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Summary. The Report describes an analyser which was developed for finding the power spectra of 
waveforms derived from vibrating axial compressor blades due to random excitation. The bandwidth of the 
instrument goes down to about 0.04 c.p.s. The standard deviation of the results is considered in some 
detail, and it is shown that long samples of data are required in order to get reasonably accurate results. 

1. Introduction. The instrument to be  described in this paper was designed for use in an 

investigation of the random vibration of axial compressor blades in a compressor under working 

conditions. The  power spectrum of a signal obtained from strain gauges stuck onto the blades was 

required. The  results and conclusions from the investigation are being reported separately (Ref. 9). 

The  power spectrum of the displacement of a lightly damped simple oscillator due to random 

excitation has the form shown in Fig. 1. This wave has exactly the same shape as a resonance curve 

corresponding to sinusoidal excitation, and the peak is centred on the natural frequency of the system 

(o00)- The  width of the peak at points where the power is half of its maximum value (Ao0) is given by 

o00S/rr where S is the logarithmic decrement of the system. 
In order to measure a power spectrum such as that shown in Fig. 1 experimentally, it is necessary, 

essentially, to pass the signal through a filter which only passes a narrow range of frequencies, and 

see how much comes through. In order to get a reasonable picture of the shape of the curve, the 
filter must  have a pass band of not more than (say) Ao0/10. If  the logarithmic decrement of the 

blade is 0.03, this means that the filter pass band must be not more than about o00/1,000. This 
demands a standard of resolution of an order of magnitude higher than that obtainable from any 

normal wave analyser. 

2. Description of Analyser. It  would be extremely difIicuk to build a tunable filter, with such a 
narrow pass band. The  method used is therefore one of frequency changing, so that a simple low-pass 

filter can be used. The  block diagram of the ideal system is shown in.~Fig. 2. The  signal is fed into a 
multiplier, the other channel of which is fed from a standard oscillator. The  oscillator is tuned to the 

frequency (ool) at which the power spectrum is required; this will normally be near the blade natural 

frequency o00. For each component of the input signal with a frequency o0, the output of the multiplier 

will contain frequencies of (o0 + %) and (o0 - ool). This signal is then taken to a low-pass filter which 

only passes signals with frequency less than, say, o00/1,000. The  filter output  therefore contains 
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only those components of the original signal with frequencies between (ml+CO0/1,000) and 

(co 1 -  co0/1,000), as is required. This signal is then squared, integrated, and measured, so as to obtain 
its mean square value. 

Although multipliers for analogue computors can be obtained, there were none readily available 

for this investigation, and so the ideal arrangement of Fig 2 was modified to the arrangement shown 

in Fig. 3. The first multiplier has been replaced by a gating circuit which is fed from the oscillator 

via a circuit which transforms the sine wave into a square wave. The gating circuit acts as a switch 

which reverses the sign of the signal every half cycle of the oscillator waveform. This means that 

instead of multiplying by a sine wave, the signal is multiplied by a square wave, which takes the 

values + 1 and - 1 on alternate half cycles. One advantage of this system is that the output is now 

independent of the amplitude of the oscillator waveform. However, since a square wave contains all 
the odd harmonics as well as the fundamental frequency, the system would then also respond to 
frequencies of 3col, 5col, 7col, etc. The signal must therefore first be passed through an input filter 
which allows co 1 to go through, but stops 3col, 5COl, 7oJt, etc. 

The other change that has been made in Fig. 3 is that instead of squaring the output from the 
low-pass filter, it is passed to a full wave rectifier. A reading is then obtained which is proportional 
to the square root of the power spectrum. This may be roughly thought of as an 'amplitude spectrum'. 

The circuit diagram of the analyser is shown in Fig. 4. It includes five d.c. amplifiers (A1 to AS), 
each with a gain of about 15,000. These have been developed by members of the Automatic Control 
group at the Cambridge University Engineering Laboratory. The input filter is a single RC circuit 

be tween  two cathode followers. The signal then passes to a transformer phase splitter and then to the 

gating circuit, consisting of three double diodes, via further cathode followers. The other bi-phase 
input to the gating circuit comes from A], which is used to provide the square wave in conjunction 
with a standard square wave unit. The output from the gating circuit is fed into the low-pass filter, 
which consists of two simple time lags in series, using the amplifiers A2 and A3. A4 is used as a 
phase inverter for the full wave rectifier, and A5 is used for the integrator. The output is then read 

on M1. Another meter, M2, is used for setting up the amplifiers and setting the zero of the instrument. 

