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Summary.

This report contains an analysis of the surface-pressure distributions on two aerofoil sections of 10%
thickness/chord ratio, at Mach numbers near 2 and 4, and at Reynolds numbers between 93 and 1920,
based on model chord. It is shown that with the exception of those hole positions within the upstream
influence of the trailing-edge, all surface pressures over a wide range of incidence may be correlated using
a viscous-interaction parameter ¥, in a manner similar to that for the flat plate at zero incidence. For
the front surfaces of the double-wedge aerofoil, the local inviscid flow conditions near these surfaces
represent those of the equivalent free stream where these are used in formulating the appropriate value of
x- For the rear wedge surfaces, and for the biconvex surfaces, correlation is achieved if it is assumed that
the equivalent local flow only attains some fraction (about 0-6) of the surface expansion from the shoulder
or the leading edge respectively. This reduction of the expansion angle is due to the presence of a very
thick laminar boundary layer in the expansion region. A simple theoretical model is developed which
provides an estimate of the effect.

The pressure distributions have been integrated to give section lift and pressure-drag. The lift-curve
slope is significantly higher than that predicted by inviscid theory due to the viscous-induced pressure
increments. These also increase the pressure-drag so that the ratio of lift to pressure-drag is close to that
measured elsewhere at high Reynolds numbers (around 6 x 10°). The addition of skin-friction drag to the
low-Reynolds-number data increases the section drag considerably and quite high incidences are needed
before the lift/drag ratio exceeds unity.
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1. Introduction.

The flow about slender bodies immersed in low-Reynolds-number continuum or transitional flow is
dominated by the thick laminar boundary layers which develop on the body surfaces. The displacement
effect of these boundary layers modifies the surface pressure distribution and hence affects the overall acro-
«dynamic characteristics of the body. The magnitude of such viscous-induced effects has been studied for a.
number of years, with perhaps most attention being given to simple geometric shapes like the flat plate and
the cone. A measure of understanding has indeed been attained of the way in which the hypersonic viscous-

interaction parameter M> \/E/\/fi—e = 7 (where M is a Mach number, Re a Reynolds number characteris-
ing the flow, and C is the Chapman-Rubesin factor) can be used to correlate surface pressures and heat-
transfer rates (see Refs. 8a to 8d for example). There is still room for argument about the extent of the
flow zones dominated by weak and strong interactions, and, more recently, about the effect of merging
between the boundary layer and the adjacent shock wave.

It is also apparent that the basic displacement effect associated with boundary-layer growth from a
leading edge may be modified when sudden changes in surface geometry occur; these changes may be
associated with a shoulder or with the trailing edge, and the resulting interaction effects can then spread
well upstream and downstream from the disturbing influence. The magnitude of such effects, important
in practical aerodynamic problems, is not easy to estimate however and there is a clear need for more
experimental data. Information is also lacking on the acrodynamic behaviour of lifting surfaces in low-
Reynolds-number flow, assessed in terms of viscous-interaction phenomena.

The NPL research programme on low-density aerodynamics is primarily concerned with the influence
of viscosity on flows about wings and bodies, and hence with the characteristics and structure of the thick
laminar boundary layer. Early work investigated flows about cones! and cylinders?; later lifting plates
and delta wings?, trailing-edge flaps* and steps® were tested and reported upon. Between October and
December 1965 the surface pressures were measured on two aerofoils of biconvex and double-wedge
section at stream Mach numbers near 2 and 4, but no analysis of the data was then attempted. It was
felt, however, that the results were of sufficient interest to justify detailed consideration, even after this
lapse of time.

2. Experimental Details.
2.1. The Tunnel.

The NPL low-density tunnel and its operation, as employed for the tests described in the present
report*, are described in some detail in Ref. 1. Two axisymmetric nozzles, providing open-jet test sections,
were then available, designed for nominal Mach numbers near 2 and 4. Data were obtained at three
working-section pressure levels (p,) for each nozzle; because the boundary-layer growth on the nozzle
wall varies with p., the actual test Mach number (M ) changes too. Calibration of the flow at the model
position' showed that. for a given value of p,.. M, did not alter significantly within the isentropic core
lin either the streamwise or cross-stream direction. The following relationships between test Mach
number and static pressure, measured in millitorrs were used in the data analysis:

*Subsequent modifications include the provision of an additional oil-diffusion pump, the use of a
diffuser and a stagnation-chamber heater, and the development of more complicated instrumentation.
The tunnel Mach number range has been increased considerably.



TABLE 1

< P > 3
M C
Mo | Re,.| 7. =M2Y/C
Newtons/sq.m (millitorrs) Re, .
4-4 33 179 93 0-59
69 52 2:09 204 0-63
86 64-5 212 254 0-60
4-4 33 395 790 2-19
6-0 45 4-04 1170 1-93
87 65 4-19 1920 1-68

The stagnation temperature of the flow in all cases was nearly atmospheric and has been taken as
288°K. The Reynolds number (Re,, ), based on the stream conditions and model chord, varies between
93at M, = 1-79and 1920 at M, = 4-19. It is convenient to use the viscous interaction parameter ¥ ,, asa
measure of induced-pressure effects; this quantity is also listed in Table 1.

2.2. The Models.

The symmetrical biconvex and double-wedge aerofoil sections used in the present tests provide very
suitable test surfaces for studying low-density, viscous flows. The overall aerodynamic behaviour of these
sections over a range of incidence («) provides useful information on the magnitude of the viscous influence
on simple aerofoil shapes ; the inviscid flow is simple and well-defined. Moreover, there are two conditions
for which the viscous effects are of particular interest : a uniform expansion and a sudden expansion. These
two conditions are provided by the biconvex and double-wedge profiles respectively.

