
¢,q 

e~ 

Z 

R. & M. Ne. 3662 

MINISTRY OF AVIATION SUPPLY 
A E R O N A U T I C A L  R E S E A R C H  C O U N C I L  

REPORTS A N D  M E M O R A N D A  

A Theoretical Study of Height Control in Flight 
Close to the Ground as Affected by Elevator Lift and 

Cockpit Position 
By W. J. G. PINSKER 

Aero F Dept., R.A.E., Bedford 

R O Y A L  " 2 . .  ' ' " " " "  ~ 'r- '~' l ' r  

L O N D O N :  H E R  MAJESTY'S  S T A T I O N E R Y  OFFICE 

1971 

pmcE 50p NET 



A Theoretical Study of Height Control in Flight 
Close to the Ground as Affected by Elevator Lift and 

Cockpit Position 

By W. J. G. PINSKER 

Aero/F Dept., R.A.E., Bedford 

Reports and Memoranda No. 3662* 
May, 1962 

Summary. 
During the final landing approach pilots are often observed to attempt tight control of flight path by 

coarse elevator usage. It is shown by theoretical analysis that this form of control is inherently conducive 
to instability and that adverse elevator lift is detrimental in this situation. However, if the pilot is located 
in a cockpit far forward of the centre of gravity of the aircraft, he perceives 'false' motion cues which tend 
to reduce the possibility of this form of pilot-induced oscillation. 

*Replaces R.A.E. Technical Report 69 097--A.R.C. 31 488. 
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1. Introduction. 

Control of aircraft height and vertical velocity is generally exercised via the phugoid mode of longitudi- 
nal motion. The stability or otherwise of height control is then determined by the stability of this mode. 
Since the phugoid is a relatively slow mode this implies that it affords no short term control over height, 
and this is indeed reflected in general piloting practice. 

There are, however, some special circumstances when the pilot wishes to impose much tighter control 
on the vertical motion of the aircraft, the most obvious example being the landing approach. Indeed, 
considerations of this manoeuvre have led to the discovery of what is now generally known as the speed 
stability mode 1, which is a degenerate form of the phugoid when the assumption is made that the pilot 
suppresses height variations--which are an essential feature of the mechanisms of the phugoid--by 
suitable elevator control. Observations of flying practice have confirmed that this assumption is a reason- 
able revert though not perfect) approximation to piloting technique in the landing approach, and that the 
consequent emergence of the speed stability mode is also reflected in practice. 

It is generally understood that the assumption of constant height implied in the formulation of the 
speed stability theory need not be taken too literally. In fact it can easily be shown that all that is required 
for the speed stability mode to exist is that the pilot maintains a constant mean height, or flight path, 
short term variations are of no great significance to the relatively long term speed stability mode. 

Nevertheless, a form of elevator height control is an essential assumption in this situation and it is 
perhaps surprising that the feasibility of such a control mode has never been seriously questioned. It will 
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be shown in this report that there is in fact only very limited scope for pilots to exercise tight and at 
the same time stable control of aircraft height or flight path and that this depends critically on the position 
o f  the cockpit in the aircraft and is further influenced by adverse elevator lift. 

There is, as a result, a distinct possibility in certain cases that by attempting to use the elevator for 
close control of height the pilot may not only transform an originally inoccuous phugoid into a speed 
divergence but at the same time generate an unstable oscillatory short period mode (P.I.O.). 

There is perhaps another part of landing control where the latter problem is particularly acute. If the 
landing flare does not terminate in an immediate touchdown, the aircraft will 'float' over the runway, 
sometimes for a considerable period. In Refs. 2 and 3 it has been noted that pilots will not immediately 
try to correct this situation in the expectation that speed losses will cause the aircraft to settle down. 
However, if after 9-10 seconds from flare initiation this has not occurred--a slight increase in headwind 
may have this effect--the pilot will become 'uneasy' and begin to use elevator control to force a touch- 
down. Both in simulators and in real flight this can be observed frequently to lead to fairly coarse control 
usage and to an oscillatory height variation which has the appearance of a pilot induced oscillation. 
Figs. 1 and 2 are typical examples of such landings. For the full scale flight tests unfortunately no / : /  
records are available, but the elevator trace is by itself illuminating. 

