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Summary. Slender-body theory is used to calculate the lift and drag forces acting on a thin slender delta
wing cambered to form part of the surface of a circular cone, in the type of flow in which separation is from
the trailing edge only. The boundary condition satisfied by the flow on the wing surface is applied there,
instead of on a nearby plane as is usual in linearized theory. This has relatively little effect on the overall
forces on a wing at a given incidence. However, a large discrepancy arises between the overall forces at the
incidence for which the singularity in the pressure at the leading edge vanishes, as calculated by the present
and by the usual linearized theory. This is particularly important, since it is at this incidence that the type of
flow treated is expected to be realized in a physical fluid. The lift-dependent drag factor found is below the
usual linearized-theory value for this type of wing at the incidence of no leading-edge singularity; and, for
large lift, is below unity, which is the minimum for a trailing vortex sheet which is effectively flat.

L. Introduction. The partial differential equations which govern the motion of an inviscid
fluid are non-linear. To the second order in the perturbations of a uniform stream, the flow is
irrotational and a velocity potential exists and satisfies a non-linear second-order equation. For
Mach numbers which are neither too high nor too near unity, this equation can be linearized, ‘.e.,
the terms in it involving products of derivatives of the perturbation potential can be omitted.
The boundary condition to be satisfied in the case of steady, attachedt flow ‘past a solid body is
the vanishing of the normal derivative of the potential on the surface of the body. The solution
of the linearized equation with this exact boundary condition is still difficult, so it is usual to apply
the boundary condition on a geometrically simple surface (e.g., a plane, circular cylinder or body
of revolution), which is close to the actual surface of the body. For brevity, and the purpose of the
present paper, this process will be referred to as ‘linearizing the boundary conditions’ (clearly
this can be done in different ways, but we are not concerned with distinguishing between them).

Such a geometrically simple surface, parallel to the undisturbed stream, can be found for most
aircraft components. .

* R.A.E. Report Aero. 2602, received 10th July, 1958.

t We use ‘attached flow’ to mean (inviscid) flow with separation- from trailing edges only or flow which
has vorticity only in the wake. a



Since the justification for using the linearized differential equation is the smallness of the
perturbations, it can be held that no additional assumption is made in using linearized boundary
conditions. Indeed, there is no @ priori estimation of the errors introduced in the two linearization
processes which shows them to be of different orders. Thus it is not claimed on mathematical
grounds that the solution of the linearized equation with exact boundary conditions is closer to the’
solution of the exact equation with the same boundary conditions, either in general, or in any
particular case. On the other hand, it is certainly true that if the use of the exact boundary
conditions produces results which differ unacceptably from those obtained using the linearized
boundary condition, the latter cannot be relied on (they could, through compensating errors for
instance, be correct; but they would not be trustworthy). If the results from the exact and linearized
boundary conditions agree closely, confidence in the linearization of the differential equation may
be increased, since in some sense thé perturbations are small. If they differ, and no better treatment
is available, we may be inclined on intuitive grounds to favour the treatment using the exact
condition®*. Furthermore, in the particular solution obtained in the present paper, it is easily seen
that, for the ranges-of the parameters considered, the perturbations of the stream are of higher
order than the discrepancies introduced when the boundary conditions are linearized. This point
is taken up again in Section 3. .

The only solutions using exact boundary conditions for the flow round a given wing are effectively
two-dimensional. Many solutions for thick, cambered aerofoils in plane flow exist. In supersonic
conical-flow theory the elliptic cone at zero incidence and the flat delta at incidence have been
studied' using the exact boundary conditions and the linearized equation. Further attempts® 3 at
similar problems have been made using the exact equation and exact conditions. In slender-body
theory, bodies of elliptic cross-section have been studied® % ¢ and there are also solutions? 8 for
combinations of plane wings and bodies of revolution at incidence. However, no solutions for
cambered, three-dimensional wings are known. ,