The two profiles, whose thickness/chord ratio is 0-1, are shown in Fig. 1*. For defining the surface
pressure distribution each section had 10 ptessure holes, of diameter 0-010 in (0-25 mm) placed on one
surface only at the stations indicated in Fig. 1. The aerofoil chord was 1-0 in (2-:54 cm) and the model span
(5 in; 12:7 cm) was sufficiently long to allow it to extend completely across the jet issuing from the nozzle.
The pressure holes were placed near mid-span but in an irregular pattern to avoid local contamination
effects. The usable core of uniform flow is much smaller than the actual jet; the diameter of this core
varies with Mach number and static pressure! between about 1-5 in (3-8 cm) and 3-2 in (8-1 cm). Care was

taken to ensure that the pressure-plotting section of the aerofoils was always immersed in this uniform
region.

The leading-edge radius of each section was about 0-0015 in (0-04 mm) and this is sufficiently small to
allow bluntness effects to be neglected (see Ref. 7).

2.3. Test Procedure.

The NPL low-density tunnel runs continuously, and after an initial warming-up period the test flow is
stable. For the pressure levels and stream Mach numbers listed in Table 1 the aerofoil surface pressures
were measured using the standard thermistor manometer (see Appendix of Ref. 1); for pressure levels
between Sy and 400u (where u is a convenient symbol for a millitorr) roughly the range of the present

*Note that the hole distributions in terms of x/c for the two sections are not always similar. This arises
because for reasons irrelevant to the present text, the leading edge was defined differently on each profile
at each nominal Mach number.



surface-pressure measurements, the accuracy is better than +0:5u. Calibration of the thermistor mano-
meter, using a McLeod gauge, was carried out at frequent intervals throughout the investigation.

The aerofoil models have no internal cooling and all measurements were therefore obtained under zero
heat-transfer conditions.

A remotely-controlled incidence gear mounted in the tunnel, but outside the test jet, allowed pressure
measurements to be obtained at incidences up to +50°; at incidences above about +20°, however, the
increased model blockage caused significant changes in the test flow, and as a consequence data for very
high incidences have not been used in the present report.

Because the surface holes used to define the local pressure distribution are all on one surface, it is
convenient to regard this surface as the upper one, and to define positive and negative incidences accord-
ingly. Thus a positive incidence leads in general to surface pressures below those appropriate to zero
incidence, and a negative incidence to increased pressures.

3. Analysis of Surface Pressures.
3.1. General Characteristics.

The distribution of upper-surface pressures for the two aerofoils at M, = 4-04, p,, = 45y, over a wide
range of incidence is shown in Figs. 2a and b; p; is the measured local pressure. The rapidly-growing
boundary layer over the model surface is responsible for the pressure gradient that exists on both the
forward and rearward surfaces of the double-wedge section. For the biconvex aerofoil the inviscid pressure
falls almost linearly along the surface; viscous-interaction enhances this gradient and makes it non-
uniform. At a lower stream Mach number (2-09) very similar results are obtained and these are shown in
Figs. 3a and b. At this condition the trailing-edge interaction becomes rather more pronounced, and is
well illustrated, for example, on the biconvex section at o = -+ 20°; the local pressure reaches a minimum
near x/c = 0-7 and thereafter rises slightly towards the higher pressure-levels of the wake region.

The effect of changing stream static pressure (and to some extent test Mach number) is illustrated in
Figs. 4a and b, and for comparison the inviscid pressure distribution at M, = 4 has been added. Near the
leading edge of the double-wedge aerofoil the actual pressures recorded are around three times those
predicted in the absence of boundary-layer effects. The largest viscous-interaction effect occurs at the
lowest stream pressure-and highest value of 7.

Near M, = 2 a marked coupling between p,, and M, occurs and this makes the interpretation of the
changes in local pressure level with these quantities more difficult (Figs. 5a and b). Indeed in assessing the
significance and magnitude of the viscous-induced pressure changes, some general correlation of the
surface pressure is required. This is attempted in the following Sections.

3.2. Double-Wedge Section; Forward-Facing Surfaces.

Perhaps the simplest type of flow field is that associated with the forward-facing surfaces of the double-
wedge aerofoil. The pressures recorded from the front five holes (0-05 < x/c < 0-45)at M, = 4-04 can be
correlated very simply in terms of the parameter ¥, where the relevant distance is now that between the
leading edge and the pressure hole (x) (Fig. 6). For all incidences the pressure ratio p,/p,, varies linearly
with ¥,, though the hole nearest the shoulder shows some influence of the expansion just downstream.
The results for @ = 0° have been extended by including corresponding data for all three static pressure
levels, and the correlation is quite satisfactory. Similar agreement exists at all other incidences.

The measured pressures at holes 6 to 10 (0-5 < x/c¢ < 0-9) have been included on this Figure for o = 0°
as solid symbols to show that downstream of the expansion some alternative method of correlation is
needed if such data are to be brought into line with those from the forward-facing surfaces. This aspect
is discussed later in Section 3.3.

In Fig. 6 the effect of the aerofoil incidence is most marked, but it can be removed by changing the

M3./C
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region 1 adjacent to the wedge surface and Re, , is based on the characteristics of this local flow and the

correlating parameter to ¥, = ; M, is the calculated Mach number for inviscid flow in the



distance x. The measured pressure (p, ) is now non-dimensionalised by means of the local inviscid pressure
p1. Fig. 7 shows the complete correlation of the forward-facing surface pressures for a fairly wide range of
incidence ( 4 12°) at one test condition. Fig. 6 indicated that changes in p,,, could be allowed for adequately,
and this observation can be extended to the type of correlation shown in Fig. 7, though for clarity only
points for p,, = 454 have actually been included.

The line representing the correlation* is approximately

PL 1140337, (1)
D1

which is of similar general form to that suggested for predicting weak-interaction pressure increments.
For example, Hayes and Probstein® suggest a relationship, which for zero heat-transfer, y = 14, and a
Prandtl number of 0-725 reduces to

PL 1040357, @)
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if second-order terms are neglected (see Ref. 8a on this particular point).