The present investigation was made to test whether a height control law likely to be used by the pilot 
is in fact a possible cause for a potential instability and if this is so to elucidate the factors which have a 
major influence on this phenomenon. It must be noted that in general flight the pilot is more likely to 
control pitch attitude so that the case considered here must be treated as a special one, relevant only 
in flight very close to the ground, when height becomes a dominant and readily perceived quantity. We 
can see from Section 2 that pitch control is exactly equivalent to the effect forward location of the cockpit 
has in the present case. By analogy the results of the present study indirectly show that pitch control is 
strongly stabilizing and clearly beneficial. 

2. The Assumed Elevator Control Law. 

The principal motion parameters a pilot might utilize as control stimuli are height deviations and 
pitch attitude. Since we are concerned here with a situation in which flight path control becomes the 
dominant preoccupation we assume the pilot concentrates on height, applying elevator according to 

rl = kl A H + k 2  A l l .  

If we write this as a transfer function 

(k2) 
r l = k l A H  1 +~-~ s 

(1) 

(la) 

it is seen that the/: / term can be interpreted as a first order lead with the time constant z = k 2 / k  I . 

Since the pilot is located at a position forward of the centre of gravity of the aircraft, the height he 
perceives (Hp) differs from that of the aircraft at its centre of gravity (HA). From Fig. 3 

Hp = H a + Xp 0 (2) 

where Xp is the distance between the cockpit and the aircraft centre of gravity. Since the flight path angle 

= ( 0 - ~ )  = /4a  (3) 
V 

we can express equation (2) in terms of the usual aircraft motion parameters as 



He = V f ( 0 -  ~) dt + xe 0 (4) 

and by differentiation 

/:/r = ( 0 -  ~) V + xe 0. (5) 

With these relationships the control equation (1)becomes: 

,l=tq VfOdt+klX~,O+k~VO+kzxpO-k~ vf ,dt-k V . (6) 

Equations (4-6) indicate that in its effect forward location of the cockpit (xp > 0) is equivalent to the 
pilot applying elevator in response to pitch attitude. It follows that a pitch control law added to the height 
control law here discussed can be represented by an appropriate increase in xp above its actual value 
observing the equivalences ~tl/~O = k~ Xp and Otl/~O - k z xp. 

3. Stability Analysis. 

Since we are concerned here especially with the short term response of the aircraft, the phugoid is 
ignored by assuming constant speed. Ignoring also the minor terms La and Lq, the longitudinal motion 
of the aircraft is then defined by : 

L ~ - m  V O+m V ~ = - L ~ t  l (7) 

M ~ + M q q + M , ~ - B O  = - M , t  1. (8) 

It is convenient to express the elevator pitching moment in terms of elevator lift L, and the effective 
elevator moment arm x, (negative for a rear control) as 

M, = L, x, .  (9) 

The elevator moment arm is represented by the factor 

4.-  ~ (10) 

where ky is the inertia radius in pitch. 
Introducing the aerodynamic derivatives in the form 

J l~  M, Mq M• L, M, (11) 
= - f f  ~ q  - B ~/~ = -B- " ~  - mV d/g,= y 

and substituting equation (6) for t/in equations (7) and (8), the stability determinant of the longitudinal 
motion becomes : 



f 6 

f D2.//¢a+D (J¢~- k2./P/n V D) } 

-kx  Mr, V 

f O 

D'/gn(Xl"kx+k2)4, \ V 

- O  3 + D  '2 (,-//(q-- k2 ,//[ .  xv) 

+ D,///. (kx xv+k2 V) 

+ k l J / .  V 

= 0 .  (12) 

This determinant has as a solution a quintic in D 

DS +b4 D4 +b3 Da +b2 D2 +bl D+b o = 0. (13) 

