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Summary. 
The problem of calculating the response of an aircraft in rolling manoeuvres when the mass distribution of 

the aircraft is such that the inertia terms in the equations of motion effect a cross-coupling of the usual lateral 
and longitudinal motions is considered. Solutions are outlined to two formulations of this problem: (1) Response 
to a given applied aileron and (2) Response corresponding to a specified time history of fate of roll. Detailed 
calculations are made only for the first of these, and the results compare favourably with digital-computer 

solutions. 
Possible simplifications to the method of calculation are discussed. 
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1. Introduction. 
The trend towards long slender fuselages more evenly loaded than hitherto and often combined 

with considerable reduction of wing span has led to a new class of dynamic problems in~colving 
cross-coupling of the lateral and longitudinal motions. One of these is the complex cross-coupled 
motion associated with rapid rolling manoeuvres of some present day aeroplanes. This problem 
is the subject considered in the present paper. 

The dynamics of aeroplane motion including cross-coupling effects have been the subject of much 
investigation recently, but most of the studies have emphasised the dynamics of specific aircraft, 
and have been conducted using either an analogue or digital computer for solving the equations of 
motion ~,3,~, G,11. In contrast little has been done of a general analytic nature 5, 7. However, as far 
back as 1948, W. H. Phillips ~ gave a simplified analysis of the stability of the coupled longitudinal 
and lateral motion following a disturbance from steady rolling flight. Neglecting damping and 
gravity terms Phillips arrives at two simplified criteria for stability. These can be written: 

and 

. 

0"196 ~7~/$7 ) > 1, 

o.196 / f  .) 
(-~) (~) ~[(WiS)(1-I'lIv))> l' ( 1 )  

and show why certain design trends should aggravate the problem of cross-coupled motions, for 
we see that there are four features tending to push the aircraft towards instability: 



Increase of k B (the radius of gyration, i.e. m k B  ~ = Iv) and the usually associated increase of 

(1-Ix/ Iv)  due to redistribution of the mass of aircraft; increased wing loading, W / S ;  increased 

operational height, that is, reduced values of ~. 
.Furthermore, whilst the value of - 8C~, , /~  tends to be high for many supersonic aircraft, the 

3C~ 
values of ~ have been tending to get smaller and decrease with increasing Mach number. 

Interesting and instructive though this simplified analysis may be, it is not a sufficient basis for 
design of trouble-free aircraft since, away from the divergent or near divergent response, there can 
occur convergent responses having undesirable characteristics. It therefore becomes necessary to 
study the behaviour of an aircraft during practical rolling manoeuvres. As mentioned earlier, there 
have been a number of investigations relating to specific aircraft in which the computers have 
been employed to obtain numerical solutions. There is clearly a need for an extension of the analysis 
to cover either the response of the aircraft to a prescribed aileron input or that corresponding to a 
given rate-of-roll time history. The first attempt to do anything of this nature was made by Pinsker 3 

who, on the same basis as Phillips, considered the response of an aircraft in the case when the rate 
of roll is represented by a square wave function. The present investigation is concerned with the 
more general problem. It was considered unwise to start with the drastic simplifications of the sort 

underlying these analyses. This naturally means that the resulting algebra is very complex, but the 

authors consider that adequate Working approximations should be sought only when it has been 

demonstrated that the basic approach gives answers in agreement with the direct solution of the 

equations of motion using a digital or analogue computer. 
Before proceeding to the description of the approximate method of dealing with the five degree 

of freedom equations, we shall make some general observations concerning the interplay of the 

inertia cross-coupling terms and the aerodynamic terms. 

2. Choice o f  A x i s  Sy s t em  and some General Observations. 

In discussing the dynamics of an aircraft it becomes necessary to define one or more systems of 

axes. The choice usually lies between the two systems of body axes usually referred to as the 
wind-body and the principal inertia axes systems. Each of these has particular advantages. The first, 
being defined by the steady state of flight condition, is best suited to the discussion of the stability 

of the aircraft and often facilitates physical description of factors involved in the motion. The other 
being of fixed orientation relative to the aircraft for all flight conditions, is preferred for problems of 

control systems using sensing instruments within the aircraft. It also has the mathematical advantage 
that it avoids the added complication of the product-of-inertia terms in the analysis. 

The equations of motion of a rigid aircraft referred to any system of axes fixed in the body are of 

the form: 
m ( { Y - r V + q W )  = X 

m ( # - p W + r U )  = Y 

m ( 1 7 d - q U + p V )  = Z 

Ixp - (Zv-/~)qr - !vz(q~' -r  ~) - I~x( t+pq)  - I ~ v ( ~ - r p )  = L 

- ( L -  Z )rp - - G ( P  + q r )  - -  = M 

Li, _ ( I x - Z v ) p q  - I xv (pZ-qZ  ) - I v , (O+rp)  -- Izx(]~-qr)  = N .  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 



For the rapid manoeuvre we are considering, and for usual aeroplane layouts (symmetrical with 
respect to the xz-plane) we may assume that the forward speed is constant, and Izu = Iy~ ~ 0. Our 
equations can then be written: 

d--t- = I?Vp -- r + Y / m V  e (8) 

dt  
- 17p + q + Z / m G  (9) 

i) = - 3xq r - ex(t + p q )  + L / I  s (10) 

= - 3vPr - e v ( r2 -p2 )  + M / I  v (11) 

= - a.p , - e (i)-qr) + N / L .  (12) 

If  the principal inertia axes system is used, the terms in ez, ev, e z disappear simplifying the 

equations as mentioned earlier. We shall now consider the nature of the second-order terms which 
are usually omitted, but which are of considerable significance in the present problem. The nature 
of the effect of the first terms on the right-hand side of the force equations can be appreciated most 
readily if we consider the limiting case of no aerodynamic forces and suppressed yawing (r = 0) 

and pitching motion (q = 0). Under  these circumstances, we should have a cyclic interchange of 
the relative wind direction in the longitudinal and lateral plane with the aircraft rolling about its 
minimal inertia axis. This being so this effect is more readily appreciated in the principal inertia 

axes system. Suppose the x-axis of this system has an initial t r immed angle of incidence %, then we 

would expect the motion referred to this axis system to begin with a decrease in angle of incidence 
(cf. Figs. 11, 13, 14). 

The  further point we note from an examination of the force equations is that, in the absence of 

aerodynamic terms, we would require a rate of yaw which varies as Cop , to make dI~/dt, and 
hence ]9- or/?, very small, while the rate of pitch, q, has to remain zero. 

In the first of the moment equations we see that the inertia cross-coupling terms are unlikely 

to be large being in the principal inertia axes system of order qr. Of the aerodynamic terms we may 

expect that the term due to the roiling moment induced by sideslip (L ,#)  cannot generally be 

neglected. We would expect some deviation from the simple one degree of freedom solution. The 

direction of the sideslip development, as we have seen above, depends primarily on the inclination 

of the principal inertia axis. Initial sideslip is positive when the roll rate and the initial angle of 
incidence (not small) of the principal inertia axis are of the same sign, and generally negative when 

the signs are opposite. For small incidence, matters depend more critically on detailed aerodynamics. 
In the equation for the acceleration in pitch we have two inertial terms which may become 

important; these are 3upr which is of order pr,  and this term has become known as the ,gyroscopic 

term (cf. action occurring during precession of a conventional gyroscope) and the term %(r ~ - p ~ ) ,  

which is of order l~0p 2 or eopL When the roll rate is large and of the same sign as the rate of yaw, 
then the first of these terms causes an upward pitch acceleration of appreciable magnitude, and can 
lead if opposed by only a small amount of aerodynamic restoring moment to a tendency,to diverge 
in pitch. The second term is such that it will pitch the nose down if the forward principal inertia 

axis lies below the line of flight, and vice versa. It does not appear if we refer the motion to the 
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principal inertia axes but we have to bear in mind that the rate of yaw differs by l?/0p in the two 

systems of axes. Its effect is therefore included in a modified gyroscopic term. 
In the last of our equations of motion we have, similarly, two inertia terms whose order is pq 

and - l/~Z0ib respectively. The first of these plays a similar role in the yawing equation to that ofpr  in 

the pitch equation. 
The action of the second term is again determined by the inclination of the forward principal 

inertia axis relative to the initial flight path (or x-wind-body axis). Its action is obscured by the use of 
principal inertia axes since the term then disappears. We recal!, however, that the yaw acceleration 
differs by l~0ib in the two systems of axes, and the sideslip response is the same in both systems of 
axes as it should be since the ITV0p component of the rate of yaw which no longer exists in principal 

axes is compensated by just this difference in the l~p term of the sideslip acceleration equation. 
Of the aerodynamic terms the most important is usually the NvV term (yawing moment due to 

sideslip) which will tend to reduce the sideslip response. The action of the damping in yaw term, 

Nrr , is different in different flight conditions. It restricts the development of rate of yaw, r, and this 

is undesirable in the case of large positive W0 for a positive rate of roll. Unaugmented, the 

contribution of this term is probably not large, but the effect is of significance in considering aero- 
planes with yaw autostabilisation. The yawing moment produced, by deflection of the aileron has 

an effect on the motion whose significance depends on the sign of yawing moment due to aileron, 

and the magnitude and sign of I~ 0 or %. 
The above discussion is clearly of restricted usefulness only, since the interaction of the various 

factors is intrinsically simultaneous, and this cannot be allowed for in the above description. It does 

nevertheless outline the nature of the equations of motion to which we  are seeking a solution. 

3. Approximate Solution of the Equations of Motion. 

3.1. Equations of Motion. 
We now rewrite the equations of motion by introducing a set of non-dimensional quantities 

formed by dividing forces and moments by pV,~S and pV,~Ss respectively, time by ~ = m/pV, S, 
mass by the mass (m) of the aeroplane and introduce the semi-span, s, as a characteristic length so 
that moments of inertia are divided by ms ~. This is the usual system of units used in the uncoupled 
lateral motion, and so all lateral derivatives retain their usual form. The longitudinal moment 

derivatives are, however, modified thus*: 

M w 
-- r o w ,  pV~Ss s 

Mw 

* It may be worth noting that although the derivatives themselves are modified the corresponding concise 
quantity has exactly the same value as it would have had if the more usual characteristic length had been used 
in the definition of/z, i B and the derivative. 



The  equations of motion can now be writ ten in the form: 

Dp + 3xqr = = -  tzl~ ~ + = -  O + _ + =- 
Z.el IA i-4 ~.fl 

.g 

e + - - O + - -  

A ~n~ ~ / 3  n,. 
~U ~U ~C 1C 

DO (v3 + lq/0)/3 + ? = y,,0 + cos 0 sin ¢ 

D ~  - ~ + @ = z~@ + (cos 0 cos ¢ - cos 00). 

