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Summary.—Exact theories are used to examine the validity of certain methods of wing stressing when they are
applied to thin wings of low aspect ratio. Attention is confined to the two spar multi-rib wing having rectangular cross-
section and rectangular plan-form.

1. Introduction.—In certain methods of wing stressing™?, hereafter referred to as conventional,
no account is taken of :

(@) the chordwise distribution of loading
(6) the cross-sectional distortion of the ribs (apart from pure shear)
(c) the exact elastic behaviour of the top and bottom skins
and these effects become important as the wing thickness and aspect ratio decrease.

In this paper, attention is confined to the two-spar multi-rib wing having rectangular cross-
section and rectangular plan-form. The exact equations of elasticity are derived and solved,
and numerical examples are given for a thin wing of low aspect ratio. These results are compared
with those obtained from the conventional methods®2. ‘

The loading on such wings can always be separated into loadings symmetrical and anti-
symmetrical about the spanwise centre-line of the wing box. The problems associated with
each type of loading are respectively examined under the general headings of the ‘ Flexural ’
and ‘ Torsional ’ cases. For the ‘ Torsional ’ case a simplified analysis is also given and this yields
a better approximation than the conventional method® The important case of loading along one
spar is also discussed.

2. Description of Structure and Assumptions.—The top and bottom surfaces of the two-spar
multi-rib wing of rectangular cross-section and rectangular plan-form, shown in Fig. 1, are
constructed from thin flat skins reinforced by closely spaced stringers and rib booms. The spar
and rib webs are reinforced by closely spaced inextensional members parallel to the z-axis.
The wing is supported mid-way along each spar and these supports supply z-wise constraint only.

*R.A.E. Report Structures 171, received 14th July, 1955.
1



The following assumptions are made in the analysis :
(@) The stress-strain relationships are linear
(b) Buckling does not occur

(¢) The stringers and booms resist only direct load

(d) The stringers and ribs are so closely spaced that they may be considered uniformly
distributed

(¢) The spar and rib webs resist only shear, account being taken of their contribution to the

direct stiffnesses by corresponding increases in the spar-boom and rib-boom cross-
sections.

3. The Flexural Case.—The flexural case corresponds to a loading symmetrically distributed
about the spanwise centre-line of the wing box. For such loadings the spar and rib web shears

are statically determinate and so the three-dimensional problem is reduced to a plane problem
- where all the boundary conditions are known. . :

The equations of compatibility for the reinforced skins at z = 4 & are derived in terms of
the displacements # and v in Appendix 1.
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where o* and @ are non-dimensional structural constants and S is the kﬁown surface force applied
by the rib webs. The remainder of the notation is defined in Fig. 1. Equations (1) are solved
in Appendix IT for the particular loading cases of

(a) uniformly distributed load over the whole surface, t.e., Z(¢,49) = Z = a constant
(0) uniformly distributed load along the two spars, 4.e., Z4(€) = Z, = a constant.
The solutions are : '

~

>, oo (1)

-

LS e NN el
"= Et 121 st 2 { Al" cosh 9 ‘|_'Az,, cosh 5
1 — o2 w w . 7’1’”'6/311/25 - ‘ Mnﬁ2‘/2§
+, EZ. ﬂzl COS 2 {Blm Slnh 2 + BZ;);, Slnh 2 )
1 — ¢ ‘6l2 1 /% ] — 6% w -
V= (2aL7) (Ejj) 84 (g - 77) — g 2,08y g @)

. —‘1/2 —1/2
{ZIAI,, sinh ”—“/”2—’? & 2,4, sinh ”i%—ﬂ}

1 — o2

@ . may mm B 2 Byl E
T TE AT {'1131’” cosh =g - 2By, cosh =5

J

where f1, 85, 41, 4, are non-dimensional structural constants, %, # are odd integers and A,,, 4,,,
B, By, are arbitrary constants to be determined from the boundary conditions. The determina-
tion of the arbitrary constants involves the solution of four sets of infinite simultaneous equations
but the form of equations (2) has been chosen so that these equations readily reduce to a single
set of infinite simultaneous equations where the leading diagonal terms are predominant,
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When the arbitrary constants have been determined, the stress distribution throughout the
wing is evaluated, using the well-known stress-strain relatlonshlps and the distortion of the
wing is evaluated from the expressmn

| 2(1 + o) al g 20+0 [
- g = a
@(5:77):_ E‘L'—aj Sd’l}—{—zJ vdn+E—iRLJ Spdé

L
——b—’u/,lzlds e (3)

o 0
where @(£, ) is the z-wise displacement.

If the ribs are assumed rigid in their own plane there is a considerable simplification in the
analysis and computation. This simplification is considered in Appendix III and corresponds
to the conventional method' of stressing for the flexural case. The equation of compatibility for
the reinforced skins at 2 = -+ b is then

0% 82 '
and the solution is simply
1/2
%:~1«2,Aﬂsm@cohmtﬁ Y :
EZ,‘ n=1 2 2
, . .. . .. (5)
v=1_0

where § is a non-dimensional structural constant, » is an odd integer and the A, are arbitrary
constants to be determined from a boundary condition.

A numerical illustrative example is given in Appendix V and is based on a wing Whose structural
box has an aspect ratio 2 and a thickness/chord ratio 7-5 per cent. The stress distributions for
this wing are shown in Figs. 6 to 15 and the distorted shape is shown in Figs. 16 and 17. For the
purpose of ready comparison the salient values are reproduced in the table.

The additional effects due to the chordwise distribution of loading may be approximated by
the simplified method given in Appendix VI. Appendix VII deals briefly with the anti-clastic

effects due to pure bending.

4. The Torsional Case.—The torsional case corresponds to a loading anti-symmetrically distri-
buted about the spanwise centre-line of the wing box. Unlike the flexural case, the spar and
rib web shears are no longer statically determinate and so the problem is three-dimensional.
The analysis could proceed in a similar manner as for the flexural case, but as the algebra and
computation would be more intricate a different approach has been favoured (Appendix VIII).

~ The equations of equilibrium for the reinforced skins at z = 4- b are

-
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Uniformly
distributed load
over whole
surface
2qalLZ =1:01b

Uniformly
distributed load
along the spars,
2LZ, =1-01b

Rigid ribs,
2L7, =1:01b.
Conventional
method

Engineer’s
bending theory
2L7, =1-01b

Statically zero
distributed load
2aL7Z — 2LZ,

Statically zero
distributed load
2al7Z —2LZ,

acting on a wing"

of infinite span

Anti-clastic
effects due to
a tip moment
L*Z, =L[2in lb

Max. spar boom stress

(fe,atf=0,7=1) 0-2036 1b/in.? 0-1999 Ib/in.? 0-1955 Ib/in.2 0-1111 Ib/in.? 0-0037 1b/in.2 0-0047 1b/in.? 0-1111 lb/in.2
Max. spanwise skin stress ' |
(fe,at &£ =0,5n =1) 0-2067 lb/in.? 0-2032 1b/in.? 0-1955 1b/in.? 0-1111 1b/in.? 0-1111 Ibfin.?
Max. rib-boom stress at tip |
ie,até=1,7=0) ~0-0953 Ibjin.2  |—0-0573 1b/in.? 0 0 —0-0380 Ib/in.2  |—0-0440 lb/in.®
Max. chordwise skin stress )
attip (r.e.,atf =1, =0)|—0-0974 Ib/in.2 | —0-0586 Ibfin.2 0 0
+ z-wise deflection of spar at '
tip ~2-795 x 1073 in.|—2-716 x 107% in.|—2-622 x 10™%in. |—1-481 x 107%in.
z-wise deflection at centre of . ) . '
tip rib —3-360 x 10~%in. | —3+047 x 1073 in.| —2-622 x 107 in.|—1-481 x 1073 in. |—0-313 X 107®in. |—0-273 x 1073 in.
z-wise deflection at centre of | |
root rib —0-174 x 107%in.| 0-105 x 107%in. 0 0 |—0-279 x 1073 in. [—0-273 x 107%in.|—0-186 x 1075 in.
The values of the structural constants are : fz = 0-15in. Nominal thickness of the front and rear spar webs
a = 100 in. Semi-chord dimension #* = 0-20in. Effective thickness of the skin-stringer com-
. . bination f isting load in the directi {
4 = 10in? Crgzso-rsrelzsctlonal area of the front ‘and rear spar t}ll%aségir;lggrrsre51s g foad wm Hhe Girection ©
b o— . . f = 0-18in. Effective thickness of the skin-rib boom com-
= 7-51n. Semi-spar depth bination for resisting load in the direction of
L = 200in. Semi-span dimension . the ribs .
t = 0-15in. Nominal thickness of top and bottom skins T = 0-008 Thickness of rib webs per unit length of span