The last coefficient b0 contains two equal terms with opposite sign, making it zero. Elimination of this 
zero root reduces equation (13) to a quartic 

D4 +a3 D3 +a2 D2 +al D+a o = 0 (14) 

with the coefficients: 

as = ~-~gq-JCle-K2 ~ ~. V t-xv 

(i5) 

where the control gains are represented in the form 

Ki = k l J ~  l 

K 2 -- k2J~ n . 
(16) 



Since normally £.e.. K~ and K 2 a r e  positive and Jg . . /dq .~gg, .~ ' , .  ~, are negative the coefficients a a - a 0  
contain all positive terms apart from those associated with K~ and K 2 containing the elevator arm ~, 
as a factor. These terms represent the effect of adverse elevator lift and it is readily apparent that-- i f  
sufficiently large--these can lead to instability. 

It can be shown that the system defined by equation (15) will be stable if 

ao > O; al > O; a 2 > O; a a > 0 (17) 

and if the Routh discriminant 

a~--al a2a3+ao a2 < 0 (18) 

According to Glauert, failure to satisfy ao > 0 indicates a divergence, whereas equation (18) determines 
oscillatory stability. 

If al and a3 have the same sign the boundary of oscillatory stability is defined by 

a~-al  a2a3+aoa 2 = 0 (19) 

and this expression establishes a relationship between K~ and K 2 values at the boundary. For this purpose 
we write the coefficients of the quartic (15) in the form 

a3 = a3 1 

a2 = a20 + g l  a2K 

al = a l o + g  1 alK 

a o = K i aOK. 

(20) 

With these coefficients equation (19) gives a quadratic in K 1 : 

K~ (alK-aa a2r a l r )+K1  (2alo alK-a3 a2o air -a3  a2K alo + a 2 aoK + aZo-a3 alo a2o = 0 
From equations (15) and (20) the coefficients in this equation are given as: 

(21) 

1 ,/#a xv ) 

a2o = - J / t ~ - ~ d / d q + K 2  ~ q  - ~ x v  

( 1 J g ~  xv ) 
a 2 K = -  ~,i Cn V + XV 

a ,o= K 2 ( ~ - S Y ~ V )  

ark = ~ ,//g q-t-,/# a-I-./# ~ -,Se~, xv 

,/¢l~ 
a o r  = - - -  ~ V . 

(22) 



If adverse elevator lift is to be ignored we make 4, = oo in equations (12), (15) and (22). 

4. Numerical Examples. 
We consider two basic aircraft in low speed flight, and in each the forward location of the cockpit (xi,) 

is varied systematically. In one of the examples the effect of elevator lift is also investigated separately. 
The first example is typical of large tailless supersonic transport design, the second represents a more 

conventional subsonic aircraft. They are defined by the aerodynamic, inertial and geometric quantities 
listed in Table 1. 

Stability boundaries have been calculated from the two conditions defined in equations (17) and (18) 
and in all cases considered these follow one of the two basic patterns illustrated in Fig. 4. The condition 
ao > 0 establishes a boundary for divergence at K1 = 0. This boundary simply states that Oil~OH must be 
positive, a trivial conclusion. The boundaries derived from the discriminant equation (18), however, are 
far less obvious and contribute the more interesting results of the present analysis. In Type I, this boundary 
has two distinct branches. One passes through the origin of the K 1 - K a  graphs, leaving only a small 
segment in the positive quadrant for small values of K 1 and modest values of K a as a region of stable 
control. There is a further stable region, bounded by the second branch which contains the range of very 
large values of K 1. The associated gains in dtl/9H are, however, impractically large so that this region is 
of no practical significance. 

The situation arising from the stability graph designated as Type II, leaves practically all the positive 
quadrant stable except for a small region with small values of K 2 and modest values of K 1. 

The specific results obtained for the two aircraft chosen as examples are shown in Figs. 5 and 6. The 
first example, aircraft A of Table 1, features strong adverse elevator lift and to isolate the effect of its 
contribution, the stability boundaries have been calculated for this aircraft with and without this term 
included. The results of Fig. 5a show that the regime available for stable control increases as the pilot is 
moved forward in the aircraft. 