It has recently become clear that there is a need to be able to assess the applicability of the
linearized equation and, more particularly, the linearized boundary conditions, to the flow past
slender, cambered wings. Recent work® 1% 11 on the design of slender wings to maintain attached
flow has suggested that mean surfaces with steep slopes near the leading edge may be necessary,
and it is not certain that the theory using the linearized equation and boundary condition' which
satisfactorily predicts the properties of flat or slightly warped wings will be adequate to deal with
them. The perturbation velocities predicted by the linearized equation for the flow past a wing
warped to maintain attached flow are finite everywhere; in contrast to those predicted for a lifting
flat plate, for instance. Thus the linearization of the differential equation seems to be at least as
well justified a posteriori for the warped wing as in many other cases where it is accepted. Therefore,
in the present paper the aerodynamic characteristics of a slender delta wing, in the form of a sector

of the surface of a circular cone, are studied by slender-body theory, i.e., making use of the exact
boundary condition, :

* The situation here is parallel to that occurring in the calculation of pressures in supersonic linearized
theory. ‘The quadratic terms in Bernoulli’s equation for the pressure coefficient are of the same relative order,
mathematically, as the terms omitted in linearizing the differential equation. If, arithmetically, they materially
modify the pressure coefficient, only the breakdown of the theory can strictly be deduced, though intuitively
we may accept the modified result,



The properties of such slender configurations without thickness are given by slender-body
theory in terms of the solution of a two-dimensional harmonic problem in the cross-flow plane,
in a form independent of Mach number. The validity of this for subsonic and low supersonic
speeds is well known? and has recently been established® for transonic speeds also. The present
treatment proceeds by transforming conformally the cross-flow plane exterior to the circular arc
in which the wing meets it into the region of the plane exterior to a straight slit. The complex
potential corresponding to the distribution of normal velocity on the slit, as prescribed by the
“condition of no velocity normal to the three-dimensional surface, is then constructed. This is done
by considering a continuation of the normal velocity and éliminating its singularities in a third plane
where the slit is transformed into a circle.

This potential is a complicated function, so, instead of calculating the perturbation velocities
and pressures on the wing, the lift and drag are evaluated in a plane behind the wing. These are
given by expressions involving the incidence and a parameter representing the camber of the wing,
The first term of an expansion in powers of the latter is the solution of the problem with the
linearized boundary condition. The expressions depart further from this as the camber increases,
i.e., as the wing includes a greater proportion of the surface of the cone.

It is known that the physical flow past a sharp-edged slender wing with a conical mean surface,
such as that considered here, separates at the leading edge except near one particular incidence.
This separation is associated with the singularity of the attached-flow solution at such an edge
and is believed not to occur at the incidence for which this singularity vanishes. The type of flow
which is treated in this paper, however, has separation from the trailing edge only, so that the present
theory can only be expected to apply to real flows at the incidence on each wing for which it
predicts finite velocities everywhere. Numerical results are therefore presented and discussed in
more detail for each wing of the family at this incidence.

2. Solution of the Problem. 2.1. Boundary Values. We consider a slender delta wing without
thickness, warped to form part of a circular cone. We use right-handed rectangular Cartesian
axes arranged as in Fig. 1, with the origin, O, at the wing (and cone) apex, Oxy the plane of the
leading edges, Oy to starboard and Ox downstream. The leading edges are the lines |y| = s = Kx
and the warp is such that the section of the wing by the cross-flow plane x = const is a circular
arc rising a distance fs above the plane Oxy of the leading edges. This plane is at an incidence « to
the undisturbed stream of velocity U, which is resolved into components U cos o along Ox and
U sin « along Oz. These two components are treated separately in the present analysis, so that we
seek a function ¢ such that the velocity potential is Ux cos « + ¢. Thus ¢ ~ Uz sin « at a large
distance from the wing.

Introducing the angle & by 8 = tan § (O < § < 7/4), we find the geometrical relations shown
in Fig. 2, in the complex plane Z = y + 7z. The equation to the cone is seen to be

S =92 + (= + cot 28 Kx)? — cosec? 23 K2x? = 0. (1)

Now, provided the wing is slender, i.e., K% €1, the velocity normal to the contour in the
cross-flow plane due to the component U cos « is given by:

86 Ucosa(3S/ox)
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which is equivalent to requiring the wing to lié in a stream surface in three dimensions. Taking =
to be the upward, outward normal, equations (1) and (2) show that

% = KU cos o sin 28(1 — Ecot 28> .
on s

Introducing an angular co-ordinate § on the arc (see Fig. 2) so that, on the arc,