D ~  

(13) 

3.2. Approximat ions  M a d e  in Dealing with Inertia Product Terms. 

To  proceed we write: 
t ~ O ! ~b = / 3 0 ( t ) + / 3 ,  D/3 D/3 o +  ~ ,  

where/30(t) is an approximation to/3 such that we may further  approximate as follows: 

/3e = (/30 + F ) e  ~/30e, 

/30 = (/30 + F ) 0  ~/300, 

0/3 = (/30 + F ) o  ~ /3o~, 

and (Fff 0 + ~)/3 ~ I~0/3 + ~/30 ~ l~0~ 0 + z~/30 + I~0iY ' 16', q, ~, ~ ,  0, 0 and 00 being assumed 
small of first order. The  term 3x0f is accordingly neglected. 

Substitution of these approximations in the equations of motion, (13), do not greatly simplify 

matters unless we can make/3o(t) = 130 = constant, e T h e  next step is to assume that over certain 

intervals of time we may approximate in this manner. It  is, therefore, seen that the method of 

calculation we shall now develop can be described as a step-by-step integration of the equations 

involving only few steps and with the integration formula within each step being an analytic solution 
of approximations to the equations of motion. 

* It may be mentioned that high rates of roll, and hence cross-coupling effects, may.follow rudder application 
for aircraft having large 'Dutch-roll' ratios. In such a case, an alternative (and in some ways a more desirable) 
course would be to insert the linearised solution for the product terms. The solution may then be sought as a 
perturbation of the linear solution. This would result in linear equations with time-dependent coefficients. 
To reduce the problem to the same extent as done herein would require substitution for product terms only 
and treating these as inputs into the system of equations. We did not pursue this line of approach any further 
as it was considered that it would not be so accurate where large values of p are involved whilst at the same 
time not offering much simplification. 

8 



We are thus led to consider equations of the form: 

Dp ~ l ~ + = ~ +  ~ + = r  
~A ZX ~_4 I A  

(~) mq(~) ~ m~(~) ~ 

*. ~ ixnv  n ~  n r 

l. U Z U Z U "l C 

CL~ sin ¢ D~ -poZ~ - lYVop + e = 3@ + ~ -  

Cz~ ( 1 -  cos¢) .  Dz~ - ~ + po ~ = z ~  - - ~ -  

(14) 

3.3. Treatment of the Gravity Terms. 
Apart from the gravity terms the equations (14) are in a linearised form admitting of standard 

solution. The effect of these gravity terms has been found to be small in such investigations as have 
been made, but these have usually involved only low values of C5c and their significance will increase 

for larger values of Cze. An assessment of the importance of these terms was made when the 
aeroplane was assumed to perform a constant rate of roll manoeuvre as in Phillips' analysis. The 
details are given in Appendix II. This analysis shows that the effect is small provided the rate of 

roll is in the range where inertia cross-coupling effects are appreciable, and CLe is small to moderate 
in value, see Figs. 3 to 10. It is, however, unnecessary to neglect the gravity terms completely to 

render our problem manageable and within the assumptions underlying equations (14) we may 

approximate by writing: 
¢ = ¢~ +Po~ + v, 

sin ¢ = sin (¢~ +Po~" + ~o) 

~, sin~ i cosi~o r + cos ¢.~ sinJbor 
and 

cos q5 ~ cos. qS~ CO@or - sin ¢i sini%r, 

where ~o is a perturbation angle of bank. 
This implies the neglect of terms of order CLe % which is consistent with the neglect of terms 

such as }'z%/3'? etc. 

3.4. Soh~tions of the Final Approximate Form of Equations. 
We are thus led to consider our equations of motion in the form: 

( D  + vl) p _ vz,.p + ~ot8 = - 3t¢~: 

(D + v)0 + 8uPo? + (~o + xD)@ = 0 

- ~7op + e  

^ 8 e~: - -  ( . 0 % 7 )  ~ - -  n 

- ~oz~ + (D +y-v)~ --- C2-~ (sin ¢i C°@or + cos ¢~ sin~or) 

- 0 + ( D -  z ~ ) ~  

(15) 

+ ~o ~ = - ~  (cos ¢¢ CO@or- sin ¢~ sin~or 1). 
z ~  

. 



In operational form, 
becomeS: 

(D + vt)p - %2 + a,~$ = - at~ + p~D 

(D + v)~ + 8vpd ~" + (~o + xD)~  = ~ D  + x ~ D  

^ CL~ (sin ¢~D ~ + cos ¢iPo D) 
- IYoP + ~ - p o  w + (D +y-~)$ = ~,D + 

2 (D~+Po ~) 

C ~  (cos ¢~D ~ - sin ¢~po D) 
- 0 + (D - z~.)@ + po D = ~iD + 

2 (D +po 

2 

including terms representing initial values of ./3, ~, f, ~, @, these equations 

0 6 )  

The solution of these equations is now reasonably straightforward but the detailed algebra i s  
extremely lengthy and is accordingly omitted almost completely. 

For the case of constant aileron angle, ~ = ~0 = ~ (Heaviside operational equivalent) the operational 
solution of the above equations has the form: 

= H01 D7 + Hll  D6 + H21D 5 + H31D 4 + H41 D3 + Hs~D ~ + H61D + H71 

(D2+P°~)(G°D~+G~D4+G2D3+GaD2+GaD+Gs)  ' t (17) 

0 = H°~D7 + H12D6 + H2~D5 + H32Da + H42D3 + H52D~ + H*2D + HT~ 
( D 2 + po 2) (Go D5 + G~D 4 + G2D a + GaD 2 + G4D + Gs) J 

with similar expressions for ?, ~, ~. The second number of the suffix of the H 's  denotes the variable 
in question according to the scheme 1, 2, 3, 4, 5 correspond to p, q, r, ~, ~. (Formulae for G ' sand  
H's  are given in Appendix I.) The second factor in the denominator can be written: 

( D + f i  o 0 _lvl,. + ~ V  0 co 1 --Vl r D + i v  c o + X  D 
+ 

co l D + v  t - c %  D + v  s - D - z  w 

- c% v~,  D + v~ 

+ po 2 [(D + v) (D + v~) (D + v~) -:Sv3z(D - z~,) (D + v,) (D +Yo) - a~(w + X D) (D + v~) + a v ~ ( D  + v~) - 

- ~v~Po2(D + vz) + %2y~(D + v) + ~yv~j~o~, + I/VoD {~V~r(~ + X D) - 8y~ol( D _ z~)}]. 

The first term represents the product of the two uncoupled motions and the second, term represents 
the coupling effect and as such disappears when Po is zero. 

To proceed we have to split the right hand side of equation (17) into its partial fractions. It is seen, 
cf. Appendix III, that the polynomial 

Go;~ 5 + GlYt ~ + G2A ~ + G~A ~ + G~A + G~ 

in a typical case factorises into 
(A'~ + alZ + b~) (A~ + a~Z + b,) (A + b~) 

or 
+ + + + + 

Transforming we thus have solutions of the form: 

Ao~ + A ~ e  - ~  + e - ~ ( A ~  cos s~r + A ~  sin s~r) + e - ~ ( A ~  cos s~r + A ~  sin s~r) 
or 

Bo~ + B ~ e  - ~  + B ~ e  - ~  + Bs,~e-~ ~ + e-"~'(B~ cos s~r + B ~  sin s~r). 
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The coefficients A and B can be evaluated directly from equations (17) by well known methods, 

see, for example, Refs. 8 and 9. Usually bl is large (indicating a fast mode) and in Appendix III  

use is made of this to develop approximate expressions for the coefficients d 4, B4, As, Ba and 

the factors of the above polynomial. 

3.5. Discussion of Choice of the Value Of Po. 
To apply the method outlined above to the calculation of the response of the aeroplane to a given 

aileron input we need to specify the value or values of P0 to be used. We recall that during the initial 
stages (and often beyond this) the response in roll is not expected to differ appreciably from that 
given by the simple single degree of freedom calculation. For the two aileron inputs considered 

herein this is illustrated in Figs. 1 and 2. It was anticipated, and the examples calculated confirmed, 
that it would be unnecessary to commence with a very low value of P0, since the error incurred 
would be small for small initial values of v~, $, q and r. If the simple roll calculation indicates a 
relatively slow growth of p, it seems reasonable to select for initial value of P0 a value of the order 

of 1 ~Pmax" Insuch  cases as the single degree of freedom calculation indicates a rapid growth of rate 

of roll as, for example, for aileron input of the multi-square wave type, Fig. 2, a higher value can 

be used without much apparent loss of accuracy (see Figs. 13, 14, 15, 16 and 17). 
The choice of the subsequent steps in P0 is determined by the trends indicated by the single 

degree of freedom calculation suitably modified, if necessary, by any marked departure of the more 
exact time history of p from the simple roll result. Thus, although the response in ~ (or z3) and 
/3 (or $) may be of naost immediate interest, it is advisable, in dealing with a general aileron-angle 

input, to compute the rate of roll as well. 
Having described the method of calculation in general terms, we now proceed to discuss the 

results obtained for an aircraft having the aerodynamic derivatives set out in Table 1. 

4. Numerical Examples. 
To check on the validity of the approximations made in the solution outlined above we shall 

compare the response as calculated by this method with that obtained by exact solution of the 

equations of motion as obtained by use of the DEUCE digital computer. 
An aeroplane having the aerodynamic characteristics, geometry, and inertias shown in Table 1 

is considered, as well as one which has its forward inertia axis inclined 5 ° below the flight path in 
steady flight instead of 5 ° above but which is otherwise identical. Flight at one speed and height only 
is considered, namely, M = 0-8 and 40,000 ft. The responses to two types of aileron input have 

been calculated (see Figs. 1 and 2). 
Fig. 11, which refers to a positive value of inclination of forward inertia axis, e 0 = 5 °, shows the 

response in the rate of roll, (p), the incidence, (~), the sideslip angle, (/3), the rate of pitch, (q), and 
the rate of yaw, (r), following a simple single wave input of aileron angle (~ = 8 ° for 

0 < t ~ 1.8 see, and zero thereafter). 
The full-line curves are the exact solutions, and circled points are used to indicate the results 

obtained by using the approximate method of Section 3. Values of P0 used at different stages of the 
calculations are indicated on the rate-of-roll curve. The agreement of the two solutions is good 

throughout. 
The same calculation was repeated with e 0 = - 5 °, and to illustrate the effect of changes in P0 

step pattern a rather crude approximation is used, see Fig. 12. As might be expected the agreement 
with the exact solution is not so good but is still reasonable. Comparison of the response in this 
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case with that illustrated by the preceding figure shows the importance of the parameter e0, as 
mentioned in Section 2 and as found by other investigators. 