where 7', 7’ and S are stress resultants. A consistent system of stress resultants satisfying these
equations is then '

-

T = ’21 77"Fn(§)
c_faN A = (1 — gy
T = —<L> dg? 21 (n+ 1)(n + 2) Fulé)
(7)
d = gt
- 1 /a\ & « 1
$==1(0)a P+ S g 2

-

where # is an odd integer and F(£), F,(&) are functions to be determined from the condition
that the total strain energy is a minimum.  This procedure yields (n -+ 3)/2 simultaneous differen-
tial equations of fourth order involving only the even differentials. The arbitrary constants in
the complementary functions are determined from the boundary conditions at & — 0 and & — 1,
which yield two sets of # 4 3 simultaneous equations.

When these functions have been determined, the stress distribution throughout the wing is
evaluated by substitution into equations (7) and others, and the distortion of the wing is evaluated

from the expression
n 7
[ S dn — J
' 0

J 0
It should be noted that the above procedure corresponds to the conventional®* method when the

F,(¢) are put equal to zero.

2(1 + o)

—= a

Ez

a

b

w{&, n) vdny . (8)

Since the effect of the chordwise distribution of loading will, in general, be smaller than for
the flexural case, the equations have been solved only for a uniformly distributed load along each
spar, viz.,, 2LZp = 1-0 Ib. Numerical illustrative examples are given in Appendix X for the
same wing examined for the flexural case. ’ '

The determination of the cross-sectional distortion is unlikely to be of such importance as for
the flexural case since the distortion will be of a smaller order due to.the presence of a point of
inflexion along the spanwise centre-line. This suggests that the rib booms might be considered
inextensional, thereby simplifying the analysis. This simplification is considered in Appendix IX
where the equations of compatibility are found to be ,

~
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‘The solution of these equations is

o l ® . Huné %nﬁ”%z
— Etu=1A" sin 5 S nh o
@ — l ,l;‘ ; 1/2 1/2 '
de WEt(a){Clsmhy & - C, cosh p172&
>, . - .. (10)
nm& n 2
-+ 72 v, A, sin —2 sinh o

(1—¢

Et[; <>2M" ( 5R>

where y and », are non-dimensional structural constants, # is an odd integer and C,, C, and 4,
are arbitrary constants to be determined from the boundary conditions. A numerical 111ustrat1ve
example is glven in Appendix X.

The stress distributions obtained from the various numerical examples are shown in Figs. 18
to 22 and the spar deflections are shown in Fig. 23. For the purpose of ready comparison, the
salient  values are reproduced in the table, where the loading for all cases 15 umformly
distributed along each spar and of magnitude 2L7; = 1-0 Ib.:

5. Loading Along one Spar—For an aircraft in subsonic flight the lift distribution is usually
such that the centre of pressure is in the neighbourhood of the front spar. An important design
case therefore occurs where the structural box is loaded along one spar only. The stress and
distorted shape for this loading can be easily obtained by addition of the results of the flexural
and torsional cases ; the Tesults of this addition are shown in Fig. 24 for the spar boom stresses.

The increase in maximum spar boom stress over that given by the conventional methods is
approximately 10 per cent for the wing investigated. It is to be expected that this difference
will increase as the thickness and aspect ratio of the structural box decrease.

6. Conclusions.—The validity of the conventional methods of wing stressing“? has been
examined when they are applied to thin wings of low aspect ratio. Attention has been confined
to the two-spar multi-rib wing having rectangular cross-section and rectangular plan-form.

For loadings symmetrical about the spanwise centre-line of the wing box (the flexural case)
it has been found from a numerical comparison that the conventional method* is satisfactory in
all respects excepting that it does not reveal

(a) the cross-sectional distortion of the ribs (i.c., the change in camber)

(b) the chordwise stresses in the reinforced skins.

The conventional method® of wirig stressing for loadings anti-symmetrical about the spanwise
centre—line (the torsional case) is not satisfactory and yields optimistic results. The use
of an ‘effective’ boom area including 1/6 of the cross-sectional area of the reinforced skin
is less accurate than using the nominal boom area for these thin wings. An exact and a simplified
analysis are given in the Appendices.
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Uniformly distributed Load 2LZy = 1-0 Ib. along each Spar

Appendix VIII
First two terms

Appendix VIII
First term with
nominal spar
boom area

Appendix VIII
TFirst term with
effectivet spar
boom area.
Conventional
method

Appendix VIII

- First term with

effectivef spar
boom area and
rigid ribs

Appendix IX
Inextensional
rib booms

Max. spar-boom stress
(te,at & =0,7 =1)

0-1275 Ibfin.?

0-1424 Ib/in.?

0-1000 Ib/in.2

0-0953 Ib/in.2

0-1232 Ibjin.2

Max. skin shear stress

0-0582 Ib/in.?

0-0418 Ibfin.

0-0360 Ib/in.2

0-0351 Ibfin.2

0-0520 Tb/in.?

Max. spar-web shear stress

—0-222 Ib/in.?

—0-222 1bjin.?

—0-222 Ibfin.2

—0-207 Ibfin.2

—0-222 1bfin.?

z-wise deflection of spar at tip ..

—1-324 x 107 in.

—1-402 x 107 in.

—1-271 x 107%in, | —1-222 x 10~%in.| —1-279 x 1073 in,

+ Effective spar bcom area = A
The values of the structural constants are : tg
a = 100in. Semi-chord dimension t*
A = 10in2 Cross-sectional area of the front and rear
spar booms
b = 7-5in. Semi-spar depth t
L = 200in. Semi-span dimension
{ = 0-15in. Nominal thickness of top ahd bottom skins T

¢

+ at*/3

-15in.  Nominal thickness of the front and rear spar webs

Effective thickness of the skin-stringer com-
bination for resisting load in the direction of
the stringers '

0-20 in.

0-18in.  Effective thickness of the skin-rib boom com-
bination for resisting load in the direction of
the ribs

0-008 Thickness of rib webs per unit length of span



LIST OF SYMBOLS

1. General.—1.1. Structural Properties

2a
A
2
2L
A

Ig

A *

5%

T

Chord of the wing structure

Cross-sectional area of the front and rear spar booms
Thickness of the wing structure

Span of the wing structure

Nominal thickness of the top and bottom skins
Nominal thickness of the front and rear spar webs

Effective thickness of the skin—stringer combination for resisting load
in the direction of thé stringers .

