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Summary. 

In a single-axis gyro a rotation about the input axis forces the spin axis to rotate about the output axis. The 
true input axis is oscillating about its nominal position and the gyro sees a varying component of the angular 
velocity about the nominal spin axis. This may be rectified, thereby causing a drift, if the components of 
angular velocity along the input and spin axes are correlated. The drift rate is evaluated in terms of the 
components of angular velocity suffered by the gyro. 
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1. Introduction. 

This report deals with the drift caused in damped single-axis gyros by rectification of angular 

vibrations. 
The function of a gyro is to preserve a reference frame fixed in space. With a two-axis (or 'free') 

gyro, the spin axis can, in principle, remain fixed in space, any motion of the platform being taken 

up by the gimbal system. On the other hand with a single-axis gyro a rotation about the input axis, 
which is the direction orthogonal to the output and spin axes, forces the spin axis to rotate about 

the output axis (see Fig. 1). In response to angular vibrations, the spin and input axes are wobbling 
about their nominal positions. Thus the gyro 'sees' a varying component of the angular velocity 

about its nominal spin axis, and under certain conditions this varying component may be rectified. 
Arutyunov a has given a similar calculation of the drift rate in a damped single-axis gyro for 

sinusoidal inputs. Cannon 2 has dealt with kinematic rectification in undamped single-axis gyros, 
and has given quantitative experimental verification of the effect for this case using abnormally 

high angular vibrations. A somewhat similar phenomenon in two-axis gyros, due to inertia effects 

when the gimbals are not orthogonal, has been discussed by Plymale and Goodstein 3. 

2. Equation of Motion for a Damped Single-Axis Gyro. 

2.1. The Fhdd-Floated Gyro. 

The treatment to be given applies particularly to the 'fluid-floated' type of gyro (see Fig. 1). 

Basically this consists of a rotor mounted with its spin axis across a cylindrical float chamber, which 

in turn is enclosed in a cylindrical outer case. The float is pivoted to the case about their common 

axis, and the small radial gap between them, as well as the larger spaces at the ends, is filled with a 

fluid of fairly high density and viscosity. The viscous drag of the fluid in the gap supplies the torque 

resisting motion of the float relative to the case. Also the float chamber is designed to have the same 

mean density as the fluid, so that the gravitation and acceleration forces on the float are small. This 
allows a fine suspension to be used which locates the axis of the float very precisely and gives only 

very small frictional torques. 

2.2. Choice of Axes, etc. 
In operation the gyro outer case is clamped to the platform to be stabilised. The true output axis 

and also the nominal positions of the spin and inpu t axes, which are determined by the null position 
of the output pick-off, are fixed in the gyro outer case. These give a convenient basic frame of 

reference fixed relative to the platform, which we will take as the axes 0123 (Fig. 1) coinciding with 
the nominal input, output and spin axes respectively. They are moving axes to the extent that the 

platform moves. 
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We will suppose the platform rotates through the small angles 01 about 01, 02 about 02, and 03 
about 03. This representation is permissible provided the angles are small, which is true here, since 

only then do rotations about different axes commute. We will also suppose the float rotates relative 

to the case.through the angle ¢ about the output axis, and define a further set of moving axes 01'2'3' 

which are fixed in the float and coincide with the true input, output and spin axes respectively 

(02' coincides with 02). 

The angular velocity of the frame 0123 has components 01, 02, 03 along 0123. Thus the angular 

velocity of the frame 01'2'3' (fixed to the float) is to with components col, 0)~, o~ 8 along 01'2'3', where 

0) 1 = 01 COS ¢ - -  0 3 sin ¢ 

o2 + ¢ j (1) 
0)8 '01 sin ¢ + 03 cos ¢. 

Also the gyro rotor is kept spinning at constant angular velocity f2 with respect to the frame 01'2'3' 

by a synchronous motor attached to the float. The axes 01'2'3' are principal axes of inertia for the 

rotor and the float, and we will write the moments of inertia about 01', 02', 03' as Iol, 102, I08 for 

the rotor and/11,  I12, I18 for the float. Then the angular momenta H o and H 1 of the rotor and 

float respectively are 
Ho = {Io~0)~, I020)e, I0s(f2 + 0)s)} (2a) 

H1 = {I~1~o~, I120)2, I~a0)8} (2b) 

where the components are given in the moving axes 01'2'3'. 