The simple aileron input used in the calculations just described leads to a somewhat unrealistic 

rolling manoeuvre. It may be argued that it is more desirable to specify the rate-of-roll time history 
but, as the analysis is developed for a solution following a specified aileron input, this is not immediately 

practicable. A more realistic rate-of-roll curve can, however, be obtained if the single degree of 
freedom calculation is used for determining the aileron input required to give a specified rate of 

roll, and the aileron input so obtained modified to suit the convenience of the five degree of freedom 
calculation. Such a process is described in Appendix V, and is the basis of the second type of aileron 
input (Fig. 2) considered. It should be noted that this aileron input depends on the two aircraft 
characteristics, damping in roll (l~)) and the moment of inertia in roll (i~1). 

In the first of the calculations for the aileron input of the type illustrated in Fig. 2 the aileron 

angles were so arranged as to give a rate of roll corresponding to p value of - 6.76 approximately, 

so as to enable use to be made of data already computed forP0 = - 6.76. The value of P0 is kept 

constant at this level for the time interval corresponding to 0 to 0.35 in 7. After this time the motion 

is assumed virtually uncoupled, that is, P0 = 0. The method of Section 3 gives again results in good 
agreement with the exact solution (see Fig. 13). Also shown on the same figure is the response as 

computed using the simplified analysis of Appendix III. This is in sufficiently good agreement 
with the other solution as to provide acceptably good estimates of the maximum disturbance in 

and ]3. The initial incidence of the forward principal inertia axis was taken as + 5 °. 

To study the effect of a faster roll, the aileron displacements were increased to give a maximum 
negative rate of roll of about 136°/sec. Fig. 14 illustrates the effect of these changes on the response 
in the other variables. Again agreement of the approximate solutions with the exact values is fairly 
good, although naturally not so good as in Fig. 13 which refers to the somewhat slower 1"o11. 

Lastly, the calculations were repeated with the input as in the preceding example, but with the 
principal inertia axis inclined below the flight path initially by 5 ° (e 0 = - 5°). The results of this 
set of calculations are shown in Fig. 15 and again, as in the previous examples with e o negative, 
the rate of roll does not tend to decay after the final centralisation of the aileron. The time interval 
over which the response is known, in all the calculations already referred to, is insufficient to give 
a clear indication of the behaviour of the aircraft some time after the aileron had been centralised. 
The practical significance of the subsequent behaviour may be questioned on the grounds that the 
pilot would increase either the interval of time over which reversed aileron is applied, or the amount 

applied. These actions can, provided the rate of roll at the moment the aileron is finally centralised 
is small, result in the return to virtually uncoupled damped motion as shown in Figs. 16 and 17. 

However, as this is a matter of judgement, it is clear that the subsequent behaviour in the event of 
finishing with too rapid a rate of roll is of some importance. The response to the input of Fig. 15 

over a prolonged time interval is shown in Fig. 18. It is interesting to compare the results of digital 
computer with the analysis of alternative steady states which emerge if gravity terms are neglected. 
The non-linear steady-state equations have solutions other than that giving zero values for all the 

variables,p, q, r, ~, and $. These involve steady rotation about all three axes and constant incidence and 
sideslip. Details of the calculation of these steady states and their stability are given in Appendix IV. 

For the aircraft characteristics assumed throughout the present investigation, the motion seems 
to be alternate oscillations about two values of the variables which are in fair agreement with 
steady-state values as given by the analysis of Appendi x IV. 
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These steady states are in the present instance unstable with respect to small disturbances. 
Accordingly the completely linearised response would show a tendency to depart from the steady 
state. This is illustrated in Fig. 19. Here a point in the time history of Fig. 16 was chosen at which 
the main deviation from the steady-state conditions is in rate of roll, incidence and rate of yaw-, and 
the linearised response to these initial disturbances calculated. At first the rate of roll varies more 
or less in accordaflce with the linearised response but after half an oscillation has elapsed it departs 
appreciably from the exact (digital-computer) solution. To what can we attribute this departure? 
It is either the effect of the gravity terms (which on the basis of Appendix II we would expect to be 
negligible when 10 is fairly large), or the effect of the inertia cross-coupling terms, that is, we are not 
permitted to write these as }s3O etc. as in Appendix IV but should treat them on the lines of the 

main text or Appendix III. To assess the first effect directly the digital-computer calculation has 

been repeated omitting gravity terms. For a comparison of the two sets of results see Fig. 20. It 

is clear that we may rule out the gravity terms as being the primary factor, and so we conclude that 

in the type of motion illustrated by Figs. 15 and 18 the lateral and longitudinal motions are both 

affected by the inertia terms in pq  etc. 

5. Conclusions. 

In calculating the response to aileron application of an aircraft in which the yawing and pitching 

inertias are large compared with the rolling inertias it is necessary to include products of the rate 

of rotation about the roll axis and either of the other two axes (pq and p r  terms). 

Such calculations are normally performed using either analogue or digital computers. The method 
developed in the present paper or its simplified version (Appendix III) offers an alternative, with the 
added attraction of possibilities of further simplification. Comparison of the results of the method 

described herein with those given by the digital-computer calculations indicates a satisfactory 

accuracy. 
The next step is to simplify as much as possible without undue loss of accuracy. It is considered 

that many of the aerodynamic terms, retained here for completeness and to remove all possibility 
of doubt in the assessment of accuracy, may be neglected. For example we may be justified in 
retaining only terms in m w and n v with 'effective 'e mq and nr, together with I v . 

Although the main purpose of the present investigation is the proving of the accuracy of the 
proposed method, we find, in agreement with other investigators, that the inclination of the forward 
principal inertia axis to the flight path in the initial equilibrium condition is an important 
parameter (Refs. 2, 3, 6, 11). The effects of changes in the aerodynamics have not been considered 
numerically but it is clear that the emphasis lies in the derivatives n v and m~,  and it is this which 

makes it reasonable to anticipate the possibility of further simplification. 
On the basis of the calculations for an aircraft rolling continuously at a constant rate, comparisons 

of digital-computer solutions with and without gravity terms, as well as comparison of the results 

of the simplified calculation of Appendix I I I  with other results, we conclude that, provided the rate 
of roll is not small, the gravity terms may be neglected. 

e 'Effective' is used in here in the sense that the values are adjusted to give correct damping of the uncoupled 
motions, e.g. 

Effective mq = mq + m~ 
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Aerodynamic derivatives have been treated as constant throughout the present paper. The most 
serious omissions in this way are any non-linear properties of m w and n~, with dependence of lv, 

n~, and n:~ on incidence being of secondary importance, but still having some significance in certain 
cases. 

The method described can be adapted to deal with the rolling pull-out manoeuvre, and this is 

particularly straightforward if the elevator is applied and centralised sufficiently ahead of the aileron 
for the response to it to be calculated as an uncoupled motion. 

For some applications, for example in checking structural integrity, the analysis of Appendix VI, 
namely, the calculation of the response in incidence and sideslip when a prescribed rate-of-roll 
time history is achieved, will be a more appropriate approach than the direct problem considered. 
elsewhere. 
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LIST OF SYMBOLS 

Aircraft span 

Lift coefficient - 
Lift 

½pV~S 

Pitching-moment coeffÉcient = - -  

S 
Wing mean chord = - 

b 

M 
½oV~Se 

Total differential operator with respect to time 

- x = / & ]  

= _ &~/_r~t 
- & ~ / U  

, 

1 

ratio of product of inertia to moment of inertia about each axis 

Coefficients in operational solutions (see Section 3.4 and Appendix I) 

Moment of inertia about x-axis 

Moment of inertia about y-axis 

Moment of inertia about z-axis 

Product of inertia with respect to x-axis 

Product of inertia with respect to y-axis 

Product of inertia with respect to z-axis 

_ro/ms~ ' 

Rolling moment about x-axis 

Rolling-moment derivatives with respect to the principal inertia axes (see 
Royal Aeronautical Society Data Sheets) 

Pitching moment about y-axis 

Pitching-moment derivatives with respect to the principal inertia axes (see 
Royal Aeronautical Society Data Sheets) 
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LIST  OF S Y M B O L S - - c o n t i n u e d  

- m w 
S 

p V~ Ss 2 

M~ 
pV~ Ss 

M w  

p S s  ~ 

modified longitudinal moment derivatives 

Yawing moment about z-axis N 

n v 

ng 

Yawing moment derivatives with respect to the principal inertia axes (see 

Royal Aeronautical Society Data Sheets) 

p Rate of roll about x-axis 

p = p~, angular velocity in roll (non-dimensional form) 

Po An assumed angular velocity in roll (non-dimensional form) used in the 
analysis of Section 3.2 

p;  Perturbation rate of roll (non-dimensional form) = p - P0 

q Rate of pitch about y-axis 

= ~of, angular velocity in pitch (non-dimensional form) 

r Rate of yaw about z-axis 

= rf, angular velocity in yaw (non-dimensional form) 

S Wing area 

b 
s = ~, wing semi-span 

t Time 

m 

U Velocity component along x-axis 

V Velocity component along y-axis 

Ve Resultant steady-state velocity 

W Velocity component along z-axis 

v. / Small disturbance values of V and W 
) gO 

4; = v / V  e = fi, sideslip angle 

= w/V~  = c¢ - e0, change in angle of incidence 
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LIST  OF SYMBOLS--cont inued  

X 

Y 

Z 

Y~ 

z~ 

Force component (including gravity terms where applicable) along x-axis 

Force component (including gravity terms where applicable) along y-axis 

Force component (including gravity terms where applicable) along z-axis 

Y-force derivative (y~= -Y~)I  (see Royal Aeronautical Society Data 

Z-force derivative J Sheets) 

Angle of incidence of principal inertia axis 

Sideslip angle 

- I s  

- _r , ,  

_r ,  

3~ = /xl~ concise aileron effectiveness derivative 

3~ = /xn¢ concise yawing-moment due to aileron derivative 
io ' 

eo (=  /~o) Initial angle of incidence of principal inertia axis 

0 Angle between x-axis and horizontal 

m V,f relative density of aircraft referred to semi-span 
pSs , s 

v -- , concise derivative for rotary damping in pitch 
G 

l~ concise damping-in-roll derivative 

~A 

- -- ,  concise rolling-moment derivative due to yaw 

n~, concise yawing-moment derivative due to roll 
l.'n3 9 ~--- .io 

]Y/7, 

'T 

nr. , concise damping-in-yaw derivative 
ZC 

Aileron angle 

t }, time parameter (see Section 3.1) 
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LIST OF S Y M B O L S ~ c o n t i n u e d  

¢ Angle of bank 

Perturbation angle of bank (=  ¢ -  ¢i-230 r) 

X. = - - ~  

t* s mw 
co = ~ ,  concise restoring-moment derivative in pitch 

_ / x %  

o~ io , concise weathercock stability derivative 

c°t - ia ' concise rolling-moment derivative due to-sideslip 

Suffices 
Denotes the initial value of the quantity. (When ~3 o changes value the initial 

conditions are defined by the end conditions of preceding time interval) 

Denotes initial steady-state value of a variable 

Denotes steady-state values of a variable 
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where 

and 

A P P E N D I X  I 

Coefficients of Numerators and Denominators in the 

Operational Solutions of the Approximate Equations of Motion 
Denominator. 

