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Summary. 

Certain effects of leading-edge vortices on the surface pressures over a delta wing undergoing oscillatory 
deformation were investigated in a low-speed wind tunnel. 

The model, consisting of a sharp-edged delta plate, could be deformed in a particular mode of chord- 
wise bending over its forward portion only; the deformation could be applied either as a static condition 
or as a continuous variation in the form of a sinusoidal oscillation. 

Surface pressures across the span were measured at two chordwise stations on the stationary part of 
the wing, the model being set throughout at a mean incidence of 5 degrees to ensure the presence of 
moderately strong vortices. The range of parameter variation was sufficient for the measurements to 
show the separate effects of frequency parameter and amplitude of deformation. 

Spanwise distributions of Fourier harmonic components derived from the measured oscillatory 
pressure changes were examined in relation to the behaviour of the vortices; non-linearities are present 
in the relationship between pressure change and deformation, and analysis of the results indicates the 
magnitude of the harmonics above the fundamental that are present in the pressure variations at spanwise 
positions close beneath a vortex. The fundamental components of the pressure variations are compared 
with the results of calculations based on lifting-surface theory. 

Within the limitations of the experiments (pressure measured only downstream of deformation) an 
empirical relationship involving a convective time-delay has been established between the unsteady 
pressures for an oscillatory deformation and the steady pressures for static deformations; the experi- 
mental conclusions are examined in relation to slender-wing theory, and more general implications of 
the results of the experiment are discussed. 
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1. Introduction. 

At least two new factors enter into the aeroelastic behaviour of slender delta wings as compared with 
the behaviour of high-aspect-ratio wings. Firstly, the predominant mode of wing deformation is chord- 
wise bending; this involves changes of camber. Secondly, there are special effects arising from the 
leading-edge vortices which will be present above the wing for some values of incidence (Fig. 2). At the 
time the present work was started an investigation into the effects of oscillatory bending on the pressure 
distribution of a slender wing in the absence of leading-edge vortices was already being undertaken and 
has now been published (Refi 1); the present investigation also involves chordwise bending but here the 
emphasis is on the special effects arising from the presence of vortices. 

Some appreciation of the importance of the effects of leading-edge vortices can be obtained by a 
consideration of the upper-surface pressure distribution with a pronounced suction peak beneath the 
core of each vortex. Any change of incidence or deformation of the ~ing that causes a vortex to change 
its position relative to the wing is liable to lead to large non-linear changes in the local surface pressures. 
Another characteristic of vortex flow is the convection of vorticity above the upper surface of the wing. 
Under steady cortditions vorticity is shed at a steady rate from the leading edges and is convected rear- 
wards in the cores of the vortices. Under unsteady conditions, with incidence or deformation changing 
with time, the rate at which vorticity is shed varies so that there are variations in the vorticity convected 
over the wing which, in turn, lead to changes of local surface pressure. The experiments were intended 
to throw light on the non-linearities in the pressure variations and on the question ofconvected pressure 
changes. 

When the model was designed there were no pressure transducers of suitable size and sensitivity that 
would function satisfactorily when attached to an oscillating body. This led to a choice of model with 
only the forward portion deformable, the pressures being measured only over the rigid rearward portion. 
The measurements consisted of spanwise pressure distributions at each of two chordwise positions so 
that any convective behaviour could be examined. For simplicity, both in constructing the flexible 
portion and in interpreting the pressure distributions, the model was designed to have a flat upper surface 
in the undeformed state. 

2. The Model Win9. 

The model delta wing was essentially a flat triangular-shaped plate having a 20 deg semi-apex angle 
and a centre-line chord of 1.22m [-4 ft] ;* principal dimensions together with some details of construction 
are given in Figs. 3 and 4. The flat upper surface of the plate was constructed from a single sheet of 
Durestos, part of which was bonded to a rigid brass plate to form the rear stationary portion of the model. 
The forward and flexible portion of the Durestos sheet was built up to the same thickness as the rear 
portion by attaching balsa wood to the lower surface with its grain running normal to the surface to 
minimize resistance to bending. Sharp leading edges were provided by chamfering the lower surface 
at 20 deg normal to the edge. 

The model was mounted on a rigid frame in the NPL 9 ft x 7 ft North Wind Tunnel (2'7m x 2.1m). 
It was provided with a spanwise axis at the mid-chord position and was held by an extendible strut at 
the rear for the adjustment of incidence; these features can be seen in Figs. 3 and 4. Also shown in Fig. 3 are 
details of the mechanism by which the cyclic distortion in longitudinal bending was imposed on the 
forward part of the model. Two forcing points on the centre-line of the wing were found to be necessary 
in order to avoid additional distortion due to aerodynamic loading; these were connected by a linkage 
designed to impose a mode corresponding to the steady mode of distortion obtained in 'still' air with 
the single forward forcing point. The linkage was driven by a forcing rod passing through the floor of 
the tunnel and connected to a reciprocating mechanism below. The amplitude of the motion could be 
changed by adjustment of the throw of an eccentric drive; the axial motion of the forcing rod was 
monitored by a linear-displacement transducer. The length of the forcing rod could be adjusted to set 
the mean position of the flexible portion of the wing. In the setting chosen as the undistorted condition, 
the upper surface was flat to within about 0"5 mm. With maximum deformation, measurements of surface 

*Square brackets are used when the definitive value is in British, and not SI, units. 



height along selected spanwise lines varied by no more than 0.5 mm. 
'Wind-off' modes of deformation of the wing surface were obtained from measurements made at the 

approximate projected position in plan of the leading-edge vortices at a wing incidence of 5 deg. Measure- 
ments of the model deformation for vertical deflections of the driving rod of 2.54 mm [0"1 in] and 5"08 mm 
[0.2 in], were both found to give the mode of distortion that is shown in Fig. 13. It can be seen that, when 
deformed, the wing remains flat ahead of the forward forcing point. 

Two spanwise stations on the fixed part of the wing at chordwise positions 0.583 Co and 0"833 Co were 
selected for pressure plotting and are denoted by ~1 and 42 respectively. 

Flush-diaphragm pressure transducers mounted in spanwise slots in the lower surface (Figs. 4 and 5) 
could be positioned to coincide with 0'4 mm holes drilled through the upper surface of the model, the 
surface holes being filled with wax when not in use; the volume of air over each transducer diaphragm 
was less than 60 mm 3. Alternative fittings were provided for connecting the surface holes to a tilting 
liquid manometer. For each of the two spanwise stations, 17 hole positions were chosen with close 
spacing in the regions of steep spanwise pressure gradient. 

It will be clear, from the description above, that pressures could be measured only on the upper surface 
of the wing. Thus, pressures corresponding to a 'suction' surface were measured with the wing at positive 
incidence. Pressures corresponding to a 'pressure' surface were obtained in separate experiments with 
the wing mounted at a negative incidence. 

3. Instrumentation for Oscillatory Pressure Measurements. 
A block diagram of the instrumentation is given in Fig. 6. The pressure transducer (Type SE 76) which 

was a flush-diaphragm differential instrument was the only commercially-available type of suitable size 
and sensitivity; details of its performance and calibration have been given elsewhere. 2 Transducer 
output was recorded on a U.V. recorder. The sensitivity of the system was such that a 1 cm deflection 
of the trace represented 0-28 kN/m 2 ; the recording galvanometer limited the range of frequency response 
to 0 to 130 Hz. 

Special transducer mountings (Fig. 5) were designed to minimize structural distortion to which the 
output was highly sensitive. To avoid transducer distortion arising from wind loads on the electrical and 
pressure leads it was necessary to shield these parts from the air stream, although this device contributed 
further to an already appreciable interference effect from the presence of the transducer when measuring 
pressures close to the leading edge. 