¥ = scosec 28 sin 20, ¥ = — scot28 4 scosec 28 cos 20 :
we find:
9%
Pl KU cos « cosec 26(1 — cos 23 cos 26), 3)
where
Z = s cosec 28(sin 20 — 7 cos 28 + 7 cos 26) . : 4)

We now consider the transformation (see Fig. 2), which takes the plane slit along the circular

arc into the plane slit along the line: H{{} = 0, — s < Z {{} <'s; and the point at infinity into
a finite point; i.e.,

L Z— s Z [+ s dz _ sl + Py (5)
; s T s+l L= (s +iBO*

On the slits the point § in the Z plane becomes the point { = s cos i, where

tan @ tan @
COos l/l = m = B (6)
. o . |dz) . . .
by equations (4) and (5). Similarly the modulus of the transformation 7| 18 given on the slit by:
az 1+ g2
‘7;’ = ost (1 + B = T oy - @)

Thus the required normal velocity on the slit in the { plane is given by:

o6 o4

| = o,

dz| B(1 + BH(1 + cos? )
il KU cos o (T + B% cost 8

at { = s cos ¢, using equations (3), (6) and (7).

2.2. Complex Potential. We now construct a complex potential W in the cross-flow plane so .

that the complete potential is Ux cos o« + Z{W}. W must then behave like — 7UZ sin « for large Z
and the real part of its normal derivative must take the values (3) or (8) on the contour. It is allowed
to have branch points at the leading edges, but must otherwise be non-singular in the finite part
of the Z plane. We first find a complex potential which produces the correct normal derivative on
the contour and then modify it by adding sources, sinks and doublets so as to remove its unwanted
singularities without changing the normal derivative on the contour.
The function
+ B - 1)

KUCOSOLﬁ(l @+ pPoE 9)

b



is an obvious continuation of the right-hand side of (8), taking the same values on the slit J({) = 0,
— s < (L) <s. Now (9) is minus the imaginary part of the derivative with respect to { of

KUs cos o1 + B?) " BL +is . . 1 1
e N e e

Thus (10) is a complex potential with the correct normal derivative on the contour.

(10)

To make clear the adjustment of the singularities, we introduce the Z* plane in which the wing
slit becomes the unit circle. Then ‘

¢ 5 L 1 \
and (10) becomes

KUs cos o1 + /32)[(1 4 ) 1og P il E V(L B9} BZ% —i(— 14 V(1 + )
i Spzs — il + (T + B BZF + =1+ V(1 + B}

L -pp 1 ( 1 . 1 )
VA1 + VA +B\BZE + i~ 1+ v+ B B2 — -1+ (1 + 5%}

+

1 1 1

v e v s ) ®
This is the complex potential of two sources, two sinks and four doublets, of which one source,
one sink and two doublets lie outside |Z*| = 1 and are therefore to be removed. This is done
without upsetting the normal velocity on the circle by introducing caﬂcelling singularities outside
|Z*| = 1 with their image systems inside the circle. The source and sink at the centre of the
circle cancel and the other singularities introduced inside the circle double the strengths of those
already there. In addition, we must introduce a doublet at the point Z* = {1 + /(1 + B*)}/8,
corresponding to the point at inﬁnity in the Z plane, with the strength appropriate to a velocity
dW|dZ ~ — iUsina as Z tends to infinity; together with an image doublet in the unit circle.
The result of these modifications to (12) is the complex potential:

_ KUscos o1 + f) o BZF —i(— 1+ (1 + B}

w 28 (1 + B log g3~ T+ (1 + B9}
. i — 9" ( ! . S )+
I Y (A A S Y (o A A S Y )

, iUssinay/(1 + 52)( 1+ /) 14+ ) 13
. B CO\BZF — - 1+ (1 + By B2 -1+ V(I + Y

This can be re-written in terms of {, using (11):

_ KUscoso(l + B2 s — iBlsy/(1+ B9 + BV(2 — &)

W =

log

4p? s+ PBLsv/(1 + ) — BV(E — 5?)
iKUs? cos o1 — %) /(1 + B2) iUs® sin an/(1 + B2) (14

T 2BV + BT + = BEV(E — ) — dsv(L + FO}
S 5

(78801) ) A*



and so

aw _ iKUs2 cos o1 + BHEL4/(1 + B — /(% — s®)}
i 28 + BB V(L — &) *

_ KU cosofl — B)/(1 + BY(L /(1 + B2) — (2 — HPL + \/(1 B V(& — )3
2B(s® + BRI V(P — &) S

zUs sin ay/(1 4+ BHYBV(E2 — s?) + ds4/(1 + B2)12 '(15)
(s® + B0 /(L% — §?)