2.3. Dynamical Equations. 
We will write the reaction torque on the rotor from the float as R 0 with components Rol , Ro2 , 

R0a along 01'2'3'. The component R0s is such as to keep the rotor running at constant speed and is 

the resultant of the torque supplied by the synchronous motor, and the torques due to bearing 

friction, drag due to residual gas in the float chamber, etc. The other components Rol, R02 are 

due to lateral reactions at the pivots. In addition there is an external torque T o on the rotor due 

to its mass unbalance (and possibly other effects). 

Turning to the torques on the float, the reaction from the rotor is - R  0 . Similarly the reaction 

torque on the float from the case is R 1 with components Rll , R12 , R18 in 01'2'3'. Here Rll and 

R13 are only lateral reactions at the pivots and the important component is RI~. The main part 

of R12 is due to fluid drag and we will assume this obeys a linear law so that we may write 

R12 = - L¢ + unwanted parts (3) 

where L is a (positive) constant. The unwanted parts conceal a multitude of sins including torque 
due to the motor leads, friction at the pivots and various other possible imperfections, e.g. bubbles 

in the fluid, bending of the float and inertia effects in the fluid, etc. In' addition there is the external 

torque Tt due to mass unbalance of the float. 
Using the theorem of moving axes, the equations of ,notion of the rotor and the float are 

d O H R o + T o  = ~/}Ho = ~ o + " ° a H o  (4a) 

d a 
R I - R  o+T I = ~H I = ~ H  1+ooAH1. (4b) 
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When resolved into components along 01'2'3', 

R01 + 

R02 + = Io2cb n 

Ro3 + = lo3o53 

(R l1 -  R01 ) + Tl1 = I t l~ 1 

(R t2 -  Ro~) + TI~ I12cb2 

(R13- Roa ) + Tt3 I13~8 

The equations (6) are the usual Euler 

these equations give 

r o t  = I01 1 - (i0n-I03)o n 3 + I03a % 

To2 - -  (103-101)0930)1  - -  I03~'~c01 

- ( Io t -  Ion) l   

( I l l  - Itn) o o   • 

(5) 

(6) 

equations for a rotating rigid body with respect to axes fixed 

in the body, and the right-hand sides consist of the angular acceleration terms Iti~b i and the terms 

- ( I t j -  It~,:)co~w k which couple angular velocities about different axes. The first set of equations (5) 
contains all these terms and in addition a gyroscopic term in the first and second equations. It will 
turn out that the kinematic rectification term, which is a part of the gyroscopic term, is of the same 
form as the cross-coupling terms. Moreover the kinematic rectification term is larger, simply 

because f~ is larger than I~[, and we will discard the cross-coupling terms without further ado. 

Since R12 (~_ - L ¢ )  is the only known internal reaction the only equation of interest is got by 
adding the second equation of set (5) and the second equation of set (6), viz: 

e t 2  ÷ ( Tog -}- Tt2) ---- ( /o2 + I~12)d12 - -  /~o3~'~°)1 • ( 7 )  

The remaining five independent equations only determine the five unknown internal reactions. We 
can put equation (7) in a neater form by writing: 

I = I02 + I1~ = total moment of inertia of the rotor and the float about the 
output axis. 

H = I03f~ = spin angular momentum of the rotor. 

T = Tot + To2 + ( R l n - L ( ~ )  = total unwanted torque on rotor and float about the 
output axis (due to mass unbalance, pivot friction, 
ligament torques, etc.). 

After substituting for 0) 1 and ~% from (1), we have the equation 

I ¢  + L ¢  = N( t )  (8) 

where the forcing function is 
N(t )  = H(O 1 cos ¢ - 03 sin ¢) + r - IO n . (9) 

2.4. Physical Significance of  the Input .  

The whole of the first term of N(t )  in (9) describes the purely gyroscopic effects. At any instant 
the gyro 'sees' the component of angular velocity along the true instantaneous input axis 01' which 
is at an angle ¢ to the nominal input axis 01. As far as the rotor is concerned the nominal input 
axis, which is determined by the pick-off null, is a fiction. 