It was found that the transducer was sensitive to small temperature changes, a change of 1 deg C being 
equivalent to a pressure change of 0.14 kN/m 2. To cope with possible variations of tunnel temperature, 
which could vary by as much as 5 deg C during a run, it was necessary to record with the pressure output, a 
signal from a thermocouple fixed to the case of the transducer. 

To provide a signal proportional to the instantaneous deformation of the model and suitable for 
recording on the U.V. recorder, an SE 92 variable-reluctance linear-displacement transducer was fixed 
to the drive rod beneath the tunnel. A further record of the phase of the forcing motion was provided by 
pulses from photo-transistors responding to light interrupted by a toothed wheel mounted on the 
rotating drive shaft; these pulses were at intervals of 3.6, 18 and 36 deg of the cycle and were identifiable 
by different heights on the record. 

The frequency of oscillation of the forcing mechanism, which was controlled manually, was indicated 
by feeding the 3.6 deg pulses to an integrating pulse counter. Timing lines at 0-1 second intervals were 
also recorded as a more accurate means of deducing frequency during subsequent analysis of the records; 
an example of a chart record is shown in Fig. 7 where the mean curve for the oscillating signal has been 
drawn by hand. 

4. Preliminary Observations and Measurements. 
To define a datum condition representing an effective zero incidence of the undeformed wing, a flow 

condition with attachment everywhere along the leading edges was sought. An examination of surface 
flow patterns using the paraffin and titanium dioxide technique showed that, for wind speeds of 30 m/s 



[100 ft/sec] and 60 m/s [200 ft/sec], such a condition could not be reached, presumably owing to the 
effective camber of the non-symmetrical wing section and the interference effects of the model support. 
However, when the upper surface was set at an angle to the horizontal of - 1 . 5  deg, the flow patterns 
indicated that the flow was attached over most of the wing. Based on these observations, geometric 
angles of + 3.5 deg and -6-5  deg were chosen to represent the effective incidences corresponding to an 
ideal flat plate at + 5 deg and - 5  deg respectively. 

Preliminary observations of the surface flow using the same technique at the nominal incidence of 
+ 5 deg indicated that there was an area of the surface over which the boundary layer appeared to be 
laminar. To ensure a turbulent flow over the whole of the upper surface, carborundum grains were attached 
to the surface over a small triangular-shaped area near the apex, as can be seen in the oil flow photographs 
(Figs. 9 to 12). 

The photographs of oil flow patterns on the wing at a mean incidence of + 5 deg with the wing un- 
deformed (Fig. 9); bent upwards (~0= +0.0262, Fig. 10) and bent downwards (~o=-0"0262, Fig. 11) 
were used to estimate the spanwise locations of the leading-edge vortices on the basis that their axes lay 
directly above the points of inflection in the oil flow lines. For  the bent-up wing the vortex is inboard of 
its position when the wing is undeformed which in turn is inboard of the position when the wing is bent 
down. For the maximum bent-down condition the local incidence at the apex is close to zero and the 
pattern indicates that the vortices start from a position slightly downstream of the apex. 

Flow patterns were also used to investigate possible interference effects on the upper surface flow 
arising from the disturbance caused by the pressure transducer attached to the underside of the wing. 
For the flow pattern shown in Fig. 12 a transducer was fixed in a position (r/= 0-9) close to the leading edge 
on the lower surface at Station 41. From the flow pattern it is clear that a transducer at an outboard 
position at Station ~1 causes appreciable flow disturbance at Station ~2; for this reason no pressure 
transducer was attached at Station ~1 when measurements were being made at Station 42. Although 
from the photograph there is little evidence of interference to the flow at Station 41, it was subsequently 
shown by manometer readings that there was a measurable disturbance to the surface pressures but only 
outboard of the vortex. 

5. Steady Pressure Measurements. 
Initially, steady pressure distributions free of transducer interference were obtained from the mano- 

meter. These measurements were made at the nominal values of incidence _+ 5 deg and five settings of 
wing distortion. They were then repeated with a dummy transducer to produce the interference that 
would be present when the oscillatory measurements were made. The two resulting sets of spanwise 
pressure distributions were used to provide corrections for interference on the pressures measured by 
the transducers. 

As will be described in the next section, the steady pressure measurements with the manometer also 
provided a datum for the calibration of the instrumentation used to measure the oscillatory pressures. 

6. Recording and Analysis of Oscillatory Pressures. 
Measurements of oscillatory pressures were obtained at each of the spanwise positions by means of a 

single transducer shifted from one position to another in turn. Because of the need for frequent recalibra- 
tion of the transducer system and to correct for the effects of temperature changes, the following routine 
was adopted. As illustrated schematically in Fig. 8, a chart record of a tunnel run consisted of traces from 
the pressure transducer and its associated thermocouple firstly for the steady undeformed wing, next 
for a quasi-steady variation consisting of a very slow oscillation ( f  ~ 0.2 Hz), and then for each of the 
higher frequencies used. Between the oscillations at each frequency the wing was brought rapidly to rest in 
the undeformed condition and the pressure recorded by short traces. Brief records were then made for the 
wing held stationary at the extreme amplitudes. 

The traces a, b, c etc., for the undeformed wing could be related to the pressures already accurately 
measured by the manometer. The oscillatory pressure traces could thus be corrected for temperature 
changes by means of a previously determined linear relationship between temperature and transducer 



output. Similarly, the traces D~ and D 2 could be related to the steady pressure changes due to deformation 
already measured by a manometer so that they provided an immediate check on the sensitivity of the 
transducer. This routine was repeated for each of the pressure holes in turn. 

In the sample portion of a recorded trace shown in Fig. 7, the higher frequency fluctuations apparent 
in the pressure record are attributed to the turbulent boundary layer. For the analysis of a record, a 
smooth pencil line was drawn through the trace and the displacement of this line from a fixed datum was 
measured at each 18 deg interval of the phase angle q~ (see equation (2) in Section 7.1) over at least four 
consecutive cycles. 

For pressure holes near to the leading edge, corrections were made for the interference arising from the 
blockage effect of the transducer below the wing. This was done by subtracting from the measured 
pressures for each value of q5 the difference between 'interference free' and 'with interference' values 
obtained under steady conditions, using the manometer as already described in Section 5. 

After converting the measured pressures to non-dimensional values of Cp and obtaining mean values 
over the four cycles, spanwise distributions of Cp were plotted and, for each of the 20 values of~b, smoothed 
curves were drawn. From these, interpolated values of Cp for 42 positions across the span for each of the 
20 values of ~b, together with the measurements of the pressure appropriate to the 'pressure' surface 
obtained in separate experiments were read off. Subsequently these were processed on a KDF 9 computer 
to give Fourier coefficients of ACp, the non-dimensional difference in pressure between the 'suction' 
and 'pressure' surfaces, and the related phase angles for each spanwise position. Spanwise sectional lift 
coeffcients were calculated in the same programme. 

In :he harmonic analysis of the results, components were calculated up to the 6th order but those 
above the 3rd order were always found to be too small to be of significance. 

Since the pressures for a very slow oscillation are related uniquely to displacement, the harmonic 
components obtained for one amplitude can be used to deduce harmonic coefficients for a quasi-steady 
variation of smaller amplitude. 

7. Presentation of Results. 

7.1. Nomenclature. 

The co-ordinate system is shown in Fig. 
dimensional co-ordinates 

I. A position on the wing surface is specified by the non- 

~=X/Co, Co being the centre-line chord, 

rl = y/s , s being the local semi-span. 

The upward displacement of a spanwise section of the distorting portion of the wing is 

z=zoV(~) (1) 

where Zo is the displacement of the leading apex and F(~) the mode of deformation referred to the apex 
so that F(o)= 1. Under cyclic conditions the apex displacement is related to an angular co-ordinate qS, 
representing a rotation in the forcing mechanism, and an amplitude 2 o by the equation 

z0 = Zo cos 4), (2) 

which serves for a quasi-steady variation. For an oscillation of frequency co, ~b = cot and the apex deflection 
is then 

Zo = ~'o cos ~ot. (3) 

The motion of a general point on the deforming portion is 



z = 5 cos ~ot = 50 F(~) cos o~t (4) 

for an oscillatory condition, and 

for a quasi-steady variation. 

z = ~ cos ~b = 5o F(¢) cos ~b (5) 

where 

o r  

AC e = Ao + A 1 cos o t  + a 2 cos 2~t + . . .  

