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PART I 

A Theoretical Investigation on Wing-Aileron-Tab 

By 
R. A. FRAz~R, B.A., D.Sc., and W. P. JoN~s, M.A. 

Flutter 

S¢~tmmary.--A theoretical discussion is given of wing-aileron-tab flutter, with speciai reference to the influence of 
spring tab control. Numerical applications of the theory are made to two representative types of spring tab, and with 
the aid of special stability diagrams certain conclusions are drawn regarding the conditions for flutter prevention. 

In relation to binary aileron-tab flutter it is shown that certain restrictions on the aileron-tab density ratio should 
be observed, and that when a balancing mass for the tab is fitted its arms should be limited to a certain length. 
Calculations relating to ternary flutter indicate that the possibility of ternary flutter occurring when all the possible 
binary types are absent is very remote. 

Introduction.--(a) Sc@e of the Paper.--The paper gives a theoretical discussion of wing- 
aileron-tab flutter with special reference to the influence of spring tab control on the flutter. 
Section I describes the analytical and graphical methods used, which are based on vortex strip- 
theory. Section II deals with the calculated binary flutter characteristics of a particular wing 
system (referred to as aeroplane S), the basic data for which are derived by simplifying assump- 
tions from those of a modern fighter aeroplane. Section III  gives numerical applications to 
ternary flutter, and approximate methods are considered in Section IV. To avoid unnecessary 
complication of the main text, the derivation of the numerical data is explained in three appendices. 

The main purpose of the paper is to indicate the general rules which should be observed in the 
design of spring tabs in order that  flutter may be avoided. Numerical values for critical speeds 
are occasionally given, but they are intended only to illustrate tendencies and should not be 
interpreted as at tempts to predict the critical speeds of any existing aeroplane. The graphical 
methods on which the final" conclusions of the paper are based, are briefly explained under headings 
(h) and (i) of this Introduction. The conclusions reached relate solely to non-preloaded spring 
tabs. 

(b) Spring Tabs Considered.--The possible advantages in control to be gained from spring 
tabs have been discussed by Gates 1 and Brown ~. One form of spring tab is shown in Figs. la  
and lb : the two diagrams correspond respectively to the cases in which preloading of the spring 
is absent, and present. Another device which has been fitted experimentally to a Spitfire and 
tested in flight is shown in Fig. 2. 

The two devices just mentioned have different elastic characteristics, and will be distinguished 
as spring tabs Nos. 1 and 2. Both have in common a casing and a spring constrained plunger. 
With spring tab No. 1 the operating force is applied to the casing, which is mounted in the main 
wing and connected by a link FM to the tab lever TM; the plunger is attached to the aileron 
lever AI. With spring tab No. 2, which contains a single compression spring, the casing is 
mounted in the aileron, and the operating force is applied to a lever BCH. This lever is connected 
directly to the plunger and also to the tab lever by a link FM. 

In the theory two fundamental  constants n, N, which are in the nature of gear ratios, are 
introduced. They are defined by n - -  ( A F -  AI)/TM and N ~-- AF/TM in the case of spring 
tab No. 1, and by n = 0 and N = HQ × CS/HC × TM in the case of spring tab No. 2. If the 
angular co-ordinates are chosen to be ~ (aileron angle relative to main wing) and fi (tab angle 
relative to aileron) the constant n is the ratio /~/~ when the tab-aileron system is displaced but 
tile spring is assumed centralised and locked. The constant N is the ratio fi/~ when the system 
is displaced but the control point H is held undis ~laced in the direction of the operating force. 

3 
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(c) The Elastic Cross-Stiffness.--When ~ and /~ are adopted as the angular co-ordinates, an 
elastic cross-stiffness is present with both types of spring tab. This cross-stiffness is the sum of 
two par t s - - the  first proportional to n times the spring tab stiffness ~, and the second proportional 
to N times the effective stiffness eo of the control circuit. 

(d) Barred Co-ordi~ates a~d Dynamical Coefficients.--The presence of an elastic coupling is a 
great inconvenience in flutter analysis, and it is generally preferable to choose angular co-ordinates 
in such a way tha t  such couplings are avoided. For example, with flexure-torsion flutter, the 
reference centre for the definition of the flexural co-ordinate is usually chosen to be the flexural 
centre with this special object in view. In the case of the spring tab it is necessary to use a linear 
transformation of the co-ordinates ~ and/~. Amongst the infinite number of possible transforma- 
tions by  means of which the cross-stiffness can be removed, there is a particular one which offers 
the very great advantage tha t  it depends only on the gear ratios ~¢ and N, and not on ~ and ~0. 
The new angular co-ordinates ~, /~ are connected with ~, /~ by  the relations ~ = ~ + /~ and 
t3 = n~ + Nil. The dynamical coefficients resulting from the transformation, which are of 
course linear combinations of the original coefficients, are referred to as the ' barred coefficients '. 
One of tile barred direct elastic stiffnesses for the aileron-tab combination is directly proportional 
to ~0, the other is proportional to ~, and the cross-stiffness is zero. With normal spring tabs 
the values of the barred aileron and tab moments of inertia, and of the barred product of inertia, 
are all roughl 7 of the same order. To reduce the barred product of inertia to zero, the tab would 
have to be provided with a prohibitive degree of mass overbalance. 

(e) The Complete Dynamical System.--The complete system (Fig. 3) consists of the port and 
starboard wing-aileron-tab combinations together with the control column and the inter- 
connections. When the springs are not preloaded the possible varieties of flutter are symmetrical 
flutter (control column locked) and antisymmetrical flutter (control column free). Each variety 
can involve wing flexure and torsion and displacements of the tab and aileron, but as usually 
the simpler binary and ternary types will mainly be considered in numerical applications. With 
antisymmetrical flutter the stiffness (r0 is not operative. In the case of preloaded spring tabs 
symmetrical and antisymmetrical oscillations can occur, and more general varieties are perhaps 
also possible. 

(f) Suffix Notation for Dynamical Co-ordinates and Coefficients.--In. view of the large number 
of parameters involved in the theory, it is convenient to adopt a single suffix notation for the 
angular co-ordinates and a double suffix notation for the coefficients. Thus the usual angles 
¢, 0, ~, /~ denoting wing flexure, wing torsion and the aileron and tab angles, are replaced respec- 
t ively by ql, (1/Co)q~, (l/Co)qa, (l/Co)q~, where Co denotes the root chord and l is the spaflwise distance 
of the reference section from the root. The typical inertial coefficient then is A~g, and the 
corresponding non-dimensional coefficient is a~. For example, aaa, a4~, aa4 are the non-dimensional 
aileron and tab moments of inertia, and the product of inertia. Similarly g~. g~, g~ are the 
barred coefficients corresponding to the transformed co-ordinates ~,[= ql), q2(= q=), qa, q~. 

A somewhat similar scheme of notation is used to describe the type and var ie ty  of flutter. 
Thus symmetrical torsion-aileron flutter is indicated concisely as (23s) flutter, antisymmetrical 
flexure-aileron-tab flutter as (134a) flutter, and so on. 

(g) Air-Load Coefficierats.--In flutter analysis at tention is usually restricted to critical con- 
ditions and to a single complex constituent motion. In the present paper, in order to accord 
with a notation which has now been standardised for matrices a, the complex amplitudes corre- 
sponding to q,, q2, q3, q~, are denoted by k,, k2, ka, k~, so tha t  the critical flexural motion for instance 
is q, = k,e ~=ei~, where f denotes the critical frequency. 

Now suppose Q~, Q~, (2~, Q~ to denote the non-dimensional aerodynamic moment coefficients. 
On the hypothesis of small oscillations the complex amplitudes of each moment coefficient must 
be linear in k,, k~, ha, k~ so tha t  0~, for example, is given by an expression of the form 

O~ = -- (~ik~ + ~ k ~  + d ~ k  a + ~ k ~ ) e  ~':~', 
and similarly for the remaining moments. The complex coefficients . ~  - C'~ + iB~ are termed 
the air-load coefficients. From dimensional considerations it is evident that ,  if scale effect is 
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absent (as is assumed), the air-load coefficients can depend only on the value of the non-dimensional 
frequency parameter referred to some datum length, e.g., on o~ = 2afco/V, where V denotes the 
critical speed and Co the root chord. 

In the numerical applications the values of the air-load coefficients for aeroplane S are calculated 
by simple vortex strip-theory, in which tile theoretical two-dimensional coefficients are integrated 
over tile span and allowance is made for the distortion modes. 

(h) Inertia-Stiffness Diagrams*.--When the flutter is binary and no elastic cross-stiffness is 
present, the influence of the two moments of inertia and of the two direct elastic stiffnesses can 
be discussed very conveniently by  a graphical method similar to tha t  applied for flexure-torsion 
flutter by  Cicala ~. The method makes use of a ' base curve ' and a ' frequency parameter curve ', 
(e.g., Fig. 4), which depend only on the air-load coefficients and the product of inertia and are 
for convenience usually plotted on separate sheets. The sheet with the base curve is referred 
to as the inertia-stiffness diagram, and is used as follows. The current values of the moments of 
inertia are plotted in the third quadrant,  and through the inertia point I so obtained the stiffness 
line IP  is drawn having for its slope the ratio of the two elastic stiffness coefficients. Then if 
P1 is any intersection of IP  with the base curve, and if IM1 and PM1 are parallel to the co-ordinate 
axes, PM~ is inversely proportional to the square of the critical frequency, and so ~o"PM~ is 
inversely proportional to the square of the corresponding critical speed. The appropriate value 
of ~o 2 is read from the frequency parameter curve. If two such intersections occur there are two 
critical speeds, and if no intersections occur flutter is avoided. Examples of binary inert ia-  
stiffness diagrams in which the product of inertia also is varied are provided by  Figs. 8 to 16. 
With some additional complications the method can be extended to ternary flutter. 

(i) Prevention of Binary Aileron-Tab Flutter.--In the case of (34} flutter and spring tab No. 2, 
if N is kept constant and the barred product of inertia ~3 ( =- c784) is varied, the base curves resemble 
a set of parallel wedges pointing towards the right and with their vertices in the third quadrant  
(see Figs. 13, 15 and 16). With practical distributions of mass, the values of a33 and c~ do not 
differ greatly from P, and it is found tha t  the inertia point I always lies near the vertex of the  
appropriate curve. In order tha t  flutter may be prevented absolutely (i.e., for all values of 
and ~0) it is necessary tha t  no stiffness line through I shall intersect the base curve. Since the 
slope of the stiffness line is always positive, the abscissa of I (namely a4~) is required to be less 
than the numerically smallest abscissa of the curve. Now it is found tha t  this abscissa plots 
linearly a g a i n s t ~  (Fig. 17). Hence if, in this new diagram, the vertical scale is adopted for 
a~, all points J (p, c7~4) lying above the line represent inertial conditions for which flutter is possible, 
whereas all points below the line represent conditions for which flutter is prevented absolutely. 
The disadvantages of a low aileron-tab density ratio will be clear from the small sketches in 
Fig. 17 indicating the type of covering. In para. 16 it is also shown by simple arguments tha t  
any addition of mass to the main aileron will result in the inertia point J being displaced in a 
direction which will improve the stability. On the other hand, addition of mass to the tab ahead 
of the hinge axis will produce an advantageous displacement of J only when the offset of the 
mass from the hinge axis is restricted within a certain limit. 

The general conclusions regarding the absolute prevention of binary aileron-tab flutter with 
non-preloaded spring tabs of type No. 2 are stated in para. 16. In paras. 18 and 19 it is shown 
tha t  the same conclusions are also valid for the more general spring tab type No. 1. 

(j) Prevention of Ternary Zlutter.--The problem of ternary flutter prevention is considered 
in paras. 20 to 23, but  owing to the complicated nature of the inertia-stiffness diagrams simple 
stabil i ty conditions similar to those for binary flutter cannot be obtained. I t  is shown tha t  both .  
flexure-aileron-tab and torsion-aileron-tab flutter are possible under certain conditions when 
aileron-tab flutter is absent. Flexure-aileron-tab flutter is eliminated by static balance of the 
aileron (al~----0), but  torsion-aileron-tab flutter is still possible. This also is prevented by  
balancing the aileron dynamically (a,~ ---- 0). The possibility of ternary flutter occurring when 
all the binary types are absent is very remote. 

* A description of inertia-stiffness diagrams based on classical derivative theory is given in para. 10, 
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Section I.  General Theory 

1. Elastic Constraints.--(a) S p r i n g  Tabs . - - I t  is assumed first that  the preloaded spring tab 
No. 1 (see Fig. lb) is fitted, and that  ~ =- 0, ~ = 0 when the plunger is centralized. When both 
the aileron and the tab are given small displacements the rearward displacement of the plunger 
from its initial position is AI~, and the corresponding displacement of the casing is AFt- -- TM~. 
Thus the right-hand spring will be picked up if 

AI~ > AF~ -- TM/~, 
i.e., if 

r~ > R~ , 

where r - TM and R - AF -- AI. In this case, if P0 denotes the preloading force in the spring, 
and ~ denotes the stiffness rate, the strain energy is given by 

On the other hand, if r/~ < R~, the left-hand spring will be engaged, and the strain energy is 
then given by 

2W1 = ~(R~- --r/~ -F ~-?S . . . . . . . . . . .  (1.2) 

If spring tab No. 2 is fitted (see Fig. 2) the additional spring compression when ~ > 0 is 
(CK × .TM/.CS)~. Hence if ~ denotes the  stiffness rate and P0 the preloading force, the strain 
energy is given by 

2 W 1 = ~  rfl + . . . . . . . . . . . . .  (1.3) 

where r --- (CK x TM/CS). On comparison of (1.1) and (1.3) it is seen that  the theory for spring 
tab No. 2 is covered by that  for the particular case R = 0 of spring tab No. 1. 

(b) Control Circui t . - -In Fig. 3 the connections to the control column are represented by 
segments of cables tensioned by springs, each of stiffness o0. To simplify the diagram further, 
the actual control column is replaced by a nominal column Co mounted in the plane of the wings, 
and the movements are shown transmitted to the tabs through levers Lp, L~. 

The flexural and torsional wing displacements do not (in general) contribute to the strain 
energy of the control connections. Thus the effective variables to b e  considered are ~p, ~p (the 
port aileron and tab angles), ~, 8, (the corresponding starboard angles), and lateral displacement 
Y of the points of at tachment of the control cables to Co. 

Suppose first tha t  spring tabs No. 1 are fitted. Then in a general displacement of the complete 
system the rearward displacement of the point H in Fig. lb for the port wing is AFSp -- TMt?p. 
Hence the corresponding displacement of the point Hp' of the lever Lp in Fig. 3, measured inwards 
along the span is 

• where R'  - ~AF, r '  - ~TM, and v is a gearing constant. Similar considerations apply for the 
starboard wing. I t  readily follows that  the strain energy of the control connections (excluding 
spring tabs) is given by 

2W~ = 200 {(R'~p -- r ' ~ )  ~ -F ( R ' ~  --  r'fi~) ~ + 2Y 2} 
+ 4 0Y - -  - -  ( R %  - -  . . . . . . . . .  ( 1 . 4 )  

The same expression applies for spring tabs No. 2 (Fig. 2), except that  for this case R'  ~ ~HQ 
~nd r '  ~- v(HC x TM/CS). 



(c) Complete S y s t e m . - - T h e  to ta l  s train energy, obta ined by  the  addi t ion of W~ and W~ and 
the  usual terms arising from wing flexure and wing torsion, is given by  

2 W  = l,/(¢p ~ + ¢~) + mo(O~ ~ + O, 2) 

+ 2a0{(R'~p --  r 'p ,)  ~ + (R'~s --  r'/3,) ~ + 2Y ~} 

+ 4a0Y{R'~ --  r'$~) --  (R '# , - - r ' $ , ) }  . . . . . . . . .  (1.5) 

In  each of the  round brackets  containing ambiguities of sign, the  positive or negat ive sign is to 
be taken  according as r/~ > R~ or < R~ for the re levant  wing. 

The complete set of elastic momen t s  on the  port  wing-a~leron-tab combinat ion,  obtained by  
differentiation of the  strain energy function, can be expressed by  matrices as 

where 

= Exp + 

x~ -{¢p, % 
E - l, 

0 

0 
- { 0  

- { 0  

OOp' O~p' 3~p W 

P0g + 2%~Y,  . . . . . . . . . .  (1.6) 

0 0 0 7, 

/ mo 0 0 

0 ~R ~ + 2~oR'2 - -  a R t  - -  2zoR'r '  ] 

1 0 - -  ciRr - -  2aoR'r '  ~r ~ + 2a0r '~ 

o - R r } ,  

o R '  - -  r ' } .  

The corresponding s tarboard elastic moment s  are 

(Le,, M ~ ,  H e ,  Te,} = Ex~ 4- PoCo --  2~ov~Y, ..  

and the  restoring force on the  ' control column ' (mass Mo) is 

~W 
~ y  --  2~0R'(~,-- ~,) --  2~or'(/~p --  /~,) + 4~oY 

-= 2~,v~'(xp --  x,) -[- 4zoY,  ..  . .  

where v~' denotes the  t ransposed of v ~, i.e., the  row [0, 0, R' ,  --  r ']. 

(d) Spr ing  Tab Gear R a t i o s i - - T h e  constants  defined by  

. .  ( 1 . 7 )  

. .  (1.8) 

n =- R / r  N - R ' / r '  . . . . . . . . . .  (1.9) 

play an impor tan t  par t  in the  theory.  They  will be referred to as the  spring tab gear ratios. 

The first constant  n measures the  ratio of tab angle to aileron angle when the  system is moved  
but  the  spring is assumed centralized and locked. The second constant  N measures the  ratio of 
tab  angle to aileron angle when tile sys tem is moved  but  the  control point  H is held undisplaced 
in the  direction of the  operat ing force (see Figs. 1 and 2). Wi th  spring tab No. 2, the  first gear 
ratio n = 0. 

2. The Dynamica l  E q u a t i o n s . - - I t  will first be assumed tha t  the  plungers of the  spring tabs are 
in cent ra l  position when the  system is in equilibrium. 



Let Up - {L ,  M ,  H ,  T}p and Us = {L,  M ,  H ,  T} ,  denote the columns of tile increments of 
aerodynamical moment on the port and starboard sides in the disturbed motion" also let A 
denote the inertia matr ix appropriate to each wing system, and E, ~, ~ be the matrices defined 
for equations (1.6). Then the dynamical equations are as follows. 

P o r t  W i n g  

d 2 
E )  -b P0~ + 2a0v~Y = Up . . . . . . . .  (2.1) ( A ~ - 2  + xp • • • 

S t a r b o a r d  W i n g  

( A  d~ E )  . . . . . .  ~/~ + x,  4-  PoU - -  2 a # Y  = U . . . . . .  (2.2) 

Contro l  C o l u m n  (of effective mass Mo) 

d 2 y  
M o - ~  + 2 ~ # ' ( x ' ~ -  x,) + 4~0Y = 0 . . . . . . . . . . .  (2.3) 

To express these equations in the non-dimensional form a new time variable , ,  and modified 
dynamical co-ordinates q are introduced, defined by 

- t V / c Ü  ; qo - Y /1  
. . . .  (2.4) 

ql - ¢ ;  q~ -- (Co/1)o ; q3 - (co/l)~; q~ - (co/l) 

The last four relations can be expressed by matrices as 

x = (Z/Co)~q 
where q =- {ql, q2, q3, q4} and 

/o o| 1 0 

[0  0 1 0 ]  

0 0 0 1 

On application of the preceding transformations to (2.1), premultiplication of the resulting 
equations by ~ to retain symmetry  of the inertial and elastic matrices, and division throughout 
by p V~lco ~, we obtain 

( a D  ~ + e)qp ± poCO + n # q o  = Q~ , . . . . .  . . .  (2.~) 
in which 

d 
D - d~ ; a = #A#/p lco  4", e - #E# /pVZlco  ~ 

Po =- Po/P V212Co ; no = 2~0/p V~lco, 
and 

~Up _{ L M H T 1 
@ = P V~Pco - -  P V ~ P '  P V2l~co ' P V21~Co ' 0 V~Pco I ~" 

A similar t reatment  of (2.2) yields 

( a D  2 + e)q~ 4- poC~ - -  no~qo = Q, . . . . . . . . .  (2.7) 
while (2.3), expressed non-dimensionally, can be written 

(rooD ~ + 2Cono)qo -+- no~'(qp - -  q,) = 0 . . . . . . . . .  (2.8) 
where mo - Mo/pCo~l. 