Effective thickness of the skin-rib-boom combination for resisting load
in the direction of the ribs -

Thickness of rib webs per unit length of span

1.2. Co-ordinate Systems

X, Y, 2
- &
1

Rectangular co-ordinate system with origin at centre of wing

= x/L Non-dimensional co-ordinate

y/a Non-dimensional co-ordinate

1.3. Loads and Stresses

Py

End load in the rear spar boom

Shear-stress resultant in the reinforced skin : ‘
Shear-stress resultant in the rear spar web

Surface force acting on the skin

Direct-stress resultant in the reinforced skin along a stringer
Direct-stress resultant in the reinforced skin along a rib boom
Distributed load acting over the whole wing

Uniformly distributed load acting on the whole wing
Distributed load acting on the rear spar

Uniformly distributed load acting on the rear spar

-Displacement along a stringer

Displacement along a spar boom
¥-wise displacement in a spar web

Displacement along a rib boom

y-wise displacement in a rib web

z-wise displacement in a rib

z-wise displacement of the centre of a rib

z-wise displacement of a spar

8



1.5. Elastic Constants

E

[

LIST OF SYMBOLS—continued

Young's modulus of elasticity for the structure

Poisson’s ratio for the structure

2. Symbols Peculiar to Appendices I, I1 and V.

Aln: A2m Blm: B2m

n,m

o¥

a

B1Be

Br + B

Ay

- 1—}—0( >/321/2

Arbitrary constants
Odd integers

69

1 . . ’
% non-dimensional structural parameters
1

l
v
—

-

(o*a — o)

L L’Z
- (%)
Ok = |
, non-dimensional structural

25 parameters

” a 1/2
l—{—a(f)ﬁl/ N

)

3. Symbols Peculiar to Appendices IV and I X.

An
Cl: CZ
"

f

Y

61“ vnl pﬂ! ¢1U wﬂa

Arbitrary constant
Arbitrary constants
0Odd integer

— <%>2zl+aﬁ
B < > ( tR>

= constants defined in Appendix IX

non-dimensional structural parameters

4. Symbols Peculiar to Appendix VIII.

A,

F, F,

n
0

Effective cross-sectional area of the front and rear spar booms
= A + at*/3
- Functions of ¢ defining the stress distribution
Odd integer

Infinitesimal variation
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- APPENDIX 1

The Flexural Case
Derivation of Fundamental Equations

R. & M. 1908,

The flexural case corresponds to a loading symmetrically distributed about the spanwise
centre-line of the wing box. For such loadings the spar and rib-web shears are statically deter-
minate and so the three-dimensional problem is reduced to a plane problem where all the
boundary conditions are known. In what follows, attention is confined to cases where the dis-

placements # and v at z = 4 b are equal and opposite to one another.

1. Fundamental Equations for the Reinforced Skins z = -4 b.—For equilibrium of an elemental
portion of the reinforced skin at z = b, Fig. 2, it is necessary that

aNdol a§
(2)%+5 =0

a\oS o1’ =
(2)5 +% —as=0

~

J

The stress resultants in terms of the displacements are

T Et o¥ Ot aav>

1 —o*\ L 3¢ 2157
o Et (atv o du
4 _1—0'2<6l81’] —I_LEBE)

Et 19u 1 v
522(1+g)_<&%+fﬁ

~

J

where o* and a are non-dimensional structural constants given by

a*z%—az<%—1>;
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The equations of equilibrium in terms of the displacements are then found to be

1—082 1—}—0
atz ' 877 85 817

_ 0% 1— o /a\'o% 1 —l— o 1
a— +—F 15 ) ==
ont 2 L/ 2 85 877

2. Fundamental Equations for the Spmf Booms.—The spar booms are additional end-load
carrying members attached along the outer edges of the reinforced skin. The forces acting on an
elemental portion of the rear spar boom are shown in Fig. 3. For equilibrium of this element
it is necessary that

1
| lr (13)
— r ) bis.

1 4P
Z 7; = S5 + S/»,=1;
which on integration yields
P::-Lj (Se + S/, dt O O ¥}

Where it is assumed that P, = 0 at the tip.

The condition of compatibility between the rear spar boom and adjacent reinforced skin is
that

duy, Ou ’ , '
FrinET. .. .. .. .. .. .. e (15)
where the boom strain is
dug,  L° ' ‘
ZE_ . EA JVE (SR _l S/,] 1) A . “ s .. .« » . (16)

3. Fundamental Equations for the Ribs and Spar Webs.—The forces acting on a rib are shown
in Fig. 4. The ribs are continuously distributed in the & direction and the thickness of rib webs
within an element L&& will be denoted =L 8#. The shear stress resultant acting on a rib is denoted
by SL 6& where the stress S is, in general, a function of & and 5. For equilibrium of a rib it is
necessary that

05 _aZ(¢ )

on 20
where Z(&,7) is the distributed load over the wing surface. The relation between S and’ the
rib displacements is

105 o7 _ 214 o)
a oy Y Ex )

(17)

Now, the ribs are reinforced by inextensional z-wise members and so it follows that @ is inde-
pendent of z. Differentiation of this equation with respect to z then shows that

_ zZ
'U:z'l),

since at z = -+ b the rib displacements must conform with those of the reinforced skin. It now

_ follows that
n
R
o A

ISTTE-N

Ex

0

J vdp + @ .. .. .. .. (18)
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where @, = @/,., and is a function only of &.

The forces acting on the rear spar web are shown in Fig. 5. For equilibrium at the intersection
of the rib and spar webs it is necessary that

1dSy &, Za(8) _
T g = Sha =57, O 6 )

where Zg(¢) is the distributed load along the rear spar.  The relation between Sy and the spar
displacements is ' :

1 ow, ,au’,g__2(1+a)s
L a¢ 0z Et, T

Differentiation of this equation with respect to z then shows that

’

%R == %/uzl

S|

since at z = -+ b the spar-web displacements must agree with those of the spar boom, and
because agreement of the z-wise displacement w, with the displacement @ shows that the former
are also independent of the z co-ordinate. This and the strain equation then yield

& &
(1 + o) L
wR:_(R_,LJSRdE——ZJOu/”:ld&, e (20)

0

since at the root wg._, = 0.

Noting that w, = @/,.,, it is easily shown from equations (18) and (20) that

1 1 ¥ &
Yt (o, 21 + o) L
= — = a JOS dn -+ bJ vdn - Ei L OSR as — 2 %/,]ml‘ dék.

[} 0

The equation for the rib displacements may now be rewritten

7jz_}:__Z(l—l—a)aJSdn —I—gjvdﬂ—l—MLJSRdf

" Et b Et,

7 n Y

L[ . - |
-3 J #[,... d¢ or (3) bis. . .. . . (21)

[

4. Equation of Overall Equilibrium.—To complete the formulation it now remains only to
determine the-equation of overall equilibrium for the wing box. This is determined from resolu-
tion of the z-wise forces at a chordwise section, viz.,

a1 1 1
al L
SR:_EJIJZ(E,n)dfdn—%JZR(E)dS. e (22)

& &

12



APPENDIX II
The Flexural Case — Solution of Equations
It is now proposed to solve the equations of Appendix I for the particular loading cases of

Z(&,n) = Z = a constant (23)
Zp(§) = Zy = a constant |
The equations of equilibrium in terms of the displacements are
1—am 1+a )
852 mr 35 877
f , (13) bis
0% 1 — o /a\'o% 1—0 =
M+___<Z 8_52__ 85817 ars J
where, from equation (17), the surface force is found to be
s aly - :
S = 55 0 . .. . . . . . . (24)
A solution to equations (13) may be written
1= ., nxé nwfy "y nwfy M) )
" = 57 nzl sin 5 {Am cosh —+_2 -+ A,, cosh — g

1 — o = ma . mmB R . mmpRE
TR A {Blm sinh —5— + By, sinh —

) (g;—) S—ld (%3 — ?7) " (2) or bis (25)

