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Summary. 
A re-assessment of a generally accepted theory of parachute stability has been made with the object of 

clarifying the assumptions used in its derivation and exposing deficiencies in previous treatments. Some new, 
equations are derived but lack of knowledge of the aerodynamic and apparent-mass coefficients prevents a 
comparison with experiment from being made. The theory is idealised and uncertainties with regard to the 
relation between the apparent-mass concepts in a real and an ideal fluid suggest that the correlation between 
theory and experiment may be slight. Experimental work on the apparent mass of a parachute is recommended 

in order to assess the validity of the theoretical model. 
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1. Introduction. 
In the past parachute stability has been the subject of both theoretical arid experimental 

investigations. A conclusion of a comprehensive American survey of this previous work was that 
the theoretical analysis given by Henn 1 in 1944 should be suitable for a complete description of 

~' Replaces R.A.E. Tech. Note No. Mech. Eng. 358--A.R.C. 24,415. 



parachute motion provided that the theory of small oscillations could be accepted. Considerable 
experimental effort has been expended on attempts to validate the various theories, without much 

success, and recently Henn's equations have been extensively used. The theoretical analysis is 
difficult to understand and the resulting equations of motion have been widely accepted without 
apparently considering the principles by which they were derived. In this paper a brief report is 
given of the results of a re-assessment of the theory from first principles, on the basis of which Henn's 

equations appear to be erroneous. Some new equations have been derived, but lack of knowledge of 
the aerodynamic coefficients and the associated air mass coefficients at present preclude the drawing 

of reliable conclusions, and no comparison has yet been made with experimental results. The theory 

is idealised and, as such, due regard must be taken of its limitations in any attempt to compare with 

experiment. Chapter VI of Lamb's Hydrodynamics serves as a general reference for the whole of 
the present analysi s . 

2. The Parachz~e Equatio~zs of Motion. 

The initial assumption made in developing this analysis is that the parachute system, i.e. the 

canopy, rigging lines and load, behaves as a rigid body moving through an ideal fluid extending 
to infinity. An ideal fluid will be regarded as one which possesses the properties of being 
incompressible, inviscid and irrotational; great emphasis should be placed on the" assumption that 
the fluid medium has these properties for this alone enables some progress to be made and at the 
same time raises problems with regard to the physical validity of the proposed model: these problems 
will be considered briefly in the discussion. 

The rigid-body concept enables a system of axes fixed in the body and moving with it to be adopted. 
If the axes are rectangular the motion can be defined by the angular velocity components p, q, r 
about, and the translational velocity components u, v, zv of the origin parallel to, the instantaneous 
positions of the axes. 

We assume that the parachute system is rotationally symmetric and take the x-axis parallel to 
the axis of symmetry leaving the origin of the co-ordinate system unspecified. The origin could be 
specified initially but this is'undesirable since it would mask some of the important features of the 
problem. 

The motion of the system under a small disturbance may be an oscillation in one plane containing 
the axis of symmetry, or a coning in two planes. The conical motion is assumed to be the resultant of 
oscillations in two mutually perpendicular planes and hence the motion in one plane only need be 
considered. We take this plane as that of (x, y) and hence 

p = q = O ;  w = O .  

Since the fluid is assumed ideal a velocity potential ~o can be defined such that 

where 
cp = ucp1 + v~2 + r~3 

V2~ = V2% = V~2 = V~¢~ = O. 

(1) 

c¢1, q% and ¢3 are functions of x, y and z only and are determined entirely by the geometrical 
configuration of the body relative to the co-ordinate axes. The canopy of the parachute is assumed 



to be imporous and so, if l, m denote the direction cosines of the normal in the x, y-plane, drawn 

towards the fluid at any point of the canopy, then the surface condition of zero normal flow is given 

by: 

a~ = z ( . -  ~y) + m(~ + ~)  
8n 

where 8/8n denotes differentiation in the direction of the normal. Hence, on substitution from (1) 

we have 

8~°1 - I; Oq)2 - m"  = m x  - l y .  (2) 
On On ' 8n 

Let T denote the kinetic energy of the whole f l u i d  and then 

ff 2 T = - p q~ -3-n d S 

where p is the fluid density and the integral is taken over the surface of the body. Substituting the 

value (1) for ~ and using (2) 