+B~ sin cot+B 2 sin 2wt+ . . . .  

A o - R o ,  A t - R  1 cosel ,  A2=R2cos/3  2 ~. 

B 1 - - R  ~ sin ex, Bz=-R2 sin e2 

For a quasi-steady variation defined by equation (2) the pressure distribution must of necessity be 
symmetric about ~b = 0 and ¢ = z~. Thus, only the cosine terms appear in the Fourier series and we have 

ACp=So+S 1 COS q ~ + S  2 c o s  2q~+ . . . .  (10) 

where the coefficients S, correspond to the coefficients A, in equation (9) and Is,[ is the quasi-steady 
equivalent of R, in equation (8). 

A measure of the harmonic distortion in the cyclic variation of pressure is afforded by 

oo oo 

(11) 

or, for a quasi-steady variation, by 

H =  1 ~ 
n = 2  

(12) 

(9) 

The measured surface pressures are expressed as non-dimensional coefficients 

c e = ( p - p o ) / ½ p v  2 , (6) 

where P0 is the pressure in the undisturbed stream. The resultant loading from the two surfaces of the 
wing is 

AC e = (p, - p,)/½p V 2 = C e , -  Cp. (7) 

which when positive corresponds to upward lift. 
For  an oscillation defined by equation (3) the cyclic variation in the loading a t  each position on the 

wing can be expressed as a Fourier series in either of the following alternative forms : - -  

ACp = Ro + R 1 cos (wt - e ~) + R2 cos (2o9t - e2) + . . .  (8) 
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The fundamental components of pressure in phase and in quadrature with the wing motion are 
normalized with respect to frequency and amplitude of apex deflection, thus 

Z l  

al =70 (13) 

where the non-dimensional amplitude 

and the frequency parameter 

9 1  

bx=v.~o (14) 

¢o=~o/eo 

v =COco/V. 

7.2. Parametr ic  variations. 

For a delta wing of particular shape oscillating in the given mode of deformation about a constant 
mean incidence, the surface pressures are expected to depend on the following quantities :-- 

Co, go, x ,  y, p, #, V and o9. 

Dimensional analysis then shows that the non-dimensional pressure coefficient ACp will be dependent 
on the following non-dimensional parameters :-- 

Reynolds number 

Frequency parameter 

Deformation amplitude 

Chordwise position 

Spanwise position 

R e  = p Vco/IZ , 

v = COCo/V, 

~o=~o/eo, 

=X/Co 

,1= y/s  . 

Thus the general form of the cyclic pressure variation can be written in terms of Fourier components 
as follows :-- 

oo 

} 
n = O  

(15) 

The aim of the experimental programme was to throw light on the functional dependencies in the right- 
hand side of the above equation. 

Measurements of spanwise pressure distribution over the region 0 < q <  1 were made at each of the 
two chordwise positions 

Station ~1 (=0"583) 



Station 42 (=0.833), 

for each of two amplitudes of deformation 

'small amplitude' (o = 0-0131 

'large amplitude' ~o=0.0262. 

Variation of frequency parameter was obtained by changes of frequency and wind speed; a change of 
wind speed provided a change of Reynolds number. The following table shows the combinations used 
during the measurements. 

V 

30 m/s 

60 m/s 

(D 
f= 2zc 

0 H z  
2 
4 

0 
4 

0 
0"5 
1.0 
0 

0-5 

Re 

2"56 x 10 6 

5"11 x 10 6 

7.3. Mode o f  deformation and local incidence. 

All the measurements refer to the wing with a nominal incidence, % = 5 deg. The mode of deformation, 
as defined by equation (1) is given in Fig. 13. 

The local incidence, or slope of the wing, is 

as(~) ~ % - dz /dx  = ao - ((o) F'(~). (16) 

Distributions of this quantity for steady upward and downward deformations are shown in Fig. 14. 

7.4. Results and analysis. 

Values of ACp were obtained for the parametric combinations given in the following table :-- 

Parametric condition 

Amplitude Frequency I Reynolds number 
~o=Zo/Co v Re x 10 -6 

'Large amplitude' 
0"0262 

'Small amplitude' 
0-0131 

0 
0.5 
1.0 
0 

0-5 

0 
0.5 
1.0 
0 

0-5 

2"56 

5"11 

2"56 

5"11 



Comprehensive tabulated results, if required, are available from another document*. 
However, for the purpose of the discussion in Section 8 many of the results are displayed graphically. 

In order to bring out salient points, the following forms of plotting are used :-- 

(i) Pressure at a given position as a function of wing deformation for steady and unsteady conditions 
(Fig. 15) 

(ii) Spanwise pressure distributions for a static deformation (e.g. Fig. 17) 
(iii) Instantaneous spanwise pressure distributions for oscillatory conditions (e.g. Fig. 31) 
(iv) Spanwise distributions of harmonic components of the pressure for oscillatory conditions and 

quasi-steady variation (e.g. Figs. 19 and 20) 
(v) Polar plots of amplitude and phase of harmonic pressure components (e.g. Fig. 29). 

8. Discussion. 

8.1. Steady flow over a delta win9 at incidence. 

Before discussing the results of the pressure measurements, it may be helpful to review the principal 
features of the flow over the upper surface of a delta wing under steady conditions. 

The flow over an uncambered slender delta wing with sharp edges separates from the leading edges at 
quite low values of incidence. The vortex layers so formed roll up to give two vortices lying above the 
upper surface and extending into the wake as illustrated schematically in Fig. 2. The vortex flow leads to 
the characteristic surface flow pattern shown by the photograph of Fig. 9. More detailed examination 
of the flow pattern reveals the existence of an attachment line inboard of the vortex and a secondary 
separation line slightly outboard of the vortex; between the latter and the leading edge one or more 
subsidiary vortices may be present. The spanwise pressure distribution shows that, for a flat surface, the 
pressure between the attachment lines is approximately constant, whilst a suction peak exists beneath 
each vortex. These features can be seen in the spanwise pressure distributions shown in Figs. 16 and 17. 

8.2. Flow changes due to steady deformation. 

Figs. 16 and 17 show the upper and lower surface pressure distributions for the undeflected wing and 
for maximum upward and downward deflections corresponding to the largest amplitude of oscillation 
used in the measurements. Lower-surface pressure changes due to deformation are negligible, and the 
features in the cyclic variations of the resultant pressure ACp can be attributed solely to the suction surface. 
The pressure changes occurring inboard of the attachment line appear consistent with attached flow and 
the variation in forward camber. Those occurring outboard of the attachment line seem to be determined 
by the displacement of the vortex resulting from the deformation; there are appreciable changes in the 
height and spanwise position of the suction peak and these can be related to the changes in oil pattern 
shown by Figs. 9 to 11. When the forward part of the wing is deflected upwards (Fig. 10), the vortex at 
Stations ~1 and 42 moves inboard; so also does the suction peak, but its magnitude is reduced. With 
downward deflection of the wing (Fig. 1 I), the vortex and suction peak move outboard. 