In (2.6) the upper or the lower sign for g must be taken according as rq~  - -  Rq~p > 0 or < O. 
Similarly in (2.7) the upper or lower signs are taken according as rq4, - -  Rqs ,  > 0 or < O. With 
non-preloaded springs the.se rest riction~ do not arise sia,ce Po = O, The dynamical equations with_ 
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the simplification/5o = 0 are also valid for small disturbed motions and preloaded or non-preloaded 
springs, if the controls are assumed to be non-centralized and the force applied to the control 
column is kept steady. In this case the dynamical co-ordinates and the aerodynamical moments 
represent the deviations from the equilibrium values. 

The full expressions for the non-dimensional inertial and elastic coefficients a~j, %. are given by 

a - A~JoPCo 2 

A21/pPCo ~ 

A 3J p P Co 3 

A41/p12Co 3 

A~2/pPco ~ A~3/pPCo 8 A14/pPCo3~ , 

A =/riCo 4 A 2~/plco ~ A ~/plco ~ | 

A.~/olco 4 A3a/plco 4 A3~/olco 4 

J A ~Ip lco ~ A ~Ip leo ~ A ~/p lco ~ 

(2.9) 

e - l i p  V~l ~ 0 0 0 

0 molP V~lco ~ 0 0 

0 0 (~R 2 + 2~oR'~)/pV~Ico ~ - -  (~Rr + 2~oR'r')/pV~lco ~ 

0 0 - -  ((rRr + 2~oR'r')/pV~lco ~ (~r 2 + 2~or'~)/pV~lco ~ 

(2.10) 

3. Classical Derivative Theory and Vortex T h e o r y . - - T h e  aerodynamic moments can be expressed 
either by  derivative coefficients or by the more general  air-load coefficients of vortex theory. 
I t  is necessary to explain the different viewpoints. 

(a) Classical Derivative T h e o r y . - - H e r e  the moment coefficients Q are represented by expressions 
which are linear in the accelerations, velocities, and displacements. Thus say 

- Q = + l ;D + 

where D - d/dr and ~, b, ~ are the matrices of the constant derivative coefficients. An important  
consequence of this assumption is the linearization of the dynamical equations. The most general 
disturbed motion can then be  represented by a superposition of a finite number of exponential 
constituent motions q = k e , and the relevant values of 2 are the roots of the usual determinantal  
equation. Moreover, the free constants are determined uniquely by the displacements and 
velocities which define the initial disturbance. In this theory the aerodynamic moments corre- 
sponding to the typical constituent are given by 

-- Q = (($~ + ( )z+ ~)ke ~'~ - ' d k e  ~, say . . . . . . . . .  (3.1) 

In  particular, with a simple harmonic constituent of frequency f, the appropriate value of ~ is 
iro, where o denotes the frequency parameter co = 2~fco/V, and then 

= - -  dz~o ~ + ~ + ibco . . . . . . . . . . . . .  (3.2) 

(b) Vortex T h e o r y . - - I n  this theory only the critical type of motion q = k e i~* is usually 
considered. Then 

- Q = d k e  ' ~ - ( C + i B ) k e ' ° % s a y ,  . .  . .  . . . . . .  (3.3) 

where d is the matr ix  of the ' air-load coefficients '. These coefficients are functions of co only. 

A theory restricted to simple harmonic oscillations is sufficient for calculations of critical 
speeds, but  is inadequate for a proof of the familiar resolution theorems concerning symmetrical 
and antisymmetrical oscillations. Nor can it be applied with problems such as the discussion of 
the stabil i ty of steady oscillations in the case of preloaded spring tabs. The appropriate 
gen_eralizatiol!.s wi!l be indicated without any a t tempt  at formal proof. 
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The essential necessary assumptions are that  the most general motion is expressible by  the 
superposition of exponential constituents q = k eXL where Z = ~ + ico is in general complex, 
and that  the moment coefficients corresponding to that  constituent are 

- - Q = d k e  ~, . . . . . . . . . . . . . . . .  (3.4) 

in which d depends on 2 only. The damping parameter ~ and the frequency parameter co are 
here defined in terms of the true damping factor/,0 and the true frequency f by the relations 

-t~oco/V and co -2~fco/V. 

Now consider the small motions of a quite general aerodynamic system given by 

(aD ~ + e)q = Q,  

where, as previously, D - d/dr. The trial solution q = k e ~'~, in conjunction with (3.4) here leads 
to the condition 

(a~, ~ + e + d ) k  = 0 ,  

so that  the permissible values of a are given by the determinantal  equation 

[aZ ~ + e + d t =  0 . . . . . . .  (3.s) 

The corresponding equation obtained by classical derivative theory would be 

I ( a +  ~)a ~ + b ~  + c + ~ t  = 0  . . . . . . .  (3.6) 

If the system has n degrees of freedom (3.6) has 2n roots ; on the other hand, (3.5) has an infinite 
number, since a¢ is in general a matr ix of transcendental  functions of 2. Hence, according to 
classical theory, a disturbed motion is fully determined by 2n conditions, e.g., n displacements 
and n velocities at a given starting instant. Whereas, in vortex theory, the term ' initial distur- 
bance '  is strictly speaking meaningless. For example, suppose a wing to be moved inexorably 
in any manner before t = 0, and to be released at t = 0 with known velocities and displacements. 
Then, according to classical theory, the ensuing motion is quite independent of the movements 
before t = 0. On the other hand, vortex theory would take into account the antecedent air 
disturbances. 

In  the present paper vortex theory is adopted in preference to the simpler classical theory, 
since in the particular numerical applications considered all the air-load coefficients required 
can be calculated directly. 

4. Symmetrical and Antisymmetrical Oscil lations.--With non-preloaded spring tabs, or with 
preloaded spring tabs oscillating about a non-central equilibrium position, equations (2.6), (2.7) 
and (2.8) are applicable with the simplification 15o = 0 .  In this case, if a typical  constituent 
motion is denoted by {kp, k ,  k0}e ~'~ and the aerodynamic moments are defined by (3.4), the equations 
require tha t  

(a2 ~ + e + ~¢)k,, + no~ko = O, 

(az ~ + e q--d)k, -- n0~h0 = 0 ,  

(too a~ + 2cono)ko + n~'(k~ --k,) = O. 

These may be written 
(ax ~ + e + d) (kp  + k~) = O, 

(aX ~ + e + d ) ( k .  - -  ks) + 2~o~ko = O, 

(moZ ~ + 2Cono)ko + r~,~'(kp - k~) = O,  

and elimination of the complex amplitudes leads to the determinantal  equation 

a;t ~ + e + ~4 0 2nO~ v~ = O. 
0 a2 ~ + e + o4 

0 n~'  too;? + 2cono 
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The permissible values of 2 are thus  given either by  

lax ~ + e + d  I = 0 

= k, and ko ---- 0 (symmetr ical  oscillations)" or by  

= 0  

. . . . . .  (4.1) 

in conjunc t ion  wi th  kp 

a~ ~ + e + ~ 2~0v~ . . . . . .  (4.2) 

noO' moZ ~ + 2Cono 

in conjunct ion  wi th  kp =- --  k, (ant i symmetr ica l  oscillations). 

When,  as will be assumed th roughout ,  t i le iner t ia  of the  control  column can be neglected 
(too = 0), (4.2) simplifies to 

]aZ" + e + d [  - -  0 . . . . . .  (4.3) 

where  
e - e - -  n ° ~ g t g ' .  

Co 

The ma t r ix  e, giving the  elastic stiffnesses appropr ia te  to the  an t i symmet r i ca l  oscillations, is 
t hen  defined similarly to e (see (2.10)) bu t  wi th  the  te rms dependen t  on ao omit ted .  

I n  the  more  compl ica ted  case where  the  spring tabs  are pre loaded and oscillate about  the  
centra l  position, bo th  symmet r ica l  and  an t i symmet r i ca l  oscillations can occur, bu t  a formal  
proof t ha t  these yield the  most  general  mot ion  has not  ye t  been devised. The  symmet r ica l  
oscillations (in which qp = q,, q0 = 0 and the  terms involving P0 have  the  same signs) are given 
b y  

(aD ~ + e)q +__ pog = Q,  

where  tile upper  or the  lower sign is t aken  according as r q ~ -  Rqa > 0 or < 0. The anti-  
symmet r i ca l  oscillations are given similarly by  

(aD ~ + ~)q _+ Po~ = Q • 

5. Elimination of the Elastic Cross-Stiffness.--For a discussion of the  s tabi l i ty  it is convenient  
to remove  the  cross-stiffnesses which  are present  in the  elastic matr ices  e and e. This requires 
a change of the  aileron and tab  co-ordinates q~, q~ to new ' bar red  ' co-ordinates q,, q~, as explained 
in the  In t roduct ion .  If a general  t rans format ion  is assumed, say  

q~ - - u ~  + v ~ .  

q~ = w ~  + @ ,  

it  is readi ly  shown tha t  the  cross-stiffness will be absent  in the  t rans formed Langrang ian  equat ions  
provided  

or~(nu - -  w ) ( n v  - -  z) + 2~or"~(Nu - -  w ) ( N v  - -  z) = 0 ,  . . . . . .  (5.1) 

where  n ( - R/r) and N ( - R'/r ')  denote  the  gear ratios (see (1.9)). This condi t ion is satisfied 
for all values of a and  ao if the  free constants  are chosen to be u = v = 1, w = ~, z = N.  The 
relat ions connect ing the  original and  the  modified co-ordinates t hen  are 

q~ = q" + q',  ] (s.2) 
~o = , ~ ,  + N ~ , ,  / . . . . . .  . . . . . .  

to which  for s y m m e t r y  m a y  be added  ql = ql, q~ = c]~. W h e n  this t rans format ion  is applied, ti le 
equat ions  for symmet r i ca l  oscillations become 

(aD ~ + ~ + ~ ) ~  = 0 . . . . . . .  ~5.3) 
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where the  new inertial  coefficients 

the  new elastic coefficients &g are 

d~j are given by 

a l l  a12 ala @ 7gat4 

a2t a,,2 a,.a @ #a~a 

aal + Na4x aa= q- N a ~  aaa q- naa~ q- Nasa q- n N a ~  

given by  

I,/ p V2P 0 0 0 

0 mo/p V~Ico ~ 0 0 

0 0 2~0r'2(N -- n)~/pV~lco 2 0 

0 0 0 a # ( N  - -  n)~/p V2lco ~ 

ala + Nal~ 

a=a + Na=~ 

aaa + Na34 + na~3 + n N a ~  

a~a + N(aa~ + a4a) + N2a~.  

, ( 5 . 4 )  

(5.5) 

and the  new air-load coefficients ~f j  - C~j + iB~ are defined similarly to (5.4). 

The results just s ta ted  are also applicable for the  ant isymmetr ica l  oscillations except  tha t  
~0 = 0 in (5.5). 

From (3.3) and (5.3) it is seen tha t  for critical condit ions of the  system 

[ - - ~ 2 + g +  d+iBI = 0  . . . . . . .  . .  ( 5 . 6 )  

For the  fur ther  t r e a tmen t  of (5.6) it is convenient  to in t roduce  the  further  symbols 

X '  = all, ¥ ' =  g~, Z '  = g~, W '  = &~, . . . . . .  . .  (5.7) 

2I/0,12 =-- X + ~'~ll = l , / 4 = 2 p l ~ C o ~ f  ~ , 

y,/o,1~ - y + &~ = mo/4~olco~f ~ , 

Z'/~o ~ - Z q- &~ = 2aor'2(N --  n)~/4u~plCo~ff, 

W ' / o ?  =- W + &~ = ~r'~(N - -  n)~/4~flCo~ff , 

D~ i ==- - -  &s*o 2 + C~j , . . . . . .  

x - X '  + Dl l ;  y - Y '  + D2~ ; z - Z '  + Daa; 

. .  ( 5 . s )  

. . . . . .  . .  ( s . 9 )  

w - -  w ' +  . . . . .  ( 5 . 1 o )  

The de te rminan t  (5.6), expressed at  length,  is then  

x + i B ~  D12 q- iB12 Dl+ + iBl+ 

D21 + iB21 y + ibm2 D++ + iB2~ 

Dl~ + iBl~ = 

D2~ + iB2, 

w + i B ~  

o . . . . .  ( 5 . n )  

The preceding definitions, and equat ions are also applicable for ant isymmetr ica l  oscillations, 
wi th  the  simplification Z '  = 0. They  can also be applied for divergence speeds, which correspond 
to co = 0. In  this case there  is the  simplification B~g = 0. 

6. N a t u r a l  Frequencies i n  Vacuo and  in  St i l l  A i r . - - I n  the  present  theory  a dist inct ion is drawn 
be tween the  natura l  frequencies fv appropriate  to oscillations in  vacuo and the  frequencies f~ 
app.ropriate to oscillation in still ' perfect air '. The equat ion  giving the  frequencies fv can be 
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deduced from (5.11) by omission of the air-load coefficients and division of the rows by ~2. 
If X, Y, Z, W are as defined by (5.8), the required equation is 

- -  ~ Y ~  - -  & ~  - -  &~ 

- -  & l  - -  & 2  Z ~  - -  & 4  

= o . . . . . . . . .  ( 6 . 1 )  

To obtain the corresponding equation for oscillations in still air, use is made of the  asymptotic 
expressions for the air-load coefficients. When co --+ oo (V--+ 0) it is found that  

- % ; O ,  . . . . . . . .  ( 6 . 2 )  

where f~j are positive constants such that  y~j = 9g~, which represent the aerodynamic (or 
' apparent additional ') moments and products of inertia of the system in still air. The limiting 
form of (5.11), when the rows are divided by co" and co -+ ~,  is 

X~--  9n --Y~2--$x2 --a~a--9~a - -Y~4- -9~  = 0 .  .. (6.3) 

- -  ~21 - -  921  Y ~  - -  ~22 - -  /~22 - -  923 - -  ~ 2 4 -  9 2 t  

- -  & ~  - -  9 ~  - -  a%2 - -  9 ~  Z ~  - -  9 ~  - -  & ~  - -  9 ~  

7. The Inertial Coefficients.--In past theoretical investigations the control surfaces have usually 
been treated as rigid and provided with two pivots only. However, on modern aeroplanes 
control surfaces with three or more pivots, or even with a continuous ' piano ' type of hinge, 
are not uncommon. In tile present analysis it is supposed that  both the aileron and the tab 
are provided with hinges which are effectively continuous along the span and capable of bending 
deformation with the wing. On the other hand, since some limitation is necessary on the number 
of degrees of freedom, the controi surfaces are treated as rigid in torsion. The assumption of 
continuous hinges ensures continuous connection between the control surfaces in al lwing sections, 
and is necessary for a satisfactory calculation of the air-load coefficients. 

Now suppose the port wing, for example, to be given a general displacement $, 0, 8, fl and 
let z~_~_,, &_, z, denote, respectively the vertical displacements of a general point of the main 
wing, of the main aileron, and of the tab. The terms 'ma in  wing '  and ' m a i n  aileron'  here 
mean tile parts of the wing that  remain when the aileron and tab are removed, and the part 
of the aileron that  remains when the tab is removed. Then 

= + OxF( ) , . . . . . . . . . . . . . . . .  ( 7 . 1 )  

where, as usual ~ = y/l, and f(~/), F(~) are the flexural and torsional distortion modes of the wing 
proper. These functions are assumed chosen such that  f(~) ---- F(7) = 1 at the reference section 
7----1. 

Again, t h e  twist of the wing proper at section 7 is OF(7). Hence the local aileron angle (i.e., 
the inclination to the wing at section 7) is 

~ = ~ + 0{1 -- F(7)) • 

It  follows that, if the aileron hinge axis lies at distance d~ behing OY*, 

z,_,---- $lf(~) + [x + d~{F(~) -- 1}]0 + (x -- d~)# . . . . . . . . .  (7.2) 

Moreover, if the tab hinge axis lies at distance d, behind OY 

z ,  = + (x  - . . . . . . . . . . . . . . . . .  ( 7 . 3 )  

* It is here assumed for simplicity that the hinge-line is parallel to OY. 
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I t  should be noted tha t  when 8 = 0 (aileron locked central  at  the  reference section) (7.2) does 
not  reduce to (7.1). Thus, in the  discussion of f lexure-torsion flutter, the  distort ion modes must  
be t aken  as given by  (7.1) for points of the  main wing, and by  (7.2) with ~ = 0 for points of the 
aileron. 

The inertial  coefficients can be deduced from (7.1), (7.2), (7.3) in the  usual way by  expansion 
of the  kinetic energy funct ion 

2 T  = X mi~_~_d + X m~_~ 2 + X m ~ f  , 

where the  summat ions  are t aken  over the  appropriate  parts of the  system. To express the  results 
convenient ly,  let z ,  27, 2; denote  respectively summat ions  t aken  over the  complete  wing (including 

W ¢Z 

aileron and tab), over the  complete aileron (including tab), and over the  tab only. Then  the  
inertial  coefficients are found to be 

111 = 

33 - - -  

A I 2  = 

l l a  = 

23 = 

1 8 4  7----- 

The corresponding non-dimensional  coefficients a~i are given by equat ion (2.9). 

In  practice bo th  the aileron and the  tab would be ' m a s s - b a l a n c e d '  on some basis. In  the  
present  paper  an aileron is described as u n i f o r m l y  s ta t ical ly  balanced if the  centre of mass of the  
aileron in every sect ion lies on the  aileron hinge-line. A similar definition applies for the  tab. 
If both  condit ions are satisfied the  combinat ion is said to be uniformly statically balanced. 
From (7.4) it is seen tha t  with such a system A l a  = Aid = 0, A23 = A83, and A~ ----- A34 = A44. 
The inert ia  mat r ix  then  has the  simple form 

~r m l y Y ;  A 22 = Z m x ~ F  2 + ~r m {(x - -  d~ Jr- dasF) ~ - -  xYF~} ; 
~v ~v as 

Ay~ = X m l x f F  - -  X m l f ( x  - -  das)(F - -  1)" 

A3~ = X m l ( x  - -  das)f ; A~4 = A4~ = _r m l ( x  - -  d~)f ; 
as t 

= - das)(x - ao + dasf )  ; A24 = = z - -  d , ) ( x -  ao + aas f )  ; 

A48 = ~ m ( x  - -  das)(x - -  d,) . . . . . . . . . . . . . .  (7.4) 

ai~ 0 0 ] .  

! a2~ a83 a44 

a88 a88 a44 

a44 a44 a44 ] 

a : -  all 

ayl 

0 

0 

0 

a88 + Nad~ 

a33 + (Nn + N + n)a~4 

a88 q- N ( N  q- 2)a44 

. .  (7.5) 

(7.6) 

The corresponding barred inertial  coefficients are 

¢7 == air al2 0 

ayt ay~ aa3 -}- ha44 

0 as~ + na~ a33 + n(n -4- 2)a4~ 

0 a~3 q- Na~ a38 q- (nN q- n + N)a44 

I t  is readily verified tha t  the  a i leron- tab barred inertias then  satisfy the  relation 

( N  + n -q- 2)~  : (N  q- 1)6788 q- (n q- 1)d44, . . . . . . . .  (7.7) 

in which /5 - G4 = d48. If on the  other hand  the  tab balancing is such tha t  the  a i leron- tab 
product  of inertia a84 = a43 : 0, the  barred inertias for the  combinat ion are 

a-a3 = d83 + nYa44 

fi --  d33 + nNa44 

Yd,~ = G3 + NYa~ 

(7.8) 
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8. B i n a r y  Inert ia-St i f fness  D i a g r a m s . ~ T h e  graphical t reatment of binary problems will be 
explained in relation to aileron-tab flutter. 

The determinantal  equation appropriate to (34s) flutter* is (see 5.11)) 

+ i[h~ w + i B ~  = 0 ,  . .  

which yields 

zw = D34D4a + BaaB44 - -  Ba4B~a - E 3 4 ,  . .  . .  

B ~ z  + B ~ w  = D3~B~ + D ~ B ~  -- F.~ . . . . .  