2T = + p _f_( [lCDlU2 q- rnq~2vz + (rnx-ly)~bar2 + 

+ (I~o. + mvl) .~  + {(rex--1y)~1 + I¢~},,~ + 

which can be written 

where 

+ {(m~-ly)~ + m¢~}v~] a s ;  

2 T  = A u  2 + B y  2 + R r  2 + 2 C u r  + 2 G u t  + 2Fvr  (3) 

+ , f f etc. 

The motion of the solid body and of the ideal fluid at any instant might have been generated by 

means of an impulsive wrench applied to the solid, this wrench being such that it would counteract 

the impulsive pressure pqo on the surface and generate the momentum of the solid. Lamb shows that 

the impulsive wrench, or impulse, varies in consequence of the extraneous forces acting on the solid 

in the same way as the momentum of a finite dynamical system. If the force components of the 

wrench are (~, 7, ~) and the couple components are (;t,/x, v) then allowing for the motion of the axes 

d 
d-~ (~' 7, ~) + (P, q, r) A (~, 7, ~) = ( x ,  Y, z )  (4) 

and 
d 
~ (z, ~, ~) + (p, q, r) A (a, ~, ~) +i(", v, w) A (~, 7, ~) = (L, M, N) (5) 

where ( X ,  Y ,  Z )  and (L,  M ,  N )  are the extraneous force and couple components. It can be shown, 
cf. Lamb, that if the total energy of the whole system, solid and fluid, is 

L 

j - = T + T 1 ,  

(88512) A 2  



where T is the kinetic energy of the fluid and T 1 that of the solid, then 

(f ,  ~7, ~) = k 3 .  ' sT- '  Ow! 
and 

(6) 

(h, l~, v) = .~-p , 8q ' 3r } .- (7 )  

which enable the equations of motion to be writ ten down in terms of the total energy, the velocity 

components of the axes and the extraneous forces. Thus,  in the case we are considering, where 

p = q = 0 ;  w = O  
I 

the general Kirchoff equations of motion for the whole system are 

3 Y  

and 

d--t k Ou ) = r Tv-  ' + X 

d {oJ 1 : 

(8) 

(9) 

d a y  
d--t \ Or ] = v ~ - u ~ v  + N (10) 

If we replace ~-  by T + T 1 in (6) and (7) we know from ordinary rigid dynamics that the terms 

in T 1 represent the linear and angular momentum of the solid and so the remaining terms involving 

T must give the expressions for the system of impulsive pressures exerted by the surface of the solid 

on the fluid. On isolating_ the terms in T f rom.the  Kirchoff equations (8), (9) and (10) we obtain 

equations for the forces exerted on the solid by the pressure of the surrounding fluid. In the case of a 

pure translation of the parachute system with a constant velocity (u, v, 0) the couple exerted on the 

system by the pressure of the fluid is 
a T  a T  

v -~ f  d - u T ;  v 

which vanishes if OT/Ou:  u = S T ~ B y :  v,  i.e. provided the velocity (u, v,  0) is in the direction of 

one of the principal axes of the ellipse 
i 

X x  ~ + B y  ~ + 2 C x y  = constant. 

I t  is now apparent that a choice of axes can be made such that if the parachute system is set in motion 

parallel to one of these axes, wi thout  rotation, and left to itself, it continues to move in this manner  

and there is no resultant moment  on the system. For  the rotationally symmetric system it is physically 

evident that the axes must be given by the axis of symmetry  and any two mutually perpendicular 

directions: hence the so-called principal directions 'of a system are defined. 

In the present problem we commenced by taking the x-axis parallel to the axis of symmetry  and 

hence the couple 
a T  a T  

v Tdu - u Ov 

must be zero for a translation in the direction of this axis and any axis at right angles to it. Thus ,  

a T  8T  

must be zero when u = U, v = 0 and also when u = O, v = -V. Hence C is zero. 