3. Theoretical Considerations relating to .Power Spectrum Measurement. The theory of power 
spectrum measurement has been extensively studied, and the list of references given is far from 

being complete. The performance of the idealized system shown in Fig. 2 is analysed in the Appendix, 
but it is not claimed that any fundamentally new results are derived. 

It is shown that the output of the analyser is directly proportional to the power spectrum of the 
input at the oscillator frequency 0% It is also shown that when the low-pass filter consists of two 
time lags in series with a time constant T', then the standard deviation of the reading, expressed as 
a fraction of the reading, is % = ~/(5 T' /T)  where T is the time over which the integration is taken. 

There are two equal contributions to the variance (%2) of the result. One of these arises from 
variations between different samples of data, and the other arises from the random phase angle of the 
oscillator waveform at the start of the run. This second contribution could be eliminated by using 
the twin channel arrangement shown in Fig. 5, in which the second channel is fed by an oscillator 
waveform in quadrature with that supplied to the first channel. This would have the effect of 
dividing the standard deviation of the results by @2 and the maximum possible amount of information 
about the power spectrum would then be obtained from each sample. It would also have the practical 
advantage that an analysis of any given sample of data should be exactly repeatable. 



I t  is also shown in the Appendix:that there is no correlation between errors obtained from runs 
with the same sample of data, using different reference frequencies, provided that these frequencies 
are not so close together that they can be contained within the same frequency pass band of the filter. 

The result quoted for the standard deviation in the ideal system is obtained under the assumption 
that the input waveform is Gaussian. If it is assumed that the waveform at the output from the 
low-pass filter is Gaussian, then this result folloWs directly from an analysis by Jacobs 6. Jacobs' 
analysis also applies to the actual system used with a full wave rectifier instead of a squaring device 
(Fig. 3). This shows that the output is then proportional to the square root of the power spectrum, 

-and the standard deviation lies in the range 

provided that (T'  I T) is small. This puts a narrow bracket on the value of % and the lower limit 
(which corresponds to the intuitive idea that taking the square root of the output should correspond 
to halving the standard deviation) can be taken as a reasonable estimate of the accuracy achieved. 

For much of the work done with the analyser T was 180 sec and T' was 0.22 sec. This gives 

% = 0. 039 or an estimated standard deviation of nearly 4 per cent. This result shows that long 

samples of data have to be analysed, in order to get reasonably accurate results, and it usually 

becomes essential to recor~t the data on magnetic tape, so that an analysis using the whole of the 

available data can be carried out at each frequency. 
When the experiment was being planned, an alternative approach to the problem was considered. 

Instead of measuring the power spectrum directly it would be possible to measure the auto- 

correlation function for the signal. For a random vibration waveform this has the form shown in 
Fig. 6; it has the same shape as a decaying free vibration with the same damping factor as in the 
original'system. Since the power spectrum is the Fourier transform of the autocorrelation function, 

the power spectrum could be derived from this. The power spectrum measurement was chosen 
since it was thought to be considerably easier t 9 a~chieve,experimentally. However the autocorrelation 
function measurement appears at first sight to have theoretical advantages concerned with the 
accuracy of the measurement. For a random vibration waveform the standard deviation (or) of 

the autocorrelation measurement is given by 

~ 2~ 2 

(g2)2 ~o o T$ TAo~ 

where Am is thewid th  of the power spectrum peak shown in Fig. 1 at the half maximum power 
points. This may be compared with the standard deviation given by the ideal analyser (Fig. 2) 

which is given by 
5 T' 6.44 

% ~ =  T - TAm' 

where Am' is the width of the frequency pass band of the analyser, measured at the points where the 
power is down by a factor of 2. Since Am' must be made much less than Am it is clear that for a 
given sample length (T) the autocorrelation measurement is much more accurate. However, it is 
known that a good estimate of the autocorrelation function does not necessarily lead to a good estimate 

of the power spectrum (Refs. 1 and 6). During the Fourier transform process the errors are greatly 
magnified. The amount of useful information obtained from a sample of given length therefore 

appears to be about the same in each case. 
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4. Conclusion. After an initial period of development the analyser described in the Paper has 
worked well. 

The analyser was tested using a second oscillator to provide the input, in which case the output 
of the analyser follov~s the characteristic of the low-pass filter. 