At this point it is convenient to mention the relationship of the present problem to others in
aerodynamic theory which involve circular arcs, e.g., the (part) annular wing of small chord and-the
two-dimensional circular-arc profile. In each case we require a solution of Laplace’s equatlon with
a prescribed behaviour at infinity and, in contrast to the present case, zero normal derivative on the
circular arc. For the annular wing there is no total circulation about the section of the wake in the
Trefttz plane; and for the two-dimensional profile, the circulation is determined by the Kutta-
Jowkowski condition. The same transformation can be used in these problems, but the expressions
found are much simpler. For instance, for the part annular wing of small chord, the lift and drag
are given by the present theory with K zero and « twice the geometrical incidence of the wing.

2.3. Pressure and Load Distribution.  The pressure coeficient, to the same order as the linearized
equation for the potent1al is given, for slender configurations, by

op b\ *
() + (=
where ¢ = ¢(x, v, ) = Z{W}. The differentiation with respect to x is for constant y and z, i.e.,
constant Z, so that:

b
o

206 1

+ sinta, L (16)

oW
ox

oW
%

ow

+ = X oL
{ const aC

r% 5“
@ const x

(17)

Z const 2 Z const

0¢/0z is continuous on the slit but 9¢/0y is not antisymmetric in this solution, so that the non-
dimensional load distribution is given by

I= - 4C) =4

vt o5

. (18)
on the wing - -

Equations (16), (17), (18) make the calculation of the pressure and load from (14) a straightforward,
though complicated, procedure. The expressions are too cumbersome to be worth publishing.

Fortunately we can obtain the overall forces more s1mply, after we have restricted the range of
incidence required. :

2.4. Overall Forces. As explained in the introduction, the flow model studied here is only
expected to be adequate for incidences near that at which the leading-edge singularity in load and

6



velocity vanishes. We denote this incidence by «,. It is sufficient® to require that the cross-flow
velocity be non-singular at Z = +s, or that dW/d{ be non-singular at { = -s5. Referring to
equation (15), we see that the coefficient of ({2 — s?)7"/% in dW/d{ vanishes at { = -5 if and only if

tan o = 363 + K .
Now K2 L1, B = O(1) and so e
<1, - | (19)

ap/K = $p(3 + £?) (20)
near, and at, respectively, the incidence for which the coefficient of the singularity vanishes.
© Having verified that the incidences we consider are small, we proceed to calculate the overall
. forces. Consider a control surface consisting of a streamwise cylinder surrounding the wing
terminated by a plane ahead of the wing and a plane through the trailing edge, both normal to the
stream. Then, for a slender configuration without thickness, the expressions for the lift and drag
reduce to integrals over the plane through the trailing edge. Since we are considering a more exact
treatment than usual, it is appropriate to distinguish between the plane normal to the free stream

and the plane x = constant. Consider new co-ordinates Ox'y’z’ rotated through o about Oy (see

Fig. 3). Then -

x=x"cosa — 2 sinw ¥ =xcosa + gsino
g=xsina + 2 cos g = —xsina + xcosa . (21)
’ ‘ ) r”

y=y y =y
The lift (normal to the free stream) is given by the integral:

lower

L=— pr[UxCOSa + ‘C%{I/V}:l dy’,

upper
where the integral is taken along the wake, in the plane »’ = const.

Now (see Fig. 3) the values of W on the wake at the same value of »" = ¥ in planes " = const
and x = const through the trailing edge are the same to the order of a2 (i.e., the order of K? for
the values-of « considered). Ux cos « and H{ W} are continuous functions across the wake and

RWAZy = Wy dy — HW}idx.
Thus :

L=—pU.%U WdZE,
C

where C is the contour just containing the wake. Since W is analytic outside the wake, this contour
can be replaced by any other contour containing the wake, for instance, a large circle. Thus if,
for large Z, '

W=aZ+a,+a_Z7'+ ...,

* For a conical field, this follows from the relation

Q(é__qS yv + 2w
T x o«

M . + a function of x.