These changes can be partly explained in the following manner by a consideration of the effects of 
wing incidence on vortex strength and position. For an undeformed wing at incidence, it is known that 
with increasing incidence the strength of the vortex increases and its position moves inboard and higher 
above the wing. Thus, with upward distortion, which increases the incidence of the forward part of the 
wing, the strength of the vortex would be greater but its height above the wing would also be increased; 
from the surface pressure measurements over the stationary part of the wing it is apparent that the effect 
on the suction peak of increasing the height of the vortex outweighs the effect of an increase in the vortex 
strength. For a downward distortion, a vortex of reduced strength is now closer to the surface of the 
wing and produces a peak whose magnitude appears to be sensitive to wind speed. This sensitivity to 
wind speed is thought to be the result of the change in Reynolds number altering the details of the vortex 
flow at the apex. With full downward deformation, when the local incidence at the apex is less than 

* NPL Aero. Report 1314. 
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0.5 deg, the point of origin of the vortices is no longer at the leading apex; Fig. 11 shows that the vortices 
originate near the position 4=0.1 at 30 m/s when the wing is deflected fully downwards. No similar 
flow pattern is available for 60 m/s, but it is possible that the vortex origin would then move forward 
with the vortex adhering somewhat more closely to the wing surface to give greater suction. 

From the surface flow patterns, the attachment lines at Station i t  are estimated to be as follows :-- 

Wing deformation (o * t/(attachment) 

Max. upwards 
Undeformed 
Max. downwards 

+ 0.0262 
0 

- 0"0262 

0"51 
0"63 
0"72 

The position of the attachment line for each deformation condition is marked on Figs. 16 and 17 and 
it will be seen that there is an approximate correlation between this position and that of the minimum 
suction in the pressure distribution. This is only to be expected since the attachment line is somewhat 
analoguous to a stagnation line. Broadly speaking, the effects of vortex flow can be regarded as being 
restricted to the region outboard of the attachment line. 

8.3. Harmonic components of the cyclic pressure variation. 
It will be most convenient tO discuss the distribution of ACp for a quasi-steady variation before dealing 

with the more general oscillatory condition. The Fourier harmonic analysis then includes only the 
cosine components as in equation (10); the spanwise distributions of So, S~, Sz etc., are shown in Fig. 18. 
We note that the mean level So resembles, as would be expected, the pressure distribution for the steady 
undeformed wing, except that the width of the So peak is rather greater than the steady suction peak of 
Fig. 17. With regard to the spanwise distributions of the other components, we can relate the salient 
features to the pressure distributions for steady deformation of the wing as shown in Fig. 17 and to the 
variations of pressure at fixed points as shown in Fig. 15. For this purpose we consider the types of 
pressure variation that can be deduced from Fig. 17 for a quasi-steady variation between maximum 
downward and maximum upward deformation; for the purpose of discussion, portions of the semi-span 
are denoted by ~,, 5, 5~, 5z, etc., as indicated in Fig. 17. 

Over region 7, which extends over approximately the inner half span, it is seen that the suction AC v, 
decreases with increasing upward deformation, and that the variation is approximately linear, as in 
Fig. 15(a). Accordingly, Fig. 18 shows that over this portion of the span the only harmonic component 
of significance is the fundamental component S~, and that the sign of this is negative. Over the outer 
region h, the movement of the suction peak resulting from wing deformation leads to non-linear variations 
of the pressure as shown in the other examples of Fig. 15, and correspondingly to the presence of appreci- 
able harmonic components of the second and higher orders, as shown in Fig. 18. It may be noted that the 
region where the higher harmonics are significant correlates approximately with the region outboard of 
the extreme inboard position of the attachment line. That is, the higher harmonics only occur over the 
region directly influenced by the vortex. For all the conditions examined in the experiments, the peak 
values of the harmonic components decrease with increasing order, those for the 4th and higher orders 
appearing too small to be of importance, for which reason they are not included in the diagrams. Each of 
the harmonic components shows alternations of sign over the outboard half of the span. It can be deduced 
from Fig. 17 that over a region 6z in the neighbourhood of t/=0-7 the predominant variation is AC, 
increasing with zo, as in Fig. 15(b); thus this region corresponds to a maximum in the fundamental 
component, with suction increasing with upward displacement (i.e. S~ > 0). Over region 64, outboard of 
approximately t/=0.83, the predominant variation is ACp decreasing with Zo, as in Fig. 15(d); this 
corresponds to a large negative value for S~. Between 62 and 6~ we have region 63 corresponding to the 
position of the suction peak for the undeformed wing. During one cycle of oscillation the peak passes 
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twice over a point in this region, as in Fig. 15(c); this leads to a cyclic pressure variation which consists 
mainly of the second harmonic as shown in Fig. 18. From Fig. 17 we can identify another region of the 
span, 6~ where the suction for the undeformed wing is lower than that for either upward or downward 
deformation. Thus this region experiences a minimum suction twice during a cycle and, as for 63, the 
cyclic variation contains a large proportion of second harmonic. 

Turning now from the quasi-steady variation, we consider the main features of the pressure variations 
for an oscillatory condition. An oscillation at non-zero frequency leads to phase differences between 
pressure and deformation and thus to closed loops in the variation of ACp and Zo as seen in the full-line 
curves of Fig. 15. However, the spanwise distributions of the amplitudes of the harmonic components 
retain the same general form as can be seen by a comparison of, say, Figs. 19 and 20 for Station ~ and 
Figs. 21 and 22 for Station 32. 

Examples of the spanwise distributions of the Fourier coefficients A, and B, corresponding to the 
first three harmonics are shown in Figs, 25 to 28. For Station ~t the effect of frequency on the coefficients 
A, can be seen by a comparison of the curves of Fig. 18 with the relevant curves of Figs. 25, 27 and 28. 
In general, the peaks in the distributions are somewhat reduced for the oscillation with non-zero 
frequency. It will be noticed that in many cases the spanwise fluctuations in a component B, are similar 
in form to the fluctuations in the corresponding component A,. 

The spanwise variations of phase angles are most conveniently displayed by plotting (R,, e,), the 
amplitude and associated phase angle of a harmonic component, on a polar diagram for a series of 
spanwise positions. Figs. 29 and 30 show the first three harmonic components through the range 
0<~/< 1.0 plott6d in this way for Stations ~ and 42 respectively. In each case the cluster of points is 
elongated about a line passing through the origin, thus indicating a tendency for the pressure variations 
at points across the span to be in phase (or anti-phase) with one another; this tendency is less strong 
for the higher harmonics. Lines have been drawn to show estimated mean values of phase angles ~ (or 

+ e) across the span which are thus weighted in favour of the modulus of the component. It will be 
noticed that these mean phase angles associated with the harmonic components increase approximately 
as the order of the harmonic; that is, the measured phase angles tend to be in accord with the relationship, 

~', = k 1 n (radians), (17) 

where e~, = e. or 5 , - n ,  and k i is a constant. 
This point will be discussed in more detail in Section 8.5. 

8.4. Effect of change of wind speed. 
For steady conditions, a change of wind speed could be expected to affect the pressures for two possible 

reasons (a) because the resultant change in Reynolds number leads to a change in the type of flow, and (b) 
because a change in aerodynamic loading alters the mode of deformation of the wing. 

To determine any sensitivity of the pressure measurements to a change of wind speed, results obtained 
for speeds of 30 m/s were compared with those for 60 m/s for Stations ~ and ~z. A comparison for steady 
conditions is afforded by Figs. 16 and 17 from which it is seen that there is general agreement on the form 
of the pressure distributions both for the deformed and the undeformed wing, but that there are differences 
in the positions and heights of the suction peaks. As already mentioned in Section 8.2, it is thought that 
the appreciable change in height of the peaks when the apex is in the extreme downward position may 
arise from small changes in the manner in which the flow separates from the leading-edge near the apex. 

For an oscillatory condition the effect of wind speed can only be seen by comparing results for the same 
value of frequency parameter. That is, for v=0-5, results for 2 Hz and 30 m/s are comparable with those 
for 4 Hz and 60 m/s. Examples of the spanwise distributions of Fourier coefficient R, for the two wind 
speeds from which such comparison can be made are shown in Figs. 23 and 24. Although there are some 
differences of detail between results for the two wind speeds, both sets exhibit the same general features. 