/ 



Therefore  
2 T =  A u  ~ + B v  z + Rr ~ + 2Gur + 2Fvr .  

Without  losing generality we can now take the x-axis as the actual axis of symmetry  of the 

parachute. The  kinetic energy of the fluid must remain unchanged if the signs of v and r are reversed. 

A reve/sal of these signs is equivalent to rotating the y and z axes about Ox through 7r radians as 

in Figs. la  and b. Fig. la  represents the system before the rotation of the axes and Fig. lb  the system 

after the rotation. Due to the rotational symmetry the flow pattern after rotation must be unchanged 

and hence the kinetic energy of the fluid is also unchanged. Hence G = 0 and 

2T  = A u  ~ + B v  2,+ Rr 2 + 2Fvr .  (11) 

.A reversal of the signs of u and r is equivalent to rotating the x and z axes about Oy through 7r 

radians which, in general, results in a different flow pattern with a different kinetic energy. The  flow 

pattern can only be the same if the parachute system possesses fore and aft symmetry.  Thus  we 

must normally regard F as being non-zero.  

Let  us take some arbitrary position O'  on the x-axis for the origin of co-ordinates and suppose 

that the origin is transferred to some point (s, 0). In the energy equation we must simply replace 

'v '  by v - rs and 

2 T  = A u  ~ + B y  ~ + 2 ( F - B s ) v r  + ( B s 2 - 2 F s +  R)r 2 . (12) 

I f  w_e had chosen s = F I B  then 

r 2 (13) 2 T = Au  ~ + B v  ~ + R -  

and the position of the origin and orientation of the axes would have been completely specified. But 

both F and B may be difficult to determine and it is best to regard equation (12) as giving the 

kinetic energy of the fluid. Referring to equation (12), u and v are now the component velocities of the 

origin of co-ordinates and r is the angular velocity; A,  B, R and F are certain functions determined solely 

by the geometrical configuration of the body referred to parallel axes removed a distance s in the direction 

of the axis of  symmetry f rom the origin of co-ordinates. 

Let us assume that the mass of the parachute canopy and rigging lines is m and its centre of gravity 

lies on the axis of symmetry  at a point G distance h from the origin O. In Fig. 2 the velocity com- 

ponents of O are (u, v) and A,  B, F and R are calculated relative to O' where 0 0 '  = s. T h e  mass of 

the load is assumed to be concentrated at O into a point mass M and in consequence has no moment  

of inertia. The  total kinetic energy of t he  parachute system is thus given by T1 where 

2 T 1 = ( m + M )  (u2 + v ~) - 2mhvr + ( I + mh~)r ~ (14) 

where I is the moment  of inertia of the canopy about an axis through G perpendicular to the x, y -  

plane. T h e  total kinetic energy of the parachute system and the fluid is Y and 

2.Y- = 2 ( T +  211) = ( M + m +  A)u  ~ + ( M + m +  B)v  ~ + 

+ ( I +  mh 2 + Bs 2 - 2Fs + R)r ~ + 

+ 2 ( F - B s - m h ) v r .  (15) 

, 5 



Substituting from equation (15) into the Kirchoff equations (8), (9) and (10) we obtain the general 

equations of motion of the parachute 

( M + m + A),'t - ( M + m + B ) v r  - ( F -  B s -  mh)r  2 = X (16) 

( M + m +  B)~  + ( F - B s - m h ) t  + ( M + m + A ) u r  = Y (17) 

( I +  m h  2 + Bs  2 - 2 f s  + R),; + ( F -  Bs  - mh)£, - 

- ( A - B ) , v  + ( F - B s - , ~ h ) u , .  = N .  (18) 

These equations are exact and involve no assumptions other than that the fluid is ideal and infinite, 

the parachute canopy is imporous and rotationally symmetric, the load is a point mass and motion 

in only one plane of symmetry need be considered. 