In general, it follows by considering the continuity of the bound vortices.

7
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we have

L = 2apU Ha_,}.
An expansion of (14) for large Z shows
a_y =41Us? sin o2 + B2) — $Us2K cos o5 + 352)8

(1 +Bz) BK (1+%32)E-
K(1 +322) —%B(l + -g—ﬁz)g : (22)

based on the projected area of the wing, S, = s*/K.
The drag (in the stream direction) is given by the energy integral:

and so

L = mpUss?

Thus
Cy
K2

ll

D= %pj.f(w’z + ') dy d2’,

where the integral extends over the plane " = const slit along the wake, and @’ and ¢ are the upwash
and sidewash in this plane. Transforming the double integral by Green’s Theorem for the plane,
we have:

D = %pf (Uxcosa + Z{Whv,' do’,
o

where 2, is the velocity along the inward normal to the slit and ¢’ is the arc length in the plane,
x’ = const and C' just surrounds the wake. Now Ux cos « is continuous across the wake and v, is
equal in magnitude and opposite in sign on the upper and lower surfaces. Further, the values of
W in the planes &' = const and x¥ = const agree to order o®. To the same order, »,’ is given by

+ o, = _8_¢ + al cos 20
on

on the upper and lower surface, where 0¢/0# is given by (3). Thus we have

' i upper N
D = %pf_a[%{W}:‘ (aU cos 20 — KU cosec 28 (1 — cos 25 cos 20))

lower

x s cosec 28 246 . (23)
From (14)
upper alUs cot 3 aUs cot &
'@{W}jllower - 1 —sin'd Sinl/J 1 + sin 8 Sin(‘b
1 —sind siny

+ K Us cosec? 28(2 log T+ sns sing

sin 48 cos & sin z,b)

1 —sin? & sin?y

(24)

Thus, substituting from (6) and (24) in (23), we find, for the coefficient based on the projected
area of the wing,



Cp D

KT UK

w2 ( 2cosd sinyg « 1 —sin 8 sinyg cosec & cos 28 siny
2
Zf 31 — sin? & 31n2n/1K+ Z cosec 2810g1 + sin8‘sinz/x+ 1 — sin®§ sin?¢ %
al — fcos?yp  B(1 + cos? z/:)z 28 cosec 28 sin i dif 95
K1+ B2cos?yp 1 + B2cos® ) 1+ B2cos?y - (25)

The integrals in this expression are all elementary, except those involving the logarithmic function,
and these are evaluated in Appendix 1. The final expression obtained is:

fl; _ 77(14';2,32)3( -[:232 og (1 H p) — 1%2:) _ §(1 — BA(5 + 38

RPTEET 3 ﬂ(z) (1 .\ 32) | 26)

3. Results. Before discussing in detail the results obtained, we must return to the question,
raised in Section 1, of the validity of the procedure. The orders of magnitude of the perturbation
velocities can be found by inspection.

From equations (15) and (5) we see at once that

v —1w 1dW Z . Z
U = TiZ fl(s,ﬁ) sin o + f (?,ﬁ)KBcosa

and from (17), (14), (15) and (5), by/a more careful examination, that

% = —ég—i ~f, (? B)Ksinoc + f4(§, ﬁ)Kz,g cos o,

where f;(Z/s, B) is a function of Z/s and 8 only, finite for 0 << 8 < 1 in the finite part of the Z plane,
except possibly at Z = 4s. Provided K% <1, i.e., the wing is geometrically slender, even if
B is of order unity, equation (19) shows that o®* <1 for the incidences near « = «, which we
chiefly consider. Hence # <€ U and 2% + @? < U? almost everywhere. In particular, if « = «,
(equation (20)), (v? + @?)/(K? U?) and #/(K? U) are uniformly bounded in any finite region of the
Z plane for 0 <{B < 1. Thus the results obtained for the perturbation velocities are consistent
with the assumptions made about them when the differential equation was linearized, and when
equation (16) was written for the pressure coefficient. On the other hand Figs. 4 to 7 show the
discrepancies between the treatments using the linearized and the exact boundary conditions,
as far as they affect quantities at the incidence « . The results of the calculations, therefore, provide
~ as much justification as they can (suibject to the reservations in Section 1) for the procedure adopted.
(Figs. 4 to 7 are discussed in detail below.)