— g% » —1/2
1= 3 cos % E{l A,, sin nh 0L T ﬂl —{—,12/12,, sinh%l}

Et n=1 2 2
1 . O' © m E " 6 1/2 Mﬂﬁ21/2§
5 mEl sin 2 {/1 B, cosh 9 + Ay B, cosh 5 J

where #, m are odd integers and

Bubs = ( ) ey
Bt b = ( > 1“__0“ ,
11:1—::0-<%>ﬂ11/2—1+0 a
= (s (e

and A4,,, Az,,, B, Bz,,, are constants to be determined from the boundary condltlons at & =1
and y =

—1/2

b

13



The boundary conditions are :

~

T'"=0atn =1

T=0at¢é=1 _

S=0ate=1 .. .. .. . e (26)
ou  dug : | ‘

T dEatn—l

Py

From equations (12) the first boundary condition requires that

Et @ ov o ou
1-&(22817 La§>~0at’7 L

and substituting from equations (25) it is found that

co —1/2
”2” H( >a/31—1/2/1 — G}Al,, cosh mﬁ L
n=1
nmfy A nmé
+ {(;) apy M, — U}A2,, cosh %} cos jz“

and this can only be satisfied if

{( ) ap, "V, — G}Al,, cosh 52—1/2
{( > af, “1/2), — O‘}Azn cosh /3 — =0. .. . .. e (27)

The second boundary condition requires that

Et ¥ o o av
] — L 85

and substituting from equations (25) it 1s found that

co mat fp 12 ma M
m= 1 2 [{( > ﬁ KIG} Blm COSh 2
2 ol B L, ma s/ 7%7t17
+ {(L) o*B, /120} B,, cosh 5 | cos (2aLZ) bL

a ma >
{(E) o¥B 1 — Zlo} B, cosh jgﬂ
a mafy'/? 12 N\ 8
+ {(Z) Oﬁ*ﬁzl/z _ 7»20'} Bzm cosh o — (_)( 1 (ZaLZ)<&><EI_;> e (28)

The third boundary condition requires that

Et 10w 1 ov
'z‘@?(@n za?) Oaté=1,

I
=

=0até=1,

whence




and substituting from equations (25) it is found that

i e /31/2 a 1/2 . mnﬂll/“ . wman
1 [{ —|_( )/31 / A } “1on Sll’lh 2 —l_ {1 + <L> /32 / lg }Bzm Slnh 2 :] Sin 2
A —1/2
_< ) ;,1 ””I:{( >/3—1/2+1}A1”51h /32 n
+ {<a>ﬂ2 / +12}A2‘,’,smh ) J
whence :

a 1/2 mie By 1/2
ma[{l + <1—:> B.M? 21} i smh { +< )/321/ l} o SINN o }

O

— 4(61) ( )(n+m 2}/2 COSh nw 1—

L 2
(”“) + 6

—1/2 2 —124,
K >’9 i } I (29)
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(m) e cosh - J .

The final boundary condition requires that 9u/0é = dug/dé at n = 1, and substituting from
equations (16), (22), (23) and (25) it 1s found that

R —1/2 —1/2
1-4 2 @ [Al,, cosh — naf 4+ A,, cosh 2Pz napy ]

'

n
Et =1 2 2 9 )
= (2@5;;?2’*) LMl —¢&)— 2171—2) EL_AE cos 2° H( )/31‘”2 + 2 }AM sinh ”ﬁé"”z
+ {(f)ﬁ*/ + ﬁ} A, sinh ”“'322_”2}

ity e [ g (o )
{( )ﬂ TR 12} - (cosh g " osh mnﬁ;m&)}

15-

+




whence

ty 2 tLy 1 LN, i .y HaBy By 12
Al,,[mr cosh — 2 - (A I o {(ﬂ> 8. - /11} smh 2 -+ A,, | nx cosh 9
tLN 1 /L ~1/2 -y, BB
+<A>1 -—}—O‘{(d)‘ﬁz —I—lz}slnh 9 }

4 [iLNL L (=) ve2 1 (LNCLN T 2 e
1 —o? (A)(b) (2012 +2LZy) {%2752 g } - 14 o (a)(/l nw »El (=)

{(L/“)ﬁlml/z + /11}/31B1m maf,H? {(L/“) B 4 /12}/3232;» m”ﬁz”j
cosh - cosh . . 30
[ (njm)* + B, 2a (njm) £ . 2 (30)
The constants 4,,, 4,,, By, and B,,, may now be determined from the infinite sets of simultaneous
equations provided by equations (27), (28), (29) and (30). These equations may be solved
numerically by the method of segments and it is then possible to evaluate the distorted shape
and stress distribution throughout the entire wing structure.

APPENDIX III

. The Flexural Case
Specialisation of Equations for Rigid Ribs

When the ribs may be assumed rigid in their own plane there is a considerable simplification
of the analysis and computation. This simplification corresponds to the conventional solution?,
but the equations will be derived here for the sake of completeness.

For equilibrium of an elemental portion of the reinforced skin at z = b (Fig. 2), it is now only
necessary for ~

rol oS T (31)

The stress resultants in terms of the displacements are

Et*ou
T="T
... .. .. .. .. .o (82
S - E ou

21 +o)ady |

since the displacement v is zero by virtue of the rigid ribs and symmetry. The equation of
equilibrium in terms of the displacement # is then found to be

o m
ﬂa—‘fz-}—%é:(),. .. e ce .. . - (33)

where g is a non-dimensional structural constant such that

=@ o)
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This equation has the solution

® 1/2
z,A,,sm%gc h%m; 17, .. .. .. .. .. (34)
" : (or (5) bis)
where # is an odd integer and the A4, are constants to be determined. From equations (15) and
(16) it is found for compatibility of strain between the rear spar boom and the adjacent reinforced
skin it is necessary that

ou L* ‘

E% 77=1— EAJ(S +S/n 1)

Substituting equations (22); (32) and (34) 1nto this last, the coefficients 4, are found to be

iG]

m|_

U =

(35)
* g "B 174 Hav
{( >< >ﬁ 9 +2 Lt #sr cosh 5
where Z(£) has been assumed constant along each spar. '
The z-wise displacement is given by equation (20), viz.,
5 ¢
- 214 9) L

Wr=W =T L JOASR dé — 5 Lu/,,=1d§, .. .. . . (36)

there being no variation of @ along a chord because the ribs are rigid.

APPENDIX 1V
~ The Flexural Case
Convergence of the Series Solutions at the Spay Boowms

Before proceeding with a numerical calculation it is advisable to examine the convergence of
the series solution. For example, when the ribs are considered rigid and the loadmg is uniform
along the spar booms, the direct stress along the stringers is given by

n—1)/2 1/2
[1 _ = ) 2} cos i cosh nnﬁ

2

N {(ﬁe)( > /3”1/2 sinh %nﬁm + 3 <Lzﬁ> #nm cosh nnﬂm}

from equations (32), (34) and (35). Now, at &£ = 0, 5 = 1 this series for the stress converges
as ‘1/un* which is unsatisfactory from the numerical calculation standpoint. However, for equili-
brium across a chordwise section it is necessary that

1
EA ou L, .
()J —d 125 U=1:-_-b_£(s — &) Za(&) de

-and so stress along the rear spar boom, ¢.e., at = 1, is now given by

. AL
E ou L ) z:zfek :

(2LZ )

\ S

(37)

£ s
L =1

QO

£




Substituting equation (37) into this last and assuming Zp(£) to be constant along the spars, it

15 found that

L(1 — &)*

845

EL® o / (QLZR)

(~)("‘“/22 nnk . . nap*
[1 — CoS 5 sinh 5

so the series for the stress along the rear spar boom now converges as 1/#°.