This method of correlation may also be applied to the case when the stream Mach number is near 2.
Fig. 8a contains the mean line derived from the higher Mach-number data, and, as can be seen, the results
for a range of incidence at M, = 2:09 fit this line reasonably well. Correlation is maintained as the free-
stream pressure is dropped to 33u and the test Mach number to 179 ; Fig. 8b shows data at two incidences
(0° and + 12°). _

Thus by using the local flow conditions behind the leading-edge shock (or expansion) appropriate for
inviscid flow, it appears possible to correlate the pressures on the forward-facing surfaces of the double-
wedge aerofoil for a range of incidence and stream Mach number.

The use of local flow conditions to correlate viscous-interaction effects has of course been employed
before. For example, Bertram and Blackstock” put forward a method suitable for hypersonic speeds and
where the changes in surface slope, and hence pressure, are small. Orlik-Riickemann?® in discussing a
viscous-interaction model suitable for unsteady flows, has improved on this basic technique. The present
results are perhaps of most value in demonstrating the effectiveness of the approach in conditions where
the hypersonic flow approximations are not really justified, and where the flow deflections are significant.

The agreement between first-order, weak-interaction theory and experiment implicit in a comparison
between equations (1) and (2) above needs to be regarded cautiously. For example, although the weak
interaction mode appears to persist to values of 7, well in excess of those normally associated with this
phenomenon, and the experimental results lie significantly below the theoretical curve predicting first-
order strong-interaction effects, recent discussions (see Refs. 8a, 16) have tended to modify the simple
distinction between weak and strong interactions, particularly if slip and so-called rarefaction effects are
present. Disagreement (or agreement) with one particular theoretical model must not therefore be taken
as disproving (or confirming) that model in detail.

It is thus pertinent to compare the present results with those reported by some other workers. This is
done in Fig. 9, where it is seen that the present results lie between those obtained earlier. Maslach and
Moulic®® attribute the reduced slope of their curve as % increases as due to the onset of strong rare-
faction effects which tend to reduce the local pressure. It is generally agreed that the parameter characteris-
M/C %

JRe  M?*
reduction in induced pressure. Thus rarefaction effects should become apparent in the results of Maslach
and Moulic for ¥ > 6. Using a similar criterion, a reduction of slope for the curve representing the results

ing this phenomenon is

and that values of this quantity in excess of about 0-2 lead to a

*The data points which depart significantly from this line are mostly those for hole 2, which, for un-
known reasons, gave readings which were too low (see Fig. 2a).»



of Bertram and Blackstock would not become evident till ¥ > 18. Using a mean value of 40 as the
equivalent free-stream Mach number for the majority of the NPL results, some effect from rarefaction
ishould appear for these data near ¥ = 3, about the value at which they separate clearly from those due
to Bertram and Blackstock. The application of such a criterion, however, becomes rather less valid at the
lower Mach numbers and clearly does not apply for the results obtained near M, = 2.

The present text is not suitable for a detailed discussion on the interpretation of pressure data obtained
from flat plates; the foregoing argument has been included mainly as a warning against a too facile
acceptance of the agreement between equations (1) and (2) as indication of weak-interaction phenomena.
An alternative explanation may be put forward in terms of the presence of a strong interaction with some
degree of slip at the surface: or perhaps these strong interaction effects are modified by merging of the
shock and boundary layer to give an apparently linear relationship between p./p, andy,. More experi-
mental work is clearly needed.

3.3. Double-Wedge Section; Rearward-Facing Surfaces.

It is apparent from Fig. 6 that the pressures over the rear part of the double-wedge section need different
forms of the correlating parameters if they are to be fitted into some general pattern with those for the
forward-facing surfaces. The object must be to find for these rearward surfaces the flow Mach number
and static pressure of a hypothetical free stream, giving equivalent flat-plate, zero-incidence conditions,
and thus determining the magnitude of the viscous-induced pressure increment. These flow quantities,
designated M, and p,, can be used to form a non-dimensional parameter ¥, and p, used to non-dimension-
alise the observed local surface pressure through the ratio p;/p,. The magnitude of this pressure ratioisa
measure of the degree of viscous interaction present ; hopefully, it would be linear with ¥, and similar to
that for the forward-facing surfaces. The length used in formulating the Reynolds number component of
7, is so far underfined and need not correspond to the physical surface distance from the leading edge.
With these thoughts in mind, it is possible to make a very crude estimate of the way in which the boundary
layer near the shoulder inhibits the attainment of the full surface expansion. The following represents an
extension of a technique used earlier by Metcalf and Berry*.

In Fig. 10 the double-wedge surface is represented by the lines OP and PQ, with an expansion ¢ existing
at the shoulder, The boundary layer A grows from the leading edge along the surface OP and achieves a
thickness 6" at the shoulder, which is assumed to be at a distance x from the leading edge. It is now assumed
that the flow along the rear surface PQ may be represented by the boundary layer labelled B whose
effective origin is at 0", a distance s ahead of AP. It is further assumed that the characteristics of boundary
layer B can be found by matching its thickness and rate of growth at P’ to those of boundary layer A.

"Thus, at P’

8y = 0p (3)

ds"* ds*
(E‘;)A"‘tan(]&:(a—)B (4)

The boundary-layer growth on an insulated flat plate, and hence along surface OP, may be represented
approximately by

'y 1-
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where M is the local Mach number in the inviscid flow region 1 of Fig. 9.