We now consider the results without restricting the incidence to the neighbourhood of «.
Thus expressions are obtained which relate to a given wing at different incidences and lift
coeflicients; it must be remembered that these have only the sort of validity associated with other
attached-flow theories of slender wings, when applied through a range of incidence. It should be
noted that the expressions for the drag contain a thrust component arising from the singularity
in the pressure at the leading edge whenever o £ oy No attempt is made here to allow partlally
for leading-edge separation effects by omitting this component.

The Iift coeﬂicwnt based on the area of the projection of the wing on the plane 2 = 0, is given

9



by equation (22). For fixed B, this is linear in «. Numerical values are plotted in Fig. 8 for B = 0,
0-5 and 1-0. Use of the linearized boundary condition is equivalent to neglecting p* compared
with unity: the results of doing this are also shown in Fig. 8 for comparison. In a treatment of a
wing in which the boundary condition is applied on its surface, it may seem more appropriate to
calculate its aspect ratio and force coefficients with reference to its actual or ‘developed’ area.

Using S; and S, for this developed area and the area of the wing projection on z = 0, we have
(see Fig. 2):

Sy 28 (L 4By 2 ‘ '

R a3 iy R 3BZ—EB4+O(BG) (27)
CLd: CL]J/A

Cpg= CDP/)\ , (28)
‘4d:AP /)\

where the suffixes 4 and p have the obvious significance. The coefficient C; ; based on the developed
area is also plotted in Fig. 8 for the three wings. We see that for § = 0-5, the lift coefficient obtained
by linearizing the boundary condition (and using the projected area, of course) is only about
4 per cent above that obtained using the exact boundary condition and forming the coefficient
from the developed area. Even for B = 1-0, the lift curve slopes, (1/K)(dCy/dx), based on the
exact boundary condition and the developed area and the linearized boundary ' condition and
projected area are within 5 per cent of one another.

The lift-dependent drag coefficient, based on the projected area, is given by equation (26).
This is plotted against the incidence in Fig. 9 for the same three values of § as in Fig. 8. Again the
curves obtained by using the linearized boundary condition and also by referring the more exact
results to the developed wing area are plotted for comparison. The drag coefficients, like the lift
coefficients, are remarkably close for § = 0-5. At 8 = 1, the discrepancy is much greater, especially
near the drag minimum. In both cases the linearized result is closer to the exact result based on the
developed area than to that based on the projected area.

Substituting in equation (26), for the drag coeflicient, the value of «/K in terms of C‘I,/K2 from
(22) we have :

C (1 + Byt R 22 1 Cy

= s+ 9 - 5 ) + 2+ Bl) - ®)
This'elx'pressiqn is hon-singular for B = 0, in fact | ‘

c 2 1 Cp \? C

=i (15284 089) + g las) (30)

We see, by inspection of (29) and (30), that the minimum lift-dependent drag on a given wing
occurs at zero lift, that this minimum increases with the camber and that the familiar relationship

for the slender flat plate is recovered for 8 = 0. We define the lift-dependent drag factor, «, in a
form independent of the wing area definition:

WACD __4CD17 CLp 2
- C2 =K®[\zK2) -

K =

(31

10



Then « is a decreasing function of Cy, for a given wing, bounded below for varying lift‘by Ko, Where

_ 1
" T TH

The variation of « with 8 for fixed Cj, is less simple. For each value of C;, there is a value of 8
which makes « a minimum. These values are plotted in Fig. 10 as ‘camber needed to attain
minimum-drag factor’. For Cp/7K? < 0-4 the required camber is zero¥, i.e., the flat plate attains
the minimum lift-dependent drag factor for small C;/wK? on the present theory, as it does for
-all C;, on the theory with the linearized boundary condition. For larger values of C/mK2
considerable camber is required to reach the minimum of «, the optimum wing being half of a
circular cone at Cy/mK? = 2. The values of « obtained by this optimum cambering are also shown
in Fig. 10 and we see that a reduction from « = 1 for small Cy/nK? to x = 0-773 at Cy/nK? = 2
takes place.