(D@t g (5 e

It is difficult to examine analytically the convergence of the solution in Appendix 11, but it
is to be expected that the series will behave similarly to the above. Proceeding in a similar

manner, it is necessary for equilibrium across a chordwise section for

! > o1t ZEA ou
1 77 85 _—

gfjj (5’-5)2(5,77)dndf'+%J (6" — &) Zp (&) d¥
& -1

14

and so the stress along the rear spar boom is now given by

1 L
E 2u al , / c L ' " dE’
Lot 1:=1:mJJ,1(§ — &) Z (&, n) dn de +2Ab[ (6" — £)Zx (¢7) dt

v &
Et ' 2
B " du
241 — o) L{“ <L to }d’?
Substituting equations (23) and (25) into this last and integrating yields

E ou L — & &
— @
L (2aLZ + 2LZy) =rg > + (20L7) o

S —1/2
/% 2 %7;5 [{(%) ot B 021} A, sinh @”_/’)21__
(/a . e, M2
+ i(z} o A a/lg} A,, sinh —nﬂ—z“—i
s @ maf e
—_— - _ \(m=-1)/2 - * /2 __ mafy "€
A mél ( ) [{(L) o ﬁl 021} Blm cosh 2
1/2
+ {( > ¥, — gl }Bomco h Wm[; EJ _

(40)

(41)

so that the convergence of the series for the stress along the rear spar has been improved by 1/n,
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The order of convergence for the stress in the rib booms at # = 1 is'the same as for the stress
along the spar booms. However, the rib boom stress at 4 = 1 can be calculated from the
boundary condition 7" = 0 along 4 = 1, i.e.,

Eav Eaau/

aon | L a*0¢ (42)

Eou
and the value of —
using the value o i
The convergence of the series for the shear stress in the reinforced skins along the spar booms
is not satisfactory and it is not possible to improve the convergence in a similar manner to the
above. However, the shear stresses in the reinforced skins are small and. therefore are not of
such great 1mportance

obtained from equation (41).

APPENDIX V

The Flexural Case
- Numerical Illustrative Example
1. General.—The numerical illustrative example is based on a wing whose structural box has

an aspect ratio 2 and thickness/chord ratio 7-5 per cent. The values of the structural constants
are : |

a = 100 in. Semi-chord dimension
A = 101in.? Cross-sectional area of the front and rear spar booms
b = 7-5in. Semi-spar depth
L = 200 in. Semi-span dimension
t = 0-151n. Nominal thickness of top and bottom skins
tr = 0-151n. Nominal thickness of the front and rear spar webs
t* = 0-20in. Effective thickness of the skin-stringer combination for
resisting load in the direction of the stringers
[ = 0-18in. Effective thickness of the skin-rib-boom combination for
resisting load in the direction of the ribs
r = 0-008 Thickness of rib webs per unit length of span
= 10"1b/in.? Young’s modulus of elasticity for the structure
o = 03 Poisson’s ratio for the structure.

2. Numerical Example for Appendix II.—The above glve the followmg values of the non- -
dimensional structural parameters for the exact solution :

o* = 1-303333
& = 1-182000
8, = 1-556712
By = 9321242
4, = 0-3877429

7, = 2-708165.
| 19



For the purpose of these calculations the particular loading cases of
2aL7Z(ém) = 2alZ = 1-01b.
2LZy(&) =207, =1-01b

have been chosen.

The values of the constants 4,,, 4,,, B, B, are determined from equations (27) to (30) by
the method of segments, 7.e., it is assumed that 4,, = 4,, = B,,, = B,, = 0, when #, m > 9 say.
This then yields twenty simultaneous equations for the-determination of twenty constants.
The general scheme of these equations is depicted below, ‘

A11A13A15 A17 Ay By B3 By Bi; By A2.1 A23A25 A27 Ay By By By By; By = constant

X X _ =0
X X =0
X X ' =0

X : X =0

X X =0

X X =X

X X =X

X X =X

X . X =X

, X X =X

X X XX XX "X X X X XX =0
X X XXX X X X XXX X =0
X X X X X X X X X X X X =0
X X X XX X X XXXZX X =0
X X XXX X X XX XX X =0
X X XX XXX X X XXX =X
X XX XXX X X X XXX =X
X X X X X X X X XX XX =X

X XXXXX X XXXXX =X
XXX XXX X XX XXX =X

and they readily reduce to a set of five simultaneous équations where the leading diagonal terms
are predominant. These equations were then rapidly solved by an iterative method and yielded
the following values for the constants :

An = 1-40111, Ay = — 0-56807, _
A= 0-20252 x 1077, Ag = — 0-43741 x 107,
Ay = 034523 x 1077, Ay = — 0-34341 % 1072,
A, = 011321 x 10, Ay = — 0-50168 x 1073,
A= 0-43504 X 10°, = A, — — 0-85506 x 10—,
By, = — 0-61064 x 107, By = 0-41136 x 1072,
Bs= 0-51276 x 10, By = — 0-77737 % 10-%,
By, = — 0-12043 % 10~°, By = 064103 x 1073,
By, = 0-84497 x 10~ By = — 0-14552 x 1077,
By, = — 0-91497 x 101, By= 0-51053 x 10-=

20



for the loading case 2¢LZ.= 1-0, and

Ay = 1-34792, Ay = — 0-54649,
A= 0-20195 x 107, A, — — 0-43618 x 10~
Ay = 0-34800 x 10~ Ay = — 0-34616 x 107,
Ap= 011236 x 1074, Ay = —0-49791 x 107,
A= 043799 X 10°°, A, = — 0-86086 x 10~
B = — 014491, By = 0-51316 x 10,
B = 0-66823 x 104, By = — 0-79862 x 10°*,
Bl = — 0-15034 x 10-, By = 0-61839 x 102,
B, = 0-95873 x 10-, By = — 0-13572 x 10,
B = — 0-97057 x 107, B, — 0-47288 x 10-%,

19

for the loading case 2LZ; = 1-0. Substituting these values into the equations of Appendices

I and IT it is possible to obtain the distorted shape and the stress distribution for the wing

structure. The stress distributions are shown in Figs. 6 to 15 where the values of% ou

E a =1
2 a—:; were obtained by the method of Appendix IV. The distorted shape of the wing
n=1 -

and

structure is shown in Figs. 16 and 17.

It now only remains to show that a sufficient number of terms have been taken for satisfactory
convérgence of the spar boom stress at the root. The above calculations were therefore repeated
for A,, = 4,5, = B,,, = B, = 0, when #n, m > 7 and the results are compared with the more
accurate calculation in the table below :— '

Uniformly distributed Uniformly distributed
load over whole load along the
7 surface, 2aLZ = 1-01b spars, 2LZ, = 1-0 Ib

Max. spar-boom stréss (t.e,at & =0, 9p =1)n,m =1,3,5,7 0-2043 Ib/in.? 0-2006 1b/in.2

Max. spar-boom stress (i.e.,at £ =0,6=1)n,m =1,3,5,7,9 02036 1b/in.? 0-1999 Ib/in.?

From the above table it appears satisfactory to terminate the series after n, m = 1, 3, 5, 7, 9.