. .  ( s .1 )  

. .  ( s .2 )  

. .  ( s . a )  

o r  

These equations can 

Z 1 = 

ZO 1 = 

in which 
72) 2 = 

be solved for z and w to give the pairs of values 

& '  + 2)~ = (F~4 + VG~)/2B~, 
W~' + D ~ ¢ =  ( F ~ -  v'Ga~)/2Ba~, "" "" 

&, + D.. = (F~,-  VG.,)/2fh,, 

W '  + D ~  = ( f . ~ -  x/G.,)/2&~, 

(8.4)  

(8.5)  

Ga~ = F3~ 2 - -  4BaaB44Ea~ . . . . . . . . . . . . . . .  (8•6) 

The roots Z~', WI' and Z( ,  W (  represent the critical values of the elastic stiffness coefficients 
63a, e4~ appropriate to any chosen frequency parameter co. The locus described by those roots 
in the (Z' ,  W')-plane as ~o is varied is the analogue of the familiar ' t e s t  conic '  of classical 
derivative theory. In fact, according to tha t  theory, the air-load coefficients--C{~, B{j are, 
respectively, expressions of the forms -- c~jo9 + 6i, ~{j~o (see (3.2)), and it is easy to show that  
the (Z',  W' )  locus then is a conic section. 

The test conic (or its vortex theory analogue) is convenient when it is desired to find the influence 
of changes of the elastic stiffnesses on the critical speed and all the inertias are assigned. An 
alternative graphical representation will now be described in which not only the elastic stiffnesses 
but  also both moments  of inertia are left free to be varied• Inertia-stiffness diagrams of this type 
have been applied by Cicala ~ to flextire-torsion flutter, and are particularly valuable in the 
discussion of measures for the prevention of flutter. Use is made of (5.8), (5•9), (8.4). (8.5), 
which give for the critical values of Z and W 

Zl = ( z l -  C~3)/~ ~ , W~ = ( w ~ -  C~4)/~ ~, 
or . . . . . .  (8 .7)  

& = ( z ~ -  d ~ ) / ~  ~ , W~ = ( w ~ -  C~4)/~ ~ 

These critical values depend only on the air-load coefficients and on the product of inertia 
- ch~ = &~. Accordingly, if Z and W are plotted as ordinate and abscissa, the locus of the 

critical points, when o) is varied, will be independent of the elastic stiffness coefficients and the 
moments of inertia. In Fig. 4a, which illustrates such a diagram, the critical locus is called the 
' base curve '. Two points of the curve will (in general) correspond to a given value of co. 

To prepare the diagram for use, the current values of the moments of inertia are plotted in 
the third quadrant,  and through the ' inertia point ' I so obtained the ' stiffness line ' IP  is drawn, 
having for slope the stiffness ratio Z ' / W '  = 2%r']ffr ~ (see (5.5) and (5.7)). Let P1, P~ be the points 

* For  nota t ion  s e e  In t roduct ion  ( f ) .  

15 



of intersect ion of this  line wi th  the  base curve. Then  from (5.8) and (8.7) it  follows tha t  the  
critical frequencies fl ,  f~ corresponding to these two points  are given b y  

z l  + =__ 2 or' (N - -   )V4 bZCoy, = P M1, 1 
(8 .8 )  

Z~ + 5~ = 2~or'~(N -- n)~/4~plCo~f~= P~M~, l "" " 
or, a l ternat ively ,  by  W~ + G~ = IM~ and W~ -/- G~ = IMp. 

The critical speeds V~, V, corresponding to fa, f~ respectively, can be deduced from the relations 

Z~' - 2aor'2(N - -  ~)"/pV~"lCo ~ = co~P~M~, ] 
(8.9) 

Z~' 2~or'~( N --  n)2/PV~lco ~ = ~2~P2M2, / "" "" 

where co~, cos are the  values of the  f requency parameter  appropr ia te  to the  points P~, P~. The 
required values of co (or its square) can either be read off direct ly  from a scale of co marked  on 
the  base curve, or a supp lementa ry  ' f r e q u e n c y  parameter  d i a g r a m '  (Fig. 4b) can be used, in 
which co is p lot ted  as ordinate  against  the  abscissa of the  base curve. In  Figs. 4 the  dot ted  
port ions of the  base curve and f requency paramete r  curve are assumed to correspond. 

Wi th  an t i symmetr ica l  f lut ter  Z '  = 0, and the  stiffness line is parallel  to the  axis OW. The 
crit ical speeds corresponding to the  two intersections P~', P~' are then  given by  

( r r ~ ( N -  n ) ~ / p V ~ l c d =  ~o1'~IPz ' , ] 
(8.10) 

(rr~(N - -  n)2/t) V~lco~ = co~'~IP~' f . . . . .  

Some of the  simpler properties of a base curve m a y  be noted. As al ready remarked each value 
of co generates a pair  of points  of t h e  curve. Such pairs m a y  be described as ' conjugates ' :  for 
example, the  points  B, B '  in Fig. 4a corresponding to B , / 9 '  in Fig. 4b are conjugates.  However,  
the  conjugates corresponding to the  peak A in Fig. 4b coalesce into a single point  A on the  base 
curve*. F rom (8.4), (8.5) and (8.7) it is seen t ha t  the  chord connecting a pair  of conjugates has 
the  slope --  B~dB4, , which is independent  of the  product  of inert ia/~.  When  co is kept  cons tant  
but /5  is varied, the  centres of the  chords connecting conjugate  points  are colinear, and the  locus 
of the  conjugate  points is a conic section. 

A complete survey of the  f lut ter  characterist ics for all possible inert ias and stiffnesses would 
require a specification of the  base curves and frequency parameter  curves for all values of/~ 
ranging from q- ~o to -- co. _ A few addi t ional  theorems m a y  be mentioned,  which aid a general  
description of this  complete fami ly  of curves. The first of these concerns the  asymptot ic  form 
of the  base curve. When  I/51 --> oo 

Z / ~ { ~  + ~ + V(-- A ) } / 2 G ,  1 
w/_¢-.{~%~ + ~ + v ' ( -  ~)}/mg~,  / . . . . . . . . . .  (8.11) 

in which 

- 4B.3B   - -  ( B . ,  + 

---- (N --  n)~{4BasB4~ --  (B34 @ B43) ~} = (N --  n)"A say  . . . . . . . . .  (8.12) 

The funct ion A will be recognized as the  discr iminant  of the  dissipation function,  and its sign is 
(in general) posit ive when co is very  large. The m a x i m u m  value of co a t t a ined  on the asympto t ic  
base curve is accordingly given b y  the condit ion A =- 0, which is independent  of the  gear ratios 
N, n. This value does not, of course, represent  the  greatest  co a t t a ined  as/~ varies from q- oo 
to --co.  The m a x i m u m  m a x i m o r u m  value is, in fact, given by  the  two conditions G34 = 0,  
OGs~/@ = 0, which yield after  considerable reduct ion 

J - -  ( G o  - -  G~ )  ~ = ( N  - -  n )~{d  - -  C ~ -  G ~ )  ~} = 0 . . . . . . . .  ( 8 .13 )  

2~Sco~ = (G~ - -  G ~ ) ( B . / - -  ~ d  + G ?  - G?)  . . . . . . .  (8.14) 

* The maximum value of ~ is given by the condition G3~ = 0. 
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From the  first of these it follows t h a i  the  greatest  o a t ta ined is independent  of N and n. The 
corresponding value of fi is, however,  not  invariant .  Similar considerations apply for the  min ima  
of co, which are in general definite and distinct from co = 0 in the  case of a i leron- tab  flutter. 
On the  other  hand,  wi th  some types of flutter, the  range of ~o extends cont inuously down to 
co = 0. I t  is to be noted  also tha t  wi th  (34) flutter the  base curves will have  horizontal  and 
vert ical  asymptotes  corresponding to the  small definite values of co for which/~3~ = 0 and/~4~ = O. 
The si tuations of these asymptotes  are independent  of fi, but  vary  wi th  N and n. 

An inertia-stiffness diagram can be ex tended  to provide also a graphical  representa t ion of 
na tura l  frequencies. The base curves H~, H~ corresponding respectively to oscillations in vacuo 
and in still air (see para. 6) are the  two rectangular  hyperbolae 

(H~) . . . . . . . . . . .  Z W  = ~ . . . . . . . . . . . . . .  (8.15) 

(Ho) . . . .  ( Z -  ~ 3 3 ) ( W -  ~ , )  = (~ + ~4)~ . . . . . . . . . . .  (8.16) 

These curves are used in the  way already explained for critical frequencies. Since c73ac7,~ > f~ 
no inertia point  I can lie above the  lower branch of H~. 

Finally it may  be remarked  tha t  if the  air-load coefficients accord with classical der ivat ive 
- -  A 2 theory,  so that ,  say, C ,  a~/o + % and/9~j = b~?o, the  base curve will be a conic section. 

This curve is an ellipse or a hyperbola  according as V > or < 0, where 

- 4 t ~ 3 t , ~ & ~  (c3o~,~ 4-  c ,~t~)  . . . . . . . . . . .  (8 .17)  

Examples  of binary inertia-stiffness diagrams are given in Section II.  

9: Ternary  Inertia-Stiffness Diagrams. - -The  (134) type  of flutter will be taken  as an example. 
In  this case the  de te rminan ta l  equat ion (5.11) is 

= o . . . . . . .  (9 .1)  

This gives on expansion 

xzw -- Ea~x --  E,~z --  E13w + F.a~[~11 + F~I[~ + F~a3~4 + Ko = 0 ,  ,. . .  (9.2) 
and 

B~zw + B33wx + [ ~ x z  - -  F3g - -  F4~z - -  F~aw + 2B~IB33B,, - -  E3,B~ 

- -  E,1Baa --  E~3/~** + H0 = O, (9.3) 

where E~j, F~j are defined by  relations similar to (8.2), (8.3) and 

Ko + iHo = (D~a - / i f~ la ) (ba ,  + / 3 3 , )  (D,~ + iB,a) 

+ (D.~ + i[3,~)(D,a + iB,~)(D~, + iBm,) . . . . . . . . .  (9.4) 

The critical values of x, z, w, for any assigned value of co, are thus given by the  curve of inter-  
section of the  cubic and quadric surfaces (9.2), (9.3). 

For  the  te rnary  case 

x = (x  - c 1 1 ) / ~ , 2 =  x , / o , ~ -  ~ 

z = ( z  - c33)1o~ ~ = z ' ~ o  ~ - ~3~ 

w = (~ - C . ) l o ~ =  W'l~o ~ -  ~ .  
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The direct analogue of Fig. 4a would be a three-dimensional representation, consisting of a 
' base surface ' defined by the critical values of X, Z, W, an inertia point situated in the appro- 
priate octant, and a stiffness line determined by the values of the three elastic stiffness coefficients. 
This representation must, of course, be replaced by  a plane diagram. 

The ternary plane diagram is shown in Fig. 5. The curve marked X = o~ corresponds to an 
infinite value of X '  and thus to l~ = oo. I t  is accordingly identical with the base curve in Fig. 4a. 
The remaining base curves in the ternary diagram correspond to assigned values of X, which 
are marked against the curves. In the third quadrant  two inertia points I ( ~ ,  07==) and I '  (a~4, 
~73a + o711) are plotted, and stiffness lines IP, I 'P '  are drawn through these points having respect- 
ively the slopes Z ' / W '  and X ' / W ' .  Now suppose P1 to be the critical point of IP  which is 
appropriate to all three assigned elastic stiffnesses. Then 

p , N = I , N ( X ' )  ( X  -l- ~al~')= X + al~_ W' = I ' N  N ÷  ~ /  

But  P~'N = P~'M + ¢7~1. I t  follows tha t  P1 must be chosen to lie on tha t  base curve X = k 
for which the condition P~'3/I = k is satisfied. The critical speed is then obtained from any one 
of the relations X ' =  o~2P~'N, Z ' =  co2P~M, W ' =  oo=IM. The required values of co (or 0) 2) 
can be found from a supplementary frequency parameter diagram. 

10. Simplified Theory of Binary Aileron-Tab Flutter and ComlSariso~ with Servo-rudder 
Flutter.--To conclude Section I the t reatment  of (34) flutter will be reviewed independently in 
the light of classical derivative theory and without the use of non-dimensional coefficients. The 
equations obtained will be compared with those given for binary servo-rudder flutter by  Duncan 
and Collar 5 in R. & M. 1527. The springs are assumed to be non-preloaded. 

(a) Aileron-Tab Flutter.--As in paras. 1 and 2, let ~ denote the tab angle and ~ the aileron 
angle. Then the simplified dynamical equations appropriate to symmetrical flutter, stated in a 
notation similar to tha t  used in R. & M. 1527, are as follows. 

Tab Hinge Moments. 

d=: -5 e2V: + (AV = + t:)/~ + p ~  + A V 6  + (k2V = + t,)~ = 0 . . . . . . .  (10.1) 

A ilero~ Hinge Moments. 

pfi + e=V¢ ÷ (fl~V = ÷ ha)p ÷ g ~  + j3V~ ÷ (k~V 2 ÷ h,)~ = 0 . . . . . . .  (10.2) 

In these d=, f~, p denote the inertial constants, e, f, j ,  k are the aerodynamical derivatives, and 
(see para. 1 (c)) 

t ~ = a r  =+2~0r '~;  t , = h a = - - a R r - - 2 a 0 R ' r ' ;  h e = ~ R  = ÷ 2 a 0 R  '2 . . . . .  (10.3) 

The equations for antisymmetrical flutter are similar except that  a0 = 0. 

If, as in para. 5 a general transformation 

= z/J + ~ / . . . . . . . .  (lO.4) ~ = ~ B + u ~  I . . . . . .  

is applied, the cross-stiffness is found to be absent from the new dynamical equations provided 

zwt~ + (zu + wv)h~ + uvh~ = 0 . . . . . . . . . . .  (10.5) 

On substitution from (10.3) this condition becomes 

~(zr --  vR)(wr -- uR) ÷ 2~o(Zr' -- vR')(wr' -- uR')  = O. 

The particular transformation given by z = R' /r '  = N, w = R/r = n, v ----- u = 1, is independent 
of the elastic stiffnesses, and yields the set of barred coefficients given in Table A below. 
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T A B L E  A 

Barred Dynamica l  Coefficients 

New coefft. Value in terms of original coefficient New coefft. Value in terms of original coefficient 

J2 

;2 
L 
{ 
L 
k2 

t~ 
z, 

dzN ~ + 215N -[- g3 

e2 N2 + (J2 + ea)N + jz 

L N  ~ + (k2 + f 3 ) N  + k~ 

dznN + fl(n + N) + g3 

e2nN + j~N + e3n + J3 

f2nN + k2N + f3n + k~ 

tpN 2 + 2h~N + h¢ = crr2(N -- n) ~ 

0 

z~ 

L 
L 

L 

&nN + p(n + N) + ga 

e2nN + Jz n + e3N + J3 

AnN + k~n + A N  + k~ 
d# 2 + 2pn + g~ 

e#~ + (j,,. + e~), + A 

f~n 2 + (ks + fa)n + k3 

0 

t~n ~ + 2h~n + h e = 2%r'2(N -- n) °- 

The s tabi l i ty  can now be discussed ei ther  by  a test  conic, or by  means  of an intertia-stiffness 
diagram. In  ei ther  case use is made  of the  condit ion for simple harmonic  oscillations. This can 
be wr i t t en  

- d 2 ~ 2 + L + i , o e ~ + w  ', - ~ o ~ + L + i ~ o L  

- ~  + L  + i~e~, - ~ S  + L + i~L + z ,  
w h e r e  

w '  = i~/v~ = ,r~(N - n ) ~ / v  ~ , 

Z '  - 7~,/V 2 = 2~or'2(N --  n)2/V 2 , 

and co - 2~f /V ,  w h e r e f  denotes  the  critical f requency*.  

----0, . .  (lO.6) 

To obta in  the  test  conic, ~o is e l imina ted  be tween  the  two real equat ions implicit  in (10.6), and  
W ' +  [~, Z ' +  k,  are t r ea ted  as co-ordinates in a plane. The stiffness line has the  slope 
Z ' / W '  = 2~or'2/~#, and the  stiffness point  has the  co-ordinates i~, ks. 

To obtain  the inertia-stiffness d iagram use is made  of the  subs t i tu t ions  

co2W = - d2~  ~ + W '  
* . . . . . . .  

o~Z __-- __ ~.~2 + Z '  
. (10.7)  

The two real equat ions  implici t  in (10.6) then  are 

( ~2w + L)( o~z + L) -- E 
(o~2w + /-,)L + (~o2z + L)~  = F 

where  

/ 
I '  . .  ( lo .s)  

E =- ( - - f i ~  + L ) ( - - r i o ;  + L) + ~ ' ( e j ,  - -  e3L),  

F =- ( - - p~  + L)(e3 + (--p~" + L)L. 

* Note that  in the present form of analysis the ' frequency parameter  ' 
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Equat ions  (10.8) can be solved to give 

F ±  VG 
, 2G 

F ±v'G 
o, w : - + G 

. .  (10.9) 

in which G = F ~ - -  4Gj3E. These results correspond to equations (8.4) to (8.7). The locus of 
points  W, Z is the  base curve, the  inert ia point  I has the  co-ordinates --  d~, - -  ~ ,  and the  slope 
of the  stiffness line is 2¢of '2 / f f f  ~. With  ant i symmetr ica l  flutter fro = 0. The diagram is used as 
explained in para. 8 for Figs. 4a and b, except tha t  in the  present  case co = 2~f /V.  

(b) Servo-rudder F lu t t e r . - -Equa t ions  (10.1) and (10.2) are applicabie for servo-rudder flutter 
provided /3, ~ are taken  to denote,  respectively, the  displacement  of the servo-rudder relative 
to the  main  rudder,  and the  displacement  of the  main rudder  relative to the fuselage. The 
expressions given in R. & M. 1527 for the  elastic stiffnesses, conver ted to the  nota t ion of the  
present report,  are* 

t~ = (ef /q)4-  (e.Jq) + % ,  

h, =. v2(ef/q) 4- ( faJq) ,  
= = _ . 

In  these, ~ is a non-dimensional  constant  defined solely by  the  geomet ry  of the  servo-control 
mechanism, e, f, o-¢, ~e are independent  elastic stiffnesses, and q - f + v~e 4- % Equa t ion  (10.5) 
here leads to the  condit ion 

(z - -  ~v)(w - -  ~u)ef 4- (zwe 4- uvf)~c 4- z w q ~  = 0 . . . . . . . . .  (10.10) 

The part icular  t ransformat ion of co-ordinates adopted  in R. & M. 1527 leaves the  rudder  
co-ordinate unchanged  and is given by z = 1, v = 0, u = 1 wi th  

w = vef/(ef 4- ea¢ 4- q~,) . . . . . . .  . . . . . .  (10.11) 

The new direct stiffnesses are then  

{~ = t~ = (if/q) 4- (eaJq) 4- .~ 

This t ransformation,  a l though relat ively simple, has the  disadvantage tha t  the  value of w given 
by  (10.11) depends on the  elastic stiffnesses. Hence if a test  conic is calculated by means of the  
t ransformed dynamica l  co-ordinates appropriate  to a given w, it should strictly only be used 
for stiffness variat ions restr icted by  the  condit ion (10.11)~. 

In  general, a t ransformat ion which satisfies (10..10) and is independent  of all four stiffnesses 
e, f ,  G~, ~ ,  does not  exist. However,  in the  impor tan t  special case where ~; = 0 (direct spring 
constraint  at rudder  hinge axis absent) the  required condit ions are satisfied by z = v, w = 0, 
v = u = 1, and these yield 

f a =  ~,~;  7%= v"(ef/q) . . . . . . . . . . . . .  (10.12) 

I t  will be seen tha t  the  theory  is then  the  same as t ha t  for a i leron- tab flutter with n = 0. The 

Aileron-Tab Flu t te r  

R = 0 (~ = O) 
lV (= R'?') 
o-~.2 
20"or '~ 

correspondence is indicated below. 