If the pilot were to occupy a position coincident with the centre of gravity (Xl, = 0), he can only maintain 
stable control by restricting the gain in height control O~I/9H to about 0.1°/ft and even then only by using 
considerable phase lead, i.e. 0t//6/:L With more forward location of the cockpit, the region permitting 
stable height control is rapidly widening, although in every case pure height control Orl/OH will always 
result in a divergent oscillation. 

Fig. 5b shows that removal of the elevator lift effect substantially improves the situation. A most 
interesting observation is that with a far forward cockpit location, xe = 160 ft for instance, even pure 
height control without any lead becomes possible if a sufficient gain is used, although with a lesser gain 
instability would result. 

For the aircraft chosen for the second example (B) (Fig. 6) we get a very similar picture. The closer to 
the centre of gravity the pilot is located, the more restricted is the height control activity he can engage in 
without provoking a 'pilot induced oscillation'. 

For this latter example the effect of variations in static longitudinal stability have also been studied 
with the result shown in Fig. 7. It is seen that increasing mw oc J¢/~ improves the situation by widening 
the range of gains permitting stable control. 

The present analysis has been made with particular reference to flight conditions in which a pilot can 
be assumed to exercise tight height control. When one wishes to apply these results to the height (or 
flightpath) control mode of an autopilot, it should be appreciated that the height control gains used in 
an autopilot are very small by comparison with the ranges considered here; values of Otl/OH of 1/30°/ft 
are typical and operate mainly via the phugoid mode. Secondly autopilots invariably employ in addition 
to the height gains considered here pitch attitude feedback in order to ensure stability. This term has not 
been considered in the present analysis, because it would appear unlikely that the human pilot would be 
capable of mentally summing height and attitude information in a situation demanding tight control. 

For the reader more familiar with the servo control approach, root locus plots have also been con- 
structed for a number of the more interesting cases covered in the previous analysis. They are presented 
in Figs. 9 and 10. In order to apply this technique the pilot control equation (1) has been expressed in 
transfer function form (equation (la)): 



q (s) = k2 s +  (23) 
H 

and the feedback gain then becomes k2. When a root locus is derived for a particular value of lead kJk2, 
this corresponds to a traverse of the positive quadrant of the k~ - k  2 plane along a radial ray as indicated 
in Fig. 8. The open loop transfer function describing the system under discussion has the form 

K is the gain 

( S+~z )(sE +as+b) 

s 2 (s 2 + 2 ( °30 s + o92) (24) 

(25) 

and the numerator polynomial of the aircraft transfer function is given by : 

a = - V £¢~ ( d g a + J / l q ) + X e  (Jg,  5 e ~ - L . e , J / l . )  
V ~e.+xe (JCl.-cL.J/g~) (26) 

b = V (Jg, ~ , -  ~L,¢, J///,) 
V ~ ,+xv  (Jg,-Sf,  J¢~) (27) 

It is not proposed to discuss the root locus plots in detail since they only confirm the conclusions reached 
above. Those shown in Fig. 9 are for aircraft A with elevator lift included, Fig. 10 gives the results for 
the same aircraft without elevator lift. In each case two values of the control lead time constants (kx/k2) 
are considered, kt/k 2 = 0 corresponding to pure rate of height control. The figure 2 shown beside poles 
at the'origin denotes that there is a double pole corresponding to the s 2 term in the denominator of the 
open loop transfer function. Ifkl/k2 = 0, the first order factor in the numerator reduces to s which cancels 
one of the s's in the denominator. The results of the earlier analysis suggests, that for kl = 0, i.e. along the 
vertical axis there is a condition of neutral stability and this would correspond to a locus fixed at the 
origin of the root locus plot for all values of k2 in this case. This result could be obtained if one omitted 
to cancel the s factors in the transfer function, so that in addition to the pole shown at the origin there 
would be a further pole at zero and these could be thought of as contributing a point locus. It is seen 
that in treating the open loop transfer function merely as an algebraic equation, one can in this particular 
circumstance in fact lose a physically important and real statement about the system behaviour if the 
two s factors are removed by an algebraically perfectly legitimate operation. The missing roo(corresponds 
to neutral height stability, a result which must be expected for kl = 01 i.e. if there is no height control. 
To complete the locus plot for all cases with kl/k2 = 0 we should therefore add a 'stationary' locus at 
j ~  = o" = 0. 