Hence
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Equation (4) becomes
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Since 8, = 8, we may write
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It is convenient to let

. 173
o = \/R_‘f[uomw]: G /%,

where Re) is the unit Reynolds number of the local flow; G, is thus dependent only on known stream
conditions over the front surface of the wedge (i.e. in region 1). It follows that

1. ) 2
Gy S5 = Gy fs. where G, = L3402 M3]

«/ Reé,

and the subscript 2 denotes flow conditions appropriate to region 2 of Fig. 10. Substituting for s from
equation (7), we have finally

2 xtanq’f’”z

GZ=G1[1+ z, ®)

-

Hence G, is defined in terms of known quantities, the profile geometry and the flow in region 1; and since
Re, and M, are uniquely related, M, may be found and compared with the value which would have
resulted from an expansion ¢ in inviscid flow. Indeed a convenient parameter is the ratio (o) of the effective
expansion angle in viscous flow to the geometric shoulder expansion. Thus

_ ¢viscous

7T

The variation of ¢ with geometric expansion angle for M, = 404, p,, = 454, at the shoulder position
(x = 0-51in, 1:27 cm) of the present double-wedge aerofoil is shown in Fig. 11a. For the actual value of ¢
for this section (11.4°), o is close to 0-6, showing that a marked under-expansion of the flow might be
expected at the equivalent aerofoil incidence of 5-7°. Fig. 11b shows how ¢ varies with a for the double-
wedge aerofoil at two stream Mach numbers of interest. In Fig. 11c the importance of the expansion
position relative to the leading edge is apparent. For ¢ = 10° (close to the value appropriate to the
double-wedge section) the full Prandtl-Meyer expansion is achieved for x < 1-75in.

Too much should not be made of quantitative predictions arising from this simple flow model, but they
do suggest that correlation of the pressures over the rear surfaces of the double wedge may well be achieved
by allowing for the presence of a viscous-controlled expansion ; that is, an expansion at the wedge shoulder
from the equivalent stream conditions M, p,, is assumed but with a turning angle somewhat less than the
geometric value. The results contained in Fig. 12 show rear-surface data for incidences between —4°
and +20° at M, = 4-04. The broken line is the mean correlation curve for the front-surface pressures



and a reasonable degree of agreement with this can be achieved if ¢ is put equal to 05 for all incidences.
Of the five points (holes 6 to 10) plotted at each incidence, one (No. 6) is exactly at the shoulder position,
and this is shown as a solid symbol; correlation would not be therefore expected for this hole. Towards
the rear of the section, trailing-edge interaction influences the pressure readings, causing the readings at
holes 9 to 10 to be too low at small incidences and too high for large values of «. The inset to this Figure
shows that for a typical incidence (+ 2°) the correlation is very poor if o is put equal to unity, and is most
satisfactory for values of ¢ between 0'5 and 06. Indeed, over all the incidence range, use of the full ex-
pansion angle fails to correlate the results along any linear curve. The best fit to the forward-facing results
occurs when ¢ == (-55 it is more convenient, however, to use ¢ = 0-50 in subsequent analysis.

It is perhaps worth drawing attention to the low values of static pressure required for p,, the effective
stream pressure of the equivalent flat-plate flow over the rear surfaces. At o = 20°, p, is 3-7y, compared
with the free-stream value of 45u. The corresponding value of M, is 6:20, illustrating the wide range of
conditions for which correlation has been achieved. Moreover, the correlation between forward and rear
surface pressures (away from the trailing edge) shown in Fig. 12 is equally good at the two other pressure
levels (33u, 65u) for free stream Mach numbers near 4.

In Fig. 13 a similar analysis has been applied to the results obtained near M, = 2. The trailing-edge
interaction effect is more marked but apart from this correlation with the mean line for the front-surface
pressures is very good at M, = 2:09 if a value of ¢ equal to 0-6 is used. One set of results at M, = 1-79,
P = 33u has been included to illustrate that changes in test conditions do not significantly alter the
correlation at the lower test Mach numbers also.

The values of ¢ used in Figs. 12 and 13 (05 and 0-6 respectively) have been marked on the theoretical
curves of Fig. 11b. They are roughly representative of some mean value over the whole incidence range
of interest ; it seems likely, however, that the actual variation of ¢ with incidence is rather smaller than that
predicted by the simple theory. Nevertheless the experimental results appear to give a measure of support
to the theoretical model, and hence its employment in other situations.

The pressure at the shoulder (x/c = 0-50) may itself be correlated very simply by using flow conditions
based on an equivalent free-stream pressure p,, where

_Ditp;
Ps = 2 .

Some results for M, = 4-04 are shown in Fig. 14, in terms of a pressure ratio p,/p, and a viscous-
interaction parameter ¥,. The Reynolds number used in the latter quantity is based on the distance from
the leading edge to the shoulder (c/2).

3.4. Biconvex Section.

It seems reasonable to suppose that the expanding flow about the surface of the biconvex aerofoil will be
subject to a similar viscous effect to that occurring downstream of the shoulder of the double-wedge
profile. The actual surface pressures may perhaps best be correlated by assuming that some fraction of the
local geometric expansion angle define the local equivalent flat-plate flow. Though the viscous-flow
model sketched above, and indeed the concept of relating measured pressures to some flat-plate analogue,
seem somewhat more doubtful for this type of flow, it is nevertheless possible to make some estimate of the
likely distribution of the parameter ¢ along the aerofoil chord by dividing the aerofoil surface into a
number of facets (Fig. 15). The junction between adjoining facets can be treated by using equation (8);
in practice this means starting with the flow just behind the leading-edge shock (or expansion) and pro-
ceeding sequentially towards the trailing edge. An example showing the chordwise distribution of ¢ at
two incidences for the conditions M, = 404, p,, = 45uis shown in Fig. 15; o now represents the effective
local turning angle from the leading edge compared with the geometrical value. These results, in which
the actual aerofoil surface was replaced by 10 flat segments*, suggest that a mean value of ¢ of around 0-7

*Very similar distributions are achieved when only five segments are employed.



may well be appropriate for the flow over the biconvex surface fora range of incidence.