The subsequent discussion relates only to results obtained at a wind speed of 30 m/s as these alone 
include measurements at both the non zero values of frequency parameter. 
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8.5. Influence of.frequency. 
It has already been noted with reference to Figs. 19 to 22, that there is a similarity between the spanwise 

distributions of the amplitudes of the harmonic components of the pressure variations for a quasi-steady 
variation and for an oscillatory condition. Such similarity is found for all the comparisons that can be 
made between quasi-steady and oscillatory conditions, and this leads to the conclusion that the amplitude 
of each Fourier component for an oscillation is approximately the same as that of the corresponding 
component for a quasi-steady variation, that is Ro~lSol, R~ISII, Rz~--Is21, etc. 

In the following table, mean values of phase angle across the span have been deduced numerically for 
each set of experimental conditions whilst, on the basis that a relationship e', = k ~n is appropriate, mean 
values of kt weighted in favour of the lowest harmonic and the largest amplitude of deformation are 
also shown. 

Phase angles (in radians). 
Columns (l) and (s) refer respectively to the large and the small amplitude of oscillation. 

Order of 
Harmonic 

Components 

n = l  
n = 2  
n = 3  

Weighted 
mean phase 

~',-kln 

kl/v~ 

Station ~ = ¢ 1 = 0.583 Station ¢ = 32 = 0.833 

v = 0.5 v = 1.0 v = 0.5 v = 1.0 

(l) (s) 
0.30, 0.28 
0-58, 0"59 
0.94, 1.00 

(I) (s) 
0.59, 0'60 
1.19, 1.23 
1.91, 

(/) (s) 
0.42, 0.39 
0.85, 0.87 

(l) (s) 
0.84, 0.84 
1.68, 1.68 

0-29 n 0-58 n 0.41 n 0.84 n 

1.00 1.00 0"99 1.01 

From the tabulated values it is evident that a phase angle for the higher frequency (v = 1.0) is approxi- 
mately twice that for the lower frequency (v = 0.5). 

Thus with regard to the influence of frequency, we are led to the conclusion that the amplitudes R, of 
the harmonic components are ap!~roximately independent of frequency whilst the associated phase 
angles are related to frequency and harmonic order by an approximate relation 

~'.-'-kznv. (18) 

8.6. Effect of change of chordwise position. 
The general features of the spanwise distributions of the harmonic coefficients for Station 32 are 

similar to those already described for Station ~1, but the amplitudes of the pressure variations are less 
(as can be seen from a comparison of Figs. 20 and 22) and, for oscillatory conditions, the phase angles 
associated with the Fourier components are larger (as can be seen from a comparison of Figs. 29 and 30). 
From the table of Section 8.5, it is seen that phase angle is approximately proportional to 3. This agrees 
with the results obtained with a delta wing performing sinusoidal plunging motion 3, where it was found 
that the timewise variations both of the pressures measured at points along a ray through the leading 
apex (t/ -- constant) and of the height of the vortex involved phase angles with respect to the plunging 
motion that increased linearly with distance from the apex: The present measurements lead to the further 
conclusion that the phase angles, when expressed in radians, are approximately equal to nv~. Now any 
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phase angle ~',, that is associated with a frequency nco, can be related to a time delay • = e',/n~ which, when 
normalized with reference to the free-stream velocity and chordwise distance from the apex, becomes a 
non-dimensional time delay 

V /  x = ¢,  V / n c o x  = e ; / n v ¢  = lc d v ~  . (19) 

None of the values of (zV/x) shown in the table departs significantly from unity. It will be noted that the 
value of z deduced from the experiments is the same as the free-stream convection time from the apex to 
the pressure-measuring station. This point will be discussed later in Section 10. 

8.7. Empirical relationship between steady and oscillatory loadings. 
Based on the foregoing observations, it is possible to put forward an expression which relates the 

oscillatory load distributions to those for a quasi-steady variation. It is convenient to start with the 
completely general description of the cyclic variation of spanwise pressure distribution for fixed amplitude 
of deformation, 

ACp(/7, ~, v)= Ro(/7 , 3, v) -+- R1(/7, 3, v) cos [tot-81(/7,  3, v)] 

+ R2(/7, 3, V) COS [2~Ot-- ~2(/7, 3, V)] + . . .  (20) 

Now the experimental results already discussed suggest that with some degree of approximation, the 
following statements hold :-- 

(i) Each R,(r/, 4, v) is independent of frequency and can be replaced by IS,(r/, 4)1. 
(ii) Each e,(/7, 3, v) is independent of/7 and thus can be replaced by e,(~, v). 

(iii) Each e,(~, v) is proportional to the product of harmonic order and frequency so that 

e,(~, v) = ~nco or rnco + ~, 

being a time delay. 
(iv) The time delay ~ is proportional to the chordwise distance and can be equated to the convective 

time from the apex, i.e. 

= @ o / V .  

Thus from statements (i), (ii) and (iii) above we may write 

ACp(/7, 3, v) = So(n, 3) + s1(/7, 3) cos [ co ( t -  ~)] + 

-}" $2(/7, 3) cos  [2co(t -- z)-I + . . .  (21) 

That is, the pressure distributions for an oscillatory condition are the same as those for a quasi-steady 
variation but with a time delay with respect to the deformation. Statement (iv) gives the dependency of 
coz on frequency parameter and chordwise co-ordinate, so that f'mally we have 

ACp(/7, 3, v) = S0(n, 3) + S1(/7, 4) cos (cot - v¢) + 

+ $2(/7, 3) cos 2 (cot- v~)+. . .  (22) 

That is, equation (22) gives the oscillatory spanwise pressure distribution in terms of the harmonic 
components for a quasi-steady variation, the frequency parameter and chordwise co-ordinate. Equating 
the separate harmonic components for oscillatory conditions with those for a quasi-steady variation we 
have for Station 4, 
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kAo(~) = So(~)  

At(r/)=Sl(~/)cos v4 , 

Az(rl ) = Sz(r/) cos 2v4, 

Bt(q)=Sl(q) sin v4 

B2(~/) = S2(~) sin 2v{ J . 

(23) 

As a test of the effectiveness of these relationships, values of the right-hand sides of equations (23) have 
been calculated for v= 1.0 at Stations 41 and 42, and these are compared in Figs. 25 to 28 with values of 
the left-hand sides deduced from the oscillatory measurements. The largest discrepancy occurs for the 
third harmonic component at Station 41 (Fig. 28). Apart from this and some differences in the region 
close to the side edge,* there is excellent agreement between the measured and calculated distributions. 

A series of instantaneous pressure distributions at 42 and for v = 1.0 at each of the cyclic times cot = 0, 
n/2, n and 3n/2, have been deduced from equation (22) and these are compared with the measured 
instantaneous pressure distributions in Fig. 31. Also shown in this diagram, for the purpose of illustrating 
the time displacement in the pressures, are the measured pressure distributions for the same deformations 
of a stationary wing; these are identical with values obtained from equation (22) with v~ equated to zero. 

Stated in another way, the conclusion from the experimental results is that the measured instantaneous 
spanwise distribution of pressure for position 4' at time t' during an oscillation corresponding to frequency 
parameter v, matches the steady pressure distribution at 4' for a steady deformation of the wing given by 

z = ~oF(~) cos (cot'- v4'). (24) 

This conclusion will be further discussed in Section 10. 