Servo-rudder  Flut ter  

v ( =  OA/AS in R. & M. 1527) 

ef/q 

* The symbols  ~, ~, tz, he, @ v, correspond to ~, ~, he, m~, h¢, n, of R. & 1VL 1527. 
This difficulty appears  to have  been overlooked ill R. & 5I. 1527. 
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Section I I .  Numer ica l  Appl icat ions  to B inary  Flutter 

11. Specification of A e r @ l a m  S.- -The  numerical applications relate to a particular system 
which will be referred to as ' aeroplane S '. The dimensions, stiffnesses, and inertias are derived 
in Appendices 1 and 2 by simplifications from data supplied for the Spitfire. Appendix 3 deals 
with the calculation of the air-load coefficients. A brief specification of the system follows. 

(a) P lan- form and d i m e n s i o n s . - - T h e  tapered Spitfire wing-aileron-tab combination is replaced 
by a rectangular combination of constant section, but the effective areas, spans, and mean chords 
of the components are left unaltered (see Appendix I and Fig. 6). 

(b) Flexural  axis and distortion m o d e s . - - T h e  straight flexure axis is assumed to lie at 0.3c from 
the leading edge*. To avoid unessential complications, both the flexural and the torsional dis- 
placements are taken to vary  linearly with the distance y from the wing root. The two displace- 
ments are, respectively, chosen proportional to the distance from the sections y = 0.35s and 
y = 0.2s, and the displacements inboard of these sections are neglected. These simplified linear 
modes offer a fair first approximation to the curved modes adopted by Duncan and Lyon" for a 
typical cantilever wing. 

(c) Positions of spring tab and reference sec t ion . - - In  the Spitfire tests spring tab No. 2 (n = 0) 
was used, and two alternative lengths of the tab lever TM were available. The short lever 
corresponded to N = 5.61 and the long lever to N = 3.03. The link FM was fitted at about 
two-thirds of the tab span from the inboard end of the tab. In the calculations the link is for 
convenience assumed to be placed at the inboard end, and the corresponding wing section is 
chosen as the reference section (see Fig. 6). Rounded values are adopted for the gear ratios, 
namely N = 6 and 3: the cases N = 2 and 10 are also investigated. 

(d) Elastic and inertial cof f f ic ients . - -The results of the calculations are analysed mainly by 
means of inertia-stiffness diagrams. In the practical interpretation of these diagrams, the values. 
of the stiffnesses and inertias deduced from the Spitfire are accepted as the standard of reference, 
but allowance is made for possible variations due to changes of spring-tab design or to modifica- 
tions of the weight of outer cover. The numerical values of the elastic stiffnesses are given in 
Tables 4 and 5, and the inertial coefficients are summarised in Tables 6, 7, and 8 and Fig. 7. 

(e) Air- load coef f ic ients . - -Both the aileron and the tab are assumed to be hinged continuously 
along their leading edges. The air-load coefficients are given in Tables 9. 

12. Flexure -Tors ion  (12) FIu t t e r . - -The  tab and aileron are here assumed to be locked in central 
position to the wing in the reference section. In this first example the steps involved in the 
calculation of the base curve will be explained in some detail. The case is relatively simple, 
since barred coefficients are not introduced, and the distinction between symmetrical and anti- 
symmetrical flutter does not arise. 

The equation corresponding to (8.1) is here 

where 

and 

Also 

x + iBm1 DI~ + iBl~ = 0 , 

D~I + ibm1 y q- iBp., 

D~I = - -  p~,~ + Q ; D~, = - -  p~o ~ + C~; p = a~ = a ~ ,  

x ----- o ~ X  + C~ ; y = cosy + C ~ .  

X '  = l¢/pV~l 3 , X'/~o 2 = X + a~ = l¢/4~rPpPCo~f ~ , 

Y '  = mo/pVPlco ~ , Y ' / c o  2 : Y @ ap~ = mo/4~rPpleo4p. 

* From later information it appeared ~that the flexural axis on the spitfire lay unusually far forward at about 0.27c. 
The differe!!ce is unlikely to invalidate the conclusions of this report, which are intended to be purely qualitative, 
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The critical pairs of values of X, Y, corresponding to (8.4), (8.5), (8.6), (8.7), may  be wri t ten  

2B~ 
. . . . . . . . . .  (12.1) 

r = - 

ill which 
El2 = DieD21 q- Bi lBo2 - -  B12B~l.  

2F12 =-- D12B21-q- D 2 1 B ~ ,  

G12 - F12 ~ - -  4 B n B 2 ~ E I ~ .  

Now suppose tha t  the  base curve corresponding to J = 0.1 is required. From Table 7 it is seen 
tha t  the  appropriate  value of the  product  of inertia is ;b = 2.19. Also the  air-load coefficients 
required are given by  the  first four columns in Tables 9A and 9B. The calculations of the  functions 
F12, E~, G~2 are most  convenient ly  arranged in tabular  form*, with the  first column reserved for 
the  entries co. To obtain a prel iminary r o u g h  description of the  base curve, the  values 
~o = 1, 2, 3, 4, 5 can first be tried, and spaces can be left for in termedia te  values, if required 
later. In  the  case considered each of the  first four trial  values of ~o leads to a posit ive value 
for G~, and consequent ly  to a real pair of points on the  base curve (see (12.1)). However  G~ < 0 
when  ~ = 5.0.  The actual m a x i m u m  permissible ~o can be de termined by  interpolat ion from a 
graph of G~ against  o~. An extension of the  calculations to a few lower values of ~ (e.g., ~o ---- 0- 4 
and 0.2) yields a perfectly satisfactory plot of the  base curve. The total  t ime occupied is a 
ma t t e r  of a few hours - -provided ,  of course, the  values of the  air-load coefficients are known. 

Figs. 8a and 8b show the  base curves and  frequency parameter  curves for p = 0, 1.10, 2.19, 
4- 39 (corresponding to j ---- 0, 0- 05, 0.1 and 0.2). To il lustrate the  use of these diagrams in the  
predict ion of critical speeds and criticai frequencies, the  two moments  of inert ia  are assumed 
to be a~ = 27-5 and a~2 = 1 "09, as for aeroplane S in Table 7. These values are p lo t ted  in the  
th i rd  quadrant ,  to give the  marked  inertia point  I. Next,  the  elastic stiffnesses for aeroplane S 
taken  from Table 5 are l ~ / p l 3 =  3.74 × 10 ~ and m o / p l c d =  1.16 × 106, which yield the  value 
Y ' / X '  - -  1-16/3-74 = 0.31 for the  slope of the  stiffness line IP. The critical frequencies f l ,  f2, 
when .7" ---- 0.1 for example, can then  be found from the  relations 

Y~ + a2~ - mo/4~plco~f~ ~ = P~M~ = 19 .09 ,  

Y~ + a2~ - mo/4~2plco4f~ ~ : P~M~ : 2" 6 8 .  

which yield (when co = 5.87) f~ = 6.68 c.p.s, and f~ ---- 17.84. To obtain the  critical speeds 
V~, V~, the  ordinates ~o~ = 0 .09 and o~ = 0.675 are read from the  curve for d = 0.1 in Fig. 8b. 
Then  

giving 

Y I '  - mo/pV~2lCo ~ = col~P~M1 ---- (0'09) ~ × 19 .09 ,  

Y~'  = mo/pV~lco ~ :  *2~P2M~ = (0"675) 5 × 2 . 6 8 ,  

V~ = 2740 ft/sec (1870 m.p.h.), 

V2 : 976 ft/sec (665 m.p.h.) 

In  the present  case the  equations giving the  natural  frequencies are 

X ~ Y v  = ~ ,  . . . . . . . . . . . .  

-  11)(r  - rl ) = p + . . . . . . .  

where by  (23.16) ~ = 2.606, ~'~2 = 0.1167, y12 = 0.4079. 
inertias. 

. . . .  (12.2) 

. . . .  (12.3) 

These represent  the  aerodynamic 

* The parameter  p should first b.e left general in the tabulation of F and E if curves are required for a range of 
values of the product  of inertia. . . . .  
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Table 1 illustrates the influence' of changes of the product of inertia. The critical speeds and 
critical frequencies were read from the curves in Figs. 8a and 8b, and the natural  frequencies 
Were directly calculated by (12.2) and (12.3). I t  may be noted that  in the three cases leading to 
flutter the critical frequency corresponding to the lower critical speed is roughly equal to 0.8 of 
the mean natural frequency in vacuo. 

13. Flexure-Aileron (13) Flutter.--The tab is here assumed to be locked in central position to 
the aileron. Figs. 9 and 10 show the appropriate diagrams, which will be almost self-explanatory 
after the details given in para. !2. 

In Fig. 9a the two inertia points 11, I2 represent respectively an unbalanced (complete) fabric 
aileron and an unbalanced aluminium aileron. An indication of the type of covering is provided 
by the small rectangles drawn against the inertia points : a plain rectangle signifies fabric, and 
a shaded rectangle aluminium. 

The stiffness lines drawn through I1 and I2 and marked by arrows are appropriate to sym- 
metrical flutter, and have the slope (see Table 5) 

Z '  (2o'oR'2/plco ~) 4227 
X '  - -  ( l , / f l  ~) = 3 . 7 4  x 106 = 0 .01125 .  

The stiffness lines for antisymmetrical flutter (not shown in Fig. 9a) are horizontal. In Fig. 10a, 
which illustrates the advantages of static balance and static overbalance, the curves are shown 
to a greatly reduced scale. 

14. Torsion-Aileron (23) Flutter.--The appropriate diagrams are Figs. l la  and l i b  (for, 
unbalanced or statically balanced ailerons), and Figs. 12a and 12b (for dynamically balanced 
ailerons, a23 = 0). In Fig. l la  the code rectangles drawn against the inertia points are similar 
to those in Fig. 9a, except that  a balancing arm is shown when the aileron is uniformly statically 
balanced. The points 1t, 12 relate to fabric covering, and 13, 14 to aluminium. In Table 7 the 
product of inertia appropriate to a balanced aileron with aluminium covering is given as 0.0395. 
To avoid unnecessary calculations, the base curve already available for a23 ---- 0. 037 is adopted 
for this case, and the density of the alumininm is assumed reduced by about 6 per cent. Thus 
I,~ is shown plotted with an ordinate 0. 037 instead of 0" 0395. 

The numerical results appended to Fig. l la  are of some interest. Antisymmetrical flutter 
occurs with both types of covering, whether the aileron is statically balanced or not. The 
balancing is definitely advantageous here because it raises the lower critical speed and also tends 
to compress the speed range leading to flutter. Symmetrical flutter is present only with the  
metal covering. In this case the static balancing is markedly disadvantageous in the sense that  
it greatly reduces the lower critical speed, but  is advantageous in the sense that  it greatly com- 
presses the speed range for flutter. Briefly, static balancing tends to suppress the a~#isymmetrical 
flutter at high speeds and the symmetrical flutter at low speeds. To effect this pressing out process 
completely, it is necessary to proceed to true dynamic balance (a23 = 0), which involves static 
overbalance. This is shown by Fig. 12a. 

15. Aileron-Tab (34) Flutter with Spring Tab No. 2.--The diagrams relating to aileron-tab 
flutter were calculated by the formulae given in para. 8. For simplicity those appropriate to 
spring tab No. 2 were considered first. 

Results for N = 2.--Table 8 shows that  when N = 2 the practical range of values for p is 
from about 0. 005 to 0.04. I t  was, however, thought  desirable in this first case to extend the 
calculations to a few higher values of 15, in order to indicate the changes as the asymptotic 
condition/~ -+  oo is approached. Figs. 13a and 13b show, to a large scale, the parts  of the curves 
for fi = 0 to 0.0125 which are of practical interest. The complete curves for p = 1.0, 10.0 
and co are shown to a greatly reduced scale in Figs. 14a and 14b. 
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The inertia point 11 in Fig. laa  is appropriate to a fabric aileron and fabric tab (both unbalanced) 
wi th/$  = 0. 0054, while I2 refers to a fabric aileron and aluminium tab (both balanced) with 

= 0.0128. As in Fig. 4a the slope of the stiffness line for symmetrical flutter is given by 
Z ' / W ' =  2~or'2/Gr"; this is independent of N. If the elastic coefficients for aeroplane S are 
adopted (Table 5) the slope works out as 29.27, and the line is accordingly nearly parallel to OZ. 
The stiffness lines corresponding to anti.symmetrical flutter (not marked in Fig. 13a) are, of 
course, parallel to OW. 

In practical cases the values of cga~, a44 and ~ for any given aileron-tab combination do not 
differ widely, and the inertia point always lies close to the vertex of the base curve. In Fig. 13a 
both I1 and I~ lie wholly to the right of their appropriate base curves, so .that in these cases 
flutter could not occur for any values of the elastic stiffnesses. 

The curves in Fig. 14a and 14b are mainly of theoretical interest. One complicating feature is 
the presence of the vertical and horizontal asymptotes. These are common to all the curves, 
and correspond to the values ~ = 0. 085 and 0.06 for which the two direct damping air-load 
coefficients B~3 and/]~., respectively vanish*. From an inspection of the directions along which 
a) decreases along the base curves (as indicated by the arrows), it is seen that  for the smaller 
values of/$ (e.g., i5 = 0 to 1.0) the point of the base curve corresponding to maximum ~ is 
situated on the small sharp indentation of the curve near the origin. The wedge-shaped curves 
in Fig. 12a are, of course, merely the indentations shown on enlarged scale. As ~ increases from 
zero, the indentation becomes more and more rounded, and moves away from the origin towards 
one of the asymptotes~. Eventual ly it passes through the asymptote and thus arrives, greatly 
modified, in the third quadrant.  The curled parts of the branch shown in the third quadrant  
for/5 = 10, though to some extent diagrammatic, illustrate one stage of development. 

I t  is of some interest to compare the curves in Fig. 14a with those which would be obtained on 
the basis of classical derivative theory. The theoretical air-load coefficients used to construct 
Fig. 14a can be represented approximately, over the restricted range oo = 1.0 to 5.0, by  the 
expressions 

^ 
= * .  A 2 Bii =b~i, Co. % -- ai/o 

where 

[_0" 912 1" 03 kl" 48 2.97J 72 5" 90 

If these values are adopted for the derivative coefficients the expression defined by (8.17) is found 
to be negative, so that  the new base curves will be hyperbolic. This is illustrated by the dotted 
curve marked C in Fig. 14a, which is the single hyperbolic branch forming the complete new 
base curve corresponding to/5 = 0. The nose of this hyperbola fits closely into the indentat ion 
of the original base curve, as is seen better  from Fig. 13a where points calculated for C are 
represented by black spots. 

Results for N = 3, 6, 10.--The diagrams for these cases (Figs. 18 and 16) are similar to Figs. 13 
and require no separate explanation. For the relevant practical values of the inertias, reference 
should be made to Table 8. The natural  frequencies calculated for N = 3 by formulae similar 
to (12.2) and (12.3) are given in Table 2. 

16. Absolute Prevention of A ileron-Tab Flutter with Spring Tab No. 2. - -With  diagrams of the 
types shown in Figs. 13a, 15a and 16a flutter is prevented absolutely (i.e., for all stiffness 
ratios) when the inertia point I lies to the right of the vertex of the base curve. The condition to 
be satisfied is accordingly 

< 4  < - -  Wm~.~ . . . . . . . . . . . .  ( 1 6 . 1 )  

* S e e  remarks following (8.14). 
Tile particular asymptote has not been ,d.eDrmined. 
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where Wma x denotes the maximum abscissa of the base curve appropriate to the particular values 
of 15 and N considered*. The values of W .... for the various cases are given in Table 3, and plotted 
against ~ in Fig. 17. To simplify the diagram the actual entries from Table 3 are not marked, 
but it is found tha t  the points corresponding to any given N lie very closely on straight lines 
passing just above the origin. If now the vertical scale in the diagram is adopted for Y~, it 
follows from (16.1) tha t  all points J (15, 5~) lying below the line appropriate to a given N represent 
inertial conditions for which flutter is prevented absolutely. To illustrate this, seven particular 
points are marked in Fig. 17, all referring to N = 6. The pair J~, J~ relate to an aluminium 
aileron-tab combination, J~, J~ to a fabric-aluminium combination, and J~, J0, J~ to a fabric-steel 
combination. An inspection of the positions of these points relative to the line for N = 6 shows 
tha t  a low value for the aileron-tab density coefficient A is extremely disadvantageous. In 
Appendix II, the mass and density coefficients are defined as follows. If ff~' (slugs) denotes the 
mass of the unbalanced aileron with the tab removed, and ff ~ denotes the mass of the unbalanced 
tab, then 

~ (aileron mass-coefficient) 

~ (tab mass-coefficient) 

e~ (aileron density ratio) 

e~ (tab density ratio) 

- e//(so 2 - s, h, 
---- f f t / S t C ~  2 , 

=- P / f f  a , 

=-- p / d  t , 

. . . . . .  ( 1 6 . 2 )  

A (aileron-tab density ratio) - p~/~ = e~/e~. 

The values for fabric, aluminium, and steel components are estimated respectively as 
= 0.03837, 0.1151, 0.3125 (or e = 0.06197, 0.01675, 0.006197 with standard air). These 

give A = 1.0, 0-27, 0.1 for fabric-fabric, fabric-aluminium, and fabric-steel combinations. 

The disadvantages of a low aileron-tab density ratio are confirmed if, as an approximation on 
the safe side, the straight lines in Fig. 17 are replaced by lines actually passing through the 
origin and the true and approximate values of Wmax are made to agree closely for the highest 
value of/5 to be considered. Then W .... becomes proportional to 15, so tha t  

- -  Wmax/15---- M ,  . . . . . . . . . . . . . .  (16.3) 

where M is a positive constant depending on N only,+. The values adopted for M are stated 
below Table 3, which also compares the true and approximate values of W .... • From (16.1) 
and (16.3) it follows tha t  the stabil i ty condition can be replaced safely by  

&j15 < M . . . . . . . . . . . . . . .  (16.4) 

The values of the ratio ~//5,  as calculated for unbalanced tabs from the formulae in Table 6 
are shown plotted against A in Fig. 18. The points shown as heavy black spots on the curves 
have for ordinates the appropriate values of M. Hence the safe values for the density ratio lie to 
the right of the black spots. The danger associated with a low density ratio is immediately obvious. 

The influence of mass balancing on the stabil i ty will next be considered. First, assume any 
datum inertial condition for the combination, and suppose a mass m to be added to the aileron 
(but not to the tab) at any distance X from the aileron hinge axis. Then the aileron moment of 
inertia A3, will be increased by  m X  2, and the other two inertial constants will remain unchanged. 
From the relations 

A33 = Asa,  z{~ = A3a + 2NP + N~A~, P = A~ -+- N P ,  .. . .  (16.5) 

it follows that  0A~ = mX ~ and 0t 5 = m X  2, so that  both these increments are positive and 
&/i~/OP = 1. Thus also ~c~4~/@ ---- 1. Now it is important  to note tha t  the gradients of all the 
lines in Fig. 17 exceed unity. Hence, in the particular mass variation considered, the inertia 

* Note that this abscissa is negative in the cases considered. 
It may be no,ted the M plots almost linearly against N. 
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po in t J  in the diagram will be moved downwards in relation to its appropriate line (i.e., J approaches 
closer to the line if initially in the unstable region, and away from the line if initially in the 
stable region). Hence any addition of mass to the main aileron, and in 2barticular balancing or 
overbalancing, is beneficial. 

Next, suppose the mass m to be added to the tab instead of to the aileron. Its position is 
assumed to be at distance ~ - 2,c~ forward of the tab hinge axis and at distance A - D -- Z 
behind the aileron hinge axis, where D denotes the distance between the axes. Then it is readily 
shown that  

= m(N  - -  .4)  

Hence ~ 2{44 ~ d,~ ,~ ( 

The increment &/i44 is always positive, but  d/5 is positive only when 

- > N ( 1 6 . 6 )  
,t 2 t . . . . . . . . . . .  

The gradient d.ff~4/d/5 is then less than unity, and the displacement of the inertia point J is 
accordingly in the safe direction. The condition (16.6) requires the tab balancing mass to lie 
behind the point which divides the distance between the aileron and tab hinge axes in the ratio N. 
When, on the other hand A < N2, dP is negative and d~i~ is positive as before. J then moves 
upwards and to the left, and the displacement is ill the unsafe direction. In  particular, mass- 
balancing of the tab alone may be expected to be disadvantageous if (16.6) is violated. 