The gyroscopic term splits naturally into two parts, and these and the remaining two terms 
of N(t), may be classified as follows: 

(i) The principal term s 
HO 1 cos ~ - HO 1 

which is of first order in small angles and gives the effect of rotation about the nominal input axis. 

This term by itself would be the ideal input to a single-axis gyro. The remaining terms all represent 
false inputs and give rise to drifts. 

(ii) The kinematic rectification term s 

- HO~ sin ~ ~ - HO~ 

which is of second order in small angles. Since 6 is mainly determined by the input HOl, the two 

factors in the kinematic rectification term will be correlated if 0 t and 0 a are correlated. 

(iii) The torque term T which is the component about the output axis of the total extraneous 
torque on the rotor and float. The gyro must be designed so that this is small. 

(iv) The output-axis term - I0~ which gives the effect of rotations about the output axis. When 
the outer case rotates, the float must be partly carried with it. The float cannot remain at rest 
since the fluid-drag torque would be unbalanced, nor can it rotate with the case since there would 
be no torque to start the rotation. 

Here we will be concerned only with kinematic rectification, and the torque and output-axis 
terms will be ignored. 

Although the angular velocities 01, O~, 0 a suffered by the platform and gyro give a convenient 
stage at which to isolate the problem, the situation is rather more complex. A cdmplete stabilised 
system would consist of a platform with three single-axis gyros mounted with their input axes 
orthogonal, the whole platform being mounted in a gimbal system. Any rotations suffered by the 
platform give rise to outputs from the appropriate gyros, which are sensed and restoring torques 
applied to the platform. The motion of the outer gimbal pivots and the gimbal frictions, and also 
inertia effects when the gimbals are not quite orthogonal, determine the external torques applied 
to the platform. The restoring torques depend on the input rotations and the response of the gyros 

and of the pick-off/torque motor servo systems. Finally the actual rotations are given by the 

resultant torques applied, knowing the moments of inertia of the platform, and taking into account 
the gyroscopic reactions of the gyros. 

3. Drift Rate for Sinusoidal Inputs. 
3.1. Perturbation Solution. 

Fortunately we may solve equation (8) perturbation-wise since the ideal input HO 1 is of first 
order in small angles, and is very much larger than the kinematic rectification term - H03~ which 
is of second order. Setting 

~b = $1 + ~2 + terms of third order and higher, 

where ~1 and 62 are of first and second order in small angles, we have 

+ L41 = n01 (lo) 
N 2  + = - H0.¢ 1. • ( 1 2 )  

* The gyro is operated so that q~ always remains small, and we will freely replace cos q~ by 1, and sin q~ by q~. 



The sinusoidal inputs to the gyro will be taken as 

01 = a l  cos (cot+ l), 03 = a3 cos (cot+v3) (12) 

where the difference in phase is arbitrary, but constant. We have used angles rather than angular 
rates in the belief that amplitudes will be more useful parameters. For this input the steady-state 

solution of (10) can be written as 
¢1 = alcoH[K(co)l-1 sin (cot+ ~h+ 3) (13) 

where 
1 (14) 

K(co) = Ico(co - ico0) 

is the transfer function of the gyro, and coo = L / I  is the characteristic frequency. Also the phase 

shift 3 is given by tan 8 = coo/co. 
For the kinematic rectification term w e h a v e  from (11), (12) and (13) 

I~J~ + L6~ = alaaco~H~IK(co)l-1 sin (£ot+ %) sin (cot+ ~1+ 3) 

= ½ala3co2Hq K ( c o ) L - l { c o s  ( , 3 - , 1 -  8) - cos  ( 2 c o t + , 1 +  a)} .  

The steady-state solution of this equation for the rate 6~ is 

62 = ½alaacoZH=L-11K(co)]-I cos ( g - 3 )  + a term of frequency 2co. 