8.8. Fundamental Fourier components. 
The fundamental components of the cyclic variation in loading are of special interest because these are 

the only ones that would be considered in a linear analysis. Normalized with respect to amplitude of 
deformation and frequency, these components are from equation (9), 

at = A1/~o = (R I/~o) cos e t ,  (25) 

b t = B t/v(o = ( R ,/v(o) sin e l .  (26) 

These quantities correspond respectively to the in phase and in quadrature derivatives of the loading. 
From Figs. 32 and 35, which show spanwise distributions of al it is seen that the peaks are reduced both 
by an increase of frequency and by an increase of amplitude. Figs. 33 and 35 show that the spanwise 
distributions of b t are mostly insensitive to frequency although the peak values decrease with increasing 
amplitude. The results thus indicate that the fundamental pressure components exhibit amplitude 
non-linearities over those areas directly influenced by the vortex flow, the distributions becoming less 
peaky with increasing amplitude. The variations with frequency are consistent with the general conclusions 
of Section 8.5 and 8.6, for if el = v~ we have 

Rtc°sv4  R I [  ~ _ ~ ' ,  
= --  --=-- 1 -  (27) 

R 1 sinv4 Rl~ , ( v 4 ) 2 ]  
(28) 

Thus, if as previously noted R 1 is insensitive to frequency, the magnitudes of al and b~ will both decrease 

* The term 'side edge' seems more appropriate than 'leading edge' when discussing spanwise sections. 
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with frequency, but b~ will be lffected less than a~. 
Measurements for oscillatory conditions were made for only two amplitudes of deformation, but 

measurements for steady conditions were made for a range of deformation; thus the harmonic components 
corresponding to a quasi-steady variation can be deduced for any amplitude that falls within the range 
of deformation covered. The spanwise distributions of ]S~[/(o that are plotted in Fig. 36 relate to a series 
of amplitudes and show that in the region directly under the influence of the vortex flow, the value of 
this quantity decreases with amplitude. Since the Fourier components for a quasi-steady variation and 
for an oscillatory condition are similar, the curves of Fig. 36 can also be regarded as representing the 
behaviour of R1/(o with amplitude of deformation. 

8.9. Influence of amplitude on harmonic distortion. 
The quantity H in equation (11) is a measure of the total magnitude of the components above the 

fundamental that are present in the loading and, by comparison with the amplitude of the fundamental R 1, 
it represents the harmonic distortion. Fig. 38 shows a comparison between the spanwise distributions of 
H and R 1 for the large amplitude of oscillation and highest value of frequency. As already mentioned 
in Section 8.3, the harmonic distortion is large in the region directly beneath the vortex and small over 
the region inboard of the attachment line. The corresponding diagram for a quasi-steady variation of 
the same amplitude would be almost identical with Fig. 38, whilst by comparison, Fig. 39 for a quasi- 
steady variation of much smaller amplitude shows a considerable reduction in harmonic distortion. 
Since R,~]S, I the general influence of varying amplitude can be obtained by an examination of its effects 
on the harmonic components for quasi-steady variations. Fig. 37 shows, for a range of deformation 
amplitudes, the spanwise distribution of H/(o the normalized harmonic distortion. Whilst Fig. 36 shows 
ISx]/(o decreasing with increasing amplitude, there is a tendency for H/( o to increase with deformation. 
The spanwise region over which there is appreciable harmonic distortion does not vary much with 
amplitude of deformation and, as previously mentioned, this region coincides approximately with the 
part of the wing surface between the flow attachment line and the side edge. Within this region the ratio 
of the higher harmonic content to the fundamental generally increases with increase of wing deformation. 

8.10. Spanwise integration of pressure. 
An attempt was made to deduce values of the cyclic variation in the spanwise sectional lift coefficient, 

1 

c,~(~) = f ~xcp(~, ~) d,7 , 
0 

(29) 

from the measured pressure distributions. Graphical integration of the curves of Fig. 16 gives the following 
values :-- 

(o CL(~l) (Station 40 

- 0'0262 O" 198 
0 0.203 

+ 0.0262 0"206 

It will be noticed that the change in the sectional lift due to deformation is quite small in comparison 
with the total sectional lift, thus showing the need for accuracy in the integrations. Further evidence of 
the care needed, when using the measured pressure distributions to obtain reliable values of the changes 
of sectional lift, comes from the following alternative approach. 
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For the steady deformations given by z = Zo c o s  ~b, we have 

1 

CL(~)= fACpdtl=Lo+L1 cos q~+L2 cos2q~+... 

0 

where 

1 

L~ = f s~ d~l . 
0 

(30) 

Within the scope of a linear approximation, L~/(o would have the form of a derivative whilst L2, L 3 etc., 
correspond to the harmonic distortion (or non-linearities) in the variation of sectional lift. Now with 
regard to the integrals L1, L2 and L3, inspection of the particular example in Fig. 18 suggests that the 
fluctuations of $1, Sz and Sa lead to positive and negative contributions to the integrals which tend to 
cancel. The situation is more readily appreciated from Fig. 40 which, by showing part-span integrals 
71 

f s,, dtl plotted as functions of emphasizes the sensitivity of the values of L 1, and L2 and L3 to con- 

0 

tributions from points close to the side edge, where the uncertainties of the pressure measurements are 
known to be greatest. 

9. Comparison with Lifting-Surface Calculations. 
It has already been shown in Ref. 1 that, for a delta wing at zero incidence without vortex flow, calcula- 

tions based on lifting-surface theory can provide reasonable agreement with measurements of unsteady 
pressure distributions resulting from an oscillatory deformation. Since in the usual lifting-surface theory 
the flow is assumed to remain attached over the surface of the wing, calculations based on this theory 
would certainly not provide the kind of pressure distributions observed with vortex flow. Nevertheless, 
it is of some interest to make comparison between this theory and the results of the present measurements 
to see whether agreement exists for those areas of the wing surface not directly under the influence of 
vortex flow. The assumption of linearity between pressure and deformation inherent in the theory, means 
that the calculations yield only sinusoidal pressures in response to the sinusoidal deformation; thus 
comparisons can only be made with the fundamental Fourier component of the measured pressure 
variations. Calculations for small frequency have been made by the method of Garner and Fox 9. The 
results for the in-phase component a 1 are shown in Fig. 32 where it is seen that there is some measure of 
agreement regarding the order of magnitude of the coefficient over the inl~oard region of attached flow. 
The corresponding calculated value of the irt-quadrature component b~ , pproximately -0.1 over the 
whole of the span except for the singularity at the side edge; this magnitt. ~ is small in comparison with 
the fluctuations shown in Fig. 33, but the value is of the same order as the measurements over the inboard 
region of the span. 

r/l 
t ~ 

Theoretical values of the part-span in-phase loading corresponding to the experimental | S  1 dr/ 
i d  
0 

have also been calculated. Fig. 40 shows that there are considerable differences between the theoretical 
and measured values even over the inboard region which is not directly under the influence of the vortices. 

Although the lifting-surface calculations included only a small number of collocation points over the 
deforming portion of the wing, they are sufficient to show the large differences between the theoretical 
and measured unsteady load distributions. 
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10. The Role of  Vorticity Convection. 

Previous observations 4 of the transient flow following a sudden change of incidence of a rigid delta 
wing have shown the important part played by the convection of vorticity in determining the variation 
of the upper-surface flow with time. Those experiments showed that, following the change of incidence, 
the flow at a spanwise station at distance x' from the leading apex, reached its steady condition in a time 
interval that was a close approximation to x'/V, which is the time for the disturbance from the most 
upstream position, the apex, to be convected to station x'. 

For the circumstances of the present experiment, it would be expected from these earlier results that a 
change in the rate at which vorticity is shed from the leading edge at x will be felt at x' (> x) but only after 
the convective time delay z= (x ' -x) /V .  Furthermore, a change at x that is a harmonic function ofe)t will 
lead to changes of the flow at x', that can be described by a harmonic function of e)(t - r) where ~ox re- 
presents a phase lag. 

To bring the discussion into line with the experimental conclusions regarding the phase lag in the 
pressure variations, the simplest course seems to be to relate alterations in local incidence to changes in 
strength of the leading-edge vortices and then to associate these changes in strength with the measured 
variations in pressure. 