In order to make use of equations (16) to (18) it is necessary to make further assumptions. The 

mass of the canopy and rigging lines is generally only about 10 ~ of the mass of the load and in 
comparison can be neglected. If the functions A ,  B ,  R and F are calculated relative to the centre of 
gravity of the parachute canopy s = h. It is assumed, although this is not necessary for the subsequent 
analysis, that m is small compared with B and the moment of inertia of the canopy I is small 
compared with the apparent moment of inertia R. The equations (16), (17) and (18) can therefore 
be written , 

( M  + A),', - ( m  + B ) v r  - ( f  - B s >  "~ = X (19) 

( M +  B)~  + ( F -  B s ) t  + ( M + A ) u r  = Y (20) 

(R+ Bs~- 2.Ss), + ( F -  Bs)v - ( A -  B),,v + ( F -  Bs)u,, = N. (21) 

3. H e n n '  s Equations.  

In Henn's derivation of the equations of motion it is assumed that the canopy can be replaced 
by an air-filled ellipsoid. This possesses fore and aft symmetry and so F is zero. In the present 
notation the equations given by Henn are: 

(M+d)z2 - ( M +  B ) v r  + Bsr  z = X (22) 

( M +  B)~5 - Bs,: + ( M + A ) u r  = Y (23) 

( R  + Bs°-),; - Bse5 - A s u r  = N .  (24) 

With F = 0 in equations (19) to (21) the equations (19) and (22) are identical and so are (20) and (23); 
but equation (21) differs from equation (24) and is 

( R  + BsZ),; - Bs~) - ( A  - B ) u v  - B s u ;  = N .  (25) 

Equation (25) was derived by means of the Kirchoff equation (10); this equation for the combined 
motion of body and fluid was not used by Henn, instead he reverted to the methods of rigid dynamics 
and took the moment of the rate of change of momentum about the load point and equated it to the 
external force moment in the form 

Ri" - s Y "  = N (26) 
where 

Y '  = B e -  B s t  + A u r  

is the force in the y-direction at the centre of gravity of the canopy. This leads to equation (24). 
Whilst this may seem plausible a closer investigation shows that the approach is ambiguous. Let us 
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suppose that the rigid dynamical equations, as opposed to the Kirchoff equations, may be used 
provided that the effects of the apparent masses A and B and the apparent moment of inertia R are 

taken into account. Neglecting the canopy mass the components of linear momentum for the canopy 

can be written 
Px = A u  

and the angular momentum about O. is  
p v  = B ( v - s r )  ; 

h,~ = R r  - B ( v - s r ) s .  

In terms of moving axes the general rigid dynamical equations of motion are 

Px - Pv  r = X '  

Pv  + Px  r = Y '  

and 
+ - p x v  = N ' .  

Thus, for the canopy: 
A l l  - B v r  + B s r  2 = X '  - X "  

Bi~ + B s t  + A u r  = Y '  - Y "  

( R  + Bs2 ) i  - Bs£; - ( A -  B ) u v  - B s u r  = N '  

and similarly for the load: 

(27) 

(28) 

(29) 

( M + A ) f t  - ( M + B ) v r  + B s r  ~ = X 1 + X '  = X 

( M + B ) ¢  - B s i  + ( M + A ) u r  = I11 + Y '  = Y 

( R  + Bs2) i  - Bs~5 - ( A -  B ) u v  - B s u r  = N 

and these three equations are in complete agreement with the Kirchoff equations from (19), (20) 

and (21). It is apparent that equations (26) and (29) are not equivalent and that the discrepancy 

steins from the use of the apparent masses A and B-- i f  and only if A = B then an equivalence results 

and in general this is not so. Any attempt to treat the problem on a rigid-dynamical basis is 

unsatisfactory for one is effectively trying to treat mass as a vectorial quantity. 
A similar error to that made by Henn has been made by Brown s and appears to have been 

commonly reproduced in several series of lectures. If the classical hydrodynamic analysis is used 

it is imperative to realise that the Kirchoff equations for the combined motion of body and fluid 
are the fundamental equations. Under certain circumstances the equations of rigid dynamics, 

including apparent masses, can lead to a correct result, in general they will not; their use merely 
obscures the importance of such factors as the reasons for the choice of axes and the significance 
of the apparent-mass coefficients. Only by reverting to the fundamental equations and starting 

almost from first principles can the salient features of the problem be exposed, 

Mf~ - M v r  = X 1 - X "  