Apart from the fundamental scatter of results due to variations between different samples, the 
main source of error was due to small variations in the speed of the tape recorder used to store 

the data. 
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NOTATION 

Power spectrum function for low-pass filter 

Impulse response function for low-pass filter 

Time 

Input signal 

Functions defined by Equation (2) 

Denotes expectation of any quantity 

Power spectrum of input signal 

Integral defined by Equation (7) 

Integration time 

Time constant of low-pass filter 

Output of analyser 

Frequency response function of low-pass filter. 

Phase angle 

Logarithmic decrement 

Variable with dimensions of frequency 

Standard deviation of output 

Variable with dimensions of time 

Autocorrelation function of input signal 

Autocorrelation function of filter 

Angular frequency 

Natural frequency of compressor blade 

Oscillator frequency 

Bandwidth of input signal (measured between the half power points) 

Bandwidth of low-pass filter (measured between the half power points) 

Cut-off frequency of low-pass filter 
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APPENDIX 

1. Performance of Idealized System. Consider the system shown in Fig. 2. When the input signal 
and the output from the oscillator are multiplied together the result is 

x(t) sin (~olt+ c~). 

If hff) is the weighting function for the low-pass filter, the output from the filter is 

h(~-)x(t- z) sin (colt- ~o1~" + c~) dz. 
0 

The output from the squarer is the square of this, and by using two variables rl, and ~-~ it may be 

written as a double integral as follows: 

i f co f ~o h( ,1)h( "r~)x(t- ,:)x(t - T~) sin (o~:t- oJ:,: + ~) sin (o):t-  oJ:~ + ~) dr:  d ~ .  
0 0 

w h e n  this is integrated from t = 0 to t = T, the output of the system, V, is obtained: 

v = h ( ~ ) h ( ~ ) x ( t -  ~-~)x(t- ~-~) x 
0 0 

× {cos  ( o , 1 . ~ -  ~ . ~ )  - c o s  ( 2 ~ t -  o ~ 1 . ~ -  ~ 1 - 2  + 2~)}  d . l d . ~ .  (1)  

Suppose that the signal x(t) is recorded on magnetic tape, so that the experiment can be 
repeated as many times as required, the integration being performed over exactly the same piece'of 
signal. If in these experiments only the phase angle a is varied, then Equation (1) shows that the  

results will be of the form 

V = A + B c o s 2 ~ +  Cs in2a .  (2) 

This is illustrated in Fig. 7, and shows that there will be a mean value, A, together with a fluctuation 

with a of amplitude ~/(BZ+ C~). 
This fluctuation with c~ could be removed by using the twin channel arrangement shown in 

Fig. 5, where the second channel is fed from the oscillator with a voltage in quadrature with that 

fed to the first channel. Then the voltage at a point P (Fig. 5) is 

(o~(o~ h(zl)h('r~)x(t- "rl)x(t- z~) cos (~olt-oJ 1~-1 + ~) cos (o~lt- ~o 1~'2 + ~) dr1 d'r2 
d 0 

= ~ h(~)h(.~)~(t  - ~ ) ~ ( t  - ~ )  { cos  (~o~-~ - ~o1.~) + cos  (2~o~t - ~o~.~ - o~1~ + 2~)}  d .~  d~-~. 
0 0 

When this is added to the signal from the first channel the cos (2~olt-%~'t-cop- 2 + 2~) term goes 
out, and the output from the twin channel system after integration is 

V = 2A. 

Returning to the single channel analyser it may be supposed that a large number of analyses are 
carried out on different samples of signal with random values of c~. Taking the expectation of 

Equation (2) gives 

E(V) = E(A) + E{B cos 2a) + E{C sin 2a} 

= E(A) + E(B)E(cos 2a) + E(C)E(sin 2~) 
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since the random variable ~ is independent of the input signal. Since the expectations of cos 2~ 

and sin 2~ are zero this gives 

E(V)  = E(A) .  (3) 

This will now be computed. 

From equations (1) and (2) 

A = ~ h(~l)h(~)x(t- ~1)x(t- ~2) cos ( ~ , , -  ~ )  a~  ~2 .  (4) 
0 0 

Taking the expectation of this, the expectancy of x ( t -  ~-~)x(t- r2) is given by the autocorrelation 
function of x, which will be written 

E { x ( t -  ~ , ) x ( t -  ~2)} = ¢(-2-  ~)-  (s) 
Hence 

E ( V )  = ½ ~o at ~o ~o h(~,)h(~2)¢(~2- ~) cos ( ~ -  ~01~) a~  a~2 

T h(7~)h(r2)¢(T2- r~) cos (co~r 2 - ~olzl) dr~ dz2 (6) 
2 0 0 

Instead of evaluating this directly, it will be convenient to evaluate a more general double integral 
which will be required in the later development. 