The effect of variations in ¢ on the correlation of the actual surface pressures measured on the biconvex
section is illustrated in Fig. 17. The stream conditions are M, = 4-04, p,, = 45u and the section incidence
is zero. The subscript ; denotes equivalent free-stream conditions based on an expansion from just behind
the leading-edge disturbance through an angle o ¢, where ¢, is the local geometric expansion angle.
These conditions thus define p;, and M;. The Reynolds number in the parameter 75 is also related to
the distance of the pressure hole from the effective origin of the local flat-plate boundary layer (see Fig. 15).

When o = 1-0, the correlation with the data for the forward-facing surfaces is very poor, but becomes
progressively better as ¢ is decreased until the best correlation over most of the aerofoil chord is achieved
for values of ¢ of 0-65 or 0-70. These values are rather lower than predicted by the simple theory illustrated
in Fig. 16.

The vertical scale used in Fig. 17 is a comparatively open one, and somewhat accentuates experimental
scatter. Over a wide range of incidence, satisfactory correlation along a single straight line may be achieved
by using ¢ = 0-6, as illustrated in Fig. 18, where the vertical and horizontal scales are identical with those
used in Fig. 7 for the double-wedge results. For clarity only a few incidences have been included, mostly
at one free-stream condition. Changesin p,,, and M do not affect the correlation however, and to illustrate
this, data at two values of p_, have been included for « = +15°.

At Mach numbers near 2, a reasonably linear correlation is achieved at 0° for ¢ = 07 (Fig. 19), suggest-
ing that there is no large Mach number effect on this factor. For a wide range of incidence, slightly better
results are obtained with ¢ equal to 0:6 (as at M = 4) and this value has been used in the correlation
shown in Fig. 20. The agreement between the data points and the mean line for results near M, = 4 is
very good. '

A striking feature of Fig. 18 is of course the discrepancy in slope between the lines representing the two
aerofoil sections; in the case of the double-wedge aerofoil this line represents both the forward-facing
and the rearward-facing surfaces, using o = 0-5 in the latter case. The discrepancy suggests that whilst
the correlating parameters (i.e. the equivalent free-stream conditions) have been correctly chosen, either
the magnitude of the resultant viscous-interaction effect is markedly smaller for the biconvex section, or
that there exists in this case a strong pressure gradient normal to the model surface across the thick
laminar boundary layer, balancing the centrifugal effect due to the curved surface and giving a lower
pressure at the solid boundary.

From the present evidence it is not possible to judge which of these factors has the most influence. It
seems most likely that a major cause of the reduction in measured surface pressure is due to this normal
pressure gradient. Some limited measurements of this gradient near an expansion were made by Metcalf
and Berry*; a crude argument based on their data suggests that the pressure on the surface of the bi-
convex aerofoil might be only about 0-7 of that at the edge of the boundary layer. Such an effect, assuming
that no such gradient exists for the double-wedge section, would account for difference in slope between
the two lines of Fig. 18, but in the absence of more detailed studies this argument must only remain
conjectural. It is possible however to pursue the matter a little further in a rather tentative manner by
suggesting that this normal pressure-gradient effect only becomes significant when the boundary layer
is thick. Thus for a hole close to the landing edge somewhat better agreement with the double-wedge line
might be expected, and moreover the viscous effect causing ¢ to fall below unity might also be of less
importance*.

In the tests at stream Mach numbers near 2, the first hole on the biconvex model was at x/c = 0-05,
and Fig. 21 shows that for incidences between — 12°and + 8° and for all three values of p_,, the observed
pressures agree well with the double-wedge line for the case when ¢ = 1. Above 8° incidence there is a
progressive discrepancy between the two sets of results and it is perhaps significant that for an incidence
of 10°, the lower-surface deflection is close to the maximum value for attached (inviscid) flow near M, = 2.
The non-linearity of these upper-surface results may therefore be due to shock detachment associated
with the high incidence, an event which may be of less significance for more rearward holes. At M =4,

*The curves of Fig. 16 cannot be used as a guide to the variation of ¢ near the leading edge; the seg-
mented model used is too coarse in this region.
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the corresponding curve is straight up to incidences of 20° (detachment should occur for « > 27°), but
since the first hole is at x/c = 0-1 in this case, the fact that its slope (with ¢ = 1) is smaller than that for the
double-wedge aerofoil is of unknown significance. It seems possible therefore that the results contained
in Fig. 21 offer some support to the argument that the magnitude of the viscous interaction at the surface
is substantially modified if the solid surface is curved.

4. Use of Correlation Curves.

In Section 3 an attempt was made to correlate the measured pressure distributions on both the double-
‘wedge and biconvex sections in a form similar to that for flat plates on supersonic, viscous flow. At this
stage therefore it is worthwhile comparing the pressure distributions predicted from the mean correlation
lines, using these over the entire aerofoil chord, with actual experimental results.

Two examples are set out in Figs. 21 and 22. In the earlier Figure, data for the double-wedge aerofoil at
o = 6° and the stream condition M = 404, p,, = 451 have been used. In general, the agreement is
satisfactory. The discrepancies towards the rear of the section are due to trailing-edge interaction and
correspond to the departure of the data points from the mean correlation lines in Figs. 12 and 17 for
example; even so the differences between predictions and experiments are not large. Similar test conditions
apply in Fig. 22 ; here the agreement between prediction and experiment for the supper-surface is very good
but the correlation slightly over-estimates the upper-surface pressure.

It is clear that previously suggested methods such as the ‘local tangent-wedge’ technique in which
pressure is related directly to the combined slope of the geometric surface and the boundary-layer dis-
placement surface would be inadequate for the biconvex section and for the rearward surfaces of the
double-wedge aerofoil. Such approaches fail to allow for any viscous influence on the local flow expansions
or for the effects of strong normal-pressure gradients within the boundary layer.