M~5 + M u r  = Y 1 -  Y "  

O = N - N "  

where the double dashes refer to internal forces between the canopy and load. By addition we have 



Let us return to equations (19), (20) and (21): in general F is non-zero and the functions A,  B, 

F and R are calculated relative to the centre of gravity of the canopy. Physically the flow past a 

parachute canopy d!ffers greatly from a potential flow; the flow separates at the canopy edge and a 

large turbulent Wake is formed outside which the flow can reasonably be approximated by a 

potential flow. It  is not very convincing to regard the canopy and wake as being represented by an 
air-filled ellipsoid as in Henri's analysis and it is of some interest to consider the stability of the 
motion given by equations (19) to (21). 

4. The Stability Equations. 

The basic analysis given in this section should be applicable to any solid of revolution moving 

in an ideal fluid and subject to certain extraneous forces. We consider the slightly disturbed steady 

descent of a parachute. The parachute is initially assumed to be descending vertically, i.e. at zero 

angle of attack, with a constant velocity Vo, in the direction of its axis of rotational symmetry. The  
load mass is M and the inflated-canopy radius K. 

Suppose that the velocity vector is directed at 8 to the vertical and the parachute axis makes an 
angle y with the vertical as in Fig. 3. 

The extraneous forces consist of the components of the load and the air drag and moment: 

X = M g  cos 7 - ½ PCz~ rrK2V~ cos r /+  ~- pCLrrK~V 2 sin ~/ (30) 

Y = - Mgs in7  + 1-pCz;rK2V2sin ~ + ½pCL~rK~V2cos ~] (31) 

N = 1 pCyrrKaV 2 (32) 

where the drag D in the direction of the velocity vector V is given by 

D : ½pCI, rrK2V 2 (33) 
and the lift L by 

L = ½pCLrrK2V 2. (34) 

It  is supposed that the system is slightly disturbed; V is initially constant and equal to V0 in the 
vertical direction, also 8 = ~7 = 0 and r = O; we assume 8, ~7, 8, 4, 8, 4~, r and ,; are all small so that 
their squares and products may be neglected; on being disturbed 

V - >  Vo + A V  

r - >  $ + ~) 

and the -resultant velocity is in a direction making an angle ~7 with the x-axis. Thus 

u = ( V o + A V ) c o s ~  

v = - (Vo+AV)sin  v 

,~ = k P c o s ~ / -  (V0+kV)s in~  / .~) 

~) = _2 AVsin~  - ( V 0 + k V ) c o s r  / .~  
and when r/is small 

u ~ V o + A V  

v ~ - Vo~ 

,~ ~ A P  

~ - Vow: 



Initially in the steady vertical descent 

Mg = ½ pCD,~K2VJ. 

We assume that the drag coefficient C D is an even function of ~7 and r, and that the lift coefficient 

C z and moment  coefficient C N are both odd functions. 

Hence to first order: 

3CD _ 0 -- a G  (35) 
O 7 Or 

ac~ ac~ aC~v aci, 
CL = 8~- " ~] + T " r ; C l v =  3-~- " ~l + T " r .  (36) 

On substituting into the equations of motion (19), (20) and (21) and retaining only first-order 
terms we obtain 

( M +  A)AI) = - p CD~rK2VoA V (37) 

(M+ A) 708 + (A - B) Vo~ + ( F -  B~) (~ + ~) 
_ (ocL ac~ (~+~) K t - /a ,  "~+ ( r ~  ~-C.~j½p~K'V0 ~ (38) 

° G 
(R  + Bs '  - 2Fs) (g + ~) + ( F -  Bs) Vo 8 + (A  - B)  Vo~l 

(OCN 3CN (8+~)) K I  ½prrKsV o' (39) 

Equation (37) contains AV only and has the solution 

A V = a e x p (  PCD~rK'V° ) 
- M + A  " t  

where a is a constant• This shows that the velocity disturbance fades rapidly with time• The motion 
given by equations (38) and (39) is of more importance since these equations determine the lateral 

motion• I t  is most convenient to study them in a nonCdimensional form and to non-dimensionalise 

we introduce the following quantities: 

