1730
09 0912 0-991 1-212 1-533 1-886 2193 2413 2:541 2582
@) 005 | —1873 | —1629 | —0940 0-036 1-089 2042 2.803 3323 3507
01 ~2169 | —1951 ~1328 | —0416 0-627 1646 2:509 3093 3297
02 —2434 | —2225 | -1621 | —0717 0-348 1413 2318 2927 3139
03 —2544 | -2335 | —1729 | -0819 0-256 1-332 2247 2863 3077
05 —2624 | —2414 | —1805 | —0889 0-194 1-280 2:203 2824 3039
07 ~2636 | —2425 | —1812 | —0887 0208 1309 2:250 2884 3104
09 2423 | -2266 | —1716 | —0945 0-163 1-383 2.482 3241 3508




Coefficients in Equation (37)

TABLE 4

f g 7h

30° 45° 60° 30° 45° 60° 30° 45° 60°
0 022 03 0-42 05 075 0-9 0-2 03 05
0-05 0-141 0-162 0-17 0-44 0-65 0-76 0-181 0-275 0-42
01 0-083 0-090 0-075 0-39 0-57 0-645 0-162 0-25 035
0-15 0-053 0-050 0-034 0-345 0-50 0-545 0-145 0-226 029
02 0-035 0-030 0.016 0-315 0-44 0-465 0-125 0-205 0-24
03 0-017 0011 0-004 0-260 0-355 0-350 0-099 0-160 0-165
0-4 0-009 0-004 0 0-218 0-287 0270 0.075 0-120 0115
05 0-005 0-001 0-188 0-239 0216 0-058 0-090 0-081
0-6 0-003 0 0.163 0204 0-180 0.045 0-068 0-058
0-8 0-001 0-129 0-155 0-135 0-029 0-042 0-035
1.0 0 0-106 0124 0-108 0-020 0028 0-023
1-5 0-071 0-083 0072 0-010 0013 0010
20 0-054 0-062 0054 0-006 0-008 0-006
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