\

K > K

We now proceed to a more detailed account of the properties of the wing at incidence a = «,
at which incidence the results of the present treatment are expected to approximate most nearly
to those for a real fluid, since the type of flow studied is expected to occur. Substituting from (20)
in (22) and (26), we find

S, o B €2

CD_(1+32)3 1+, oy 1 — B (1—52)(5+3ﬁa)
K3 462 (52 Iog(l‘i'ﬁ)_l_l_ﬁz)_ 8
SCEY. (RS20 o)
= (1 e ge s o) 3

at the incidence «, for which the leading-edge singularity vanishes. The expansion of « (equation
(31)) for small B, at « = «, is

o= 4(1 — 487 — £8* + 0(B%) . (35)

The terms of lowest order in these expansions for small 8 are the results obtained when the
linearized boundary condition is used. Thus « = 4/3 is the lift-dependent drag factor calculated
in Ref. 9 for the simplest of the slender wings there studied. If we regard the terms of next order as
indicating the divergence of the results with the linearized boundéu'y condition from those found
here, we are struck by the magnitude of this divergence in the lift and drag coefficients at o =" a,.
Reference to'(ZO) shows that the linearized estimate of «, is not widely out, while (22) and (26)
show that, in general, the lift and drag coeflicients for given incidence are also close. However,
the lift coefficient is given by the difference of two terms which are nearly equal at « = «, so that
small discrepancies in o, have disproportionately large effects on €, and these affect Cp. To some
extent the divergence of Cy and Cj, is complementary, so that « is given more accurately by its
linearized value than they are.

* For large Cy/wK? the minimum drag occurs where 0Cp /aﬁ = 0. For_small Cp/7K?, it occurs at the
end point of the permitted range of 32, i.e., zero.
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Fig. 4 shows the incidence, «,, for no leading edge singularity as a function of the camber, 8,
for the wings of the family. For 8 = 0-5 the linearized boundary condition value is less than 8 per .
cent below the more exact value and only 25 per cent below it at 8 = 1. However, in Fig. 5 the
effect of this on the lift at this incidence for each wing is shown. The estimate based on the linearized
boundary condition is now about 37 per cent in error at B = 0-5 if we compare it with the coefficient
based on projected area and about 27 per cent compared with the coeflicient based on developed
area. Fig. 6 shows that the lift-dependent drag at the incidence at which the singularity is predicted
to vanish is already about 50 per cent in error at f = 0-5 if calculated using the linearized boundary
condition. The partial cancellation of the errors in lift and drag when the lift-dependent drag
factor is calculated is illustrated in Fig. 7. This shows the values of « at the incidence oy = ay(f)
for the wings of the family, using the exact and linearized boundary conditions. The latter is constant
at 1-333 for all B, but the value based on the exact condition falls from this value at 8 = 0, through
the minimum for a flat vortex sheet (1) at 8 = 0-67, to 0-773 at 8 = 1. The error in using the
linearized boundary condition at § = 0-5 is 18 per cent.

The curves not previously discussed in Fig. 10 are those which relate to wings cambered to
eliminate the leading-edge singularity. For a given aspect ratio and lift coefficient, lying within
certain ranges, a value of the camber B can be chosen by (32) or Fig. 5 so that a wing with this
camber shall have no singularity at the given lift. In this condition the lift-dependent drag factor
is obtained from (34) or Fig. 7. The cross-plots so obtained of 8 and « as functions of Cy/nK? are
shown in Fig. 10 as ‘camber needed to eliminate singularity at leading edge’ and ‘lift-dependent
drag factor obtained by cambering for no singularity’. We see that for small values of C;/wK? there
is a considerable difference between the camber for minimum drag factor and the camber for no
singularity, while the lift-dependent drag factor with no singularity is well above the minimum.
However, the difference rapidly decreases, so that, for C7/7K? = 1, cambering for no singularity
produces a lift-dependent drag only 2 per cent above the minimum for a wing of this family at
this lift.