T h e  form of the denominator is: 

Go D~ + G~D ~ + G2D ~ + G~D2 + G~D + G~ 

Go 

a l  

G~ 

Ga 

= 1  

G 4 

G 5 

kll + klO 

k~l + k~o + kllklo + po~(1 - SvS~) -~ I~o~o ~ 

k~o + k~ok~ + k~k~o + p £ ( -  ~fi~(~,-z~ +y~) - ~x  + ~ + ~ + ~} + 

+ #o~O,(~.~ + ~11) - ~o~.,%~ 

~61~ + ~1~o + P d { -  6 ~ . ( Y ~ , - Y . . ~ -  ~*** +po ~) + ~ . , .  - ~.(~,x + o,) + 

+ ~.~(~ + ~) + ~,~ + ~ )  + ~o{O,(~ + ~ A 1 -  ~ o P o  ~) + ~..(~oPo~x- ~%~d) 
~ok~ + po~{ - ~ l p o ~ - y ~ w ) , ~  + ~ ( ~ +  ~ )  _ ~ , ~  + ,(,~,~ + ~ . ) }  + 
+ ~o{~O~(,~ + ~ p o ~ ) +  ,,~(~opo~o~_ o ~ ) )  

klo = Y,  + vs + vt 

kao = y~(vl + v~) + v,~v I + v~v~) + ~% 

k3 o = .y~(v,.,~+ vz~v~.D) + ~z~. + ~%v~ . 

k n = v + X - z~ 

Numerators. 

The  numerators are of the form: 

1 
D 2 + po 2 [Ho~ D~ + HI~D 6 + H2~D 5 + Hs~D ~ + H4~D 3 + Hs,~D ~ + HG~D + HT~]. 

Numerator for p. 

The  numerator  coefficients are given below: 

Ho~ = p~',= .h' + Po 

H~I = Pi'A~l + P11~ - 8i~b~ + r~7~1 + v,~.Q - oJzs + ~ i~1  - Po(S.vl,.R _ G2 ) + po2(Pi , + Go ) 

Hal = Pi'Asl + P~t21 - 0i¢~i + P~7el - -  S ¢ 1 i  '~ g~i~21 - £° lT  "Jff 711Q -~ QIR + 

+ ~ (cos ¢i - 1)~11 + Poa3 + Po2(P +p(Al l  + ~,l,.Pi + a l )  

Footnote.--.It will be noticed that in the numerator functions given herein the incremental rate of roll, p', was 
used as one of the basic variables. The use of the total rate of roll, p, would have yielded slightly simpler 
expressions (cf. Appendix III), but as the complicated analysis including gravity is considered to be only a 
stage towards a more simplified solution it was not considered worthwhile attempting the slight improvement 
that results from rearranging terms. 
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H4~ = P~' " ~  + P~3~ - ~ ¢ a  + r~731 - S¢2~ + ~ S a  - T ¢ ~  + 7 ~ Q  + US~ + e2~R + 

+ ~ i cos ¢i - 1)82~ + PoG4 + Po2(Pi')t2~ + P ) ~  + ?iYn + ~'l~O_. + G2) - 

- po~(~o,~o + ~o~R) 

g ~  = P ~  - S ¢ ~  - T¢~  + 9~'~ + ~ ( ¢ o s ¢ ~ - 1 ) ~  + U ~  + Poa~ + 

( C~o ~ +  C~)- po~o¢1~ + Po e Pi'Aa + PA21 + ?iY~l + 9Yll ÷ RQ1 - - ~ -  

TI61 = U83a - T¢3i + Po 2 Pi A41 + P Z a  + ?iYa + Qy21 + R e~l ~ -  8~1 + Ga - p o  ~ WoCe~ 

gT~ = Po ~ PA~t + QYa  - - ~ -  Sa + G~ 

where 
¢11 = ~o,(kn + ,~) - ~ '~r  

¢21 --~ ¢0/(k21 ÷ Vnkll) - -  wnvtrkll + po2( -  ~v~zwl + V~r~zX) 

¢31 = (~, , .~-. , ,~.zr)~ + po%(~o,z ,o  + .~o~) 

A n = k 1 1 + v ~ + y v  

~1 = kzl + kn(vn+y~) + ~% + v~ + y .  + ( 1 -  ~g3~)po ~ 

~3'1 = k.:l(.,~+Y~) + ~11(~+ . ,~+Y~)  +Po~( - ~ ( y ~ - z ~ ) -  ~ox + .,~ + ,} 
~1 = ~ ( ~ , ~  + .,~ +Y~) + Po~{- ~y(@o ~ -  ~ o ~ Y ~ - o ~ )  - ~.~ + ,,~} 
711 = v~r(kll +Yv) + ¢o~ 

T21 = Vtr(kal  + kllY~ + po2) • + k11~°~ 

~ 1  = ~(y ,k~l+Po~,)  + ~ P o  ~ + k ~  

~11 = Po('~r~x- °'3 

~ = po{~, (~o  + ~ o p o  ~ -  ,~ , )  + ,~ (o~ ,  + ~oy~o)} 

~11 = Po{~z,(~o~- ~y~) - ~o,(1 + ~) )  

~ = p o { . ~ ( o ~ -  ~opo ~ + ~o~.y~,) + ~ , ~ ( ~ w -  ~ ) }  

and also 

P =  - Stg ~ -  vtp o 

R = ~i + Xwi 

S = I?dop o + ~ sin ¢, 

T = V~Po + o cos ¢i 

" 2 C Z e  " U = w~p o ~-PoSm¢~, throughout this Appendix. 
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Numerator for ~. 
Ho ^ 2 --'~ q i  

HI~ = RQ~ + ~i812 +-~ 
z., 

H22 --~ 

H32 

/'/42 

H52 

H62 

H~= 

where 

22 ~- 

/82 

812 : 

822 

832 
842 = 

)t12 

~t22 

~t82 

'Y22 

612 ~-~ 

~22 

642 ---~ 

cos ¢~- 1)X + po(¢~X- 8,/~) 

Re,. 2 + ~{8~9. + ~ cos ¢~-  I)8~. - U X + 8i¢1~ + ?~:¢12 + ;~12Pi' + RPo 2 + 

+ Po(SX- %9) 

Res~ + ~¢832 + -Cff cosec-1)82~ + U8~2 + Q,/'22 + ~'~m2 + ;~22P~' + S¢12 + 

+ TPox + 9~12 + P~12 + ~o 2 Rel~ + X ~ -  - 8~Por~ 

Re42 + d;i8~ + _C~ (cos ¢~ -  1)832 + u822 + ~i¢3~ + s ¢ ~  + T¢12 + ~9%~ + 

+ Q72~ + p(A32 + PA2~ + Po2 (Re2~ + ~ Sn + VVoPoeX + P~yn - 8~Po(2 + P(A,2) 

c~o (co~¢~- 1)8~ + u83~. + 8¢3~ + T¢2~ + 973,. + P ; %  + V¢oPo3¢.. + 
-2- 

+ po~ (R%~- -C22 8~ + P,y2~ + QTl~ + P(A22 + PA12 ) 

( ) vs,~ + T¢3~ + ¢¢oPo%2 !-:~o ~ R6~2 2-- 83~ + ~i73. + 9 r ~  + PT&~ + P&~ 

po2 (//Vo~o¢3e CL'~- 8,~+ 9732 + PA3o-) 

_~o{- ~,,s~ + x(~, + ~ )  + ~} 

- (Xk~o + co) 

- (xk~o + ~k~o) - ¢¢o~X 

- (x&o + ~k,o +~o%~,P + ~o(~.~,, .x- ~,~,~x- o~,~o) 

Po{- ~(Yo + .,- ~ )  - x} 
Po{- s~(y~,- y.z~- .,=,~ +Pd) - ~,x - ~ + ¢¢o(- ~,sy + ~,.x)} 

Po{ -  ~ . . , ( P o ' - y . - . )  - ,',~ + ~o(,.,,,o~ + ~w,- . . ) }  

klo - z~ 

k~o - z~klo + Po ~ + Wooh 
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Numerator for ~. 

no ^ 3 : F i  

HI.~ = 71ff i + ~ + °Jn$i - v~pPi' + 8zPo(XWi- R) 

H~3 = y2ar~ + ~713 + vi¢13 + S°Jn + Pi'2x3 - v,~P + Rq8 + ff:~St3 + 

+ poS~X ~ (cos 4 , -  1) + Po2r~ 

H3~ = 73~ + ~7~ + ~¢~  + S¢~ + T~o; + p , ' ~  + PA~s + R%~ + ~ 8 ~  + 

+ C~ (cos ¢ , -  1)8,a + ua,PoX + Po(e,r~a + 8,poR) 

+ (cosec- 1 ) ~  + u ~  +Po ( " ~ +  0 7 ~ + h  &~-~,~,~f+Rq~) + 

Hs~ = Q74~ + 8¢~ + T¢~3 + P&~ + ~ (cos ¢~- 1)a~ + US~a + 

+ Po 2 &7.. + 9 n ~  + h ' & ~  + f & ~  + R q .  - - U  ~ .  + r/o~o"~. 

where 

&~ = - ~.~(k~.~ + y & ~  +po ~) + ~¢o(~,~k~ - a~p&) 

&~ = - ~AY~&I + ~Po ~) + l~o(~%k~ - a~pd.,) 

~'la = J~ + uz + kit 
r~. = (Y~ + ~z)k~ + k=  + y ~  + po ~ + # o ~  

q~ = po{a~(y~z,~-y~ + ~z~o-po ~) + ~ - #oO~,~} 
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Numerator for ~. 