If ca~c, = 4.35, as for aeroplane S, the limiting values of ~ given by (16.6) for N -- 2, 3, 6, 10 
are respectively about 1.11, 0.83, 0.48, 0;3. The ineffectiveness of the tab balance when 
Zt = 1.0 and N = 6, and its effectiveness when 2~ = 0.3, are illustrated by the relative positions 
of the points J~, J~' and J~ in Fig. 17. 

The following general conclusions are drawn regarding the absolute prevention of binary 
aileron-tab flutter with non-preloaded spring tab No. 2. 

(a) The density ratio A, as defined by  (16.2), should if possible exceed 0.5, and is preferably 
of the order unity. 

(b) Any addition of mass to the main aileron only (e.g., an aileron balancing or overbalancing 
mass) is advantageous. 

(c) The tab-balancing mass, if present, must be placed behind the position which divides 
the distance between the aileron and tab hinge axes in the spring tab gear ratio N. 

(d] If condition (c) cannot be satisfied, tab mass balance should not be attempted. 

Condition (d), which requires the omission of tab mass balance in certain cases, may  at first 
sight appear surprising. The ineffectiveness of the balancing in those cases is, of course, 
at tr ibutable to the presence of the elastic cross-stiffness due to the spring tab. The importance 
of this elastic coupling is strikingly illustrated by  a comparison of the base curves already 
considered (e.g., Fig. 13a) with those shown in Fig.19 for the same aileron-tab combination, 
but  with the cross-stiffness removed. The new curves are appropriate to the unbarred dynamical 
coefficients, and are thus applicable for an aileron with the normal type of control, but carrying 
an elastically hinged tab. I t  is seen that  as the product of inertia aa~ reduces the oval base curves 
shrink continuously, and disappear when a~ < 0.44 × 10 -4 about. Hence mass balance in 
this case has its normal stabilising influence. 

Another relevant illustration is provided by a simpler problem--the flexure-torsion flutter 
of a cantilever wing. If, in the analysis of this motion, the reference centre R is chosen behind 
the flexural centre F instead of at F as normally, a negative cross-stiffness is introduced, as with 
the spring tab. The flexural and torsional co-ordinates defined in relation to R here correspond 
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to the unbarred aileron and tab co-ordinates, and the conventional wing co-ordinates referred 
to F correspond to the barred aileron and tab co-ordinates. I t  is easy to see tha t  in this case 
mass balance of the wing about R (corresponding to tab mass balance) is not necessarily always 
advantageous. For example, if the balancing mass is added behind F, the product of inertia 
relative to F is increased, and the critical speed is therefore likely to be reduced. 

17. Bearing of the Preceding Conch,sions on Servo-rudder Flutter.--In para. 10 a correspond- 
ence was established between binary tab-aileron flutter and binary servo-rudder flutter. I t  is 
therefore of some importance to consider the bearing of the conclusions drawn in para. 16 on servo- 
rudder flutter. 

Numerical data appropriate to a particular full-scale aeroplane are given in para. 8 of R. & M. 
1527 ~. Expressed in the notation of para. 10 the data are as follows. 

TABLE A (para. 17) 

Dynamical Coefficients for Servo-rudder System 

(units: slug/It/see) 

Servo- Value for full scale Main Value for full scale 
rudder rudder 

~2 

f2 
P 
£0 
k~ 
ta 
t¢ 

O.037.(standard) 
0.008 
0.0038 
0.22 (standard) 
0.025 

0'0013 
+126"3 
--305-76 

e 3 

/3 
g~ 
J~ 
k~ 

h~ 

0.22 (standard) 

0"09 
0"088 
6"0 
0 '80 

+ 0.072 

--305"76 
+834" 7 

The standard values of d~ and g~ are stated to have been derived from experiments in air, 
and p was calculated. For the special servo-linkage considered a, = 0 and v = 2.73:  hence the 
transformation formulae in Table A of para. 10 are applicable with n = 0 and N ( =  v) = 2.73. 
The barred elastic stiffnesses for rudder-bar locked work out as ta ----106. 56, h, = 834.7, 
[, = hp -- 0. With rudder-bar free he = 0. The barred inertias corresponding to various inertial 
conditions of the system are as follows. 

TABLE B (para. 17) 

Values of Barred Inertias 

(~. denotes length of balancing arm in inches) 

Inertial condition of system d2 P g.~ 

Standard . . . . . . . . . . . .  
Servo-rudder statically balanced* (~ = 6) 
Servo-rudder dynamically balanced (~ = 6) 
Servo-rudder dynamically balanced (Z = 10.2) 

7.477 
7.615 
7.667 
7.488 

6-601 
6-912 
7.047 
6.525 

* New inertias calculated from data given in Ref. 7. 
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I t  may  be added  tha t  the  values of e~ and f .  es t imated by  vortex strip-theory, and the  use of 
approximate  representat ions for the  air-load coefficients, w o r k e d  out as 0. 0065 and 0.00314 
(compared wi th  the  tabula ted  values 0.008 and 0. 0038). In  this calculation the  tr iangular  fin 
was replaced by  a rectangular  fin of approximate ly  equal area, and a correction factor 1.4/~ 
was applied to the  derivatives to allow for the  small aspect ratio 1.47 of the  f in- rudder-servo  
combination.  

Figs. 20a and 20b show the  base curves and the  f requency-parameter  curves corresponding to 
values of 25 ranging from 6.601 to 7.2. Wi th  the s tandard  inertias (point I~) the  critical speeds 
for rudder-bar  locked and rudder-bar  free roughly es t imated from the  diagrams are respectively 
285 ft/sec and 290 ft/sec. The corresponding speeds given in R. & M. 1527 are  292 and 286. 
When  the  tab  is statically balanced (point I~) or dynamical ly  balanced by  the  short  arm (point Is) 
no flutter occurs. This is also shown by the  points o11, J~, J~ in" Fig. 21, which corresponds to Fig. 17. 

The values of t h e c o n s t a n t s  in (16.6) for the  particular aeroplane considered are D = 34.55 in., 
c, = 10.2 in., and N = 2.73. The max imum advisable length of the servo-balancing arm is then  
given by  * = D / ( N - t - 1 ) =  9.26 in. The point  Ja' in Fig. 21, corresponding to ~ = 10.2, 
i l lustrates the  case in which mass balance fails. 

18. Aileron-Tab Flutter with Spring Tab No. 1 . - -Wi th  spring tabs No. 1 the  gear ratio defined 
by  n is not  zero, and the  ' barred ' inertial  and aerodynamic coefficients for this case accordingly 
differ from those given for spring tabs No. 2. Formulae  for the  new inertial  coefficients are 
given by (5.4) and the  appropriate  aerodynamic coefficients are defined similarly. The two gear 
ratios n and N are always subject  to the  restriction N > n . .  The numerical values of the  inertial  
coefficients for N = 3 and n = 0.5, 1..0 and 2 .0  are given in Table 10, and the  corresponding 
elastic stiffnesses are obta ined from (5.5) and Table 5. 

19. _Flutter Prevention with Spring Tab No. 1. - -The  inertia-stiffness diagrams for spring tabs 
No. 1 closely resemble those for spring tabs No. 2 which are shown in Figs. 15a and 15b. In  view 
of this similarity, the  actual  diagrams for spring tabs No. 1 are omit ted,  but  the  m a x i m u m  
abscissa W .... for each curve is p lot ted against 25 in Fig. 22. The values of the  gear ratios assumed 
in the  calculations are N = 3 and n = 0.5,  1.0 and 2.0.  The case n -- 0 corresponds to spring 
tabs of No. 2 type.  For each value of n, Wn~.~x plots l inearly against 25, so tha t  --  W .... /]5 tends 
to a constant  value M for large values of 25, where M is a function of N and n only. As for spring 
tabs No. 2, the  stabil i ty condit ion ~744 < --  W .... is t hen  replaced by  

~- < M . . . . . . . . . . . . . .  (19.1) 

where M > 1. 

This inequality can be written alternatively 

~ , -  25 < ( M -  1 ) 2 5  . . . . . . . . . . .  (19.2) 

where a~4 -- /5  is independent of a~3 and therefore unaffected by addition to mass to the main 
aileron. It should be noted that in practice 544 > 25 since by (5.4) 

- 25 = ( N  - -  n ) ( p  + N a . )  . 

The expression on the right is necessarily positive unless the tab is considerably over-mass- 
balanced. 

It will now be shown that the conclusions drawn in para. 16 regarding the effects of mass- 
balancing apply to both types of spring tab. Firstly, if a mass m is added to the main aileron at 
a distance X from the aileron hinge axis, the resulting increments of the inertial constants are 

dAaa = m X  ~, dP  = O, dA44 = O, 

~ A 3 3  = m X ~ ,  8 [ '  = m X  ~ , ~z{~4 = m X  ~ . . 
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In this case, the stability condition (19.2), for the modified system, can be written 

&~ - P < ( M  - -  1 ) ( P  + m X  ~) , 

and it is then clear that  the addition of the mass m is beneficial. 

Secondly, suppose a mass m to be added to the tab at a distance ~ ( -  i tct)  forward of the tab 
hinge axis and at a distance A( - D -- 4) behind the aileron hinge axis. Then the additions to 
the inertias are 

6Aaa ---- m A  ~ , ~ P  = - -  mA;L , ~A44 ---- m ) 3  

~ g ~  = .~A ~ , ~ P  = ~ ( A  - ~a ) (A  - N ~ ) ,  a_&, = ~ ( A  - N a) ~. 

The stability condition (19.2) for the modified system can here be expressed as 

& ,  - P = ~ ( N  - -  ~ ) ( A  - -  N;~) < ( M  - -  1 ) ( P  + a P )  . 

Now both m , l ( N  - -  n ) ( A  - -  N,Z) and ~/5 are positive provided A > N~I, and hence, in this case 
also, mass-balancing of the tab is beneficial. 

I t  may be noted tha t  since spring tab No. 2 can be regarded as a particular spring tab of 
No. 1 type for which n = 0, the stability conditions for both types may be expected to be similar 
as just shown. 

S e c t i o n  I I I . - - N u m e r i c a l  A p p l i c a t i o n s  to . T e r n a r y  F l u t t e r  

20. P r e l i m i n a r y  R e m a r k s . - - I n  this section flexure-aileron-tab (134) and torsion-aileron-tab 
(284) flutter are investigated for a wing fitted with spring tab No. 2. Inertial values corresponding 
to a fabric aileron and tab are used in the calculations, and a value N = 2 is taken for the spring 
tab gear ratio. A qualitative analysis of ternary flutter under the following inertial conditions 
is made : - -  

(i) flutter of (134) type with 
(a) aileron unbalanced 
(b) aileron statically balanced (al~ = 0), 

(ii) flutter of (234) type with 
(a) aileron unbalanced 
(b) aileron statically balanced (al~ = 0) 
(c) aileron dynamically balanced (a2a = 0). 

The corresponding inertia stiffness diagrams show that  

(a) flutter of the (134) and (234) types is possible when the aileron is unbalanced although 
binary (34) flutter is absent 

(b) flutter of (134) type is eliminated by static balancing (al~ = 0), but  (234) type flutter is 
still possible 

(c) flutter of (234) type is prevented by balancing the aileron dynamically ( a ~ =  0). 

The ternary inertia-stiffness diagrams are usually complicated, and no simple criterion for 
ternary flutter prevention analogous to tha t  given for binary (34) flutter in para. 16 and para. 19 
can be deduced. However, the least favourable conditions for flutter can be recognised from an 
examination of the relatively simple binary curves from which the positions of the asymptotes 
for the te rnary  diagrams are determined. When the vertical asymptotes are far to the left 
and the horizontal asymptotes are well below the first inertia point I, the possibility of flutter 
is very remote. This condition implies that  all types of binary flutter must be eliminated. 

The notation used in the following analysis is listed in Section II  except for some symbols 
which are introduced in para. 21 to simplify the computational work. 
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21. Flexure-Ai leron-Tab (134) Flut ter . - -The equations of motion for (134) type flutter are 
given by (9.2) and (9.3) and they call be expressed in the binary form of para. 8 by writing 

E l .  E4~ 
Z '  ~ Z - -  - -  W '  ~ W - -  - -  

X 

C3a' = C3a Ela 
x ' C 4 4 = C 4 4 - -  - -  

B~'  = B~  F~  + x ~ 
x 

B , '  = B~  F~x + x ~ 

K~ ElsE13 
x X ~ 

x 

x 

Ho + 2BllB~aB~4 
F ~ ' =  F ~ -  

x 

K I B l l  ~ -  E l a F 1 4  + EI4F13 
-[- x ~ 

On substitution, equations (9.2) and (9.3) reduce to 

Z ' W '  = E3~ t 
. . . .  . ,  ° ,  

and give 
G t F~,' ± X/ ~4 

C l - -  . z ' =  o?Z + ~3 -- 2B~ '  

_ _  G ' F ~ '  + ~ /  ~, 
w' - o)~W q- C44' = 2B8/ 

! t 2  
34 = Fs,I - -  4 B 3 3 ' B a ~ ' E 3 4  ' • 

where 

. . . .  ( 2 1 . 1 )  

X 3 

. . . . . . . .  (21.2) 

. . . . . . . .  (21.3) 

The method of calculation adopted is to regard the value of X ( =  ( x -  CI,)/m ~) as assigned 
and to derive by (21.3) pairs of values of Z and W corresponding to a range of values of o) for 
which Gas' is positive (see para. 9 and Fig. 5). The graph of Z against W is the required base 
curve appropriate to the given value of X. 

The base curves are usually complicated by the presence of asymptotes. From (21.2) and 
(21.3) it is seen that  when co is such that  B~.( is zero, w' becomes infinite and z' = 0. Accordingly, 
W - +  oe at Z = -- C33'/co 2 (where co has the appropriate value or values), and similarly Z - +  oo 
at W = -  C4~'/~o 2 when B4~'----O. Alternatively the positions of the asymptotes and the 
corresponding o~ values can be deduced from the base curves and frequency parameter diagrams 
relevant to the various associated types of binary flutter. For instance, equations (9.2) and 
(9.3) reduce to 

xz = EI:~ , Bs~x @ Bnz  = F13 

which define flutter of the flexure-aileron (13) type. The values of Z and o) at which W-+oo 
for a particular value of X can therefore be read off the curves, in Figs. 9a and 9b corresponding 
to the appropriate value of a13. For example, if a~ = 0.0836, and - -7 .0  < X < -- 2.0, the 
values of Z are greater than -- a~ and therefore lead to asymptotes above the inertia point  in 
the ternary diagram (see Fig. 23a, 23b). 
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Diagrams for (134) type flutter are given for the following conditions : - -  

(a) aileron unbalanced (Figs. 23a, 23b), 
and 

(b) aileron statically balanced (Fig. 24). 

The diagrams show that  flutter can occur in the first case but  not in the second, as then the 
relevant curves have no branches to the right and above the inertia point ( - - ~ ,  -- c7~). Tables 
11, 12, 13 give the values of Z and W for a range of values of co and X for each inertial condition, 
but some of the results are omitted in the diagrams. 

22. Torsion-Aileron-Tab (234) Flutter.--The simplified equations of motion for this type of 
flutter are similarly obtained by writing y for x and replacing the suffix 1 by  2 wherever it occurs 
in para. 21. Inertia-stiffness diagrams of Z against W are plotted for assigned values of Y for 
the following cases : - -  

(a) aileron unbalanced (Figs. 25a, 25b, 25c) 

(b) aileron statically balanced (Figs. 26a, 26b) 

(c) aileron dynamically balanced (Fig. 27). 

Flut ter  is possible under conditions (a) and (b) but  not under (c). The calculated values of Z 
and W are given for various values of co and Y in Tables 14, 15, 16, 17, 18 and most of these 
results are included in the diagrams. 

23. Analysis of Diagrams.--A graphical method of analysing the ternary inertia-stiffness 
diagrams is described in para. 9, but  it is not always easy to apply. I t  is sometimes more 
convenient to find the values of l, which lead to flutter for various values of X. I t  is shown in 
para. 9 and Fig. 5 tha t  flutter occurs when X = k, if l, is such tha t  

X '  (k + ~ )  _ l, Co 2 (23.1) 
W ' - -  W1 + Y4~ ar~N~12 . . . . . . . . . . . .  

where W~ is the abscissa of the point of intersection P~ of the Z ' / W '  stiffness line with the curve 
for X = k, and where Z',  W' are assumed to be known. Values of l, can be calculated by (23.1) 
for various values of k for which curves have been drawn. The value of k corresponding to the 
flexural stiffness l, of the wing can then be deduced from a curve of I¢ against k. The corresponding 
frequency parameter can be obtained by a supplementary curve of coz against k or I,, where co~ 
is the value of the frequency parameter at P~. The critical flutter speed would then be given 
by X '  = ~o~(k + ~1). However, critical speeds are not estimated in this section as the intervals 
between the values of X, Y and o~ chosen in the calculations are not sufficiently small to allow 
a quanti tat ive analysis of the diagrams. 

Section IV.--A~bproximations to some Binary Inertia-Stiffness Diagrams 

24. Approximate Air-Load Coefficients.--Good approximations to the inertia-stiffness diagrams 
for flexure-torsion, flexure-aileron, torsion-aileron and aileron-tab flutter are obtained by using 

A A 
A A 2 approximate air-load coefficients of the form C~ i = ci~ -- a~j~o , B~j = d;j + bijco 2 as listed in 

Table 19. The constants d~j and D~j represent the limiting values of -- %/co ~ and BUo) as co -+  o% 
and ~;j, ct~i are chosen to yield the true values of the air-load coefficients at o~ -- 2. The co- 
efficients ~g correspond to the aerodynamic inertias and their numerical values are given by 
formula (16) of Appendix III .  Approximations were also tried oil the basis of classical derivative 
theory in which d~ i is assumed to be zero, and in which allowance is made for the aerodynamic 
inertias. They were found to be unsatisfactory except in the case of aileron-tab flutter where 
' ba r red '  air-load coefficients which depend on the gear ratio N are used (see para. 5). 
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25. Binary Flutter.--In the  calculations the  inert ial  values corresponding to a fabric aileron 
and  a fabric tab  are assumed (see Tables 7 and 8). Approximat ions  to the  curves for the  following 
cases are considered : 

(i) f lexure- tors ion (a12 = 2 . 1 9 ; j  = 0.1),  

(ii) f lexure-ai leron (al~ = 0. 0836, unbalanced) ,  

(iii) tors ion-a i leron (a~3 = 0. 0307, unbalanced,  a.,3 ---- 0. 0107, balanced) 

(iv) aileron tab  (cT~ = 0. 0054; N -- 2; ~ = 0.006, N = 6). 

Comparisons of the  t rue  curves and their  approximat ions  are made  in Figs. 28 to 32. In  all 
cases good approximat ions  are obta ined for values of co > 1. For  lower values of ~o, the approxi-  
m a t e  der ivat ives  are less accurate ,  and lead to errors in the  approximate  forms of the  various 
curves. For  this reason, approximat ions  were not  made  for the  cases where  the  wing and  the 
aileron are mass-balanced as the  t rue  m a x i m u m  value of co for both  f lexure-torsion (a~ = 0) 
and f lexure-ai leron (at~ = 0) f lut ter  is about  0 .25  (see Figs. 8b and 10b). 

The  approx imate  curves for a i le ron- tab  flutter  are shown in Figs. 31 and 32. They  are in 
good agreement  wi th  the  t rue  curves for bo th  values of N.  Equa l ly  good agreement  is ob ta ined  
by  the  use of air-load coefficients of the classical type,  namely ,  C~j = cu, and B~g = buco, where  
al lowance is made  for the  ae rodynamic  iner t ia  a u by  adding it to the  t rue  value of the  p roduc t  of 
iner t ia  in vacuo. I t  m a y  be recalled t h a t  the  inertia-stiffness d iagram depends only on the  product  
of inert ia  and the  ae rodynamic  coefficients. Since the  values of d~ s required in the  calculat ion of 
the  a i le ron- tab  inertia-stiffness diagrams are small compared  with  b~,  t hey  can be neglected 
wi thou t  appreciable loss of accuracy  when  a~ > 1. 