A leading-edge vortex of a delta wing can be considered to be fed by the vorticity shed from each point 
of the leading edge; the strength F(x) of the vortex at any position x can thus be regarded as being the 
resultant of the vorticity shed from all positions upstream of x. For an undeformed wing in a steady 
stream, in accordance with the concept of conical flow, the rate of increase of vortex strength with distance 
is constant and, at least for small changes, the gradient dF/dx may be taken to be linear with wing 
incidence e, so that the increments are related by 

For the wing of the present experiments with static deformation, the strength of each vortex is 

r(x} = ro(x} + r (x} ,  (32) 

where F o represents the contribution due to the mean incidence and P is the perturbation due to deforma- 
tion. The local incidence varies with chordwise position over the deforming part and can be written 

e{x}=~o+~{x},  (33) 

where ~ represents the additional incidence due to deformation. In the subsequent discussion we shall be 
concerned with only those contributions resulting from the deformation (i.e. P and ~). 

As an extension of equation (31), it is assumed that the rate of increase of vortex strength with distance 
is proportional to local incidence, so that 

d F = k  ~ 
dx " (34) 

The perturbation in the strength of the vortex at any station downstream of the deformation is then 
given by the chordwise integral taken over D, the deforming part. That is, 

D D 

(35) 

Since in this static case the additional incidence ~ is the gradient ( -dz /dx) ,  
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F = k z o .  (36) 

The perturbation in strength of the vortex is thus proportional to the deflection at the apex and independ- 
ent of the shape of the deformation. 

In the unsteady case when the deformation is oscillatory, it is assumed that the rate of increase of 
vortex strength for a point convecting with the flow is proportional to the instantaneous effective incidence 

so that 

[" Oz 1 Oz'~ 
- t , 

dF 
-~x=k~e{x, t}, (37) 

the factor k being the same as in equation (34). 
The perturbation in the strength of the vortex over the stationary part of the wing now varies both 

with time and position; for a station at x' at time t', the strength would be the sum of the vorticity shed 
X ' - - X  

from each position x at the earlier time t ' - - -  and this corresponds to the convective integral of 
V ' 

the incidence, that is 

D 

(38) 

Because of the form Of~e, this integral is the difference between the deflection at x = 0  at time ( t ' -x ' /V) 
and the deflection at the downstream boundary of the deforming portion, which is always zero, so that 

k \ V / ' 
(39) 

o r  

r{~', t'} =kZo cos (o)t'- v~'). (40) 

In other words, the assumptions that have been made lead to the conclusion that the strength of the vortex 
has the same phase lag as that found in the measured pressures. 

Although the measurements for static deformation show (Section 8.2) that the pressure variations are 
most easily associated directly with the height and spanwise movements of the vortex above the measuring 
station, it seems plausible to suggest, that these movements are themselves dependent on the changes in 
vortex strength. On this basis, the pressures are dependent on the deflection at the apex with an appro- 
priate convective phase delay in the unsteady case. It will be noted that the preceding argument is in 
accord with the experimental conclusions relating both to the equality of pressure amplitude for a quasi- 
steady variation and an oscillatory condition and to the magnitude of the phase lag. 

11. Comparison with Slender-Wing Theories. 
An essential feature of slender-wing theory is the attention given to the flow components in transverse 

or cross-flow planes. In the present discussion, rather than considering the flow at a particular chordwise 
position of the wing, we find it convenient to consider the behaviour of the fluid as it passes the wing. 
Then on the assumption of the theory, the fluid can be regarded as remaining in plane transverse slabs 
as it moves downstream; the unsteady flow in these planes is treated as two-dimensional and the reactions 
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on the wing are determined by the cross flow. Each travelling cross-flow plane 'sees' a certain wing 
distortion so that, considered in this way, the theory is as applicable to unsteady as to steady motion. 
For a wing in steady motion all cross-flow planes see the same deformation; for a wing in unsteady 
motion, in general, each plane sees a different deformation. 

As sketched in Fig. 41(a) basic slender-wing theory assumes irrotational flow in transverse planes. 
and the local reaction on the wing is related solely to the time rate of change of downward momentum 
in the travelling plane. That is, the flow and loading at any section are dependent only on the local rates 
of change of effective incidence and span occurring at that section ; because of the irrotational assumption 
and thus an absence of shed vorticity, the flow field in a transverse plane contains no history of its passage 
over the upstream part of the wing. Wing loading at a transverse section of the wing is independent of 
changes occurring elsewhere. For the present experiment this theory is clearly unsatisfactory because it 
predicts no changes in pressure downstream of the deforming part of the wing. 

Extensions to the original slender-wing theory that take account of leading-edge separation have 
already been discussed in papers by Hancock 5, Lowson 6, Randall v and Dore 8 ; in the present discussion 
we are concerned only with general considerations and not with the particular mathematical models of 
leading-edge separation used by these authors. As before, we consider transverse planes moving with 
stream velocity, but now, because the flow separates from the side edges, vorticity is shed into the cross- 
flow planes and this leads to the formation of the two vortices sketched in Fig. 41(b). Thus, unlike the 
irrotational model, the cross-flow planes contain a record of their previous history by virtue of the shed 
vorticity which is convected with them. Thus the flow and wing loading at chordwise position x' and 
time t' can now be associated not only with the local instantaneous conditions at (x', t') but also with the 
conditions previously experienced by that particular fluid plane now at x'. That is, the unsteady pressure 
distribution at (x', t') can be related to an equivalent steady deformation of the wing, namely the deforma- 
tion previously experienced by the travelling plane designated (x', t'). 

In the present case the unsteady deformation is defined by 

z = ~,oF(~) cos cot. (41) 

When the cross-flow plane (x', t') was previously at x (<  x'), the deflection which the wing then had may 
be obtained from equation (41) by putting t = I t ' - ( x ' - x ) V ] .  Thus the apparent mode of wing deforma- 
tion experienced by plane (x ' t ' )  as it moves across the wing is 

z = ~0F(~) cos co [ t ' -  (x '  - x ) / V ]  = ~oF(~) cos [cot ' -  v(~ ' -  3)]. (42) 

This is the equivalent steady deformation, and we note that each combination of (3', t') within a cycle 
requires a different equivalent mode*. 

Now the experiment has shown that an instantaneous pressure at (~', t') matches that for the steady 
deformation 

z = zoF(~) cos (cot '-  v~'). (43) 

However, this mode of deformation is not the same as that given by equation (42) except for the deflections 
at the apex. This difference is to some extent explained by the argument of the previous section, which 
deduced that the shape of the deformation did not affect the pressure. However, without the assumptions 
necessary for that argument, we note that it is unlikely that a unique relationship exists between spanwise 
pressure distribution and the mode of deformation. It seems that a given spanwise pressure distribution 
could be produced by a set of static deformation modes; thus the experimental results do not necessarily 

* It would have been useful to have deformed the wing statically to conform to a series of modes 
given by equation (42) and to have measured the pressure distributions for these. Unfortunately, the 
experimental programme was completed before the value of such measurements was realised. 
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negate the equivalent static mode deduced theoretically. We may, however, expect that for each member 
of such a set of modes the weighted mean of some characteristic quantity taken over the deforming part 
would be the same. Now the integrals of the chordwise distribution of incidence are identical for the 
modes of equations (42) and (43). Hence, if the relationship in Section 10 between pressure change and 
the integral of the change of local incidence is accepted, the results of the experiment lend support to the 
extension of slender-wing theory that takes account of the vortices. 

It is necessary to put the matter in a broader perspective. Disturbances in a moving fluid are propagated 
either acoustically or by streamwise convection. If we consider the basic case of a disturbance point at 
x and an observation point at x', then, although in subsonic flow disturbances will propagate acoustically 
from x to x' whatever the relative disposition of the two points, propagation by convection will only 
occur if x is upstream of x'. Now the limitations of the present experimental conditions preclude any 
examination of the pressure changes occurring when the observation point, i.e., the pressure measuring 
station, is itself undergoing unsteady motion or when it is upstream of the disturbance (i.e., the deforming 
portion of the wing). The experimental results refer only to the condition in which the disturbance is 
upstream of the observation point; within this restriction the results show convection to be dominant and 
seem to validate a convective slender-wing-approach. But it must be realised that such a theory denies 
pressure changes due to disturbances downstream of the observation point. 