Hoi = ~ 

H~4 = e~8~4 + ~ (cos¢ , -1 )  + R -p05¢ ' 

H24 = ~ 6 ~  + ~L2 (COSec-- 1)81~ + U + Rk2o + ~7~4 + . ~ ¢ ~  - SPo - WoPoP~̂ ' 

H~ = e~8~ + ~ (cosec-1)824 + 0814 + R¢14 + fir24 + Qrl4 + ~itz14 + vi¢24 + 

+ +--(R- 
//44 = @84~. + ~ (cos¢¢-1)Sa~ + U8~ + Re=4 + y~?¢ + Qy2~ + P~'Ae4 + PAl4 + 

+ ~,¢~ + S ~ :  + T¢~4 +po2 ( R k ~ o -  ~ 2  314 + ~,),~ _ i~oPo 2 _. l~oPoP, ) 

H~ 4 = ~ 2  (cos¢i-  1)844 + U8~4 + Q~'~4 + PA24 + S¢~4 + T¢24 + 

-- + ~i AId + [/~70~0¢14 W0~03P 

H~a 

H74 
where 

, ) = u~4 ,  + T¢3, + ~o 2 R~2, ~3, + ~i7~, + Q72, + P a l ,  + h ~2, + ~oPo¢~.~ 

~- 844 + PA~4 + ~do~oCa4 

= - Po(V + v,,~ + ~) 

= - Po(v ,~  + , . . z  + , . ,  + . ~ y . ~  + ~ ¢ o .  - ~ , ~ p o  2) 

= - Po( , ,~ ,~  + ~ o ~ , ~  + , , ~ , , , ~  + ~,~o~, z _  ~ P o % )  

= - P o { , ~ . ( ~ y o  + . )  + ~ o ( -  8~oPo  ~ + , , ~  + ~ , . ,~)}  

= Po(1 - ~,)  

= h~o - ~po 2 + #o~Ot 

= k~o- ~;~o%-  gJo(O~,~,~,.-o~,.,~-~,~rpo ~) 

= k l o  + v 

= k2o + vklo - 8vS~po ~ + g/o~l 

24 



Numera tor  f o r  ~ or ft. 

• U o  5 A 7)i, 

H ~  = ~¢1~ + S - & + w~po + WoA 

H ~  = ~¢z~ + S¢1~ + T + A'%,  - &w~ - 0 + po(1 + ~ ) R  + ~¢a~ + 

+ ¢i- 1) + Wo{P+i~ ~ (v~+k21)} 

H.~ = ~d,~ + $4,~ + T ¢ ~  + p/al~ + . , . , P  - & ~  - Q ~  + Rq~ + ~ + 

+ ~ (cos4/-1)3,5 + U~3o + P W o ( v .  + k~l) vVopo + + 

Ha~ = ~i¢~ + SCa~ + T¢~ + WoPo~¢~ + pi'A~ + PAI~ - ~Ya~ - Qr~s + R e ~  + 

+ + + + + 

+ Poz{v~vPi ' - ~Y15 - O + lYVoP + I~oPi'(v~ + k21)} 

Hs~ = 8¢,~ + T¢,~ + P~,~ - Q~'35 + _C~ (cos ¢ ~ -  1)83~ + us=~ + 

+ ~02 W0~0¢25 + ~it~15 -4- P v ~ j - -  Piy~ - O y ~  + Re,~ - - ~ -  815 + V/fo(~ n + k~,)P 

Hoo = r ¢ ~  + U83~ + ~o ~ ~ o ~ o ¢ ~  + ~ /&~  + P&5 - h ~  - Qr~  + ~ - ~ -  8~ 

where 

15 

25 = 

35 

45 ~--- 

~15 ----- 

~25 

~15 ---= 

~25 = 

~85 ---- 

615 

£25 ~" 

~15 

~25 ~-~ 

v I + v~ + k n  

k l l ( v z  + Vn) + k21 + v l r vnp  + V~V n - -  ~y~z~02 

&~(.~+ ~,~) + k~(~,,~..  + ~,,~) + ~ a J o ~ ( Z w -  ~) 

~.~,.(k~ + a,,po ~) + 7/o(~.~k~1 + ~o~.~a~po ~) 

k n + v~ - l/Y/opz~ 

k~ + .,~k~ + ~ p o  ~ - YVo.,t,(., + x -  z~) 

~,( k~  + ~ p o  ~) - ¢¢o~,,&~ 

Po( ~ + ~ + ~ - ~ox) 

Po{~ (  - s ~ , p g -  ~ - x,'~ + ¢¢o,~,,-x) + ,',(,',, + ") + ,,v~ + ,.,,~,,,,~) 

Po{~ (  - S~Po ~', - ~" ,  + ¢¢o, ' ,~)  + ,'(,',,',, + ,',,-",~,)} • 
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APPENDIX "II 

A S t u d y  of  the Contribution of  the Gravi ty  Terms to the Solution in S teady  Rolling Flight  

As mentioned in the text, the question of the importance of the gravity .terms has to be resolved 
before we can proceed with the approximate solutions proposed herein. To examine this more 
fully, we turn to the steady rolling flight in which we assume that the aileron is olSerated so as to 
maintain a constant rate of roll (P0) throughout. In this special case the inertia cross-coupling terms 
are accurately represented and the gravity terms with improved accuracy, but not exactly. The 
equations of motion in operational form are (cf. Section 3 and Appendix VI): 

( D + ~,)~ + 3v po~ + (co + xD)  ¢9 = (0~ + x~i)D 
S,Po0 + (D + v~*)? - co,~*O 

+ (D +y-~)O 

where 

= ?iD - v~ffpo 

-pov~ = ~iD + lCoPo + 

D 2 
+ ~--~2L~ {sin ¢, D~ + po~ 

+ po ~ + (D - Zw)@ = dqD + cos ¢,~ D ~ + Po ~ 

2 

con@ = con + col iA ng 
i c l~ ' 

i~t n~ 
Vn ~x: = Yn + Vlr iC l~ ' 

i c, lg , 
with the aileron angle being defined by: 

- 3,~  = (D + ut) p - vtr¢ + coz$ = vzp o - %.~ + co~. 

The operational determinant of the above system of equations is: 

if we write: 

and 

D + v 3vp o 0 x D +  co 

1 D +y~ - P o  

0 Po D - z w 

= Go D 4 + G 1 D  ~ + G 2 D  ~ + G ~ D + G  4 

klo* = Yv + vn*, hao* = cone + :gvVn *, 

k l l  = v + X - z~o, k.,.1 = co - v z w ,  

( ; o = 1  

G 1 = k lo*+kl l  

G 2 = k~o* + k~l + klo*kll  + po2(1- 3y3,) 

G = h~o*h~ + h~o*h~ + po~(~ + ~ *  - ~ x  - G ~ X Y , -  ~ ) }  

G4 = h~o*G~ + Po~{~,~,~ * - ( ~ , c o -  G c o ~ * )  - ~ y ~ , ( P o ~ - Y ~ Z w ) } .  
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- - +  cos¢¢ D{~+D~o e } 

sin ¢~ D~+Dpo~ } - 

. . . .  ( 1 8 )  

(19 )  



In general, the numerator for v3 can be written: 

1 {Ho~D6 + H14D ~ + He~D 4 + gaaD a + H44D ~ + HsaD + HG~}" 
D ~ + po ~ 

However ,  when qi = ri = @i = Q = 0 and ¢i = 0 the coefficients become: 

Ho~ = H14 = 0 

H~4 = - Po o 

H34 = - CL,Po ~ -- Po2{V,,~v( 1 -- By) + I/*Vo(U + v~*)} 

H~4 = C~*po2(2v + v.~*+ k~o*) -po~{p,~ro(v- ~v-Y,~) + Wo(Po2[ 1 - (3v(3~] + vv~* + 8¢%*)} 

H54 = CL, po~(k2o. + vk~o. _ 2,3fi,po ~ + 3 v w .  + pv~*) - poa{V~)°(1 - By) + 17/o(U + %0)} 

c Lo po2(~k~o , _  ~,~,Po%) - p o % ~ * ( v -  ~yyv) + lPo(~V~ ~ + ~¢%~-  ~oPo~)} • H ~  

Similarly, we have for ~: 

1 Po z {HosD6 + H~sD 5 + H~sD ~ + H85D 8 + H45D 2 + H55D + H65} 
D ~. + 

where again for the above initial conditions: 

Ho5 = 0 

H15 = lfdoPo 

CLe 

Ha5 = ~-Cz* po(k~ + v,ff) + Po[l?/o{ kz~ + v-°k~ + ( 1 -  ~vS,)po ~} + v , ~ k ~ ]  

H ~  = - g -  Po{,% + ~1~'~* - Po~( ~ + ~ o ) }  + 

+ pO{#O[pn,'k.k21 + ~02(Vn~ + hi 1+ ~y~zZw)] + pnp*[k21 + (1 + ~y)~02]} 

- ~  ~o{~*a~ + ~,fi.~o% - Po~( ~ + ,,~* - ~x)} + ~o~{ V¢o(~ + ~ -  ~y~o~o 2) + Haa 

+ ,~*k~t} 

H0~ = ~ ~o~(~o~o + ~ P 0  ~ - ~v~*) + ~o~{ f f :o (~ , :  + ~ 0  ~ )  + ~ ' ~ * ( ~  + ~#o~)}" 

These solutions are readily transformed by means of the tables of Ref. 8. The  response in @ and 
for our example aircraft is calculated including gravity terms (CL~ = 0" 358) and neglecting gravity 

terms (equivalent to setting CL, = 0). 
Two  values of Po are chosen for these calculations; P0 = 4 which gives a stable motion, and 

P0 = 6 which yields a divergent motion (see Figs. 3 to 10). In both cases the effect of the gravity 

terms is small. Furthermore,  the effect for a given e o (or 18V0) is proportional to CL~, and so we may 
conclude that as a reasonable approximation these terms may be ignored for modest  values of CL,. 
The  approximation used in the main text, which includes the main part of these terms, can also 

be accepted. 
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APPENDIX III  

Simpl i f ied  Response Calculation 

The analysis of Appendix II and the results of other investigations such as References 3 to 6 
indicate that for modest C2: values the contribution of the gravity terms to the response is small 
• "md can be neglected. The linearised equations of motion in operational form are then: 

( D + y~)8 - lZgop 

cot~ + ( D + ,,l) l 3 

- -  f . o  n 7 3 

+ ~ Po~ " - = r i D  

+ v,~,p + (D + v~)P + 3,poO - a . ~  + #iD 

3vpof + (D + v)O + (oa + xD)v3 = (qi + X~;i) D 

- ,2 + = 

The characteristic equation can be written: 

(20) 

(b) ()t z + azh + bl) (A + ba) (A + b4) (~ + bs) = 0. (23) 

The factor D ~ + a~D + b, in both cases is associated with a high frequency mode of small amplitude 
(b t >> al,  a~, b2, ba, b4, and bs). 

Approx imate  Roots. 