2. Lemma. Consider the integral 

I(t',  e%, 002) = h(-r~)h(-r2)¢(t' + z 2 - -q) exp {i(o)2r 2 - c%~1)} d~-~ d~- 2 . (7) 
0 0 

The Fourier transform of this with respect to t' will now be taken: 

l f ~  i I(t', w~, o@e-~t'dt ' l f ~ 2 e - ~ ' d t '  f ° ° f °°h( -@h(-r2)c} ( t '+r2-r~)x  
"iT 7i" J O ,J O 

x exp {i(o)2T 2 - ooxT~)} d~l d~ 2 . 
Replacing the variable t' by 

~" = t '  + "r 2 -  ~'1 

! -[-+~° i(t,  ' col, oo2)e-'°'t'dt ' 
"2T J _.o~ 

1 ¢(r)e-¢~& - . h(r~) exp ~ - i(~o + ~Ol)T~} drl h(~2) exp {i(~o + ~o2)r2} dr 2 
7T 0 0 

where the R.H.S. has been split up into the product of three independent integrals. The first of 
these is the power spectrum of the input signal (Ref. 7, Section 3.6) 

The  second and third integrals may be expressed in terms of the frequency response for the 
filter Y(iv) (Ref. 7, Section 5.2). 

and 
0 

f ~o k(r2) exp { + i(~o + c%)~-2) d~- 2 = y(  - io) - it%). 
0 
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Hence 

l f ~ 2  I(t', wl, w2)e-i~t'dt' G(co)Y( ico+iwl )Y( - iw- iw2 ) • 
qT 

Inverting the Fourier transform, this gives 

cog)=½ f : :  G(co) Y(ico + icot) Y ( -  ico - icog)d~t'dco . (8 )  I(t', O.)t, 

Now Y(iv), the frequency response for the low-pass filter, is zero unless v is small. This may 

be written 
Y(iv) = 0 unless I v 1< a 

where f~ is a low frequency above which the filter cuts off all signals• Then in Equation (8) 

Y(ico + icot) = 0 unless [co + col ] < f) 
and 

Y( - ico - ico2) = 0 unless I co + cog [ < f~. 

'Hence  unless ]co t - cos[ < 2f2 there is no value of co for which the integral in Equation (8) 

is not zero. 

Therefore 
l(t ' ,  cot, cog) = 0 unless [col - cog I < 2f~. (9) 

Note that this includes the case c% = - o) 1. 
The other case of interest is when c% = co t. A power spectrum function for the filter g(v) may 

be defined so that 
• g(v) = Y ( i v ) Y ( - i v ) .  (10) 

Hence from (8) 

I ( t ' ,  COl, O)1)= lf!2 G( co )g( co + col)e¢~t' dco . (11) 

Now g(co + %) is zero except for very small values of (co + col), or for a small range of co near 

- oJ1, and over this small range G(co) will not vary appreciably• G(co) may therefore he put  equal 

to G ( -  %) or G(col) (since G is an even function). 

Hence 

I(t', col, col)= ½G(col)(*~g(co+col)ei~rdco 

f+co = ½a(~ot)e-~l~, g(~)ei.~'&. 
--co 

This may be written 
f ( t t ,  (-O1, O91) = G(col)e-%t%b(t  ') 

where ¢(t') is an autocorrelation function for the filter defined by 

Equations (9) and (12) give the required values of the double integral. 

3. Average Reading of Analyser. 

from Equation (12). 

From Equations (6) and (7) 

r (_r(0, co~) + Z(0, - o ~ , -  ~,~)} E(V) = ¥ co. 

= ~rc(co34,(o)  

(12) 

(13) 
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For a low-pass filter which consists of two 
response function is 

Hence from Equation (10) 

And from Equation (13) 

Y ( i , )  = 

g(v) = 

¢( t ' )  = 

simple time lags of magnitude T' in series, the frequency 

1 2 

1 2 
- ~ eivl'dv 

Hence from Equation (14) 

~r T' + t' 
e -rtT' . (15) 

4 T '~' 

~ rT  
E(V)  = g T- ~ G ( % ) .  (16) 

This equation relates the average reading of the analyser to the power spectrum of the input. 

4. Correlation between Runs at Different Frequencies. Consider the results of two different runs 
with the analyser, using the same piece of data, but with two different values of the reference 
frequency, % and ~%. The question to be answered is: 'If the result obtained at one frequency % is 
found to be high, owing to the variation between different samp!es of data, is the result obtained on 
the same piece of data at a different frequency % also likely to be high?'. 