3. Numerical Example for Appendix I11.—When the ribs may be assumed rigid there is a
considerable simplification in the computation. The value of the non-dimensional parameter
f is found to be f = 0866667, and the values of the constants 4, when evaluated from equation
(35) are found to be : ‘ ‘ :

Ay = 0-74016.
Ay = 0-7917 x 10-*
A, = 0-7555 x 10~
A, =0-1969 x 10-°
Ay = 0-4395 x 1077
21



Using these values the stress distribution and distorted shape have been calculated and are
compared with the exact results in Figs. 6 to 17. :

The spar-boom stress at the root, calculated from the method of Appendix IV; is 0-1955
Ib/in.? using the above values, and is 0- 1963 Ib/in.? using only the terms for » = 1, 3, 5, 7. Hence
it appears satisfactory to terminate the series after n = 1, 8, 5, 7, 9t.

APPENDIX VI
The Flexural Case

Simplified Method for the Determination of the Additional
Effects Due to the Chordwise Distribution of Loading

The additional effects due to the chordwise distribution of loading, i.e., due to the statically

zero loading 2al.Z — 2LZ,, can be -approximately assessed by assuming that the wing span 1s
infinite.

When 2aL7 = 217, = 1-0 b, the surface force S is found from equation (17) to be

§:ﬁ%mmﬁ S (43)

which is self-equilibriating. When the wing span is infinite, the solution to equation (13) becomes

1 —e*/ L ~
=) 1
| r. e (44)
—o*l /a®\ 1/
Ei é(ﬁ)&(§+’7C2> ]

- where C, and C, are constants to be determined from the boundary conditions. The stress
resultants in the reinforced skins are found to be

o 1/a\ o .
T:;C1+é<ﬁ>ﬁ~(n + Cz) 1

L

vV =

N ) . .. . . (45)
= w = 2 g et .
T —8<bL>61<TI _I CZ)_I_aCl '
S=0 :
from equation (12). Now, the boundary conditions are
T'=0atyn =1 1
1
> . . ce . . (46)

a T dy + 2E4 ou =0 r
N L o2&/, ] .

Substitution of equations (45) into these last yield the following values for the constants
| O s (A1t ooy )
Cy ~—<b_[,> 12 (aé . T, d> ‘ e '
| f. LW
A 1—0 o
Co=—1— 2¢/3a R > ] ,

T If the series is terminated after » = 1, 8, 5,7, 9, 11, 13, 15, 17, 19, the spar-boom stress at the root is 0- 1942 Ib/in.2.
22 |
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Substitution of the values of the structural constants used in Appendix V for the numerical
example yields :
C, = 0-0007689

C, = — 1-0277.
Using these values and the results of Appendix V it is found that :

Statically zero distributed | Statically zero distributed
load 20,7 — 2L 7, load 2aL7Z — 207,
- acting on a wing of acting on the wing
infinite span investigated in Appendix V
Spar-boom st_fess até=0,n=1 .. .. .. .. 0-0047 Ib/in.? 0-0037 1b/in.?
Rib-boom stressat § =0, =0 - .. .. . —0-0440 1b/in.? —0-0453 1b/in.?
"‘Rib-boom stress at § =1, % =0 .. .. . .. —0-0440 Ib/in.2 —0-0380 Ib/in.2
z-wise deflection at centre of tip rib .. .. .. .. —0-273 x 1073 in, —0-313 x 107%in.
- z-wise deflection at centre of root rib .. .. .. .. —0-273 x 1073 in. —0-279 x 1073 in.

From the above table it is seen that the additional effects due to the chordwise distribution of
loading on a wing may be approximately assessed by the simplified method developed in this
Appendix. '

APPENDIX VII
The Flexural Case
Anti-clastic Effects in Pure Bending

In considering the chordwise distortion of the wing it is of interest to compare the actual
distortion with the anti-clastic effect produced by pure bending.

If the bending moment is M, then the stress resultants in the reinforced skin are
M.

I'= (A + at®)
48
. | (48)
S—0 J
Now, from equation (12) it"is seen for 7" to be zero it is necessary that
Lov ~_olow
ady  alog

whence
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and, on integrating,

1 —o¢°

2
Et (oc"”’é — ‘L_)
a

The chordwise distortion is given by

1
J v dn
)

from equation (21), and substituting equation (49) into this last it is found that

1—02__

Et <OC€E — G‘-z‘>
i

Substitution of the values of the structural constants used in Appendix V for the numerical

example yields an anti-clastic deflection of — 0-186 x 10~°in. for a tip moment of L2Z, = L/2
in. Ib. ' ‘

v= —1

QiQ

. (49)

@ =

SR

a? ,

D= —T SA—a). L (50

Q| Q

APPENDIX VIII

The Torsional Case
Derwation of Fundamental Equations Using a
Variational Procedure

The torsional case corresponds to a loading anti-symmetrically distributed about the spanwise
centre-line of the wing box. Unlike the flexural case, the spar and rib web shears are no loriger
statically determinate and so the problem is three-dimensional. The analysis could, however,
proceed in a similar manner as Appendix I but the algebra and computation would be corres-
pondingly more intricate and so a rather different approach has been favoured. In what follows,
attention is confined to cases where the displacements u, v at z = - b are equal and opposite
to one another. '

1. Fundamental Equations—TFor equilibrium of an elemental portion of the reinforced skin
at z = b (Fig. 2), it is necessary that

a\ol 85 )
()5 +5 =9

a\oS o7’

1
= 14

S=0

0

J

v~

(51)

Cor (6) bis

where the last equation is obtained from consideration of the equilibrium- of a strip Lé& across
the chord of the box and where it is assumed that there is no distributed load along the chord
(equation (17)).
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A consistent system of stress resultants satisfying equation (51) is then

-

T =3 n"F,(£)

n=1

oo 7 1 — ,'704 1) s
- —< ) d§2n 1 n]—l— O + 2 )F(«,)
. moy e .. (7)(5bz)
. or 18,
( )ds{ - lnnjﬁan(f)}
- ( > { ! F, (s)}
as? n— 1 (n + 1)(% + 2)

where # is an odd integer and F (&), F,(£) are functions to be determined from the condition that
the strain energy is made a minimum.

J

Since the effect of the chordwise distribution of loading will, in general, be smaller than for
the flexural case, it will be assumed that there is only an equal and opposite distribution of
loading along the two spars. In part1cu1ar it 1s assumed for the remainder of this analysis that
this loading is umform 1.6.,

Zp(é) = Zr = a constant . . . . .. .. . . (53)

For this loading, the equation of overall equilibrium is -

s,e:Jsczn (Zizf)(l—g) ey

obtained from resolution of the torque at a chordwise section. Substituting equations (52) into
“this last, the spar-web shear-stress resultant is found to be

__(@Lzy
Sp=— 20 p) -

a 1 )
dﬁ{()+'»21<n+1>(n+z)F<‘f)f- | (55)

Finally, substitution of equations (52) and (55) into equation (14) yields the spar-boom load :

=<2L2R>é(§)<1—s)%—a{zz«"(s)#— S s e . 69

=

~ provided that F(1) and F,(1) are all zero, and the stress distribution throughout the whole wing
box has now been defined in terms of the unknown functions F(¢) and F,(£).
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The total strain energy stored in the wing box is, apart from an irrelevant factor :

1 p1 .
S.E. = (‘D J f {aid"_"gz (aT® — 26TT + o*T") + 2(1 + o)"'Sz} de dy

+f{2<1+a><2)55+&+2<+>“—552}d5- )

For the strain energy to be a minimum, each arbitrary variation 6 F or 6 F,, must be made zero so

that _
1 —o [ AT . ar
( >J f ,:OL —— {(aT — o1") iF oF, + («*1T" — oT) — AF 7 oF,, }

+ 2(1 + 0)S dcés, 6F,,L}Z§ dan

1 -
b\« dSg ..., , PrdP, ab o dS ¥ B
+ JO {2(1 + G><tl€> SR dF’ml 5Fm A dFm 5F’” _’_ ( —!_ ) T S dFm” 6F7” dE - 0 ’