Equating the coefficients of equations (22) and (23) to those of equation (21) the following 
relationships are obtained: 

where 

a l + P  = 

bl + a l P  + Q = 

Pbl  + Qa 1 + R = 

Qbx + R a  1 = 

Rb 1 = 

, P  = 

Q= 

R =  

a 1 

G2 

G 

G 

G5 

a 2 + b  a orb  a + b  4 + b  5 

baa 2 + b~ or bab 4 + bab5 + bsb 3 

b~ba or bab4b 5 . 
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(24) 

G0 A5 + G1 ~t4 + G2~ a + Ga~ 2 -4- G4,~ -4- G 5 = 0 (21) 

where the expressions for the coefficients G~ are those of Appendix I. For high roll rates the factors 
of the characteristic equation are of two types: 

(a) (22 + al 2 + bl) (2~ + a2A + bz) (2 + ba) = 0 (22) 

and 



From these equations: 
,,t = G - P (25) 

bl = G2 - Pal - Q (26) 

R = G~ (27) 
bl 

G4 - Rat (28) 
Q -  bl 

p =  G 8 -  Q a t -  R (29) 
bl 

and if the approximation P ~ Ga/b 1 is made, and if bl ~ >> G4, G 5 

G (30) a 1 ~ G1--~- 
G ~ _  / G I _  Ga~ Ga G4 bl ,~ bl bl 

R = --G5 (32) 
bl 

bl bl 

p =  Ga R Q G 1 -  (34) 
bl bl bl ~-1 

and from equation (25) we have: 
a 1 = G 1 - p .  

Equations (30) to (34) give approximate values of a 1, bl, P, Q, and R of sufficient accuracy for 
moderate to large values of P0. For small P0 Values, which are unlikely to enter into practical 
calculations, use must  be made of an iterative solution of equations (25) to (29) if reasonable accuracy 
is to be achieved. The  values of as, b2, ba, b4 and b5 can be calculated from the following expressions, 

derived from equation (24), when al, bl, P, Q and R are known: 

ba 3 - Pb3 ~ + Qba - 

b4 2 + ~ - b 4 + 

R = 0 (35) 

R 
ba = 0 (36) 

R 
bs , -  (37) 

bab4 

as = P - b3 (38) 

b~ = Q - a2ba. (39) 

A comparison of exact and,approximate roots and root coefficients is given in Table 2, for various 
I~ o and P0 values. The  agreement is excellent for moderate and high rates.of roll. 
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Charts (Figs. 22 to 25) are provided to expedite the solution of the b a cubic {equation (35)}. 
They are derived using the following method which is that of Reference 10. If b a is replaced by 
Lm where: 

L = k a 5 / -  R ,  (40) 

the cubic can be written in the form: 

1 
m a + A m  ~ + B m + ~  = 0  (41) 

where 

and where 

- p  
A - - -  

B -  Q 
k2(-  R)~;a 

(42) 

(43) 

k =  + 1  for R > 0  

k = - 1  for R < 0. 

Equation (41) will factor into either one real root and one complex pair of roots: 

[m + ¢ ~ ]  [m~ + 2~oo'm + (oJ')2] = O (44) 
or three real roots: 

m _+ [m + be] [m + 37] = 0 (45) 

where the plus sign in the first factor of equations (44) and (45) is associated with k = + 1 and the 
minus sign with k = - 1. 

If equations (44) and (45) are equated to equation (41) the following relationships between 1} 
2g 

B = + 
(46) 

coefficients are obtained: 

o r  

A = b 6 + b T _ + ~  (47) 

b6 + b7 
B = bob 7+ bGb-~7 , .  

Figs. 22, 23, 24 and 25 are graphical representations of expressions (46) and (47) 

Thus, to determine the real roots of equation (35), A and B are computed using expressions (42) 

and (43), choosing the value of k appropriate to the sign of R. The values of co' and ~ or b 0 and bob 7 
are then obtained from the appropriate chart and the roots computed using the relationships: 

b6b7 , ] R'/: lbo, 7 .  

o r  
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Response. - : 

The response in p, ~, ?, z~ and ~ can be represented by the operational fraction: 

F(D)  ~ Ho~'D 5 + H ~ ' D  ~ + H2~'D 3 + H3~'D 2 + H j D +  H j  (48) 
= GoDS + G1D ~ + G2D 3 + G3D 2 + GaD + G5 

if the effect of gravity is neglected. If  the factors of the denominator are of the type of equation (22) 

the response can be expressed: 

F~(~)  = Ao + A~-~3~ + e-~2~(A2 cos 82~ + A~ sin s2~) 

+ e-~l"(Aa cos s1~ + A t sin s17 ) (49) 

or if the factors are of the type of equation (23) the response expression will be: 

FB(~- ) = B o + B~e-b3* + B2e-b4 ~ + B3e-%" + e-rl*(B4coss~* + B~sins~-) (50) 

The  coefficients A~ and B~ in the above expressions can be calculated directly using the method 

given in Section 4 of Reference 9, or by use of the tables of Reference 8. 
The  A n and B,~ expressions are as follows if b 1 >> a 1. (It should be noted that the formulae given 

in Reference 9 are in the notation of the Laplace transform and must  be re-expressed if the Heaviside 

notation is used.) 

A0 - H j  
blb2b~ 

- Ho~'ba ~ + H ~ ' b 3  ~ - H2n'b~ 3 + H3~'b~ 2 - H,~'ba + H j  
A~ = ( - b~) (b~ 2 - ~b~ + b~) (b~3- ~2b3 + b2) 

A 2 = F A ( O ) -  (A  o + A  l + A a )  

A~ = _1 [Fff(O) + b~A~ + r~A~ + r2A ~ - 31As] 
3 2 

G3 b ~ H j  - riH2n' + r~Ha~ + (,k 2 -  s~2)H~ '-1 , "" ' 
b~ b I J - s~ ' /G2  H2~ - b~ 

A ~ =  

A 5 = 

~/G2 I b l H j  - rH2n' + 

{ G3~" G2) b~ \ ~  + 

?'IH4"r~t "~-(T12--S12)H3~'l G3 I 2~'lH3r~t + H 4 n t l !  

{ c"2 ) / 
B o  m 

B 1 = 

H•n t 

blbsb4b~ 

- Ho,(ba 5 + Hl~'b34 - H2~'b33 + H j b 3 2  - H j b 3  + H ~ '  

( - b z )  (b3  2 - a~b.~ + ba)  ( b  4 - b3)  ( b  5 - ba )  

• t 3 t 2 t - Hon'ba 5 + Hl~'ba 4 - H2,~ b~ + H3~ b4 - H j b 4  + Hs~ 

B2 = ( - b , )  ( b ,  2 - a l b ,  + bx) (6 3 - b , )  (bo - b , )  

- Ho~'b5 ~ + Hl~'b54 - H2~'b53 + H3~'b52 - H j b 5  + Hsn'  
B 8 = • ( - b~) (b~ - .~b~ + b~) (b~ - b~) (b, - b~) 

B ,  = F~(0)  - (Bo + B~ + B~ + B~) 

B5 = _ 1 [FB,(0 ) + b3B~ + b4B2 + bsB3 + rxB4]. 
S 1 
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The numerators of the expressions for A1, B1, B e and B a can be computed rapidly by a desk 
calculating machine using the routine of Section 2.1 of Reference 9. 

The numerator coefficients Hj~' of the operational fraction can be derived from the equations of 
motion and are as follows (cf. Appendix I): 

A 

H o l "  ~~ ~ i  

~A 

//21' = ~ p ~  - ¢11~ + ~'~lh - a~Po~'z~i + (a~-a~Po"zrX)~  + 

) H3( = ; ~  - ¢ ~  + ~,~,,~ + q ~  + ( q a +  h i ) ~  + ~ ~ ;~ + i~,~ 

H ~ ;  = ~ l h  - ¢ ~  + ~'~h + %~q~ + ( ~ a  + a ~ ) ~  + ~ ~ ;~1 + G ~'~1 

rt~ 

02  t 

H12' = 

H22 ~ _- 

H 3 2  r = 

H52 ~ 

i 

e2~q¢ + (e~x + h ~ ) ~  + ~'~h + ~ v ~  + ~ 1 ~  - ~:~ i~ a~ o 

e~2~ + (e~x + a~ )~  + ~,~,~ + ¢~,~ ÷ , ~  + ~ 1~ , ~  + i~ ~'~ 

H 0 3  r "~ = T l 
s 

HI~' = Y13h + ° ~ i  - 

H~3' = ~'23r~ + ¢ l s t l  + 

Hsa' = ~,ss~i + ~b23~ + 

H4s'  = V4s~ i + ¢33ti + 

~G 

g c  

" ^ / / ,  ~13_~ /'g~ " ) h2afii + e2sqi + (e2a x + 8~)@¢ + ~ \i.a ~ Y~a 

743) • 

, (52) 

(53) 

7 

(54) 
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Ho~' = v~ i 

H ~ '  = ( ~  + x)~.~ + ~ - P o ~  

He~' = (3~ + Xk2o)@¢ + k2o~¢ + Cx~Si - I47oPoP ~ + yl~Pi 

( ") . . . .  ~ ~ot~o + Ha~' = (3a~ + Xq~a)w~ + q~q~ + 4~z~v~ + A ~ i  + ~z~r~ + tzf - ~ ;~ y ~  

H~ '  = (Sa~+ Xe2~)@i + e~qi + ¢a~i  + A2~1~i + ~ + t ~  le A~ + ~cyz ~ 

ng 

(55) 

H 0 5  
A 

~oP H15' = ¢15~i - ri + i + Po~i  

Hus' = ~b,25~ i - ~5r% + [~7o(V~ +kui  ) + v,~p]pi + [~o(1 + 8 , ) ) /+  8~5]~ i + 

H j  = ¢35~ - ~'25~ + ;t~p~ + (q~x + ~ 5 ) ~  + qsO~ + 

__ ~n~ 815] +/~f [~ {//V°(~'~+k21) + ~'~} 

= _ n~ Yaa ~ 
Hs~' IX~ [ ~  )~  i c J • 

(56) 

The  calculated response, using this simplified method and neglecting the fast oscillatory mode, is 
compared with the solution of the equations linearised as in main text and a digital-computer solution 
of the original non-linear equations in Figs. 13, 14 and 15. It  can be seen that the agreement is 

quite good. 
In the simplified-method solutions shown in these' figures the calculation has been broken down 

into three sections. In the firstp0 has a constant non-zer 9 value and ~ the three values ~1(0 < t < tl), 
~=(t 1 < t < t=) and ~a(t2 < t < te'). 

As the initial conditions 2~i, qi, ~i, @i and vi for this first interval are all zero, the numerator- 
coefficient expressions {equations (52) to (56)} can be greatly simplified and become proportional 

to ~. It is therefore possible to superimpose solutions to obtain the response to the varying ~ in 
this interval, thereby considerably shortening the computations. 
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In the second interval (t2' < t < t3) , }0 = 0, but ~ = G. The  equations of motion in operational 
form are thus reduced to the familiar uncoupled form (without gravity terms): 

(D +yv)~ - lYV'op + ~ = ~iD 

oJ~ + (D+ v~)~ - v j  = I~. I~ ~ + piD ZA 
- oa,~ + vn~p + (D + v.)~ = I~n~=- ~ + PiD (57) 

go 

(D + v)O + (co + xD)~ = (qi + X#i) D 

- 0 + ( D -  zw)a9 = z~D. 