26. Stability Condition.--In pars.  16, it is s ta ted  tha t  (34) f lut ter  is p reven ted  when  c1~ < Mfi, 
where  

M =  Wm~, 

I t  can be readi ly  proved t ha t  --  W .... --+ M/~ when/~  is large, if it is assumed t h a t  the  air-load 
coefficients are of the  classical type.  For  N = 2, the  approximate  values of t h e  a i le ron- tab  
' bar red  ' coefficients obta ined by  the use of (5.4) and Table  19 are 

C - g --  cTco ~* = 0.01431 -- 0.035383co ~, 0-02810 --  0.035507co ~ 

0.01449 -- 0.035507co ~, 0. 02926 -- 0.0,5651 co~ 
and 

/~ = bco = 10-%) 0-9079 1.018 

0.9246 1 .049  

where  the  terms dis have  been neglected. 

. . . .  (26.1) 

The abscissa W is given by  

Let  ~ = p'co~ = (ib -}- ~34)~o ~ where /5 '  represents  the  effective ' b a r r e d '  inertia,  t hen  

f i  
p ,  - - + a - . f ,  + . . . . . . . . .  

. .  (26.2)  

* 7~ here denotes a matr ix  of the aerodynamic inertias. 
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where  F 

( 9 e = E = c~ 2 -  c~ ~3~ + ~ - -  p ,  + c ~ % ,  

G 
g - -  co - - f 2  - -  4toaab~4e =- goc~ 2 + gloc + g2 • 

For  large values of p', the  above expressions become funct ions of ~ only, since the  t e rm 
b33b~4 - -  barb43 is t hen  small  compared  wi th  P'(c3~ + c~). W h e n  W is a m a x i m u m  bW/&z = O, 
and  then  (26.2) gives 

1 - -  ~ ~ ( f  ___ ~ / g )  = 2baag,~, . . . . . . . .  (26 .3)  

which leads to the  quadra t ic  equat ion  

g _  ( g ~  + 2g=)= (26 .4)  
4D ~ --  g0cd + g~c~ + & ,  . . . . . . . .  

where  D = 26a~g~ --  g~b~a --  g~ba4. F rom equat ion  (26.4) the  values of c~(= p'co ~) are t hen  readi ly  
de termined.  W h e n  p '  is large ~ - + 0 . 0 3 4 3 ;  for p '  = 0.006,  c~ = 0 .0353;  hence, since 
-I- 2Dv'g = g,c~ + 2& when  W is a m a x i m u m  eqt!ation (26.2) gives af ter  some reduct ion  

p, 
÷ 

(>2-- 
Wmax--  2has 2ba3Dc~ 

0.0020ap' + 0.035651 . . . . . . . .  (26.5) = --  0"981p'  - -  

= - 1.04  - 0.0 s. 

The slight var ia t ion  in c~ wi th  p '  does not  affect the  slope of this line appreciably  so t ha t  when  
/5' ~> 0.006, which represents  roughly  the  lower l imit  of the  ' ba r red  ' effective p roduc t  of iner t ia  
in practice,  the  value  of the  s tabi l i ty  factor  M is 1-04 as compared  wi th  a t rue  value  of 1.05 
obta ined  graphical ly  for N = 2. (See Table 3 and  Figs. 13a, 13b). 
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May, 1941. 

A comparison of the observed and predicted flexure-torsion flutter 
characteristics of a tapered model wing. R. & M. 1943. August, 1941. 
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LIST OF SYMBOLS 

Notes" For the significance of barred symbols see Introduction (d). Symbols with double 
suffices, unless specially defined, denote tile elements of a corresponding square matrix. Numbers 
in round brackets indicate equations. 

A 

a (as suffix) 

d(:_ c + iB) 
B 

B~, Bl 

C 

C, C o 

Ca, Ct 

D 

d~, d t 

A 

E 

c 

E 

8a, E t 

F(~),f(~) 

f 
L,L 

Matrix of inertial constants para. 2 

Matrix of non-dimensional inertial coefficients (2.9) 

Relating to the aileron 

Matrix of air-load coefficients 

See sf 

Statically balanced aileron, statically balanced tab 

Matrix of damping derivatives 

Tab angle relative to aileron 

See d 

Local chord of wing, root chord 

Aileron and tab chords 

Matrix of aerodynamic stiffness derivatives 

d 
Square matrix -- a<o ~ + C ; also denotes d-~ 

Distances of aileron and tab hinge axes behind 0 Y 

Aileron-tab density ratio ~/~t ; discriminant 

Matrix of elastic stiffnesses 

Defined generally as in (8.2) 

Matrix of non-dimensional elastic coefficients 

Defined as e, but  with ~0 -= 0 

Aileron and tab density ratios p/% p/~ 

y/l 
Torsional and flexural distortion modes 

Defined generally as in (8.3) 

Frequency ; critical frequency 

Natural frequency in still air and in vacuo 

Defined generally as in (8.6) 

Matrix of aerodynamic inertial coefficients 

H1, Ha, H~ 
H 

Ho 

Constants in calculation of inertias 

Aileron hinge moments 

Used in calculation of ternary diagrams 
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para. 3 (a) 

(3.3) 
(3.3) 
Appendix II 

para. 3 (a) 

Figs. la  and lb 

(3.3) 

Appendix I 

para. 3 (a) 

para. 2 (5, 9) 

(7.2), (7.3) 

(16.2), (8.12) 

(1.6) 

(2.10) 
(4.3) 
(16.2) 

(7.1) 

para. 6 

(6.2), 
Appendix I I I  

Table 6 

para. 2 

(9.4) 



I 

J 
J 

K0 

k - {k,, k~, k~, k,} 
L 
l 

A 

LIST OF S Y M B O L S - - c o n t i n u e d  

2 

M 

M 

Mo 

~ 0  

Y]¢0 

# 

N 

?J 

P 0  

p 

Elastic stiffnesses in simplified theory para. 10 

Inertia point in inertia-stiffness diagram para. 8 

Inertia point in stability diagram para. 16 

Distance of c.g. behind O Y  as function of chord 

Used in calculation of ternary diagrams (9.4) 

Column of complex amplitudes of motion (3.1) 

Aerodynamic flexural moment on wing para. 2 

Distance reference section from wing root 

Flexural stiffness of wing 

Distance of tab-balancing mass behind aileron 
hinge axis 

Distance of tab-balancing mass ahead of tab hinge 
axis 

Complex exponential time factor 

Distances of aileron and tab-balancing masses 
ahead of hinge axes, as fractions of aileron and 
tab chords 

Aerodynamic torsional moment on wing para. 2 

Slope of lines in stability diagram (16.3) 

Equivalent mass of control column (1.7) 

= Mo/pCo2l (2.8) 

Torsional stiffness of wing 

Damping factor; matrix of transformation 

Second spring-tab gear ratio R' / r '  

First spring-tab gear ratio R/r  

no = 2~o/o V2lco 

A gearing constant of control circuit 

Aileron angle in reference section; local aileron 
angle 

Preloading force of spring tab para. 1 (a) 

Generic symbol for product of inertia: also used 
as suffix to denote port side 

Po = Po/pV21~Co (2.6) 

Column {0, O, -- R, r} (1.6) 

Column of aerodynamic moment coefficients (2.6) 

Column {¢, (co/l)O, (Co/1)L (co/l)~} (2.4) 

Angular co-ordinate of control column (2.4) 
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(2 = {Ol, (28, (23, 04} 
q =- {ql, q=, q~, q4) 

qo 

(16.6) 

(16.6) 

para. 3 

Appendix II  

para. 3 (b), (2.5) 

para. 1 (d) 

para. 1 (d) 

(2.6) 
para. 1 (b) 

para. 7 

(1752) C 2 



R 

R'  

Y 

P 

S 

Saj S t  

(y 

o" o 

ff a~ (y t 

T 

t 

t~, t~ 

T 

o 

o~ 

,9. 

U 

U~, U~ 

V 

X , Y , Z , W  

xo, Y ,&,wo 
X~,Yv, Z~,W~ 

X',  Y' ,  Z', W' 

X ,  y ,  Z, ZV 

¢ 

X 

(1) 

v 

LIST OF SYMBOLS--continued 

A F -- A I in Figs. 1 ; for spring tab No. 2 R = 0 

vAF in Figs. 1 ; vHQ in Fig. 2 

TM in Figs. 1 ; CK × TM/CS in Fig. 2 

vTIV[ in Figs. 1 ; vHC × TM/CS in Fig. 2 

Air density 

Wing span: also used as suffix to denote starboard 

Aileron and tab spans 

Stiffness rate of spring tab 

Stiffness rate of control cables 

Aileron and t ab  mass coefficients 

Aerodynamic tab hinge moment 

Time variable 

Elastic stiffnesses 

Non-dimensional time variable W/Co 

Torsional co-ordinate of wing 

Local angle of twist at section ~ 

Column {0, 0, R', -= r'} 

Transposed of 

Column of moments {L, M, H, T} 

Unbalanced aileron, unbalanced tab 

Airspeed ; critical speed 

Co-ordinates in inertia-stiffness diagrams 

Values of X, Y, Z, W for oscillations in still air 

Values of X, Y, Z, W for oscillations in vacuo 

Barred direct elastic stiffness coefficients 

X '  + D,1, etc. ; also spatial co-ordinates 

Flexural co-ordinate of wing 

Column of angles {¢, 0, ~, fi} 

Non-dimensional frequency parameter 2=fco/V 

A modified discriminant 

para. 1 (a) 

para. 1 (b) 

para. 1 (a) 

para. 1 (b) 

para. 1 (a) 

para. 1 (b) 

(16.2) 

para. 10 

(2.4) 

Appendix III 

(1.6) 
(1.8) 

para. 2 

Appendix II  

(s.8) 
(6.3) 
(6.1) 
(5.7) 
(S.lO) 

(1.6) 
(3.2) 
(8.17) 
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A P P E N D I X  I 

Dimensions, Distortion Modes, and Elastic Stiffnesses of Aer@lane S 

The numerical constants adopted for the wing-aileron-tab combination were based--with  
drastic simplifications--on design data supplied for the Spitfire. 

1. Dimensions.--The relevant data for the Spitfire are as follows. 

Dimensions of Spitfire 
(Areas in ft ~ and lengths in ft) 

Gross wing area 
Area of each aileron 

Area of each tab 
Overall span 
Span Of each aileron (s~) 
Span of each tab (st) 
Root chord of wing 
Tip chord 
Aileron chord/wing chord (c~/c) 
Tab chord/aileron chord (cJc~) 

For aeroplane S the geometrical characteristics were modified 
assumptions : 

242 
9.45 

0.68 
37 

6"85 
2.14 
8.33 
4.2 
0" 235 
0" 23 

in accordance with the following 

(a) The tapered Spitfire wing was replaced by  a rectangular wing-aileron-tab combination 
of constant section 

(b) The effective areas of each component and the values of s~, st, c~/c, ct/c~ were left unaltered. 

(c) The ratio of wing area outboard of aileron to aileron area was left unaltered. 

(d) The wing dihedral was removed, and the flexural axis was assumed to lie as normally at 
O. 3c from the leading edge. 

(e) The aileron and the tab were assumed to be hinged continuously along their leading edges. 

Thus, for aeroplane S 

sa = 6.85;  

st = 2.14 ; 

c = 1.38/0.235 = 5- 87 ; 

ca = 9 . 4 5 / 6 - 8 5  = 1-  38 

ct = 0.68/2.14 = 0.32 (rounded) 

s = 217/(2 × 5.87) = 18.5". 

For the Spitfire the ratio of wing area outboard of aileron to" aileron area was estimated as 
0.695. Hence for aeroplane S the wing span extending beyond the aileron was taken as 
(0.695 × 9.45)/5.87 = 1.12 ft. 

The finally accepted rounded dimensions are as shown in Fig. 6. 

2. Reference Section and Distortion Modes.--The tab connection is for convenience assumed 
to be situated at the inner end of the tab, and the corresponding wing section is adopted as 
the reference section. The choice of this position for the tab connection simplifies the calculations, 
and it would also greatly simplify the construction of a model should wind-tunnel tests be required 
to check the theory. 

* The effective wing area was taken to be 217 if2, 25 ft ~ being allowed for the centre section, 
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The simplified l inear distort ion modes adopted  are (see (7.1) and para 11 (b)) 

f(~) O. 57~ -- O. 35 O. 35 O. 35 
= 0.22 for ~ > 0--5-7 and f(~) = 0 for ~ ~< 0 57 '  

0.57~ --  0 .2  0 .2  0 .2  
F(~) = 0.37 for ~ > 67 ~ and F(~) = 0 for ~ <  0 .57"  

3. Elastic Stiffmsses.--(a) Wing Stiff~¢esses.--The figures supplied for the  elastic stiffnesses 
of the  Spitfire measured at mid-aileron span are as follows : - -  

Flexural  stiffness 3 .6  × 106 lb f t / radian 

Torsional stiffness (symmetrical  torques) 0.488 × 106 lb f t / radian 

Torsional stiffness (ant isymmetr ical  torques) 0" 406 × 106 lb ft /radian. 

The distance from the  effective wing root to mid-aileron span is t aken  to be 11.42 ft. 

The elastic stiffnesses for aeroplane S are chosen so tha t  the  values of the  stiffness rates measured 
at mid-aileron span agree with those for the  Spitfire. Now for aeroplane S the  reference section 
and the mid-aileron span section lie at distances 0 .22s  and 0. 405s respectively from the  axis for 
l inear flexure, and at  distances 0.37s and 0.555s from the  axis for linear twist. Moreover 
l (distance of reference section from wing root) = 10-54 ft. Hence, if 1,, mo denote  the  elastic 
stiffnesses defined on the  usual basis for aeroplane S 

load at  reference section '~ 
l, = P ( l i nea r  deflection at  reference sec t ion /  

( 0 .  405l ~"( load at mid-aileron span 
\ - 0 - ~  / \ l i nea r  deflection at mid-aileron s p a n / "  

Or, on subst i tut ion of the  value appropriate  to the  Spitfire 
× 

l~ = \ 0.22 × × 3.6 × 106 = I0.4 × 1061b ft/radian. 

Similarly, for symmetr ica l  condit ions of loading 

( 0 . 5 5 5 y  
m o = \ ~ . ~ /  × 0 . 4 8 8 ×  1 0 6 -  1.1 × 106 , 

while for an t i symmetr ica l  loading m0 ---- 0.915 × 106. The rounded values finally adopted  are 

l, ---- 10.4 × 106 ; mo = 1.0 × 106 (for both  types of loading), 
giving 

l¢/pl 3 = 3 . 7 4  X 106; mo/ptc ~ = 1" 1 6  X 106 . 

(b) Control Stiffmsses.--The following dimensions relate to the  spring tab No. 2 which was 
tes ted  on the  Spitfire. Two al ternat ive lengths for the  tab  lever TM were provided" these are 
denoted  below by (TM)I and (TM)~ 

C K = 2 - 3 0 i n . ;  C S =  1 . 7 i n . ;  H Q = 2 . 8 5 i n . ;  

(TM)I ---- 0 .54 in. ; (TM), ---- 1.0 in. 

These yield the  two sets of values 

r = 0.0609 (ft); 

= o. 113 (ft); 

HC = l ' 6 , in .  ; 

N ( -  R'/r') = 5"61 (short lever) 

N (= R'/r') = 3.03 (long !ever} , 
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Five different springs (Nos. 1 to 5) were provided for the spring tab, but  it is ur/derstood that  
only spring No. 1 was tested in flight. The specified spring rates and preloadings are as below. 

Stiffness rate Preloading P0 
Spring No. (lb/in.) (ib) 

1 
2 
3 
4 
5 

77* 
40 
23 
11 '5 
6 

23 '8  
21 "8 
18"6 
13"7 
9"0 

In numerical applications it may be assumed that  the practical values can range up to 
100 (1b/in.) for the stiffness rate and up to 40 lb for Po. 

The value of the control circuit stiffness was obtained from a loading test carried out by the 
R.A.E. on the Spitfire aileron, under conditions appropriate to symmetrical flutter. This test 
gave 2R'~0 = 3650. The numerical values of the elastic stiffnesses with ~ taken as 89 lb/in. 
(1068 lb/ft) are as given in Tables 4 and 5. 

A P P E N D I X  II 

Inert ial  Coefficients 

1. M a i n  Wing  I m r t i a s . - - G e n e r a l  expressions for the inertial coefficients are given in para. 7. 
The flexural and torsional natural frequencies given for the Spitfire are 10 and 28 c.p.s, respectively 
and the same frequencies are adopted for aeroplafie S. Thus, since l¢ = 10.4 × 106 and 
m o =  1 "0 × 106 (see para. 3, Appendix I), 

All = 10" 4 × 106/4~10 ~ = 2640 slug It ~, giving all = 27.5 
A~ = 1.0 × 10~/4~28 ~ = 32.3 slug ft ~, giving a~ = 1.09. 

The value of A I~ appropriate to the Spitfire was not specified, and this coefficient is--so far as 
possible--left general in the calculations. If A ,  = 2640 as above, and if the wing masses for 
aeroplane S are assumed to be distributed uniformly along the span, then the total wing mass 
is about 12.5 slugs. In this case the estimated value of AI~ is about 11703" (giving a~ = 21.9j) 
where jc  denotes the distance of the centre of mass in each section behind 0Y. The condition 
A~, A~ > A~ ~ requires that  j < 0-25. 

2. Inert ias of Control Sur faces . - -For  the evaluation of the remaining inertial coefficients, the 
dimensions and distortion modes are assumed to be given as in Appendix I, and the masses of 
both the aileron and the tab (excluding any balancing masses) are taken to be distributed uni- 
formly along the span and to be proportional to the distance from the trailing edge. Thus the 
mass per unit span (slug/if) of an element of width dx situated at distance x from O Y is taken 
to be 2~(0.7c -- x)dx in the case of the aileron, and 2at(0"7c -- x)dx in the case of the tab, 
where ~, and ~, are density constants. In order to define the aileron density in practical terms, 
it is convenient first to imagine the actual tab to be replaced by one constructed of the same 
material as the main aileron. Then, if/z~ (slugs) denotes the mass of the complete homogeneous 
aileron so obtained, and if/z~ denotes the mass of the actual tab 

(to - tz~/s~c~ ; ~ ~ -/z~/s~c~ ~ . 
Alternatively, a, may be defined as #~/(s~c~ ~ - -  s,c~), where ¢~' is the mass of the aileron with its 
tab removed. For the purposes of these definitions balancing masses are to be excluded from 
#~ and/z~. 

* Direct measurement of the stiffness rate of spring No. 1 at the N.P.L. gave 89 lb/in: 
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The following additional symbols are introduced 

e~ (aileron density ratio) 

e~ (tab density ratio) 

A (aileron-tab density ratio) 

=--- p / a  a 

= p / e ~  

- a s / a  , ---~ e t / e s .  

The values as = a~ = 0.038375 (slug/ft3), giving e~ = et = 0.06197 and A = 1, correspond 
to a fabric covered combination. If the dimensions are as given for the Spitfire, the total 
weight of the combination (without balancing masses) is about 16 lb. The actual combination used 
for the Spitfire tests consisted of an aluminium tab and a fabric covered aileron, and the density 
constants corresponded more nearly to ~t = 3"7as = 0.1151 (slug/ft'), giving ~ = 0.06197, 
e, = 0.01675, A = 0.2703. When these values are adopted the estimated weights are 1.31 lb 
for the balanced tab and about 29 lb for the balanced aileron, as against 1.3 lb and 26.5 lb obtained 
from direct weighing of the components at the N.P.L. The density constants appropriate to a 
fabric-steel combination would be about es = 0. 06197, e~ ----- 0. 006197, A = 0.1. 

In the theoretical investigation, any balancing masses present are (unless the contrary is 
stated) understood to be distributed along the span so as to render the relevant control surface 
uniformly statically balanced (see para. 7). The masses are assumed to lie at distances Z~cs and 
Z~ct ahead of the aileron arid tab hinge axes, respectively. For brevity, the three cases considered 
are distinguished as follows 

Case (Ua, U,) unbalanced aileron, unbalanced tab, 

Case (B~, U,) balanced aileron, unbalanced tab, 

Case (Ba, Bt) balanced aileron, balanced tab. 

Table 6 and Fig. 7 give the calculated inertial coefficients with st, A, ~ and it left general, 
when the dimensions of the combination and the distortion modes are as specified in paras. 1 
and 2 of Appendix I. For the practical ranges of ~ and Z~, the values of a,3 appropriate to cases 
(Ba, I Jr) and (B~, B,) differ only slightly. The contribution of the tab balancing mass to 
a,ast × 103 is given by Ha - - / / 1  (in Table 6): the values of this correction are shown below. 