Here ~ is the phase difference (71a-~1). The  gyro interprets this output as due to a rotation about 

the input axis and the opposite rotation is applied so as to null the output. Dividing by the gain 

factor G( = H / L )  at zero frequency, the mean drift rate' 2 is 

2 = - ½alaaco=HlK(co)1-1 cos (~+ 8) . ,  (15a) 

Remembering that tan 3 = co0/co, this result can also be written as 

2 = - ½Galaacocoo( co~ + co0z)-l( co cos ~ + coo sin ~). (15b) 

3.2. Discussion. 

When the phase difference ~ is zero the angular motion is an oscillation about a fixed axis, but 

when the components are not in phase the instantaneous axis of rotation is itself performing a coning 
motion at the same frequency co. The spiralling motion of a rocket might give rise to just  such an 

oscillation of the stable platform. 
The ratio of the dr i f t  rate when ~ = 90 ° to that when ~ = 0 ° is co0/co, so that the out-of-phase 

condition will be more damaging than the in-phase at low frequencies (co < coo)- This is obvious 
from (13) since at low frequencies 8 -~ 90 °, so that 6 is out of phase with 01 and in phase with 01 . 

Conversely the in-phase condition is more damaging at high frequencies (co > coo). At a given 

frequency the maximum drift rate occurs when 

= = tan- (co0/co). 

To put this in perspective consider numerical values for a typical fluid-floated gyro. Typical 

values of the constants (actually for Kearfott  types T 2500 and T 2502--2C/3C) are 

I -- 5" 628 × 10 3 gm.cm 2 

H = 6"05 × 10 G gm.cm~.sec -1 

L = 2.039 × 106 gm.cm. ~ sec -1. 
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Also c%(= L/I)  is 362"3 sec -1, giving a characteristic f requency ~o0/27r = 57"7 c/s and a 

characteristic t ime lag 1 ~co o = 2.76 millisec. The  gain factor G( = H/L)  is 2.97. 

For  simplicity a mean amplitude 'a '  is defined as (alaa) 1f0-. The  values of a for sinusoidal platform 

oscillation required to produce a standard drift rate of 0. l° /hr  for the two conditions ~ = 0 ° and 

= 90 ° and at various frequencies are shown in the following table: 

Frequency 
o,/2~ (c/s) 

0.1 
0-2 
0.5. 
1 
2 
5 

10 
20 
50 

100 

a(g=0 o) 
minutes of arc 

59"5 
29" 8 
11"9 
5"95 
2.98 
1 "20 
0" 604 
0"315 
0"158 
0"119 

a(~=90 °) 
minutes of arc 

2"47 
1 "75 
1"11 
0- 785 
0"555 
0"352 
0" 252 
0" 186 
0"147 
0"157 

The  assumption of sinusoidal oscillations is possibly unrealistic at very low frequencies ( <  2 c/s). 

In practice such an oscillation would probably appear at the platform as a series of low-frequency 

kicks in alternate directions. 
I t  must  be emphasised that these results apply to an oscillation of constant amplitude and phase 

difference. In practice one mode of oscillation dies away to be replaced by another mode. I f  the 

phase difference changes by 180 ° the gyro will drift in the opposite sense. 

T o  return to vibration about a fixed axis, when the components  along different axes are in phase, 

the kinematic drift rate vanishes if the component  of angular velocity along either 01 or 03 vanishes. 

I t  has one sign if the axis of vibration (strictly its projection on the plane 013) lies in the first or 

third quadrant,  and the other sign if in the second or fourth quadrant.  To  some extent this is 

reminiscent of anisoelastic drift 4. I f  the vibration environment  of the platform is symmetric  the 

axis of vibration is equally likely to lie in any direction, and the gyro is equally likely to drift in either 

sense giving zero mean drift. 

4. Statistical Treatment for Random Inputs. 
A more general t reatment  can be given which is possibly of more academic than practical interest. 