The operational fraction representing the lateral response is therefore: 

~g "/33 ~r "Fig " " 
= **on~ + * * x = ~  + H ~ D + H a ~  (58) 

v(D) D~ + ~oD2 + (~o + gzo~,)D + {~.o + ~o(~,,~- ~.',r)}' 
and for the longitudinal response: 

Ho,~"D ~ + H, , / 'D + H~,~" 
q~(D) = D~.+ k n D  + k ~  (59) 

where the fraction numerator coefficients H S '  are: 

p: 

Hol" = P l  l ] 
Hal" Pi(Yv + v.) + v~,,?¢ - ~oa I +/z.~ / gig Plrl ] 

- If ng 

Hoe" = ~ ] 

) H i s "  = - Zwq, - ~ , (o .  + xz~o) 

H22" = 0 

HOg n = ~i \ 

H j  = fi(37v + vl) + w,,~i v,~pPi + tzn~-7- 
gc 

He8" = f i ( ~ v , +  l~ooaz) + ~i(oa, un, + why,) +/3~(lYow,~-3~,r~so) + 

F lg ~ n~ ^ 

LGt 

(60) 

(61) 

(62) 
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Ho~ u = ~i  

g ~ j  = ~Z~(x +,,) + ~ 

H2~" = 0 

(63) 

Hos" = vi 

//15" ~i(ul+ v.) - ?i + Woi~i 

, 
L A  ' 

.(64) 

In these expressions p~, 0~, ~i, ~3i, and ~i are the final values in the preceding interval. 
During the third interva/P0 and ~ are zero. The  calculations for the lateral response will therefore 

be similar to those in the second interval, the ~ terms in the Hj~" expressions being dropped. The  
Pi, qi, r'), ~i  and 8i values are again the final values of the last interval. It can be seen that new 

coefficients will not have to be computed for the longitudinal, response which is, in the uncoupled 
regime, independent of ~. The  calculations of the second interval should therefore be continued 

into the third interval. 
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APPENDI X IV 

Alternative Steady States, and their Stability 

When gravity can be considered as making a negligible contribution to the motion we have a set 
of equations yielding steady states other than that corresponding to p = q = r = w = v = 0. Rough 

approximations to the values defining these alternative steady states have been given by Pinsker 3, 6 

We shall begin by calculating the steady-state values ~s, qs, rs, ~s and ~s, with no additional 
approximations. 

The equations defining the steady states, with aileron centralised, are obtained from the equations 
of motion by dropping all terms in d/dr. They are: 

A A A ~ ] vl~ - %,rs + oJ10s + 8xqsr s 0 

v.pp~ + v.r 5 + ~P~0~ = 0 L (65) 

To solve these equations we treat the last four as equations for qs, rs, ~s and vs in terms Of~s. 
Their  solution can be written: 

where 

(40 + %p8 , + %p¢)~8 = a , p ,  + ~,P2 t (40 + %P2 + %P¢)~, = ~,p~ + ~ ,p?  

!40 + %p,, + %p,,)~, %P8' + ~,P¢ 

(66) 

% ; ( ~ -  ~w) (o~ + y ~ )  

4 2 = _ 8 v ~ ,  

~2 = ~yv~p 

-~ = - 8,~ I~ o - ),v~p 

a~ = 3 u 8 ~  o. 
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Inserting these in the first of the equations we have a quartic in ps2: 

~22p~ 8 + (2n%cG + 8 ~  + ~2/3#o~ + c G ~ ) p d  + 

+ (2vYoC~ + vt~, ~ + c~d?~% + ~f~fi2co~ + 8 ~ 2  + 8 .~2~,  + v ~ g ~  + ~ 2 g ~ ) p ~  4 + 

+ (2P1~0(~1 + %~1601 + (~0520-Ii + 8 . ~ 1 ~  1 + P / r ~ l ~ l  + Ph,(~0~2)~s 2 + 

+ Cgo(VY 0 + ~o,fi~ + ~,v,~) = 0. (67) 

This yields four values of i~s 2, With corresponding values of 2~, rs, vs, u;~ and &s. 
In as much as we have in the main text regarded q and r as small of first order, and so neglected 

the 2f term we shall examine the effect of this approximation on the steady-state solutions. The 

above quartic in ibs 2 simplifies to a quadratic: 

v , ~  ¢ + ( u y ,  + cod? ~ + v,,.N2)/3. ~ + (goV, + ~o~fit + vt.~N~) = 0. (68) 

It may be noted that this is equivalent to the equation: 

(Gs)~0=~. ~ = 0. (69) 

The other relationships remain unaltered. Numerical solutions have been obtained for the 

aeroplane used in our response calculations, and are given in the table below. 

Steady-State Conditions 

P8 2s G v38 G 

Including qr term 

Neglecting qr term 

- 10.1965 
- 4.8788 
- 9.215 
- 5.5146 

- 10.1864 
- 4.7705 

- 1.1533 
- 0.9585 
- 120.28 
- 7-124 

- 1.~676 
- 0.8010 

- 0.2126 
1.1738 

15.34 
10.382 

- 0.2115 
1.4825 

0.1038 
- 0.2690 
- 2.02 
- 1.8285 

0.1037 
- 0.2278 

0.1353 
0.0765 

12.56 
0.5706 

0.1368 
0.0640 

Having determined these other steady states we consider the linearised motion around these. 

We consider a small perturbation represented by 3p, S 2, 8~, 8~ and 8v3. The equations of motion 

are, again retaining in the first instance the term in qr: 

(D+v, ) (ps+8~)  + ~ , G + 3 ~ )  - ~,~(r~+3~) + 8 x G + 3 2 ) G + 3 ~ )  = 0 1 

v~:o(p, + 8p) - c%(8 s + 80) + (D + u~) (r~ + 3P) + 8~(p, + 8p) (2, + 82) = 0 |] 

A A A A" A (D + v) (q, + 8q) + (o~ + xD) ( ~  + 8w) + By(p, + 8p) (r, + 8r) = 0 [- (70) 

- (q, + aq) + (D-.%o) (w; + + (p,  + 8p) (e,  + = 0 .  O 
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By virtue of the fact thatPs , Os, r~, ~s and v3 s satisfy the steady-state equations we have on neglecting 
products of the perturbations: 

(D + vl) @ + co,8~ + (as(is- v,r)8P 

a~A@ 

- ( # o + ~ . ) @  + (D+y~)8$ 

The stability equation can be written, (a s = l~  o + @s), 

+ ~ 0  = o 

t 
+ (O+vn)S? + 8zps8~ = 0 

+ ~.P~s~ + ( D + d @  + (co +XD)S~  = 0 

+ 8~ - PsS~ = 0 

- 8 ~ . +  ( h - z w ) 8 @  = O. 

- % 1 

+ "~ ( -  %,+ s~{D 

(~'~ + ~o~s) A + ~,~ 

+ a~s + 8~,ps 

$s 0 

0 -- ~s 

8~¢, 0 

8~p s 0 = O. 

A + v  co+X A 

- 1  A - z ~  

~ + y ~  

co  t 

a ~ - - c . o n  

0 

Ps 

(71) 

(72) 

In this form w e  can express it as the sum of three determinants, the first of which is identical 
in form with the denominator of the main text. We thus have: 

~l a + vl - v~,. + 8.0 s 

0 0 8vp s 

Ps 0 0 

1 0 - Ps 

0 0 

8~ps 0 

)t + v co + X,~ 

- I  A - z w  

+ A+y~, 0 

tot 0 

- -  ¢..0~ 0 

0 8y~ s 

A s~ 

+ A + y v  

¢o 1 

- -  ¢0  n 

0 

Ps 

1 

- ,'~, + ~ s  

A + v ~  

8~,Ps 

0 

- %  

A+vg 

v ~  + 8~ s 

0 

0 

0 - p~ 

8 ~  0 

<LP. o 

~ , + v  co + X~. 

- I  A - z ~  

Expanding these, we have a quintic with the following coefficients: 

ha: 

I = G  o 

v + X -  zto + vl + vn + y v =~G 1 

(a~) + (~ , , , , -  ~,'.~)0~ - ax~zOs ~ - ~ , ' 5 ~  + ~ e s  + ~x~s~s 

! 0 - P s  

- ~,, + a~s  ~ s  0 

) t + %  0 0 

8vps 0 to + X ~ 

0 0 ~ t - z ~  

+ 

= 0 .  (73) 

(74) 

(75) 
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A A - -  A 2 

(G~) + S~o.,q~ + ( .  + x -  z~  + O%) ( S o . ~ -  ax.,~)q~ - a~s~(. + x -  z~  +y~)q8 - 

+ 8y(8,,.~p - 8~,,,.)p,~, + (8~Xu,,.- mz)p8e, + 28,S,aS~P,~,~, - 

S .gxp .ge .  + a.(~ + xy. + x. .)esg + a . ~ , g  + a.x~.p.g 

+ (ao,., , ,-  ~,,. , ,~) {,.,, - ,,~w + y,,(,' + x -  z,~,)}#, + ao~, ( .  + x -  ~ ) , ) ~  - 

a=s={~, - ,,.~,,, + y,,(,, + x -  ~ , ) } , M  - a=s~,{o.,,, + y,, - ~,,,(,,,~ +y , , ) }~2  + 

+ ~,(~ - ,~w)#~ + (o.,,,,~-,,_,,m,.) (,, + x -  ~w)~. + (so~,,,.- s , , , , ,pP2& + 

+ 8~(x~,,.- 8v~,)P,2#~ + {8y(y,,-z,,,)(a~,.,,~p - 8,v,,.) - a~(1 + s~),_,,, + 8~,,~,x}P~ - 

- s .a~,p~% '~ + {,- , , , (s~x- , , -  ,,,J + ~,,,(-,,~ + a~,,., + aoxy , , ) }P% + 

+ a.a~.{2s,,(yv-~w) + x}P~#~ - a~{so(~ + xY,,) + ,.-,,JP¢)~ - 

-- a,  azPs#s 2 + az{oJ(yv + vn) + x(cu+ + y-vvn)}'asPs + ax%+(, + x -  zw)%q.s + 

Const.: 

(C~) + ( o , -  ,,zw){Sz(o,,+y,,,,,J - 8x.V,,,,,,~,}g - 8 , 8 j , , ( ~ , -  ,,z,,,)g = + 

+ a.a~%(~. +y.~)~.~ + (~ - ~ , )  (~, . .  - ~ , , , )~8  + {ayahs, + ~(ao.,~- ax~.p}pZz8 ~ + 