Values of Ha -- H~ 

0"1 0"3 0"5 1-0 1"5 

0-25 0"08122 O" 02423 O" 01293 O" 004652 O" 002085 
O- 5 O" 1016 O' 03060 O" 01650 0"006124 O" 002859 
O- 75 O" 1220 O' 03697 O" 02007 O" 007597 O' 003630 

Table 7 summarises the estimated coefficients for the special cases of fabric covering 
(~ = 0.06197) and metal covering (~-----0-01675). When balancing masses are fitted, their 
positions are standardised in this table as ,~s ---- 0.5 and ~ = 1.0. The values of the corresponding 
barred coefficients c~, c~34, c~4, calculated for spring tab No. 2 with N = 2, 3, 6 are given in Table 8, 
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A P P E N D I X  I I I  

Air-Load Coefficients 

The air-load coefficients for a semi-rigid wing-aileron-tab combination can be calculated by a 
m e t h o d  similar to tha t  adopted for flexure torsion flutter in R. & M. 19528 and R. & M. 19439. 
The basis of the method may be described as ' vortex strip theory '  

For the present application the necessary values of the two-dimensional coefficients were 
calculated by the formulae obtained in R. & M. 1948 t°. In tha t  paper the reference point adopted 
lies at mid-chord, and the complex amplitudes of the air force and moments per unit  span are 
given in terms of the air-load coefficients by  the relation 

cZ = -- ~pc2V ~ I ZI,~ Za4 Z56 
M ] M~2 M~ MsG MTs O' 

I H,2 Ha~ Hs~ HT~ ~' 

L T~ T,,t T56 T78 ~' 

(1) 

where z', 0', ~', ~' denote the complex amplitudes of the motion. The air-load coefficients 
Zii, Mij, etc., are all functions of the frequency parameter* co, the functional form being typified 
by 

zl~ = d + e~o ~ + if~o + (p + i ~ ) C ,  . . . . . . . . . .  ( 2 )  

in which d, e, f ,  p, q are constants depending only on the geometry of the aerofoil system, and 
C is a known function expressible in terms of Hankel  functions of argument ~o/2. When co is 
very great C --+ 0.5, and when co is small C --+ 1 + ½i~o log ~o. 

A relation similar to (1) applies when the reference point lies at distance h'c forward of mid- 
chord, except tha t  MI~, M34, M~6, M~ must then be replaced respectively by 

and Za4, Ha4, Ta~ by 

Za + h'Z~, Hs~ + h'H~2, Ta, -¢- h'T~z. 

Next consider a semi-rigid wing with aileron and tab. 
assumed to be 

z~o_, = Czf(~) + oxF(~)  . . . . . .  

for points of the main wing 

z~_t ---- ¢lf(~) -t- Fx + d~ {F(~) -- 1}]0 + (x -- d~),, 

for points of the main aileron, and 

z,  = z~ + (x  - 4 ) ~  . . . . . .  

for points of the t a b .  

As in para. 7 the distortion modes are 

. . . . . . . .  (3) 

. . . . . .  ( 4 )  

. . . . . . . .  ( s )  

Let P~_~_~, P~_, Pt denote typical  forces.applied at (x, ~) to the main wing, the main aileron, 
and the tab, respectively. By the principle of vir tual  work, the first force is equivalent to a 
force P '  applied at x' in the reference section V = 1, if 

P'(¢l  -Jr Ox') = P~_~_~ {¢/f(v) -t- OxF(~)} . 

* In preceding report~ the fre~luency parameter is usually denoted by 4. 
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Hence the flexural moment  L and the torsional moment  M equivalent to P ..... t are 
L = ZP' = Zf(~)P~+~ ; M = x ' P ' =  F(~)xP~+~ . . . . . . . . .  (6) 

Similarly the three moments equivalent to P~_~ can be written 
5 = lf(n)P~_,; M = F(~)xP~,  + {1 -- F(n)}(x -- d,)P~_, ; H = (x - -  d~)P~,,  . .  (7) 

while the moments equivalent to Pt are similar to (7) with T = (x - -  d,)P, in addition. 

From the preceding relations it follows that  if a complete distribution of loads represented by 
IZ n d~7, IM n d~, lH~ dn, IT,  dr; is applied to a wing element of width 1 d~, t h e n t h e  total equivalent 
moments on the system are given by 

L -- ZN~)Z n g~, . . . . . . . . . . . . . . . .  (8) 

M = 1F(n)Mnd~ + l{1 -- F(~)}Hnd ~ . . . . . . . . . . .  (9) 

H =  IH~d~ , . . . . . . . . . . . . . . . . . .  (10) 

If the wing section considered does not contain the tab then (11) is to be ignored, and if it does 
not contain the aileron then (10) and (11) are to be ignored. 

Now suppose the system of forces applied to the wing element to be the air-loads. Then the 
complex amplitudes of these loads per unit span are given by 

[ cZn~=-- -- z~pc2V2IZln' Za¢' Z56' ZTs' 

Hn ] I HI~' Has' H56' HTs' 
T n [_ T~,' T~' T56' T'78 

Zn' /C 

O n ' 

fin' 

, , .  . .  ( 1 2 )  

where the accented symbols'in the square matrix denote the two dimensional air-load coefficents 
t ! ! ! appropriate to a reference centre at h'c forward of mid-chord, and %, 07, ~n, f~ denote the 

amplitudes of the local flexural displacement %, the local angle of twist 07', and the local aileron and 
tab angles ~n, fin. From equations (2.4) and para. 7 of the main text it is readily shown that  
these local displacements are expressible in terms of the dynamical co-ordinates q by the relations 

1 - 1 0 q3 

/3 7 0 0 1 q~ 

= (l/c)Wq say. 

Hence, in the notation (3.3) for complex amplitudes 
t ! { z / / c ,  0 , , ,  f n ' }  = (Z/c)Wk . . . . . . . . . . . . . . .  (14) 

From (12) and (14) it follows that  

M n l  fM12' FM3~'+ (1 - -  F ) M s (  Mso' M,s '  k2 

H n] IfH~( F H 8 4 ' + ( 1 - - F ) H 5 6 '  H66' gTs' k~ 

T ' T n [_f ~ F T 3 ~ ' +  (1 F)T~6' T~6' TT( k~ 

If the wing section considered does not contain the tab, the last row and last column in the 
sqtiare matrix in (15) will be null. If the section does not contain the aileron, the last two rows 

' M ' = O .  and columns will be null and also Z~6 = 56 
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Expressions for the total effective moments on the system can now be derived by integration of 

the air-loads. Let fd~, fdr/,.fd~ denote integration with respect t o ~  over the complete wing 

span, over the complete aileron span, and over the tab span only. Then the complex amplitude 
of the flexural moment  is given by 

-- L/pV21~ = _ f f(~)(ZJ pV~I)d~ 

:;Tg~l; f2Zl.xtd77 -J-.kg[f fFZ34td~] -j- f f(l - F)Z,G'd~7] 

+ f + f , a 
and the remaining moments  can be evaluated similarly. The elements of the final matrix  d 
of the air-load coefficients are 

f .f~Z~.'d~ 

f + .  f /(1 

!i.oo'.. 
f fz~.'drl 
t 

f FfM,.(d. + = ; f(1 -- F)H,(d,1 
g 

f F"M./- l- x f F ( I  - -  F)(Ms.' + H.,')d,~ + .  f ( I  - -  F)'H.o'& 

~ 1 3  ~ :7/: 

~ 1 4  ~ ~ 

d 2 3  = 

~ 3 2  ~ ~ 

~ 3 3  ~ -  ~ 

d 3 4  = 7~ 

5~43 ~ 

ffH.'& 
c~ 

a O~ 

f Ha~'d~ 
a 

f HT~'d~ 
t 

t 

f FT,4'd~ + z~ f (1 - -  F)T56'd*l 
t 

; Tsd & 

f %~'d;l , 
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In the particular case of a rectangular wing-aileron-tab combination, the coefficients Z ~ j ' ,  
Mi/ .  etc., are independent of 7, and may be brought in front of the integrals. In this case the 
actual integrals required in the calculations of the air-load coefficients are 

W ~O ~ g 

] 1 2  = J 2 1  = ~ f f F d ~  ; J18 = ]al=tg  f f d ~  "~ ] 1 t  = J 4 1  = J r :  f f d ? ]  ; 

W a t 

a t t 

g 

a 
Ka2 = ~ f (1 -- F ) d .  r l .  

t 

The numerical values of these integrals for aeroplane S are given by 

j = 10.425 8-3441 3-7540 0.79684 
o 

8-3441 6.8713 3.0588 0"73005 

3"7540 3.0588 2.0392 0"63209 

0.79684 0.73005 0.63209 0.63209 

a n d K l ~ - -  2.1627; K~2-- 1.6992; K a 2 = - -  1.0196; K 4 2 = - - 0 - 0 9 7 9 6 .  

Tables 9 give the air-load coefficients calculated for aeroplane S on the foregoing basis. The 
asymptot ic  values for go--+ oo are as follows. 

7, = - -  C / g O ~ =  [-2_.606 0.4079 0.01617 0.00009084] .. (16) 

4079 O. 1167 O" 005009 O" 00003554J 

01617 O. 005009 O" 0005383 O. 0~6194 

00009084 0.00003554 0.056194 0"065057 J 

B~ gO +5 .213  3.765 0.3452 0"008407 

--0.2138 0.6266 0.09936 0.003236 

-[-0.009010 0.02145 0.009079 0"0005493 

0"00004654 0'0001511 0"00008344 0"00003559 

(17) 
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TABLE 1 

Flexure-Torsion Flutter Characteristics of Aeroplane S 

Upper Critical Lower Critical Natural Frequencies 
(c.p.s.) 

j fl co 1 coe f l ,  .f2~ fl~ f~-,, 

0.2 
0.1 
0.05 
0 

4"39 
2"19 
1 "10 
0 

I 
Vl(m.p.h.) f~ 

? ? 
1868 6.69 
1453 8.67 
None 

? 
0.09 
0.15 

V~(m.p.h.) A 

6 4 9  21.7 
665 17.9 
778 16-6 

None 

0"84 
0"675 
0"535 

9"60 
9"89 
9.97 
10"0 

48"7 
30"9 
28-6 
28"0 

9"17 
9"43 
9" 52 
9.56 

42.0 
29"9 
27"6 
26"7 

¢dl 

TABLE 2 

Aileron-Tab Natural Frequencies with Spring Tab No. 2 
(N = 3) 

f,, f~ denote frequencies (c.p.s.) corresponding to oscillations in vacuo and in still air 

Description of 
system* 

Aileron 

F U  
F B  
F B  

F U  
F B  
F B  

A U  
A B  
A B  

Tab 
I 

F U  
F U  
F B  

A U  
A U  
A B  

A U  
A U  
A B  

Ao 

4"25 
3"04 
3"03 

3" 72 
2" 76 
2 "77 

2.21 
1.58 
1.57 

Control column locked 
(symmetrical oscillations) 

288"0 4-05 
285"0 2.96 
134.0 2.95 

166"0 3-58 
157"0 2"70 
92-3 2.71 

159.0 2.18 
154.0 1"57 
71-7 1-57 

G 

270.0 
267.0 
132.0 

162.0 
154.0 
91-7 

156.0 
151-0 
71.4 

Column free 
(antisymmetrical) 

fly f2~ 

5 1 . 2  oo 
51-4 
24 "2 

28"4 
27.6 
16 "4 

28"3 
27"7 
12 '9 

Column 
locked and 

tab locked to 
Mleron (~) 

24"2 
17"1 
17"0 

22" 1 
15"9 
15 "8 

12.6 
8.87 
8.86 

Column 
locked and 

aileron locked 
to wing (fi) 

277-0 
277.0 
159.0 

144-0 
144-0 
82"7 

144.0 
144.0 
~ . 7  

Column free 
and aileron 
locked to 
wing (f~) 

50.1 
50.1 
28.7 

26.0 
26.0 
15.0 

26-0 
26.0 
15.0 

* F denotes fabric covering ; A aluminium covering ; U not mass-bManced; B uniformly statically balanced. 



TABLE 3 

Values of Win= for Aileron-Tab Flutter 

N = 2  N = 3  N = 6  N = 1 0  

/~ --  Wm~ l ' 05p  /~ --  Wm~ l ' 0 7 f  p - -  W m a , x  1"18~ ~ - -  W m a  x 1"31p 

0 
0.002 
0-0054 
0.010 
0.0125 

0.00014 
0.00218 
0.00574 
0.0105 
0.0131 

0 
0.00210 
0.00567 
0.0105 
0-0131 

0.00544 
0.006758 
0"01 
0.0125 
0.015 
0.02 
0.04 

0-00587 
0.007415 
0.0108 
0.0135 
0.01625 
0.0215 
0.0429 

0-00582 
0.00723 
0.0107 
0.0134 
0"0161 
0.0214 
0.0428 

0-006 
0.007155 
0.008 
0.01 
0.04 

0.00733 
0.00869 
0.00970 
0.0122 
0"0473 

0-00708 
0-00844 
0.00944 
0.0118 
0.0472 

0"01 
0"04 

0"0134 
0"0524 

0.0131 
0"0524 

M = 1.05 M ---- 1.07 M = 1.18 M : 1.31 

TABLE 4 

Spring-Tab Constants (units • feet and pounds) 

(See Appendix l ,  para. 3 (b)) 

Short lever 
Long lever 

R 

0 
0 

0.0609 
0.113 

(= R/r) 

0 
0 

N 
(=  R '# ' )  

5"61 
3"03 

1068 
1068 

Po 

24 
24 

2%R '~ 

3650 
3650 

2%R'r' 

651 
1205 

2ao r'2 

116 
398 

3"96 
13"6 



T A B L E  5 

Constants for Elastic Matrices e and e 

(See Appendix I, para. 3 (b), and equations (2.10), (4.3))~ 

pl a 
¢Yl, o 

plco 2 
2ao R'2 

plco 2 

2O'o y'2 
plco ~ 

2 ~0 ~''2 

plco 2 

a~,2 

pleo ~ 

a R  ~ 
plco 2 

a R t  

plco 2 

Short lever (N ~-- 5"61) 
Long lever (N = 3.03) 

3 .74 X 106 
3.74 × 10 ~ 

1.16 X 106 
1.16 X 106 

4227 
4227 

754 
1395 

134 
461 

4"59 
15"75 

1/plco 2 ---- 1" 158. 

T A B L E  6 

Inertial Coefficients of Aileron and Tab* 

Coefficient Case (U~, U d Case (B~, U,) Case (B~, B d 

alae~ X 10 a 
a~ae, X 10 a 
aaaet X 10 a 
az~e~ X 10 a 
a2ae~ X 10 a 
aa4et X 10 a 
a44et X 10 a 

0 . 1 4 8 8 + 5 . 0 2 0 A  
0 . 0 8 6 9 2 + 2 . 2 0 1 7 A  
0 - 0 2 3 5 5 + 0 . 3 0 6 4 A = H  
0-01348 
0-007958 
0.002220 
0.0002884 

0 
H + Z~(0"02770+0"6322A) = H 1 
H1 
0.01348 
0.007958 
0.002220 
0.0002884 

0 
/4* 

0 
o. 0002884(1 +2 a,) 
o- 0002884 (1 +2 &) 
0.0002884 (1 -/-2 Z,) 

/ 0.008397'~ 0.01091 
H 2 = H + Z~ ~ 0.02519 + 0.6322A -~ ~ j +  ~ (0.77 - -  0.23;.,) ~ 

N o t e . - - U  denotes not  mass balanced;  B denotes uniformly statically balanced; A = ~a/~, and e, = p / ~  (see Appendix II) .  



T A B L E  7 

Inertial Coefficients for Fabric or Metal  Components ( s e e  Append ix  I I )  

(U denotes inertial un-balance • B denotes uni form static balance) 

Descr ip t ion  of Sys tem 

F a b r i c  aileron (U); fabric  t a b  (U) . . . . . .  
. . . .  ( B ) ;  . . . .  ( U )  . . . . . .  

. . . .  ( B ) ;  . . . .  ( B )  . . . . . .  

F a b r i c  a i e r o n  (U); Al. t ab  (U) . . . . . .  
. . . .  ( B ) ;  . . . .  ( u )  . . . . . .  
. . . .  ( B ) ;  . . . .  ( B )  . . . . . .  

A1. aileron (U);  A1. t ab  (U) . . . . . . . .  
. . . .  (B); . . . .  ( v )  . . . . . . . .  

. . . .  ( B ) .  ,,  ,, ( B )  . . . . . . . .  

10ala 

0.836 
0 
0 

0"901 
0 
0 

3 '09  
0 
0 

10a2a 

0"370 
0"107 
0"108 

0"408 
0"123 
0" 127 

1"37 
0"395 
0"399 

10aaa 

0 .0533  
0 .107 
0"108 

0"0636 
0 .123 
0 .127 

0- 197 
0" 395 
0 .399  

10aal~ 

0 .218 
0 .218 

0 

0-806 
0 .806 

0 

0 .807 
0-807 

0 

104aa 

1.29 
1.29 
0.140 

4"76 
4"76 
0"518 

4"76 
4"76 
0"518 

104a34 

0"358 
0"358 
0"140 

1"33 
1"33 
0-518 

1"33 
1"33 
0"518 

105a44 

0"0463 
0-0463 
0-140 

0.171 
0.171 
0"518 

0.171 
0.171 
0"518 

Notes  : (i) In  all cases i t  is assumed tha t  a l l =  27.5,  a22 = 1.09, axo - = 2 1 . 9 j  where  j c  denotes  the  d is tance  of the  iner t ia  axis behind the flexural axis. 

(ii) The dens i ty  constants  for fabric-covered and a lumininm-covered  componen t s  are  t a k e n  respec t ive ly  as a = 0.03837(e ---- 0.06197) and 
= 0.1151(e = 0.01675). 

(iii) Fac to r s  used in conversion to non-dimensional  coefficients are  1/plac ~ = 0-01043;  1/pFc 3 = 0:01873;  1/plc 4 = 0" 03364. 

T A B L E  8 

Barred Inertial Co-efficients of Aileron and Tab with Spring Tab No. 2 (n -= O) 

Descript ion of Sys tem 

F a b r i c  aileron (U); fabric  t ab  (U) 
. . . .  ( B ) ;  . . . .  ( u )  
. . . .  ( B ) ;  . . . .  ( B )  

F a b r i c  aileron (U); A1. t ab  (U) . .  
. . . .  ( B ) ;  . . . .  ( v )  . .  
. . . .  ( B )  . . . .  ( B )  . .  

A1. aileron (U) A1. t ab  (U) . .  
. . . .  ( B ) ;  . . . .  ( u )  . .  
. . . .  ( B ) ;  ,; ,, ( B )  . .  