Here  the angular vibrations suffered by the gyro, i.e. the angular velocities O~(t) about the axes 

0i, i = 1, 2, 3, are treated as stationary random noise with auto-correlation and cross-correlation 

functions e given by 
( Oi(t)Oi(t') ) = ai2¢i( t -  t ') (16a) 

(Oi(t)@(t')) = Pii, aiai,¢ii,(t- t '). (16b) 

where i, i' = 1, 2, 3. Here  a i is the r.m.s, value of the angular rate, and the correlation functions 

are normalised to unity, i.e. 
~bi(0 ) = ¢~,(0) = 1. 

e All means are thought of as ensemble averages. 

7 



e f t )  = 

where the weighting function k(t) is 

Also Pii" ( = Pi'i) is the correlation coefficient between the angular vibrations about the axes 0i and 0i'. 
We also have the symmetry properties 

¢¢( - t )  = ~bi(t); ¢¢i,(-t)  = ¢i,i(t) 

as a direct consequence of the definitions. 

First of all we must develop a slightly more general form for the solution of equations (10) and (11). 

It" is readily shown by various methods that the general solution of equation (8) can be written in 
the form 

f ~oo k( t - t ')N( t')dt' (17) 

k(t)  = ( t > 0 
(18) 

0, t < 0  

and 0% = L/ I  is the characteristic frequency of the gyro. With the weighting function defined as 
in (18) to be zero for t < 0, the upper limit of the integral in (17) has been taken as + oo rather than 
t' = t. The weighting function builds up exponentially from zero at t = 0, approaching the value 
1/L for t large with a characteristic time lag of 1/~o 0 . 

as previously defined in (14) is the Fourier transform of k(t) The frequency response K(o~) 
defined in the usual way, viz. 

with inverse 

1 f K(co)d~l&o k ( t )  = (19a) 

K(oJ) = J k(t)e-i~tdt. (19b) 

A slight difficulty is that K(~o) has a pole at ~o = 0, and the integral in (19b) is not convergent. This 
is easily overcome either by replacing the definition of k(t) by 

k¢(t) = l(e-~t-e-~ot) ,  t > 0 (18') 

or by evaluating K(co-ie).  In either case e is a small positive quantity that is eventually made to 
approach zero. 

Using the weighting function k(t), the solution of (10) may be written as 

~l(t) = H k(t-t ' )Ol(t ')dt '  
- - c o  

and the solution of (11) as 

¢~(t) = - H a dt' d~ ' k ( t -  t')k(t' " ~')Oa(t')Ol(U). 
- - ¢ o  c o  

We will take the corresponding drift angle and drift rate as - ¢~/G and - ¢2/G respectively, where 
G = H/L is the gain factor at zero frequency. This ignores the delay introduced by the pick-off/ 
torque motor loop. Thus the drift rate 2 can be written as 

2 = H2/G dt' d~ ' j ( t -  t ' ) k ( t ' -  ~')08(t')01(~' ) . (20) 
- -  o ~  - - o 0  
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While the drift angle x(t) at time t after the gyro is released at t = 0 is 

x(t) = H~/G dt' d 6 ' k ( t -  t')k(t' - ~')Oa(t')01(¢'). (21) 
0 oo  

I'n (20) the weighting functionj( t)  is the derivative of k(t), i.e. 

j( t)  = k'(t) mo e_~Oo~ = 1 (22a) 
, = - £  7"-~°* 

while the corresponding transfer function is 

1 (22b) 

Now consider the mean value of the, drift rate. Taking the ensemble average throughout (20) 

using (16b), 

<2> = (H2/G)Pla%% dt' d ~ j ( t -  t ' ) k ( t ' -  #')¢1a(~'- t ') .  (23a) 
- -  oo  (x) 

This result, as well as others to be found later, can be transformed to an integral over frequency 

involving the frequency-response function of the gyro and the power spectra of the noise. The  noise 

power spectra ~Fi(co ) and the mixed power spectra ~F~i,(co ) are the Fourier transforms, defined exactly 

as for K(co) in (19); of the correlation functions ~i(t) and Cu,(t). Expressing k and ~la in terms of their 

Fourier transforms and performing the integration over ~', (23a) takes the form 

<2} = (H2"/G)pIa~1% f~-oo j(t- t')dt'(2~)-I f~-~o K(°9)~Fla(C°)dc°" 