It is therefore necessary to calculate the correlation of the deviation of the readings from their 
mean values. This is given by 

V( I) ] 

= E { V ( % ) .  V ( % ) } -  V(%). V(%). (17) 

From Equation (2) the product of the two readings is 

V(%).  V(%) = {A(%) + B(%) cos 2% + C(%) sin 2%} x 

× + cos  2% + s in  

Multiplying out the R.H.S. and taking the expectation of this, it is found that since % and a~. 
are random variables independent of each other and of the sample of data, all the terms involving 
% and % are zero. Hence 

E{V(%).  V(%)} = E{A(%).  A(w2) }. (18) 

From Equation (4) the product of the two A functions may be written as a multiple integral 
as follows 

A ( % )  . A ( % )  = ~ h(r~)h(r~)h(ra)h(%) x 
0 0 0 0 0 

X x ( t  1 - -  ~- l )X( t l  - -  r 2 ) X ( t  ~ - -  ~ - a ) x ( t 2  - -  r ~ )  COS ( O J l r  2 - -  c O l r l )  COS (co2~- 4 - -  ¢ o 2 r a ) d - r l d T 2 d ' r a d r  4 ( 1 9 )  

where the suffixes have been duplicated as required. The expectancy of this over a large number of 
Samples is now taken, It is assumed that x(t) belongs to a stationary, ergodic and Gaussian random 
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process. Then  E [x(t 1 -  % ) x ( t  1 - r~,)x(t 2 - % ) x ( t  2 - 74) ] can be expressed in terms of the autocorrelation 
function of x as follows (Ref. 7, Sections 2.13 and 4.3): 

E [ x ( t  1 - r l ) x ( t  1 - r 2 ) x ( t  2 - r a ) x ( t  2 - 7-4)] = ¢(~ '2  - -  % ) ¢ ( r 4  - -  7-a) + 

+ ¢(t2--tl--ra+7-1)¢(t2--tl--T4+7-2) + ¢(t2--tl--7-4+:rl)¢(t2--tl--%+7-2). (20) 
W h e n  Equation (20) is substituted into Equation (19), the first term in Equation (20) gives an 

integral which splits up into two triple integrals of the form of Equation (6). This term therefore 

gives E[V(%)] .  E[V(%)].  The second and third terms in Equat ion  (20) give identical results, 
as can be seen by interchanging % and]%. Hence 

E [A(%). A(0)2) ] .  = E [V(%)].  E [V(0)z) ] + ½ h(%)h(7-2)h(7-a)h(-r4) x 
0 0 0 0 0 

x ¢ ( t  2 - t 1 - % + % ) ¢ ( t  2 - t 1 - 7-4 + %)  cos ( % %  - %7-1) cos ( 0 ) 2 % -  c%%)d%d%d%d% [ (21 )  

The two cos factors may be written 

COS (0)1~ '2  - -  0)17-1)  COS (0027- 4 - -  0)27"3) = 1 Exp i(%% - 0)17-1 + 0)2% - 0)2%) + 

+ ~ Exp i ( % % -  % %  - 0)2% + 0)2%) + 

+ ~ Exp i( - % %  + % r  1 + 0)27-4- %%) + 

+ ~ Exp i( - co~% + % r l  - 0)~,% + 0)2%)- (22) 

When this is substituted into Equation (21) the  7- integrations may be split up in pairs, and are 
of the form of Equation (7). Hence 

E [A(0),)A(0),3] - E [v(0)1)]. E [v(0)2)] 

= {±( t l -  t2, 0)i, - 0)2) z ( t : -  t2, 0)1, 0)~) + 
d O  d 0  

-+ I ( t , - t 2 ,  0)1, % )  . I ( t , -  t,,, - 0 ) 1 , -  %)} dt,dt~. (23) 

But considering only the case when 0)1 and w 2 are both positive, Equation (9) shows that unless 

[ 0)1 - 0),~ ] < 2f~ all the I functions on the R.H.S. of Equation (23) are zero. Hence using Equations 
(17) and (18) 

E { [ V ( % )  - V(%)] [V(0)2) - V(0)2)]} = 0 unless [ %  - 0)2 [ < 2f~. (24) 

This result shows that there is no correlation between the errors obtained f rom two runs on the 
same piece of data at different reference frequencies, unless the two reference frequencies are so 
close together that they can be contained within the same frequency pass band of the filter. 