- a,s,,,,~p,%~ + s,,(s,, , ,~,- a~,..t,.)p,% + {az~(O,, +yv,,~r) ~- ,.'(,-,,,,.',~- o.,~,,~,.)}p,¢, + 

where (G2), (Ga) etc. are the G~, G a etc. of Appendix I with p, in place of p0. 
A complete study of the stability of the linearised perturbation motion around the steady states 

Would require solution o£ this complicated quintic for the various steady-state conditions given 
earlier. It was decided that rather than pursue this matter further it would be more interesting to 
see how nearly the linearised solution, neglecting the term qr in the equations of motion, followed 

the solution of the full equations. 
An instant of time in the neighbourhood of steady state p, = - 10. 186 was chosen, for which 

there would be practically no disturbance other than in p, w and r. 
The linearised response is compared with motion given by the digital-computer solution in Fig. 19, 

which shows that the two solutions are in poor agreement in the later stages. To rule out the 

possibility of this being the result of neglecting gravity, the digital-computer calculation has been 
repeated neglecting gravity (see Figs. 19 and 20). We may thus conclude that the motion around these 

steady states is also essentially non-linear, and its calculation would require a procedure similar 

to that used in the main text or Appendix III. 
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APPENDI X V 

Derivation of Aileron Input to Give Approximately Trapezoidal Rate-of-Roll Response 

The single-square wave aileron input used in the earlier stages of the calculations yields a response 

in rate of roll which was not strictly typical of the flight records available. Furthermore, it is 

unrepresentative in that the pilot makes no effort to terminate the roll manoeuvre. Accordingly a 

more realistic manoeuvre may be achieved if the rate-of-roll time history is specified and the aileron 
required to produce this calculated on the basis of the simple roll equation: 

( D +  v,)p = - a¢{:. (76) 

This procedure will yield a variation of ~. This will be realistic to a degree which depends on how 
soon and how rapidly the pilot has to check the stick deflection and this in turn depends on the inertia 

and the damping-in-roll characteristics of the aeroplane (Reference 12). It can never be truly 
realistic in that instantaneous application of aileron is implied initially by the finite slope of the 
rate-of-roll curve. 

The required aileron movement is readily obtained from the above equation (76). Suppose the 

rate of roll is such that it has a value Pl at time -q, p~ = kpl at time -r~, zero at time -r 8 and varies 
linearly between these points. (The trapezoidal variation k = 1 is illustrated in Fig. 21.) We then 
have for the aileron angle: 

, 9 " 1 S I ~  

~l(k~,, 1) {1 + vl(~--~l) } + VIPl - ( ~ , ¢  ~ - ,  ~ ~< r ~ ~'z (77) 

- 8z~ ~a - T2 

The  aileron angles required to produce a trapezoidal variation of rate of roll are obtained from 
these expressions by setting k = 1, see Fig. 21. 

It is seen that within each interval ~: does not vary much and for the inverse problem of calculating 

the response to a given aileron input it would be an advantage to assume ~ constant within each 
interval. 

The solutions to the equation of motion (76) for each interval give: 

vz f l (1-e- ' l~l )  = Pl 

- 81~s~2 {1 - e-Vt(~2-'l)} = pl{k - e-vt(~2-~l)} . (78) 
Pl 

I 
+ 8z~a 

b 

F 1 • I 
Again integrating the equation of motion with respect to -r we have: 

- 8~: ~d'r  = lp[~o + v t p d - c  (79) 
o r  0 0 

--  all ['r1~1 -~- ('7"2-- ~'1)~2 -~ (~3--  "r2)~3] = ~ .  (80)  
Pl 

This yields four relationships {(78) and (80)} between the quantities ~:~, ~:~, s~, p~, P2, ~'1, ~'o, 
~- and ~b, and so enable any four of them to be determined if the oth% five are specified. 
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APPENDIX VI 

Calculation of Aircraft Response when Rate-of-Roll Time History is Specified 

In the main text and elsewhere, we have touched on the two alternative approaches to the 
problem, namely the response in rate of roll, incidence and sideslip etc. may be calculated for a 
given aileron input, or the rate-of-roll time history may be specified and the appropriate aileron 

input has to be determined. 
As both approaches are likely to find application in design, it is worthwhile to outline the analysis 

in terms of the second approach. No numerical examples are given. 
We return to equations (13), and now write p = f(r) ,  where f ( r )  is a prescribed function. In 

particular, we may take a trapezoidal variation ofp  specifying, for example, the initial rate of growth 
of p, its maximum value, and final rate at which p is reduced to zero, together with the value of r at 

which it becomes zero. 
We now write the equations of motion in the form: 

- 8 , d  = ( D  + v,)p - v :  + ~ ,~  3 

(D + v)O + 3uPo? + (oo + xD)~  = 0 

,~pp + 3,Po~ + (D + v,,), ° - ~ ,~  = - 8,~i~ 

- l/~0p + ~ + (D +37~)~ _ p0 ~ = ~ 2  sin ¢ 1 
(81) 

- ~ +po ~ + ( D - z w ) ~  = _7~ ( c o s ¢ - 1 )  

in which Po is some constant specified.value of p as in the analysis of Section 3 of the maintext.  

These equations may be re-written as follows: 

(D + v)O + 8vpo? + (oJ + xD)~  = 0 
1 

3.Poq + (D + v. )r - oo,~*v = t. 8,¢ 

(82) CLe 
+ (D +y%)~ - pov3 = ~ -  sin ¢ + Wof0-) / 

J - 0 + po ~ - (D - z.w)v~ = - ~  (cos ¢ - 1) 

with the equation for the rolling moment giving the aileron angle ~ as flmction of r:. 

- = (D.  + - + o @ ,  ( 8 3 )  

where 
8~g iAn~ 

~n~ iztn~ 
. . . . .  v z = v~2 ~ - v~ icl~ 

~n~ iAn~ 
and 
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The above equations (82) are readily solved for ~, ?, 0 or [3 and @, either with an approximation of 
the gravity terms as in the main text, or neglecting these terms (cf. Appendix III).  

Substitution of the solutions in the last equation (83) gives the aileron angle, ~, as a function of 
T or time. 

The  characteristic equation is a quartic and can be written: 

where 

where 

Go At+GxA a + G 2 h  2 + G 3 A + G ~  = 0 

G O = 1 

G1 = k l o * + k n  

G~ = k2o* + k~l + k~o*k n + po2(1 - 8y8~) 

= + k o*k l -  .po X + P o % +  - 

G~ = k2o*kzx + po2(Sy%~* - ~oJ) - 8~zpoe(po 2 - y~z~ )  

klo * = Yv + Pn ~ 

kl:t = v + X - z ~  

(84) 

k~l = ~o - vz w (cf. Appendices I and II). 

Let us consider the solution of the equations neglecting gravity terms. In operational form, the 
equations of motion can now be written: 

(D + v)O + 8ypo~ + (co + x D ) #  = (0~ + Xu~¢) D "~ 

^ ^ " { ~ ' ~ D - v n ~ * ] f ( D )  } 8~Poq + (D + v~)r - ~%*v = P~D + \ 8z¢ / (85) 

? + (D +y-~)8 - po ~ = ~ D  + IYVof(D ) 

- 0 + po ~ - ( D - z w ) ~  = # i D  

where f (D)  is operational equivalent of f ( r )  and thus D f ( D )  is operational equivalent of df(-c)/dr 
since f(0)  = 0. 

To  proceed further, it is necessary to specify f(~-). A relatively simple and reasonable choice is a 
trapezoidal variation as mentioned earlier. The  calculation in this particular case would proceed 
along lines verY similar to those indicated in the text immediately following equation (56). As no 
numerical examples are available for illustration, complete details of the calculation are omitted. 
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T A B L E  1 

Geometric, Inertia and Aerodynamic Derivatives (with Respect to Principal Inertia Axes) 

Assumed for the Aircraft  Used as Example 

S = 400 s q  f t  

I z = 900,000 lb  f t  2 

/.,j = 4 ,100,000 lb f t  z 

I z = 5,000,000 Ib fte 

M a c h  N o .  0 . 8  

/z = 186-2  

y,~ = - 0 - 3 2  

l ~ =  - 0 . 2 5  

~, = - 0 . 2 5  

z ~  = - 0 . 1 0  

n~ = - 0 . 0 7 a  

n.  = 0"05  --  0"3rx 

n v = 0 - 2 0  

n~, = - 0 . 4 6  

- m w = - 0 . 0 8 3  
$ 

( ! ;  _ 

z w = - 2 . 1 7 5  

/ ~ = 0  

y .  = 0 

b- - -  3 5 i t  W = 25,000 lb  

i~  = 0 . 1 2  

i B = 0 . 5 4  

i o = 0 . 6 5  

H e i g h t  40,000 f t  

= 4 . 2 3 1 8  sec 
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T A B L E  2 

Exact and Approximate Roots of Stability Quintics ]'or varying 230 and P~o 

+Po 

2"96 

6.76! 

10"0 

2"96 

I 

6.76 

T/Tz o G O Gt G2 

0.0873 1.0 6.3024 126.9737 

0.0873 1.0 6.3024 187"5488 

0.0873 1.0 6.3024 276.60471 

-0-0873 1.0 6.3024 100-9653 

-0 .0873  1.0 6.3024 161.5404 

10"0 -0"0873 1.0 6.3024 250"5963 

G3 

500.3804 

722.8127 

1049.8272 

396.8045 

619.2368 

946.2512 

G4 

2090.4965 

1130.3395 

2889.5993 

1101.1672 

-473.8013 

381.5739 

G5 b 8 al bl a2 b2 b4 b5 

Exact 
2573.2332 

Approx. 

Exact 
502. 9505 

Approx. 

Exact 
3800. 9897 

Approx. 

1.6144 1-85319 97.8655 2-8348 16.2865 
1.625 1.88 98.3 2.79 15.8 

0.7059 2.2003 171.9881 3.3962 4-1373 
0.73 2.20 172.0 3.37 4.07 - 

2.0405 2.3647 256.1492 1.8972 7.2727 
2 . 0 3  2.37 256.2 1.91 7-26 

Exact 2.4998 1. 8849 
1701" 7464 Approx. 2.46 1.88 

-1705.7514 

- 373.6607 

79.2555 1.9176 8.5895 
79.37 1-97 8"43 

Exact --1-6555 2.2058 155"3971 
Approx. - 1.65 2.19 155.4 

Exact -0 .4405  2-3637 239.6788 
Approx. - 0"44 2.36 239.7 

4-1575 1.5946 
4.18 1-60 

3.3111 1.0681 
3.31 1.07 

Go~ + G;~, + G2;~3 + G~, ~ + G~, + G5 = (A2+a,;~+b~) ( ; ~ + a ~ , + G )  (~,+b3) 

or (A~-~a~h+b~) (A+b3) (A+b~) (A+bs) 
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