The correlation processes discussed in Section 3 are of course somewhat limited in scope and must be
extrapolated with some caution. It is claimed, however, that they do represent a way of regarding the local
flow so that its gross, viscous features are allowed for.

5. Flow-field Explorations.

A very limited amount of flow exploration in the neighbourhood of the model was carried out for both
aerofoils, at stream conditions M, = 2-09, p,, = 52u. Traverses were made, using a pitot tube of diameter
0-125 in (3-3 mm), along lines parallel with the tunnel axis (i.e. the aerofoil chord at zero incidence). From
these results, carried out at incidences of 0°, 10° and 209, it was possible to confirm the flow Mach number
upstream of the model, and to deduce approximately the shock shape and the total boundary-layer
thickness ().

The shape of a typical pitot-tube traverse normal to the zero-incidence chordline (and hence obtained by
cross-plotting from the actual pitot traverses) is sketched in the lower part of Fig. 24. The curve has four
main components. The most inboard part (defined as 0.4) represents the boundary layer; the region AC
is the non-uniform flow behind the curved shock wave. The shock wave itself corresponds to a fall in
pitot pressure (CB), and because of the low stream density the shock thickness is appreciable. Outboard
from point B towards D the pitot reading is constant, indicating a uniform stream, until the edge of the
jet shear layer is reached. ,

Using the somewhat arbitrary definitions indicated in the sketch, it is possible to construct the chock
shape and that of the outer edge of the boundary layer. The upper part of Fig. 24 shows results for the
biconvex aerofoil at zero incidence. The shock wave is curved, and near the leading edge has a slope
significantly greater than would be appropriate for inviscid flow. The shock thickness, normal to its front,
appears to be about 015 in (3-8 mm). The use of a relatively large probe probably exaggerates this dimen-
sion; but since the shock thickness must be about 5 mean-free-paths the actual thickness cannot be less
than about 0-10 in (2-5 mm).

The outer edge of the boundary layer is nearly proportional to x%, and is in quite good agreement with
an estimate based on the growth along an insulated flat plate, using the local surface Mach number and
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assuming that & = 28" (see Ref. 5). The significance of this agreement must not be over-stressed since both
the theoretical and experimental curves contains a number of approximations. It is merely sufficient to
note that the flat-plate analogue suffices here as a crude approximation. It is certainly not possible from
this evidence to comment authoratively upon the experimental basis underlying the boundary-layer
model sketched in Fig. 15.

Between the leading edge and x = 03 in (7-6 mm) the regime AC in the lower sketch disappears: the
shock wave and the boundary layer merge. This corresponds to 7 3 > 0-7, and for this condition one would
expect progressively increasing departures from simple weak- or strong-interaction models. The para-
meter correlating the onset of merging effects is M \/E/\/R-e = ¥/M?, where these quantities are defined
properly according to the local flow. For the conditions of Fig. 24 ¥;/M3 = 02, a value in general agree-
ment with others as indicating the beginning of merged flow (Refs. 8a, 16 for example).

The results for the double-wedge aerofoil are very similar to those contained in Fig. 24. The shock is
placed in an almost identical position with respect to the chord line, whilst the boundary-layer edge is very
slightly nearer the surface. This movement is small and close to the likely experimental error so that its
significance is uncertain.

6. Overall Forces on Sections.

Though the main aim in the analysis of these aerofoil data lies in obtaining some understanding of the
factors influencing the detailed pressure distribution, the overall forces acting on the two sections in
low-density flow are of considerable interest, not least because information on the lift and drag of aero-
dynamic shapes is not plentiful in such flow conditions. ,

Thus the chordwise pressure distributions were integrated mechanically to produce axial and normal
forces. These were reduced to coefficient form (Cy, Cy) in the usual way and subsequently resolved to
provide the section lift coefficient (C;) and the section pressure-drag coefficient (C p,)- The absence of
pressure holes close to the leading and trailing edges introduces some uncertainty into the determination
of the axial and normal forces. This can be minimised (but not eliminated) by noting that the acrodynamic
loading varies comparatively slowly along the chord and hence offers a way of extrapolating towards the
leading and trailing edges. It is hoped that any residual errors will be fairly consistent so that comparisons
between results obtained at different values of p,, and M, remain valid.

The variation of C;, with incidence for the biconvex aerofoil at all test conditions is shown in Figs. 25a
and b. For the incidence range covered the curves are remarkably linear with a slope appreciably greater
than that predicted by the linear inviscid-flow theory*. Ref. 17 shows that at Revnolds numbers near
6 x 10° experiment and linear theory agrees very closely for both sections. The experimental curves from
Figs. 25a and b are replotted in Figs. 26a and b as broken lines, where they can be compared with the
experimental points for the double-wedge section. The agreement between the two section lift curves for a
specific flow condition is quite remarkable, particularly when it is remembered that the viscous-induced
pressure increment is essentially determined by local flow conditions and hence local geometry. The
biconvex and double-wedge results at M, = 3-95 also agree with those obtained from balance test on a
5° single-wedge under rather similar flow conditions (Ref. 11).

In Ref. 3 it was shown that for rectangular, flat-plate wings of aspect ratio 2 at supersonic speeds, the
ratio of the measured lift-curve slope to that predicted by a linear theory for inviscid flow was a linear
function of ¥ . This curve is plotted as a broken line in Fig. 27. The experimental values of this lift-slope
ratio for the biconvex and double-wedge sections lie above this line, perhaps as one might expect since
they represent data for wings of infinite aspect ratio. Bertram and Henderson'? also showed that the
lift-slope ratio and ¥, were related and the full line in Fig. 27 represents their theoretical prediction for
both infinite aspect ratio and Mach number.