The integral over t' now falls out. Remembering that J(0) = 1/L and G = H / L  the final result is 

<2} = HPlaGl%(2¢r) -1 ~o K(a~)~Fla(W)deo • (23b) 
0 - -  ~3 

The drift rate is constant, and will be zero unless Pla is non-zero. Also the mean value of the drift 

angle at time t after release at t = 0 is simply <2(t)> -- t(2>. If  this is not obvious it may be 

calculated formally by taking the ensemble average throughout  (21). 
Even if the mean value of the drift rate and angle are zero, the r.m.s, value of the drift angle after 

time t will not be zero. We will show this by calculating var x(t) for a general value of Pla. Thus 

square (21) and take the ensemble average throughout:  

f f f <x~(t)> = (H~/G) ~ d t ' k ( t -  t') dt"k(t - t") d~'d~"k(t '  - $')k(t" - ¢") x 
o o (~) 

x <Oa(t')Ox(~')Oa(t")O~(~")>. (24) 

Here the subscript 2 in brackets signifies double integration, and the limits are - o o  to + co for 

both variables. 
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Provided we further assume that all the variables are Gaussianly distributed, the mean of the 

product of four variables in (24) can be expanded in terms of the correlation functions of pairs of 

the variables. This is carried through in the Appendix where it is found that 

var x(t) = (xe ( t ) )  - ( x ( t ) )  ~ = Ve + V3 (25) 

where V 2 and V 3 are the integrals 

f V 2 = (H~/G)2a12% 2 d t ' k ( t -  t') dt"k(t - t") x 
0 0 

× ¢ ) k ( t " -  t") 
d (3) 

;' f V 3 = (H~/G)2p~a=cq~% 2 d t ' k ( t -  t') d t " k ( t -  t") × 
0 0 

× ~ d~ 'd~"k ( t ' -  ~ ' ) k ( t " -  ~")~b:3(~'- t")~b:a(~" ~- t ') .  
d (3) 

The further evaluation of these integrals is also performed in the Appendix, where it is shown that 

gz-- tg2~t2%2(ZTr) -I ~o Ig(°°)12W1(e°)Wa(°J) de° (26a) 
d-- co 

f V3 - tH20132~12%2(2~) -~ K2(~)~V~32(o~)&o. (266) 
- c o  

If  the angular vibrations about the input and spin axes are uncorrelated (~13 = 0), the mean drift 

rate and angle are zero. However the variance, which is then also the mean-square drift angle, is 
given by Vg. alone, and increases linearly with time. This is the continuous analogue of ' random 

walk'; the gyro drifts sometimes in one sense, sometimes in the other, in such a way that the mean 

drift is zero. The  other integral V3 is a further term of the same form which must be added when 

P13 @ 0, in which case however the mean drift angle itself increases linearly with time. 

5. Conclusions. 

In a single-axis gyro a rotation about the input axis forces the rotor to rotate about the output  axis, 

so that the true input axis is oscillating about its nominal position and the gyro sees a varying 

component of the angular velocity about the nominal spin axis. This may be rectified, thereby causing 

a drift, if the components of angular velocity along the input and spin axes are correlated. The drift 

rate has been evaluated for sinusoidal angular vibrations of the platform. 
At low frequencies (less than the characteristic frequency of the gyro, which is say 50 c/s for a 

typical gyro), a 'coning' type of motion of the platform, in which the components of angular velocity 
along the input and spin axes are out of phase, is the most damaging motion. Such a vibration 
could arise from a spiralling motion of a rocket. The sense in which the gyro drifts would depend 

on whether the coning was clockwise or counterclockwise. However the effect would only be 
embarrassing if it built up, i.e. if the platform had a tendency to vibrate in one mode rather than 

another. Conversely for frequencies above the characteristic frequency, the in-phase type of vibration, 
which corresponds to an oscillation about a fixed axis, is more damaging. The drift is in one sense if 