5. Discussions and Conclusions. 
Tight control of height or flight path has been studied as a condition particularly relevant to flight 

close to the ground. A situation where pilots are known to resort to coarse elevator usage for tight control 
of height exists in the latter stages of the landing approach and this is perhaps even more evident during a 
float which does not rapidly lead to a touchdown. 

It is shown theoretically that pure height control t?tl/~H by means of elevator will inevitably lead to an 
oscillatory instability which can be overcome by applying a sufficient amount of phase advance ~r//0/z/. 
However, even with proper control lead, the gains apilot  can employ in this way are severely limited, if the 
cockpit is located relatively close to the centre of gravity of the aircraft. Placing the cockpit further 
forward, as is a feature of the modern transport aircraft, gives the pilot additional--even though strictly 



false--height sensations, which help to make control in this mode more stable, permitting the use of 
larger elevator control gains. If the cockpit were to be placed at an extreme forward position, say 160 ft 
ahead of the centre of gravity in our examples, this would permit the pilot to use pure height control 
without any control lead provided a sufficiently large gain in ~rl/~H is used. This result appears to contra- 
dict the general rules of servo control and is the result of the fact that the 'false' height sensations assisting 
the pilot in this situation provide in fact an effective lead. It may be noted that forward cockpit location 
in the present context is exactly equivalent to the pilot using pitch attitude control which would evidently 
be benificial to the stability of this mode. 

Adverse elevator lift, as is obtained from the elevons of a tailless aircraft, has a detrimental effect on the 
stability of height control, but here too forward cockpit location is favourable. 

There are perhaps two main conclusions one can draw. Attempts to control the flight path of an aircraft, 
as for instance during the period proceeding touchdown, but tightening elevator control are bound to 
lead to pilot induced oscillations unless substantial phase advance is used. But even pure/:/-control will 
lead to instability unless the pilot is located far forward of the centre of gravity of the aircraft. The trend 
towards pilot induced instability is generally more powerful with elevators having strong adverse lift, i.e. 
with tailless aircraft and with aircraft flying with small longitudinal stability. To induce an aircraft 
persisting in an unduly prolonged float to settle down onto the runway, it would seem to be best not to 
engage in tight elevator control, but perhaps to 'inch' the stick gently forward, resisting any temptation. 
to true closed loop control. 

Another conclusion one might draw from the results of this analysis is the importance of pilot cockpit 
location and this may become important in landing simulations. To present the pilot with all significant 
clues, the effects of cockpit location must be faithfully represented. 
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TABLE 1 

Aerodynamic and Inertial Properties of the Two Example Aircraft. 

Aircraft 

//4', (sec- 2) 
~ q  (see- 1) 
~ '  a (see- 1) 
£~e, (sec- 1) 
d/ ' .  (sec- 2) 
ky (ft) 
.x~ (ft) 
x./ky 
V fit/see) ( xp 

A 
(SST) 

-0.3  
-0.33 
-0.33 

0.4 
-0 .3  

60 
- 5 0  
-0.835 

250 
40 (0.666) 
80 (1.333) 

120 (2.0) 
160 (2.666) 

B 

(Subsonic 
transport) 

- 0.68 
-0 .7  
-0.37 

0.6 
-0 .4  

40 
- 8 0  
-2 .0  

220 
40 (1.0) 
80 (2.0) 

120 (3.0) 
160 (4.0) 

Longitudinal short period characteristics 

Period T (sec) 16 10 
COo 0'666 1.05 
Damping ratio 0.8 0.8 
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