2 M  
(a) t - pzrK~V ° ~, a time scale; 

• S 

(b) the ratio ~ of the distance of the load from the centre of gravity of the canopy to the 

parachute radius; 

i z R 
(c) ~ w h e r e  i ~ = --'B' 

A B 
(d) the mass ratios rn x - M '  my - M ;  

F 
(e) the function ~ and 

2 M  
(f)  the mass-effect number  ~ = [ -~78"7r~,~ 

9 



Differentiation with respect to ~- is, for convenience, still denoted by means of the Newtonian dot. 
Non-dimensionalising equations (38) and (39) the following-results are obtained: 

--my(K---.)} (~+:;i)-- (mx 4)-- 

_ - ( 0eLi  ~ : o (4o) ~c~.a.~ ~(~ + 7) + (1 + m p ~  + .  c .  + ~7 ] 

{(/~ " )  (~K) '}  aC~-(,i+.0)+ ~ + ~  m y - 2  K (~+#) r ~  

07 

_ = 0 .  ( 4 ' /  
87 

These equations (40) and (41) can be written in the form 

P¢(~ + ~) + 9~(8 + ~)) + R~(8 + 7) + S~8 + T~8 = 0 

i = 1 , 2  
and have solutions of the form 

= ~ a s exp (x~-) and 7 = ~ bj exp (xj.r). 
Then J" J" 

(aj + bj) (P~xj~ + f2~xj + R~) + aj(S~x~ + TO = 0 

(ai + bi) (P~xi ~ + Q~x~ + R~) + ai(S~x~ + Tz) = 0 

and eliminating a~ and b i we  obtain a cubic equation for the time factors xi : 

(P~x~ + 91~ + R1) (S~x + 2/"2) - (P~x~ + 9~x + R~) (Six + T 0 = 0 
and this frequency equation can be written 

c~ax s + c~zx 2 + c~lx + % = 0 

where tile coefficients have the following values: 

%= ~ + 2  • - m  v (1+my) 

O~ 1 

,2} 
+ ~  

acN aC-~ ~c~ 
a7 ~ (r~o) +(i+m~) ~ (r~o) 

a CL / i~ 

0c,v t OCL , W ( l + m x )  {(rn~--,nyl,W'----g~-] + 

+ % +  oT/a  V ° 

[acN } 

(42) 

(43) 

(44) 

(45) 

(46) 

10 



For the motion to be stable the real roots and the real parts of any complex roots of the frequency 

equation (42) must be negative. A necessary and sufficient set of conditions for this is that 

~2 OLO - - >  0; - - >  0; %a~,-%% > 0. (47) 
~:3 ~3 

An examination of the expressions (43) to (46) for the coefficients of the frequency equation now 

shows the complexity of the system and in order to make further progress reliable values for the 

aerodynamic coefficients and the apparent-mass coefficients are required. So little is known con- 
cerning these factors that any further assessment of the motion given by equations (40) and (41) is 
liable to considerable error and in the present report no attempt will be made to carry the analysis 

any further. 

. 

It 

(1) 

Discussion. 

is useful at this stage to list the assumptions made in deriving the theory of the previous sections. 

The parachute system and load is regarded as a rigid body moving through an infinite, 

incompressible, inviscid and irrotational fluid. 

(2) The system is rotationally symmetric. 

(3) The canopy is imporous. 

(4) The motion can be regarded as occurring in one Plane only. 

(5) The load is a point mass. 

(6) Air forces act only on the canopy. 

(7) Axes are specifically chosen so that the only non-vanishing components of the apparent-mass 

tensor are A, B, F and R. 

(8) The mass of the canopy and rigging lines can be neglected in comparison with that of the 

load. 

(9) The moment of inertia of the canopy about its centre of gravity can be neglected in 

comparison with its apparent moment of inertia. 