No results have been given for the lift-curve slope, 6C; /0, at @ = «y. It is not certain that this
is the same in the two types of flow with separation from all edges and from the trailing edge only.
In the partial solutions'® 1% so far obtained for flat plates with separation from all edges it seems
that the lift-curve slopes for the two types of flow agree at the incidence for which both predict
trailing-edge separation only, but this is no more than a plausible reason for expecting the same on
cambered plates. If the lift-curve slope were the same, it would be given by differentiating (22)
with respect to a.

4. Conclusions. 'Thin wings which are geometrically slender and cambered to form portions
of circular cones are treated in attached flow by a method more refined than those hitherto available.
The boundary condition satisfied by the flow on the wing is applied there instead of on a nearby
plane as in the usual linearized theory. From the results we can deduce the following:

(a) If the attached flow solution is accepted through the range of incidence, then:

(i) The force coeflicients for given camber and leading-edge incidence calculated using
the linearized boundary condition are reasonably close to those found using the
exact boundary condition. They are, in fact, closer to the exact coefficients if these
are based on the developed area of the wing than if they are based on the projected
area.

12



(ii) The lift-dependent drag factor for a given wing decreases with increasing lift, but is
bounded below by a function of the camber, which, in turn, decreases as the camber

increases.

(iii) The lift-dependent drag factor has a minimum for a fixed lift, which is less than one
unless the lift is small. Thus the flat wing is not the most efficient lifting surface of
slender triangular plan-form, except, possibly, for small lift coeflicients.

(b) If we restrict our attention to the results found for the particular incidence on each wing
 at which the leading-edge smgulanty vanishes and the attached-flow theory is therefore
most trustworthy, then:

(1) This incidence is predicted fairly accurately by the theory with the linearized
boundary condition.

- (ii) The lift and drag coefficients calculated using the linearized boundary condition at
the incidence for no singularity found in the same way are considerably too small.
Correspondingly, except for small lift coeflicients, the camber required to produce
no leading-edge singularity at a given lift is much overest1mated by the treatment
with the linearized boundary condition.

(iii) The lift-dependent drag factor, though less in error than the lift and drag coefficients,
is overestimated for all non-zero values of the camber by using the linearized boundary
conditions. Instead of remaining at 4/3 for all cambers it falls from this value for
vanishingly small camber to 0-773 for the wing cambered to form half of a ciréular
cone.

(iv) As the lift coefficient increases, the camber designed to eliminate the leading-edge
singularity approaches that designed to minimize the lift-dependent drag factor
(assuming the attached flow solution applies through the incidence range). The two
coincide at Cj = 27K? (based on projected area), at which lift the half-circular
cone has both no leading-edge singularity and the least lift-dependent drag for wings
of this type.

It is, unfortunately, not clear how these results should be modified to apply them to other types -
of camber, in particular to wings whose ordinates are small although their slopes are locally large.
In the family studied, large slopes are associated with large ordinates and it is not possible to say
whether the slopes alone would produce the same discrepancies between the solutions with different
applications of the boundary condition.

13
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LIST OF SYMBOLS

Aspect ratio based on area of projection of wing

.Aspect ratio based on developed area of wing

Drag coeflicient based on.area of projection of wing
Drag coefficient based on developed area of wing
Lift coefficient based on area of projection of wing
Lift coeflicient based on developed area of wing
Pressure coeflicient

Drag

‘Cotangent of leading-edge sweep angle .

Non-dimensional load distribution

Lift

Normal to wing surface

Wing semi-span

Developed and projected areas of wing
Undisturbed velocity

Perturbation velocities

Complex potential in the cross-flow plane

Rectangular, right-handed co-ordinates, origin at wing apex, Ox down-
stream, Oy to starboard, with Oxy as the plane containing the leading
edges '

Complex co-ordinate in cross-flow plane
Complex co-ordinate in circle plane
Incidence of undisturbed stream to plane of leading edges

Value of « for which leading-edge singularity vanishes on a particular
wing

Camber parameter, ratio of height to semi-span of wing cross-section
One quarter of the angular measure of the wing cross-section
Difference operator across wing, ‘upper —lower’

Complex co-ordinate in transformed plane

Angular co-ordinate on wing ‘

Lift-dependent drag factor

SalS,

Density

Z{ W3}, potential in the cross-flow plane

Co-ordinate on slit in transformed plane.
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Thus by (39) and (40) we find (
G Bvl—-a)+a = ma(l — f?)
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