the axis (strictly its projection on the plane of the input and spin axes) lies in the first or third 
quadrant, and in the other sense if in the second or fourth quadrant. Again the effect would be 
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embarrassing only if the platform tended to vibrate in one type of mode rather than another. The 
most reasonable approach would seem to be to find experimentally the vibration characteristics of 
the platform, and to change the platform mounting or servo control if there was any tendency for 

one type of vibration to be favoured. 
It might be desirable to investigate the effect experimentally, e.g. by mounting the gyro directly 

on an oscillation table or by clamping the platform to the table. The only difficulty might be in 
having sufficiently small amplitude (say < 1 °) that the gyro float did not hit its end-stops. Other 
possible methods would be to degrade the performance of the platform servos or to introduce 

extra friction at the platform mounting gimbals. 
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LIST OF SYMBOLS 

Only the principal symbols are included. The dot notation is used for time derivatives. The axes 
0123 are fixed in the gyro outer case, and coincide with the nominal input, output and spin axes, 

while the axes 01'2'3' are fixed in the gyro float andcoincide with the true input, output and 
spin axes. 

t~, t~ 1 , ~3 

G 

H 

I 

j(t) 

k(t) 

L 

N(t) 

T 

t,t',t",~'~" 

8 

~-ri(0)), ~-Fii,(co) 

~ii" 

01, 02, 03 

¢ 

X, 2 

CO I , C02 , 0) 3 

CO, CO', CO 't 

Amplitudes of platform angular motion 

Gain factor of gyro at zero frequency, G = H/L 

Spin angular momentum of the rotor 

Total moment of inertia of the rotor and the float about the output axis 

Subsidiary weighting function; the derivative of k(t) 

Frequency response corresponding to j(t), J(0)) = i~oK(w) 

Weighting function of the gyro, defined by (18) 

Frequency response of the gyro, i.e. the Fourier transform of k(t) 

Constant defined by: fluid-drag torque = - L¢ 

Input function, defined by (8) and (9) 

Total unwanted torque on rotor and float' about output axis, due to mass 
unbalance, bearing friction, etc. 

Time variables 

Phase shift given by tan ~ = co0/0) 

Phase angles defined in (12) 

Phase difference (~3-~i)  between two axes 

Correlation functions of the Oi(t ) 

Power spectra and mixed power spectra of the noise, the Fourier transforms 
of the ¢'s 

Correlation coefficient between angular vibrations about different axes 

r.m.s, value of the angular rate 0 i 

Components of angular velocity of gyro outer case along 01, 02, 03 

Output angle, the angle through which float has rotated relative to the case 

First- and second-order parts of ¢ 

Drift angle and drift rate 

Components of angular velocity of the float along 01 ~', 02', 03' 

Frequency variables 

Characteristic frequency of the gyro, 0)o = L/ I  
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APPENDI X 

Evaluation of  the Variance 

Provided the variables are Gaussianly distributed, the mean of the product of four variables in (24) 

can be expanded in terms of the correlation functions of pairs of the variables by the following 
theorem given for instance by MiddletonS: 

Suppose x l ,  . . . x2,,, is a set of Gaussian variables each with zero mean. The 2n variables may be 

grouped in pairs in (2n)!/2nn[ ways, e.g. four variables may be grouped as (Xl, x2) , (xa, x4) or as 

(x,,  xa), (x2, x4) , or as (x~, x4) , (x2, xa). Then  the mean of the product of all 2n variables is the 
sum, over the (2n)!/2~n! pairings, of the products of the means of the n pairs for each particular 
pairing, e.g. for n = 2: 

($1X2XaX4} = (/~'1g2} ("~ag4} "/- (glXa} (X2X4} "~- ($1$4} (g2,,~a}. 