*Use of the correlating curves discussed in Section 3, leading to a reasonable agreement between

theory and experiment for the surface pressures (as in Figs. 22 and 23), provides a good estimate of the
section lift. '
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The fact that the lift curve slope of a wing or aerofoil increases more or less linearly with 7., amounts
perhaps to little more than a recognition that all viscous-induced pressure increments on the aerofoils
are linked either directly to ¥,, or to some modified form of this parameter, usually in a linear manner.
The incremental loading at any chordwise station is thus largely independent of incidence and its magni-
tude depends only on some average value of ¥ for the two surfaces. Since the profiles are symmetric,
T 18 representative of this mean value.

The variation of axial-force coefficient with incidence is very small for all test conditions; Fig. 28
illustrates this for stream Mach numbers near 4. Since

Cp, = Cx,cosa+Cysina
it follows that over the incidence range of current interest (¢ < 14°)
Cp,==(Cp,)o+Cysina,
where (Cp ), is the pressure-drag coefficient at zero incidence and the lift-dependent drag is due entirely
to the normal force. This is the behaviour expected from a sharp-edged profile at supersonic speeds.

The variation of Cp, with incidence at M, =4 is given in Fig. 29a. At low incidences the biconvex
aerofoil has a higher pressure drag than the double-wedge section at the same stream conditions, due to a

significantly greater value of (Cp ),. Examples of the pressure-drag curves for stream Mach numbers

near 2 have been plotted in Fig. 29b.

Tests have been made on identical aerofoil sections by Beastall and Pallant!” at Mach numbers of
1-86 and 2-48 and at Reynolds numbers near 6 x 10°. The variation of C p, With incidence for the smaller
of these two Mach numbers is shown in Fig. 29b, for the double-wedge section. The shape of the curve is
very similar to that obtained at low Reynolds number, but the value of (C p,)o is halved.

The ratio of aerofoil lift to pressure drag is of interest in that it indicates the efficiency of the section
as a lifting device. The corresponding curves from the present data are plotted in Figs. 30a and b. In general,
the maximum value of C;/Cj,_is little influenced by variations in stream conditions, but it has a somewhat
smaller value for the biconvex aerofoil. Rather more surprisingly, the lift-to-pressure-drag ratio is almost
identical in high Reynolds number flow ; data from Ref. 17 are plotted in Fig. 29b for the biconvex aerofoil
and similar agreement is achieved for the other aerofoil section. At small incidences at least, the increase in
€ due to interaction effects at low Reynolds numbers is balanced by the corresponding increase in
(Cp,)o, the component Cy, sin a being of less importance in this incidence range. It follows that the effect
of Reynolds number (and also Mach number) on the maximum value of C, /C p, 18 quite small.

Skin friction has of course been neglected in the foregoing, and since it can have a most significant
effect in low Reynolds-number flows, it seems worthwhile making a rough estimate of its contribution
to the overall section drag. Accepting that the average skin-friction coefficient on a flat plate with zero
pressure gradient is given approximately by

1-328
Cr=—r—+— 9
F Re, .

then for the flow conditions M, = 404, p,, = 454, where Re,, . = 1170, Cp = 0-0388. The effect of
viscous interaction however is to augment this value; using Ref. 13 and taking ¥, = 2, the new value of
Cr in viscous hypersonic flow (with induced pressure gradient) becomes about 0-089. Thus the skin-
friction drag coefficient for a double-sided flat plate (C ) 15 about 0-180, a very large value compared with
(Cp,)o, found by experiment to be 0-0182. The revised lift/drag curve is plotted in Fig. 30a and a maximum
value is no longer reached even at & = 14°; indeed a ratio of unity is only achieved for incidences greater
than 7°. By contrast, the addition of the skin-friction component at high Reynolds number would not
significantly alter the lift/drag ratio.

This calculation is only intended to draw attention to the likely magnitude of skin-friction drag in
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low Reynolds-number flow. The actual value of Cj,,. quoted will be in error due to neglect of incidence
and Mach number effects on Cj (see Ref. 12) and because of the uncertainty of applying equation (9) with
accuracy at small values of Re, . in supersonic flow. The effect of including friction drag at stream Mach
numbers near 2 would be even more dramatic, since Re, . is then many times smaller (see Table 1 above).

The pressure-drag coefficient at zero incidence varies with both test conditions and with aerofoil
section, as the following Table shows ’

TABLE 2
_ Biconvex Section Double-wedge Section
M(XI w0 o0 ReCD (4
Pl | 2 ~ (Cp,)o (oo

. Inviscid . Inviscid

Experiment Theory Experiment Theory
419 65 1-68 1920 0-02084 0-01486 00154 0-0100
404 45 193 1170 002410 0-01543 00182 0-0105
395 33 2-19 790 0-02830 0-01585 0-0199 0-0109
212 64-5 0-60 254 00432 0-0309 00297 0-0199
2:09 52 0-63 204 0-0458 00315 00312 0-0204
1-79 33 0-59 93 0-0624 0-0386 00420 00256

The viscous-induced pressure-drag increment is about the same for the two aerofoils at a given flow
condition, but neither this quantity, nor the ratio of the experimental to the inviscid pressure drag cor-

relate well when plotted against 7. Indeed because the local pressure ratio <&— 1 > is proportional to

¥ ., (or some variant of this), one can argue approximately that when integrating around the profile to find

the pressure drag
3§ (ﬂ_ 1 )d(%) o Cp, . M2, « ¥,,+constant
Peo

30, UZ = 4yp,, M% .

since

The resulting correlation for zero incidence is shown in Fig. 31; well-defined curves exist for both
sections.