12. Concluding Remarks. 
12.1. Summary of experimental results. 

(1) Pressure variations over regions of the upper surface of the wing directly influenced by the vortex 
flow exhibit pronounced non-linearities; for sinusoidal motion they contain appreciable higher harmonic 
components. 

(2) Pressure variations at different points of a transverse plane are approximately in phase, or anti- 
phase, with one another. That is, the phase difference between the loading and the deformation is constant 
across the span (e independent of/I). 

(3) The amplitudes of the Fourier components of the pressure variation appear to be independent of 
frequency. For any given chordwise position, the pressure variations during an oscillation are approxi- 
mately the same as those for a corresponding quasi-steady variation (R(t/)---~[S(q)[), except that there is a 
phase delay between the pressures and the deformation. 

(4) For a given frequency, the phase delay appears to be linearly related to chordwise distance from 
the leading apex. 

(5) For a given chordwise position, the phase delay is proportional to frequency. 
(6) The time lag associated with the phase delay is approximately equal to the time taken for convection 

from the apex of the wing to the particular chordwise position. 
(7) Collectively, the above conclusions (2) to (6) lead to a relationship between the unsteady spanwise 

pressure distributions and those measured for steady conditions. This relationship is expressed in terms 
of frequency parameter v and chordwise co-ordinate, ~ by the formula, 

ACv(r/) = So(q) + Sift/) cos (cot - v~) + S 2 cos 2 (cot - vO + . . . .  

where S(q) is the distribution of a harmonic component for a quasi-steady variation and is dependent 
only on amplitude of deformation and 4. Alternatively, the results indicate that the oscillatory loading 
at position 4' and time t' matches the loading at 4' for a steady deformation 

z = ~oF(~) cos (~ot' - v~'). 

12.2. General implications. 
Any conclusions concerning the pressure distribution over a highly swept deforming wing that are 

drawn from the present experiments must be conditional, because the deformation was entirely upstream 
of the measuring stations. Further experiments which would complement the present ones would examine 
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the pressure variation due to local deformation downstream of the measuring station. A more comprehen- 
sive investigation would require measurements of the complete pressure distribution on a wing, the whole 
of which is undergoing deformation ; that is, measurements of the type described in Ref. 1 but with a 
wing set at sufficient incidence for vortex flow to occur. 

However, even in the absence of wider experimental evidence, certain general considerations regarding 
the effects of vortex flow follow from the present experimental results. For  motions or deformations 
that lead to alterations in the positions of the vortices, non-linearities are likely to be present in the 
relationship between local pressure and displacement. Indeed, it can be stated that any situation in which 
the position of the vortex moves relative to the wing, whether this be caused by motion or deformation 
of the wing or by turbulence inherent in the oncoming stream, is likely to lead to large-amplitude pressure 
fluctuations in the neighbourhood of the peak suction. If the vortex movements are periodic with frequency 
o), the pressure fluctuations in the region of the wing directly under the influence of the vortex will contain 
harmonic components with frequencies ~o, 2~o, 3co etc. If a flexible structure is subjected to such pressure 
variations, then it is possible for responses to be excited at the higher harmonics as well as the fundamental 
frequency. In principal, then, we have a mechanism whereby a sinusoidal excitation at one frequency can 
lead to structural responses at multiples of this frequency. In practice, the importance of this phenomenon 
would depend on the degree to which the spatial distribution of the pressure variations matches the shape 
of the normal modes of wing distortion that have natural frequencies close to multiples of the fundamental 
excitation frequency. 

It is relevant to remark that the kind of non-linear effects discussed above are not peculiar to wings with 
leading-edge separation. Analogous examples could be found in oscillatory motions involving either the 
chordwise movement of the suction peak at the leading edge of a wing with attached flow or the move- 
ments of a shock wave over the surface of a wing. The common factor leading to such effects is the presence 
of steep gradients in the spatial distribution of surface pressure and an imposed variation in the positions 
of these gradients. 

It has already been shown in Ref. 1 that for a slender delta wing at zero incidence, and therefore with 
flow attached at the leading edges, lifting-surface calculations give unsteady pressure distributions in 
reasonable agreement with measurements. The present experiments draw attention to the need for a 
similar method to deal with unsteady pressure distributions for wings with vortex flow. 
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LIST OF SYMBOLS 

An, B. 

at, bt 

Cp 

Ac, 
CO 

CL(~) 

F(O 

F'(O 

H 

k l, k2, k 

L. 

n 

P 

R. 

Re 

S. 

S 

SO 

t 

V 

x ,  y 

z 

z o 

~'o 

tZ 

~o 

F 

Fo 

8n 

Fourier coefficients relating to cyclic variation of pressure, equation (9) 

Normalized versions of A t, B t, equations (13) and (14) 

Non-dimensional pressure coefficient, equation (6) 

Non-dimensional pressure difference between upper and lower surfaces of wing, equation (7) 

Centre-line chord of wing 
1 

f ACp(~, sectional lift coefficient q )d~? , spanwise 

0 

Mode of wing deformation, equation (1) 

dF/d~ 

Measure of higher harmonic content of pressure variation, equations (11) and (12) 

Constants in equations (17), (18) and (31) respectively 

Fourier coefficients relating to cyclic variation of spanwise sectional lift, equation (30) 

Integer defining order of harmonic component 

Pressure 

(A. 2 + BE) ~, Fourier coefficient relating to cyclic variation of pressure; equation (8) 

Reynolds number based on centre-line chord, Co 

Fourier coefficient relating to quasi-steady variation of pressure, equation (10) 

Local semi-span 

Trailing-edge semi-span 

Time 

Stream velocity 

Geometrical co-ordinates, Fig. 1 

Upward deflection of a point on deforming portion of wing 

Value of z at leading apex 

Amplitude of oscillatory displacement at apex 

Incidence 

Incidence of rigid part of wing; mean incidence of deforming part 

Additional incidence due to deformation, equation (33) 

Strength of vortex, equation (32) 

Value of F when wing undeformed, equation (32) 

Increment in F due to deformation, equation (32) 

Phase delay associated with n 'h harmonic component, equation (8) 
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~,. 

~o 

~o 

/z 

1) 

P 
"C 

CO 

/3 n o r  ~3 n - -  

Zo/C o, non-dimensional displacement at leading apex 

Amplitude of ~o 

y/s, non-dimensional co-ordinate 

X/Co, non-dimensional co-ordinate 

Viscosity 

COco~V, frequency parameter 

Air density 

Time delay 

Angular co-ordinate describing oscillation, equation (2) 

Angular frequency of oscillation rad/s 
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FIG. 12. Oil flow pattern undeformed wing (~o = 0). Showing flow interference from transducer at 
station ~ 1, t /= 0-9. Nominal  incidence 5 degrees, Re = 2.6. 106. 
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Spanwise distribution of normalised fundamental amplitude for various values of (o- 
Station 41, v=0 Re=2.56 × 106. 
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FIG. 37. Spanwise distribution of normalised higher harmonic content for various values of (o. 
Station ~1, v=0, Re=2-56 x 10 6. 

63 



0"30 ~ I 

R I 

or 
H 

0 " 2 5  

0 "ZO 

0"15 

0"10 - 

0 -05  - 

T T -r 

R I ( f u n d a m e n t a l )  
OO 

H = (~n=Z R~ ) I/z (higher harmonics ) 

i 

1 / 
I 

I 

,, / I 
I 

I 

~ d  

1--- =r__ - - ' ' J  I- J 
0 O-Z 0 -4 ~1 0"6 0-8 I -0 
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FIG. 41. Cross flow in travelling fluid plane (a) Irrotational flow (b) Separated flow. 
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