5. S t a n d a r d  Dev ia t ion  o f  Results .  Consider a number  of runs with the analyser, each on a different 
sample of data, but with the same reference frequency, co 1. The  standard deviation of these readings, 
is given by 

From Equation (2) 
= E { V 2 } _  rE(V)]2. 

E(V 2) = E{(A + B cos 2a + C sin 2a) 2} 

= E(A2) + ½E(B2) + ½E(C~) 

.since E(cos 2a) and E(sin 2a) are zero and E(cos ~ 2a) and ~(s in  2 2a) are ½. 

(25) 

(26) 
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E ( A  ~) can be obtained from Equation (23) by putting co 2 = 0% From Equation (9) the first term 

is zero, giving 

E(A~) - (E(V)}~ = ~ . o . o  

,fT = ~c~(o~ ¢:(t~- t~) dh dt~ 
0 0 

(27) 

from Equation (12). 
Turning  next to the calculation of E(B2+ C a) Equations (1) and (2) give 

B = _x h( . r l )h( . r~)x( t  _ .ri)x(t _ T2 ) (2colt - -  O)1-/- 1 - -  0)172) d~- 1 dz 2 . 
C 2 ~o ~o ~o + sin 

This may be writ ten 

: - B + i C  = ½ tit h(zi)h('c2)x( t - -  "/ 'I)X( t - -  "/'2) exp {icox(2t-- r~ - ~2)} d~'x d~-2. 
0 0 0 

Multiplying the conjugate expression and duplicating suffices as required gives 

B2 + C 2 l f T f m  . . . .  

× h(~-Jh(~-~)h(~-~)h(~-~)~(t~- ~ O ~ ( h -  ~-~)~(t~- ~-~)~(t~- ~-~) × 

x exp {hol(2t x -  ~ -  ~2 - 2t~ + ~-~ + ~)} d'rtdTfl'rad~'4. 

Taking the expectation of this and using Equation (20) gives 

exp {2iw 1 ( tl - t2) }dtidt2 h(71)h('r2)h(-cs)h('r~) x E( B2 + C2) = ~J o J o o o o o 

× {¢0~ . -  ~ 1 ) ¢ 0 ~ -  ~-~) + ¢(t~ - t ~ -  ~-~ + ~-1)¢(t~- t ~ -  ~-~ + ~-~) + 

+ ¢(t~ - t ~ -  ~-~ + ~-O¢(t~- t l -  ~ + ~-~)} × 

x e x p  {i0)1( - -  ~'1 - -  T2 + "r8 + "/'4)} d T 1  d ' r s  t i t s  d ' r 4 "  

The  r integrations may be split up in pairs and are of the form of Equation (7). Hence 

E(B~ + C 2) = ~ exp {2i0)l(q-t2)}{F(O, o~, -0)1) + 2I~(q-t2, ~ ,  ~,O}dtflt~. 
0 0 

From Equation (9) the first te rm in the bracket is zero, and the other term gives by Equation (12) 

E ( B  ~ + C ~) = ½ G 2 ( 0 ) 1 )  ¢2(t 1 -  t2)dtldt ~ . (28) 
0 0 

From Equations (25), (26), (27) and (28) 

~ = ½G2(~1)  # ( q -  t~) dtl tit2. (29) 
0 0 

Putting t = t 1 - t2 this may be reduced to a single integral (Ref. 7, Section 4.3) 

~2 = G ~ ( o @  ( T -  t)¢2(t) d t .  (30) 
0 

12 



If  the integration time T is large compared with the time constant of the filter, the t term in the 
( T - t )  factor may be neglected, and the top limit replaced by infinity. Hence 

a 2 = TG2(%) ¢2(t) dt .  (31) 
0 

If  a is divided by the mean reading, E(V) ,  to give a normalized standard deviation, %, then 

f r o m  Equations (31) and (14). 
For a filter consisting of two simple time lags T' in series, ~b is given by Equation (15). Hence 

= 4 oo l+~-~t ~e-2tJ~"dt = 5 ~ - .  (33) 
%2 T o 

This result is the same as would be obtained by passing white noise through the filter and taking 
the R.M.S. value of the output (Ref. 7, Section 4.3). 

It is interesting to note that there are two equal contributions to the variance a2: one from the 
fluctuations between samples of data, and one from the random phasing of the oscillator waveform. 
By using a twin channel analyser the second contribution is eliminated, and the variance is halved. 
Thus  the effect of using the twin channel arrangement is exactly the same as doubling the length 
of data and using the single channel analyser. 
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