J

where F,’, F,' denote differentiations with respect to &. Using the usual arguments of the
Calculus of Variations it is found that

1o N . dT is ds
< >J' I:a*a — g? aT UT) dFm + dfz( T’ — GT) dqu} - 2(1 + G) A& d-Fm’:l dﬂ

b\ dSy dSy | PrdPy abdS daS ‘
’ <zR> it aF, " A aF, "t Wto) T apar =0 o (58)

with the boundary conditions

l—o* d .. AT is
[( >J {— #g 2% (T — oT) = dF," + 2(1 _,— o) SdFm}aFm dry

abdS dS !
T <tR> St F, azF,,,’ 20 T g ap O J A
! ' | 1 .
A =0 ar’ a_b - 5
l:( >Jv U. __ O' T - O'T) dFm/; (SF,;L d77 + 2 ( |_ 0') dFm” 5Fm:lo . .. (60)
It is more convenient to express the first boundary condition, equation (59), in the form
! .
1—-d ar 4Py : o
[( )JJ P (@l — oT") 5% iF. oF, dydé + — JPR iF. (SF,,L dfl': 0, . (61) |

where the constants of integration are determined from equation (59).
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Substituting equations (52) into equation (58), the differential equations in terms of F and F,

are found to be

( > ¢F 1 ZF)
e n1n+)(+m st

dZF w. 1 szn
_I_U( tR ( ) d§2 = 1 14,—[-_ )(%_l_2> dé_-z

2a %+ 3
oF F
+A{ +Ew+nm+m"}

<tR>< > (2LZ,) | 2LZ ( aL)

and the mth equation

< ) ¢F | 1 &F,
m—l—l m—{—Z) a&t n=1(7’b—|—1)(%+2) d§4

n~+ m -+ 8 a‘F,

—f—() 1 —o%
o*a — of

() m+2 m—|—4) (7z—|—)

(n+4)(n +m +5) d&* .

AN/ a1 | &F | = ! “F,
Al U><7><Z> m + 1 {m Yode T4 (n + 1)(n + m + 3) a¢* }

P2F s 1 &F,
+“(§X:> (m + 1 ¢n+){@2+nqn+1x mdy}

a’F,

A a\ 1 —d*
+<;>OC*_

a? wm -+ 3 “
TAmE Dmt 2

1— o _ 1
—I—()a*a—a nln—}—m—{—IF

(o D

ZLZR al m -+ 3
( (m + 1) m—}—Z)(

JOF FEhEE e

7 -+ 3
2F + ,LE:L n+1)n+2 )F

(2L,ZR)
m+2 4b

+ g £)
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There are thus (m 4- 3)/2 simultaneous differential equations of fourth order involving only the
even differentials. The arbitrary constants contained in the complementary functions are
determined from the boundary conditions given in equations (60) and (61), viz.,

-

dF dFm__ _ —
%:d_g_o at §_Oa11d§_l
F=F,=0at¢(=1 ' S (63)

. )
1 — o? N ar apr, . o
<>JJ F— aT—GT)dFmdndE—}— J IdFde—()atf—O
. J

where the constant of 1ntegrat10n for this last equation is determined from equation (59). If the
complementary functions are expressed in terms of sinh, cosh, sin and cos functions, equations
(63) then yield two sets of m - 3 simultaneous equations.

When the functions F, F, have been determined, the stress distribution throughout the wing
can be evaluated by substitution into equations (52), (55) and (56).

The z-wise displacements of the wing are determined from

,’] y] N ‘ )
@:%Ltﬂajsw_%va, e, (64)
Ex . . | or (8) bis

(¢f. equation (18)), where the diéplacement v is determined from the stress-strain relationships
given in equation (12). The z-wise displacement wy of the spar booms is given by equation (20)
where, of course ' :

wR:Z@/,]=1. .. . . .. ..‘ .. P .. . (65)
2. The Conventional Solution.—The conventional solution® is derived from the aforegoing by

putting all the F, equal to zero. Equations (52) for the stress resultants in the reinforced skins
then become

T=T =0 b
_ (e o
T \LJ de L, . . .. . (66) -
s— _ Liener
 L\L/ag )
and the dlﬁe1 ential equation for F is.
a’b 1 d*'F a\’ d2F
2(1 -J[— O‘) FTK@ - 1 + ( tR><L dfz F
(2LZy) (ZLZ x) (aL . :
2(1 + o (t,)(L) T (Ac (1 - 2 . . (67)
where A, is the effective area of the spar booms and is usually taken to be
¥ ] .
A=A+ % O 1)
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3. The Conventional Solution where the Ribs are Assumed Rigid.—When the ribs are assumed
rigid the thickness of ribs = per unit run becomes infinite and the differential equation for F is then

i) (E) B = () 5

2LZ (“L>l—§ | . .. . . . . (69)

APPENDIX IX

The Torsional Case ,
Derivation of Equations when the Rib Booms may
be Considered Inexitensional

The determination of the cross-sectional distortion is unlikely to be of such importance as
for the flexural case since the distortion will be of a smaller order due to the point of inflexion
along the spanwise centre-line. This suggests that a simplified analysis would be suitable whereby
the rib booms are considered inextensional (¢f. Appendix III).

The stress resultants in terms of the displacements are now
. Et*3
7 o ]

L o¢
(70)

o Et 1817 lcﬁ)
2(1 4+ o) \aon ' Ldé

where the chordwise displacement v is independent of the # co-ordinate because the rib booms
are inextensional. The equation of equilibrium in terms of the displacement # is therefore as
given in equation (33) Wh1ch Nnow has the solution

D Log o mmE L
%_Et"ElA sin o sin nh 5

where 7 is an odd integer and the A4, are constants to be determined. The displacement v is
determined by substituting equations (20) and (64) into (65) giving

1 1 £ H
2(1 + o) a| Sdy — v dy :ML SRch—]—; wf,_q AE.
0 0 Lt 0 b °

Ex
Substituting equations (70} into the last of equations (51) and into equation (54) and then into
the above, it is found that

D5 CrDE--O6- DO,

—«Z(EZR (2L7,) <> O ¢ 21
| .

(71)

>R



where it is aSsumed that the loading is constant along the spars. This equation has the solution

o172
S = ( >{C sinh »¥2¢ - C, cosh y'/2¢ + 2 v, 4, sin 75 sin h%ng }

n=1

(2L7,) <; i)> (73
P

where C; and C, are arbitrary constants and

A ONGHR

MGHEOHON
REPHOEO

Now, at the root the shear-stress resultant S must be zero, i.e., dv/dé = 0 at & = 0, and so

R
( G

TFurthermore, at the tip

( Sdp=0 at &=1

J o
and substituting equations (70), (71) and (78) into this last yields

o 1/2
C, = — C,coth % — cosecy™? 3 (—)=V02 (5 4 1) A, sinh i . .. (75)

n=1 " - 2

The A, are determined from the condition of compatibility between the rear spar boom and
. the adjacent reinforced skin. From equations (15) and (16) this is found to be

1
ou 7.2
% )7:1—— EAJ\ <S % S/n I)dé:.

Substituting equations (54), (70), (71) and (73) into this last, it is found that

1/2 —1/2

— cosh y”ZE) -+ Cy(sinh y'/2 — smh yl/zf)}

erzy (£ < >
20 L5




_1/a 1IN 2 12 A nap? | 4o,
where p"—Q<L>%ﬂ+2(1—{—a)<A>(1fm+ﬁ coth 5 —1—7“ .

Expanding the right hand side of this equation in terms of the cosine series, it is found that

. B L. 1 81/ ) . .
p.4, sinh %ng = — (—)(?‘_1)/2 <Z> 50+ 4 (Cy coshy® +- C, sinh y/?)