The canopy mass is negligible in comparison with the apparent-mass' coefficient B. (10) 

The assumptions (8), (9) and (10) are not necessary and have been introduced in order to simplify 

the stability equations; (9) and (10) are in any case of rather a dubious nature and it is probably 
better to include the physical characteristics of the canopy in the equations as well as its apparent 
features, this is very easily,done at the expense of adding several more terms to equations (40) 

and (41). With regard to assumption (5), the load is of high density and small in volume in most' 
practical cases, thus its apparent-mass components should be negligible when referred to its centre 

of mass. This assumption of point mass implies that the load has no moment of inertia--this can 
equally be stated as implying that the angular velocity of the canopy is not transmitted to the load. 

It has already been remarked that the equations of motion as derived in this report are for a 
highly idealised system and some comment is necessary on the relation between the case considered 

and tha~t which occurs physically. When a body is accelerated in a fluid, either real or ideal, it behaves 

as if it possessed an additional mass. In an ideal fluid this additional mass can be represented by a 

tensor with constant coefficients--the apparent-mass coefficients A, B, F, R etc. as used in the 

present analysis. In a real fluid the evidence, particularly that of Luneau a, suggests that in general 

the apparent mass is a function of velocity and acceleration and higher time derivatives of the 

11 



displacement and that the order of magnitude for a given body can be greatly different from the 
estimates obtained on a basis of potential-flow theory. Even if we make the assumption that the 
additional-mass-tensor concept can be used with regard to a real fluid and that its components are 

constant to a first approximation, the problem remains of estimating reasonable values. Too little 
work has, as yet, been done experimentally on accelerated motion in a fluid and certainly little is 
known of the behaviour of a parachute in unsteady motion. Essentially we are dealing with the 

flow past a body with a large turbulent wake and little is known of the fluid dynamics of the wake 

behind a body of simple formation let alone such a complicated system as a porous, flexible parachute. 

Whilst we should not be discouraged from attempting theoretical analysis and its experimental 
"verification it is essential to realise the limitations involved and under the circumstances not to 

expect much agreement between theory and experiment. 

The object of the present report has been to draw attention to the deficiencies in the previous 
treatments of parachute stability; it does not pretend to produce a ne w theory or be constructive 
in its criticism but merely endeavours to place the subject in some sort of perspective from a 

theoretical viewpoint.  

6. Conclusions. 

(1) 
(2) 

(3) 

The equations of parachute motion, as given by Henn, are erroneous. 

The theory is  based on the behaviour of a model in an idealised fluid. The theoretical 
concept of apparent mass with regard to the motion of a body in this fluid is not necessarily 
adequately representative of the physical phenomena occurring in a real fluid. Theoretically 
the apparent-mass coefficients are constant functions of the configuration of the body but, 
in practice, they have been found to vary with the derivatives with respect to time of the 
displacement. 

Experimental in'¢estigation of the apparent-mass concept in relation to the parachute is 
desirable in order to assess the extent of the validity of the theoretical model. 
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LIST OF SYMBOLS 

Components of the apparent-mass tensor referred to an origin O' 

Distance from the load point to the centre of gravity of the parachute 
canopy 

Defified by i 2 = RIB  

Inflated-canopy radius 

Direction cosines 

Angular velocity components 

Translational velocity components 

Extraneous force components 

Extraneous couple components 

Force components of a wrench 

Couple components of a wrench 

Linear momentum components 

Angular momentum about the z-axis 

Mass of canopy and rigging lines 

Mass of load 

Non-dimensional mass ratios 

Mass-effect number 

Moment of inertia of canopy about an axis through its centre of gravity 
perpendicular to the x, y-plane 

Descent velocity 

Distance along the parachute axis between the load point and the origin O' 

Time 

Coefficients of the frequency equation 

Angle the parachute axis makes with the vertical 

Angle the velocity vector makes with the vertical 

7 - S, see Fig. 3 

A non-dimensionalised time scale 

Fluid density 

Potential functions 

Kinetic energy of fluid 

Kinetic energy of solid 

T + T1, total kinetic energy 

A drag coefficient 

A lift coefficient 

A moment coefficient 

Duplicate use has been made of some symbols but as definitions are given throughout the text no 
ambiguities should arise and the symbol intended should be obvious from its context. 
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