An alternative, yet to all appearances quite satisfactory, correlation can be achieved simply by plotting
(Cp,)o against test Reynolds number (Re,, ), as in Fig. 32; test Mach number then seems to be unim-
portant, though admittedly the variation in M, is not large for each group of points. However, Potter!*
has produced a similar correlation for sharp and blunt-nosed cones over a wide range of stream Mach
number. The absence of a strong Mach number effect suggests that an effective blunt-body flow exists in
the leading edge region associated with the rapidly thickening boundary layers (as indeed is suggested by
Fig. 24). The pressure drag is then dominated by this feature.

7. Concluding Remarks.

This report has been concerned with an analysis of the surface pressures on two different aerofoil
sections for stream Mach numbers between 1-79 and 4-19, and for a range of stream static pressures.
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It has been demonstrated that for a plane surface inclined to thé flow direction (the front surfaces of the
double-wedge aerofoil) the local pressures may be correlated adequately by means of a viscous-interaction,
parameter ¥, based on conditions near the wedge surface in inviscid flow. The rearward surfaces of the
double-wedge section, however, are influenced by the shoulder expansion and the pressures on these
surfaces correlate well only if it is assumed that the presence of a thick laminar boundary layer prevents
the attainment of the full Prandtl-Meyer expansion at the shoulder. A similar constraint on the magnitude
of the flow expansion applies to the biconvex section. The flow models used in estimating the likely size
of the viscous-controlled expansion are very simple and are not likely to represent at all closely the real
boundary-layer flow in either a local, or a continuous, expansion. The theoretical predictions are, how-
ever, roughly in accord with the experimental data.

The general phenomenon of a thick viscous layer inhibiting a surface expansion is of considerable
importance, and its neglect could well lead to significant errors on the calculation of body forces, control-
surface effectiveness and other aerodynamic information. It follows that more experimental work is
required to investigate the influence of surface geometry on the process, and on the static pressure gradient
normal to the surface thought to be responsible in the present tests for the discrepancy between the
correlation of the biconvex and double-wedge surface pressures. That these pressures can in fact be
correlated over a wide range of Mach number and Reynolds number appears to indicate an underlying
unity in the mechanisms dominating viscous interactions, even though the nature of such mechanisms
is at present only dimly perceived.

The effect of the viscous-induced pressure increments on the section lift and drag is most dramatic.
Lift-curve slopes well in excess of the inviscid (and hence high Reynolds number) values can be achieved,
but these are accompanied by high pressure-drags, so that the ratio of lift to pressure-drag is almost
identical to that produced at high Reynolds numbers. At low Reynolds numbers, however, the skin-
friction drag is extremely large, and represents a major part of the overall section drag. Its inclusion
results in a lift-drag ratio near M, = 4 that does not exceed unity until the aerofoil incidence is greater
than 7°; at lower Mach numbers, because the Reynolds numbers are smaller, the ratio unity is not reached
over the test range of interest. :

The section lift and drag characteristics give some indication of the type of acrodynamic behaviour
likely from lifting-surfaces in rarefied, low-Reynolds-number flow. High aerodynamic efficiency is likely
to be most difficult to attain, and indeed it may not always be a flight requirement. Nevertheless an
understanding of the factors contributing to and controlling the overall aerodynamics of a wing or body
flying at high altitude is a basic necessity and it is hoped that the present text represents a small contribut-
ion towards this objective.
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LIST OF SYMBOLS

Aspect ratio of wing
Normal force, axial-force coefficients
Lift, drag coefficients
Pressure-drag coefficient
Value of Cp, ata = 0°
p
Average skin-friction coefficient on a flat plate

Skin-friction drag of aerofoil

T S . .
Chapman-Rubesin factor (= ;;h . T—°° > , where # is fluid viscosity and subscripts

‘o0’ and ‘w’ refer to free-stream and wall conditions.

1.
3 [1+0-27M,f—!,n= 1L,2,...

~/ Re’ _J
Free-stream Mach number

Mach number of inviscid flow adjacent to forward-facing surfaces of double-wedge
section (Region 1)

Mach number of equivalent free-stream flow adjacent to rearward-facing surfaces
of double-wedge section (Region 2)

Mach number at position x

Mach number of equivalent free-stream flow for shoulder position of double-
wedge section

Reynolds number based on stream conditions and model chord
Reynolds number based on stream conditions and distance x

Reynolds number based on flow conditions in Region 1, and distance x (double-
wedge section)

Reynolds number based on flow conditions in Region 2, and distance s (double-
wedge section)

Reynolds number based on flow conditions in Region 3, and distance x (biconvex
section)

Reynolds number based on flow conditions in equivalent free-stream for shoulder
position (double-wedge section) and distance ¢/2

Unit Reynolds number in Regions 1,2, 3 . ..
Free-stream velocity

Aerofoil chord

Local (measured) pressure on aerofoil surface
Free-stream pressure

Equivalent free-stream pressures in Regions 1, 2, 3
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LIST OF SYMBOLS—continued

Pressure of equivalent free-stream for shoulder position (double-wedge section)

Distance upstream of shoulder of origin for equivalent boundary layer flowing
. along rearward-facing surfaces of double-wedge section (see Fig. 10)

Distance along aerofoil chord-line from leading edge
Distance normal to aerofoil chord-line

Aerofoil incidence

Boundary-layer displacement thicknesses (see Fig. 10)
Total boundary-layer thickness

Pressure of 1 millitorr

Ratio of effective to geometric expansion angles
Expansion angle at shoulder of double-wedge section

Local expansion angle, measured from leading edge, on surface of biconvex
aerofoil

Free-stream density

Ratio of specific heats of test gas ( = 1-40 for air)

. . . M3 ./C

Viscous-interaction parameter( = —3———>
Viscous-interaction parameter )
Viscous-interaction parameter | =
Viscous-interaction parameter [ =

Viscous-interaction parameter

Viscous-interaction parameter

(

(-7=7)
(-7Z)
(- L)
(-*35)
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