O

- € é> ,
Lt 1 4C, t ot )1 (=)rurg
= 2 LiN/a\ ™ R —
+ <A ) 201 + o) (/nm\? + 2(2LZ) (:4“)(5) 4 b {nznz nor®
7)1 N
R
and substituting from equation (75), the above becomes

0l — 3 pud, = (QLZY0,, .. .. .. . (78

where # is an odd integer and .
2 1/2
g, = (—)-0r /;zyz{(%z) - y} p, sinh %nzﬁ 3

LEN 1 ., Mz
— (_Nm--2)j2 f 7 - 1/2 1/2 4 N
Py = (—) (A > 50+ o) 8" (v,, + 1) coth 9** sinh >

0 — —A_ 2 E yllz cosech y1/2 _ (_)(11—1)/2 @) "
" %+ é i 2
it :

(OG-0 50+ HEY - (Y],
)

Finally, the solution to equations (76) is-

@ 01” "
(ZLZ) r ‘ mzl (p’,(f w,
B

7 L5t |
m=1@,, J

(77)

and with these values of A4, the stress distribution ‘;rnay be evaluated throughout the entire
wing structure. The z-wise displacement may be evaluated from equations (20) or (64).

The convergence of the series for the stress in the spar booms is of the order 1 [ (cf. Appendix
IV) if calculated direct from equation (71). The convergence is, however, improved by 1/x if
the spar boom stress is evaluated from the expression

P E ou L ! '
Z:E%Aﬁzﬁzfﬁrﬁ%dﬂ- )

&

31



APPENDIX X

The Torsional Case
Numerical Illustrative Example

1. Genmeral.—The numerical illustrative example is based on the same wing as in Appendix V.
The calculations are for a uniformly distributed load 2LZ, = 1-0 Ib along each spar, the loading
being anti-symmetrical about the centre line of the wing box. '

9. Numerical Example for Appendix VIII.—2.1. Solution Using Only the Functions F(£) and
F,(£).—Substituting the numerical values into the differential equations (62) it is found that
F (&) and F,(¢&) are determined from

AF &F . &*F,
, 1-523438 v — 465:8333 5 4 4,000F -+ 0-2589062
d*F, ‘ '
— 7763889 % 3! + 1,383 383F, = — 2:166667 -+ 66-66667(1 — £)?,
! 2 4
and 02539063 % _ 77-63889% 4 1,333-333F 4 0-1144208 dd?
i°F, | : - .
— 2117538 % 3 + 609-2201F, = — 0-3611111 22-20092(1 — &)*.

The solution to these equations may be written
F(£) = Cy cosh -+ Casinth ys€ + Gy cosh ¢ + C, sinh y, + Cs cosh af cos B
-+ C,; sinh «é (;Qs B& + C, sinh af sin g€ -+ Cg cosh aé sin &
4 0-0166667(1 — £)* 4 0-00784485 ,
| Fy(&) = — 1-90397(C, cosh ,& - C, sinh y,&) — 0-154776(C; cosh y,¢ + C, sinh ya¢)

L Cy(— 7-20628 cosh & cos f& — 0644458 sinh af sin ¢)
L Cy(— 7-20628 sinh «f cos fE — 0-644458 cosh o sin p¢)
| C,(— 7-20628 sinh o sin p& + 0-644458 cosh o cos f¢)
4 Cy(— 7-20628 cosh af sin p& + 0644458 sinh as cos )

— 0-00135137
where
v = 216022, |
vy — 17-2388, '
o= 790116,
g — 1-83074.
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The arbitrary constants C;, C,, ... Cy are determmed from the boundary conditions given in
equation (63) and this results in the followmg systems of simultaneous equations,

2-16022  17-2388 7-90118  1-83074 Cz—l 0-0333333 |
{ 4-11300 2-66815 58-1178 8-10086 Cy | 0
;6'76-491 220-064  —649-736  259-301 c, || 133611 I ’
| 80-2598 71-8750 —356-258  182-239 Cs 2-22685 |

which has the solution
C,= 0-17435 x 107,
(-23384 x 1073,
—0-15261-x 1072,
s = 0-20195 x 107

I

4

@

C
C
C
and

9-24336 26_4,360;000 —5,130-82 9674-41 || C, - C, | —0-165498

—8-36641  —2,373,510 1,659-93 —9,626-69 Cs + Cs 0-155552
—17-5991 —40,916,500  30,739-4 —73,023-1 C, + Cs 1 0-315103

4-39419 15,335,200 —347-037 1,304 84 c, | —0-08244611

which has the solution
C,= — 018945 x 107,
Cs+ Ci= 0-28826 x 107,
Cs + Ce=  0-25939 x 1075,
C,+Cs= 0-34373 x 107"

~Substituting the above values into the equations of Appendix VIII it is possible to obtain

the distorted shape and the stress distribution for the wing structure. The stress distributions
are shown in Figs. 18 to 22 and the z-wise displacements of the spar booms are shown in Fig. 23
The rib-web shear stresses are neghglbly small and have not been plotted.

1

2.2. The Comventional Solution.—The conventional solution is derived by putting all the
F,(&) equal to zero and using an effective boom area A, where

A,= A +@=16 66671n
Substituting the numerical values-into equation (67) it is found that F(&) is determined from
a*F a*F o
1- 5234382E 465-8333 a5 + 2,400F = — 2-166667 + 40(1 — &)*.
The solution to this equation may be written.
o F = C, cosh y;& + C,sinh y,& + C; cosh v,& + C, sinh y,&
_ + 0-0166667(1 — &)* -+ 0-00556713

where Sy = 228952

"y, = 17-8360 .
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The arbitrary constants C,, C,, Cs, C, are determined from the boundary conditions given in
equation (63) and this results in the following systems of simultaneous equations,

9-28952 173360 C, 0-0333333
[1,048-25 138- 440 } [c} - [13-'3611 }
which has the solution |

C, = 0-12714 x 10~

C, = 0-24369 x 10~

and 4-98578 16,900,000 c 7 —0-0876677
[11-1831 } [292,978,000} [Cs 1 cj - [—0~142180 }
which has the solution :
C, = — 0-13661 x 10~
Cotd Co= 0-26086 x 107

The stress distributions and displacements for this solution are compared with some of those
obtained from the first solution in Figs. 18 to 23. '

2.3, The Conventional Solution where the Ribs are Assumed Rigid.—When the ribs are assumed
rigid the thickness of ribs v per unit run becomes infinite and F(§) is then determined from
equation (69), z.e.,

arF

— 4658333 ;

4 2,400F = — 2-16667 - 40(1 — &)~

The solution to this equation may be written )
F = C,coshy¢ + C,sinhy& 4 0-0166667 (1 — &)* + 0-00556713
where y = 2-26981 . :

The arbitrary constants C,, €, are determined from the boundary conditions given in equation
(63), whence '
C, = — 0-13508 x 107!

C,=0-12636 x 107% ,
The stress distributions and displacements for this solution are compared with some of those
obtained from the first solution in Figs. 18 to 23. ‘ '

3. Numerical Example for Appendix IX —The value of the non-dimensional parameter g is
B = 0-866667, as for the flexural case. The constants A, are determined from equation (77)
and are found to be

A, = 029720,
A, = 0-59772 x 107,
A, = 0-54139 x 107%,
A, = 0-17154 x 1077,
A, = 0-30885 x 1077,
Ay = 0-13004 x 1078,
A, = 0-30727 x 107,
A, = 0-14806 x 107,

Using these values, the stress distribution and distorted shape have been calculated and are
compared with the results obtained from the method of Appendix VIII in Figs. 18 to 23.
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