Applying this to the mean in (24), w e f i n d  that 

(O~( ( )Odt ' )Od( ' )Od t" ) }  = (Od~' )Odt ' ) }  (Od~")G( t" ) }  + 

+ (0d~: ' )0d~"))(Odt ' )G(t"))  + ( O d ~ ' ) G ( t " ) ) ( O d ~ " ) G ( t ' ) 5  

= p1~%%2¢~d~ ' - t')¢~,(~" - r') + ~1%2¢~(~ ' -  ~")G(r - t") + 

+ pl~2cr12cr82~13(~ ' -  t")¢18(~" -- t') 

from (16a) and (16b). Using this in (24) we find that 

where 
<x2(t)5 = G + G + G (27) 

ft y V 1 = (H2/G)2pla2a12%2 d t ' k ( t -  t') d t"k( t - -  t") x 
0 0 

x f(~) d ~ ' d ~ " k ( t ' -  ~ ' ) k ( t " -  ~")~bl~(~' t')~13(~" t") 

V~ = (H2/G)2~12%2 d t ' k ( t -  t') d t " k ( t -  t") x 
0 0 

× [ d~'d~"k(t'- ~')k(t"- ~")'~l(~'=- es")~bs( t' - t" ) 
d (2) 

V a = (H2/G)2pla2e~2cra2 d t ' k ( t -  t') d t " k ( t -  t") x 
0 0 

× [ d~'d~"k(t '-  ~')k(t" - ( '  ~' )¢a~( ~ t")¢1~(~"- t') (28) 
d (2) 

The integrations over ~' and ~" in V 1 can be performed independently so that V 1 splits into two 
parts each of which is ~x(t)} as in (23a). Thus 

~ar x(t)  = <x2(t)} - <x( t )?  = G + G .  

14 
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The  remaining integrals V~ and ga are rather more complicated, and the first step in their 

evaluation is to perform the integrations over ~' and ~" by introducing the appropriate Fourier 

transforms. This  procedure gives 

f f v2 = ( H 2 / C ) % %  2 ~t t 'k( t -r )  dt"k(t- t")  × 
o o 

x (27r) -2 [ dco '&o"K(w ' )K(  - co')~l(co')~Fs(co ") exp {/(co'+ co") ( t ' -  t")} 
d (2) 

f f V3 = (H2/G)201~2~12~32 d t 'k ( t -  t') d t"k( t -  t") x 
o o 

x (2~) -2 [ dJdco"K(co ' )K(oJ)Wla(O~' )~a(co")  exp {i(co' - co") ( t -  t")}. (30) 
J (2) 

The  next step is to perform the integrations over t' and t", and to this end we define the function 

f K(co, t) = k(t')e-i°~t'dt ' . (31) 
0 

As the upper  limit of integration approaches infinity, the function K(co, t) tends to K(oJ) as defined 

by (19b), and given explickly in (14). A similar explicit form is easily found for K(oJ, t) from (31), 

preferably using the modified k~(t) of (18') to ensure convergence. It is found that K(co, t) is a 

narrow function of co concentrated around the value co = 0 {compare K(a)) of (14)}. 

In terms of K(co, t) the integrals V 2 and V 3 become 

dco' dco"K(co')K( - co')~Fa(co')~F3(co")K(co ' + co", t ) K (  - co' - ~o", t) V2 (H21C)%%2(2~) -2 
J (2) 

(H~/C)2pl~% %2(2~)-2 ~ ~co'aco"K(co')K(co")'V~(co')'Vl~(co")_r~(co'- co", t ) K ( -  co' + co", t) . V. 
. 1  (2) 

(32) 
Both integrals contain a product of the form 

K(z, t)K(- ~, t) = IX(z, t) 12 

which is negligible outside a narrow band centred on z = 0. Suppose we first integrate over co": 
the function [K(z ,  t)] 2 is so narrow that the remainder of the integra.nd may be considered constant, 
~o" being replaced by - co' in g 2 and + co' in g 3 . Thus  we find that 

v2 ~- (H2/G)2~I2%2(2~) -2 dco'K(co')K(:-co')'F~(co')'F~(-co') [K(co, t)[~dco (33) 

with a shnilar result for V 3. Using the inverse of (31), 

f , [f(co, t)l~do~ = k2(t')dt ' ~_ 2~vL-2t (34) 
co 0 

for t >> 1/ooo, since for t large, k(t) approaches the constant value 1 /L  (sensibly attained for 
t > 1/co0). This  now leads to the results of (26a) and (26b) on using the appropriate symmetry 

properties. 
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FIG. 1. Fluid-floated gyro: notation and choice of axes. 
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