10aaaa 

. .  5"33 
• .  10"7 
. .  10"8 

. .  6 .36 

. .  12.3 

. .  1 2 . 7  

. .  19.7 

. .  39.5  

. .  39.9  

N = 2  

10aaa~ 

5" 403 
10.74 
10.84 

6- 624 
12.57 
12.80 

19.99 
39" 75 
40.00 

10a~4 

5"49 
10"8 
11 "0 

6"96 
12"9 
13"1 

20"3 
40" 1 
40"3 

10a2/aa 

5 .33  
10-7 
10-8 

6-36  
12-3 
12"7 

19.7  
39-5 
39-9  

N = 3  

103~34 

5" 439 
10"78 
10-86 

6.757 
12.70 
12- 85 

20" 13 
39.88 
40 .06  

10a~44 

5-59 
10"9 
11"1 

7"31 
13"25 
13"48 

20 "7 
40 .4  
40-7  

10a•a 

5" 33 
10"7 
10"8 

6"36 
12"3 
12 "7 

19"7 
39"5 
39"9 

N- - - -6  

5" 547 
10 "88 
10 '9  

7" 155 
13"10 
13"01 

20" 52 
40.28 
40 -21 

10a~44 

5"93 
11 "3 
11 "6 

8"57 
14"5 
15 "2 

21 "9 
41 "7 
42" 4 



TABLE 9A 

Air-Load Coefficients Clj and BIj (see Appendix III)  

Cll BI~ C12 BI~ C13 Bla C14 B~4 

0 
0"02 
0"04 
0"06 
0"08 

0"10 
0"12 
0"16 
0-2 
0"4 

0.6  
0-8 
1.0 
1.2 
1-4 

1.6 
1.8 
2 .0  
2 .2  
2 .4  

2 .6  
2 .8  
3.0 
3.2 
3.4 

3.6 
3.8 
4 .0  
4.2 
4 .4  

4-6 
4-8 
5"0 

0 
+ 0.008476 

0.02719 
0.05186 
0.08006 

0.1101 
0.1408 
0.2008 
0-2550 
0.3690 

+ 0.1834 
- -  0-2919 
- -  1-035 
- -  2-029 
- -  3-263 

- -  4.729 
- -  6-422 
- -  8-334 
--10-47 
--12-81 

- -15:38 
--18:16 
- -21.15 
--24"36 
--27.78 

--31.41 
- - 3 5 "  24 
--39-29 
- -43.55 
--48"02 

--52.70 
- -57.59 
--62"69 

0 
0.2048 
0.4019 
0.5911 
0.7729 

0.9476 
1.115 
1.435 
1.735 
3.034 

4.159 
5-212 
6.233 

7.064 
6-942 
6.817 
6.695 
6-576 

6-463 
6-356 
6-158 
5.982 
5-342 

4.932 
4.622 
4.350 

+ 

0 
0.2129 
0.3148 
0-3709 
0-3970 

0.4011 
0.3885 
0-3259 
0-2284 
0-4967 

1"343 
2.201 
3-048 

2.223 
2.184 

--2 .143 
2.103 
2.063 

2.025 
1.989 
1.921 
1.861 
1.641 

1.510 
1.426 
1.366 

0 
--0.09115 
--0.1468 
- - 0 - 1 8 7 5  
--0-2181 

--0.2414 
--0-2589 
--0-2809 
--0.2904 
--0-2489 

--0.1564 
--0.0551 
+0.0449 

0.2337 
0.2296 
0-2253 
0.2209 
0-2167 

0-2126 
0.2086 
0.2013 
0-1947 
0.1684 

0.1563 
0.1471 
0.1410 

7.240 
8.241 

9.242 
10.24 
11.25 
12-25 
13-26 

14-27 
15-28 
16.29 
17.31 
18.33 

19.35 
20.37 
21.39 
22.41 
23.44 

24.46 
25.49 
26.52 

4.088 
3.818 

3.532 
3.224 
2.891 
2.531 
2.143 

1.722 
1.273 
0.7934 
0.2815 

--0.2622 

--0.8373 
--1 .444 
--2-084 
--2-755 
--3-459 

--4-195 
- -4 .963 

3.880 
4.699 

5.508 
6.308 
7.101 
7.888 
8.674 

9.450 
10.22 
11.00 
11.77 
12.54 

13.30 
14-07 
14.83 
15-60 
16.36 

17-12 
17.88 

1.322 
1.286 

1.256 
1.230 
1.205 
1-182 
1.159 

1-137 
1-114 
1-091 
1.067 
1.042 

1.017 
0.9905 
0.9633 
0.9348 
0.9054 

0.8748 
0.8431 

--5 .764 +18 .65  0.8105 

0.1415 
0.2344 

0.3241 
0'4111 
0.4955 
0"5781 
0.6592 

0"7386 
0.8171 
0.8946 
0.9711 
1.047 

1-122 
1.197 
1.271 
1.345 
1"418 

1.491 
1.564 

+1 .636  

0-1366 
0.1333 

0"1308 
0.1289 
0.1274 
0"1261 
0.1251 

O. 1242 
O" 1235 
O" 1228 
O" 1222 
0-1217 

0.1212 
0-1208 
0.1204 
0.1200 
0.1196 

0"1193 
0.1190 
0.1186 

0 
--0.01042 
--0.01708 
--0.02216 
--0"02615 

--0.02935 
- -0 .03192" 
--0.03566 
--0.03803 
--0.03995 

--0"03603 
--0.03099 
--0.02599 
--0-02132 
--0"01701 

--0-01304 
--0.009379 
--0.005957 
--0.002748 
+0.0002837 

0.003164 
0.005916 
0"008558 
0-01111 
0.01357 

0.01597 
0.01830 
0'02058 
0.02281 
0.02500 

0.02715 
0.02926 

-0-03135 
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TABLE 9B 

Air-Load Coefficients C2~ and B v (see Appendix I I I )  

o9 Czl B~I C22 B22 C~ . B23 C~ Be4 

0 
0.02 
0.04 
0.06 
0"08 

0.10 
' 0 . 12  

0.16 
0.2 
0.4 

0.6 
0.8 
1.0 
1.2 
1.4 

1.6 
1-8 
2-0 
2-2 
2-4 

2-6 
2.8 
3.0 
3.2 
3.4 

3.6 
3.8 
4.0 
4.2 
4.4 

4.6 
4-8 
5.0 

0 
--0.0005536 
--0.001940 
--0.003980 
--0.006578 

--0-009665 
--0"01319 
--0-02142 
--0"03105 
--0-09759 

--0"1928 
--0"3175 
--0-4724 
--0"6579 
--0-8747 

- -  1 -  124 
--1 "405 
--1 "717 
--2" 062 
--2" 438 

--2.849 
--3.291 
--3.765 
--4"272 
--4.812 

--5.383 
--5"988 
--6.625 
--7-294 
--7-997 

--8"731 
--9.498 
--10-30 

0 
--0-008401 
--0-01648 
--0-02424 
--0-03169 

--0"03887 
--0.04584 
--0"05881 
--0.07115 
--0-1243 

--0.1706 
--0.2138 
--0.2557 
--0.2971 
--0.3383 

--0.3793 
--0.4205 
--0.4611 
--0.5030 
--0.5436 

--0-5853 
--0.6268 
--0.6684 
--0.7100 
--0-7517 

--0.7935 
--0.8354 
--0.8774 
--0.9193 
--0.9613 

- -1 '003 
- -1 '046 
- -1 '088 

--0.4713 
--0.4662 
--0.4610 
--0.4561 
--0.4515 

--0.4471 
--0.4432 
--0.4363 
--0.4309 
--0.4196 

--0.4291 
--0.4534 
--0 '4902 
--0.5379 
--0.5962 

--0"6645 
--0.7425 
--0 '8300 
--0.9278 
--1.034 

--1"151 
--1-276 
--1-411 
--1-556 
--1-710 

--1"873 
--2.045 
--2.227 
--2.419 
--2.619 

--2.829 
~ 3 ' 0 4 9  
--3"278 

0 
0.02476 
0"04481 
0"06231 
0"07976 

0.09565 
0.1108 
0.1397 
0-1670 
0-2935 

0"4148 
0"5357 
0"6571 
0-7792 
0"9013 

1-025 
1-148 
1"271 
1"395 
1"520 

1.644 
1.768 
1.892 
2'017 
2'142 

2.266 
2.391 
2.516 
2.641 
2.766 

2.891 
3.016 
3.140 

0.2169 
0.2185 
0.2202 
0-2219 
0-2235 

0.2251 
0-2266 
0-2294 
0-2319 
0-2404 

0-2447 
0-2468 
0.2472 
0-2465 
0"2451 

0.2429 
0.2402 
0.2369 
0"2331 
0.2288 

0.2241 
0.2189 
0.2133 
0.2072 
0.2007 

0.1938 
0"1865 
0"1788 
0"1707 
0.1621 

0.1532 
0"1438 
0"1341 

0 
0.006110 
0.01072 
0.01471 
0.01828 

0"02154 
0"02455 
0'03003 
0.03498 
0"05601 

0"07489 
0"09343 
0"1120 
0"1307 
0"1496 

0-1686 
0-1877 
0.2069 
0.2262 
0-2456 

0-2650 
0-2845 
0-3041 
0"3236 
0"3432 

0"3628 
0.3824 
0"4020 
0"4217 
0'4414 

0.4611 
0.4809 
0.5005 

0.03787 
0.03806 
0.03826 
0.03846 
0.03866 

0.03885 
0.03903 
0.03937 
0.03968 
0.04037 

0"04146 
0"04185 
0.04214 
0.04232 
0-04245 

0-04254 
0-04260 
0-04264 
0-04266 
0.04268 

0-04268 
0.04267 
0-04265 
0.04263 
0.04261 

0.04257 
0.04253 
0.04249 
0.04244 
0.04239 

0.04234 
0.04228 
0.04222 

0 
'0-0005560 
0-0009377 
0"001246 
0"001503 

0-001724 
0-001916 
0-002235 
0-002489 
0"003304 

0-003847 
0"004339 
0-004832 
0-005341 
0"005866 

0"006408 
0.006962 
0"007530 
0"008104 
0.008692 

0"009281 
0"009878 
0"01048 
0"01109 
0"01170 

0"01231 
0"01293 
0.01355 
0'01417 
0"01479 

0"01542 
0"01605 
0'01668 
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T A B L E  9 c  

Air-Load Coefficients C~ s and B~ s (see Appendix I I I )  

m 10Ca1 10Bax t 10Ca"~ 10Ba2 10Caa 10Baa 10=Ca4 10~Ba~ 

0 
0"02 
0.04 
0"06 
0"08 

0"10 
0" 12 
0"16 
0-2 
0"4 

o0-6  
0-8 
1"0 
1-2 
1"4 

1.6 
1.8 
2.0 
2.2 
2.4 

2.6 
2.8 
3.0 
3-2 
3-4 

3-6 
3.8 
4.0 
4.2 
4.4 

4.6 
4.8 
5.0 

0 
+0.00009983 

O-0OO283 
0.0004764 
O-000637 

0"0007369 
0"000755 

+0"000484 
--0"0002628 
--0"01228 

--0 '03885 
--0"07973 
--0"1346 
!--0"2031 
--0"2851 

--0-3803 
--0"4891 
--0-6108 
--0"7455 
--0-8934 

--1.055 
--1.229 
--1"416 
--1"616 
--1"829 

--2.055 
--2.294 
--2.546 
--2.811 
--3-089 

--3-380 
--3-684 
--4.002 

0 
0.003540 
0.006945 
0-01022 
0-01336 

0-01638 
0.01929 
0-02481 
0-0300 
0.05244 

0.07189 
0.09009 
0.1077 
0.•252 
0.1425 

0.1598 
0.1771 
0.1944 
0.2118 
0.2292 

0-2466 
0"2641 
0.2817, 
0"2992 
0"3168 

0.3344 
0.3521 
0.3697 
0"3874 
0.4051 

0.4228 
0-4406 
0-4584 

+0.06283 
0"06080 
0'05867 
0'05655 
0"05444 

0.05240 
0.05044 
0.04667 
0.04315 
0.02737 

+0-01192 
--0-005302 
--0-02539 
--0"04877 
--0-07577 

--0-1065 
--0.1410 
--0.1795 
--0.2218 
--0.2681 

--0.3184 
--0"3725 
--0.4308 
--0.4929 
--0-5593 

--0.6292 
--0"7035 
--0-7819 
--0-8640 
--0.9502 

--1.040 
--1.135 
--1.233 

0 
--0.0004975 
+0.0008560 

0-002971 
0.005586 

0"008567 
0-01183 
0"01896 
0.02668 
0"06914 

0.1136 
0"1583 
0"2027 
0.2469 
0'2908 

0.3347 
0"3783 
0.4220 
0-4653 
0-5087 

0.5521 
0.5954 
0"6386 
0"6817 
0.7248 

0.7681 
0.8112 
0.8543 
0.8975 
0"9404 

0-9835 
1-026 

+1"070 

0.1680 
0.1670 
0.1659 
0.1648 
0-1638 

0-1628 
0-1618 
0-1600 
0"1583 
0.1520 

0.1476 
0.1440 
0.1407 
0.1374 
0.1339 

0.1301 
0.1260 
0.1216 
0.1169 
0.1117 

0-1062 
0-1002 
0.09380 
0.08708 . 
0.07990 

0.07230 
0.06427 
0"05583 
0"04695 
0.03766 

0.02794 
0-01779 
0-007220 

0 
--0.0007407 
--0.000556 
+0.00001977 

0.000856 

0.001886 
0.003066 
0.005763 
0.008789 
0-02622 

0-04501 
0.06399 
0-08295 
0-1018 
0-1206 

0-1393 
0.1579 
0"1765 
0.1950 
0.2134 

0"2319 
0.2503 
0.2687 
0.2871 
0-3054 

0"3237 
0-3420 
0-3603 
0-3786 
0"3969 

0.4151 
0.4334 

+0.4516 

0.7294 
0.7281 
0.7265 
0.7248 
0.7232 

0.7216 
0.7201 
0.7174 
0.7149 
0-7054 

0-6997 
0-6966 
0-6940 
0.6921 
0.6902 

0.6890 
0.6877 
0.6871 
0.6858 
0-6852 

0.6840 
0.6831 
0.6820 
0.6812 
0-6803 

0-6793 
0-6782 
0.6770 
0"6761 
0.6749 

0"6737 
0.6725 
0"6713 

0 
--0.002933 
=-0.004435 
--0.005331 
--0.005818 

--0.006000 
--0.005945 
--0.005297 
--0.004109 
+0-005499 

0.01732 
0.02958 
°0.04184 
0.05398 
0.06599 

• 0-07781 
0.08957 
0.1013. 
0.1128 
0.1243 

0.1358 
0.1472 
0.1585 
0-1698 
0-1811 

0.1924 
0.2036 
0'2148 
0.2261 
0.2372 

0'2484 
0.2596 

+0.2707 
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TABLE 91) 

Air-Load Coefficients C4i and B4~ (see Appendix III)  

w 10aCal 10aB41 10aC4~ 10aB4~ [ 10aC43 10aB~ 10aCa4 10aBaa 

0 
0.02 
0.04 
0-06 
0.08 

0"10 
0"12 
0"16 
0"2 
0"4 

0.6 
0.8 
1.0 
1.2 
1.4 

1.6 
1.8 
2.0 
2.2 
2-4 

2.6 
2.8 
3.0 
3.2 
3.4 

3.6 
3.8 
4"0 
4 '2  
4.4 

4.6 
4-8 
5-0 

0 
0.00004857 
0-0001344 
0.0002193 
0.0002816 

0.0003065 
0.0002831 
0.0000610 

--0.0004781 
--0"007570 

--0.02271 
--0-04590 
--0-07690 
--0.1155 
--0-1618 

--0-2151 
--0-2765 
--0-3450 
--0"4207 
--0-5036 

--0.5941 
--0.6919 
--0.7968 
--0.9094 

0 
0.001827 
0.003585 
0.005273 
0"006894 

0.008453 
0.009954 
0.01280 
0.01546 
0..02701 

0.03705 
0-04646 
0-05562 
0.06462 
0.07355 

0"08207 
0"09164 
0"1004 
0'1092 
0"1179 

0"1273 
0"1363 
0"1450 
0"1544 

+0.06827 
0"06668 
0-06520 
0.06380 
0-06238 

0.06104 
0.05970 
0.05714 
0"05468 
0.04371 

0.03298 
0.02047 

+0.006606 
--0.01021 
--0.02904 

--0.05091 
--0.07570 
--0.1028 
--0.1327 
--0.1660 

--0.2014 
--0-2399 
--0-2815 
--0.3253 

--1.029 

--1.156 
--1.290 
--1-432 
--1.581 
--1.737 

--1.900 
--2-071 
--2.249 

0.1635 --0.3723 

0-1726 --0.4221 
0-1817 I--0.4748 
0-1904 --0.5305 
0.1999 --0.5886 
0-2091 --0.6497 

0.2183 ~0.7138 
0.2273 --0.7806 
0.2367 --0.8479 

0 
--0.0001945 
+0.0008457 

0.002395 
0.004279 

0.006410 
0.008729 
0.01378 
0.01888 
0.04915 

0.08044 
0.1116 
0-1435 
0.1745 
0-2050 

0-2360 
0-2672 
0.2976 
0-3286 
0.3590 

0.3895 
0.4200 
0.4503 
0.4810 
0.5114 

0 . 5 4 1 8  
0.5723 
0.6025 
0.6331 
0.6634 

0-6938 
0-7241 

+0-7540 

+0.1106 
0-1100 
0.1092 
0"1084 
0.1076 

0.1069 
0"1061 
0.1047 
0"1037 
0.09861 

0.09481 
0.09165 
0.08786 
0"08470 
0-08091 

0-07648 
0.07206 
0-06700 
0-06194 
0-05626 

0"04970 
0.04290 
0"03565 
0.02790 
0.01970 

0.01090 
+0-001700 
--0.008028 
--0.01810 
--0.02890 

--0-04000 
--0.05170 
--0-06380 

0 
--0.0002582 
+0"0001815 

0.0009152 
0.001846 

0.002922 
0-004111 
0"006745 
0.009610 
0"02579 

0-04292 
0.06024 
0"07775 
0.09481 
0.1119 

0.1289 
0.1460 
0.1631 
0.1801 
0.1972 

0.2138 
0.2306 
0.2478 
0.2643 
0.2812 

0.2980 
0.3148 
0-3318 
0-3483 
0-3652 

0.3819 
0.3987 

+0"4153 

0.2547 
0.2545 
0.2541 
0.2537 
0.2533 

0.2529 
0.2525 
0.2518 
0.2513 
0"2490 

0.2478 
0-2465 
0"2459 
0-2453 
0.2446 

0.2440 
0-2434 
0-2427 
0.2427 
0-2421 

0.2414 
0.2408 
0.2402 
0.2394 
0.2387 

0.2380 
0.2372 
0.2364 
0.2356 
0.2347 

0.2337 
0-2328 
0-2320 

0 
--0"0002678 
--0-0001880 
+0-0000388] 

0.0003652 

0"0007655 
0"001224 
0.002270 
0"003413 
0.01024 

0"01757 
0'02497 
0"03224 
0"03982 
0.04715 

0"05449 
0.06194 
0"06890 
0.07648 
0"08344 

0.09080 
0"09800 
0"1049 
0.1124 
0.1196 

0-1268 
0.1339 
0-1410 
0.1483 
0.1555 

0'1626 
0"1698 

+0-1770 
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T A B L E  1 0  

Barred Inertial Coefficients for Aileron-Tab with ,Spring Tab No. 1 

o0 

Description of System 

Fabric aileron (U) ; Fabric tab (U) 
. . . .  ( B ) ;  . . . .  ( u )  
. . . .  ( B ) ;  . . . .  (B )  

Fabric aileron (U); Al.tab (U) .. 
. . . .  (B); . . . .  (U) . .  
. . . .  ( B ) ;  . . . .  (B)  . .  

Al. aileron (U)" Al. tab  (U) .. 
. . . .  ( B ) ;  . . . .  (U)  . .  
. . . .  ( B ) ;  . . . .  (B )  . .  

N = 3 ;  n - -  0.5 

10aa~a lOZ~ 

5"37 
10"7 
10.8 

6- 50 
12-4 
12 "8 

19-8 
39-6 
40.0 

5-462 
10.83 
10.87 

6"851 
12.79 
12.96 

20-19 
39"99 
40.16 

N = 3 ;  n = l - 0  

10aaaa 1031b 

5"41 5-487 
10"8 10"86 
10.8 10.90 

6-64 6.943 
12.6 12.88 
12.9 13.06 

20.0 20-28 
39.8 40-08 
40.1 40.26 

N = 3 ;  n = 2 . 0  

10aaaa 10ap 

5.49 5.537 
10.9 10.91 
10.9 10.95 

6-96 7.128 
12-9 13.07 
13.1 13.27 

20.3 20.47 
41.0 40.27 
40-3 40.47 

N = 3  

10aft44 

5.59 
10"90 
11.10 

7"31 
13.25 
13"48 

20.70 
40.40 
40-70 

A1. denotes aluminium, U unbalanced, B uniform static balance. 



TABLE 11A 

Flexure-Aileron-Tab Flutter (Aileron unbalanced) 

X = O  X = 5  X = I O  

"~ ] I 
z~ w~ & w~ z~ w, & w~ z~ w~ & w~ 

? '2  I--0.002360 
3"6 --0"005161 
3.8 
1.0 --0.005329 
1.2 --0.005397 

1.4 --0.005431 
1-6 --0.005464 
1"8 --0-005500 
,~'0 --0"005537 
,).4 --0.005649 

~, '6 '  
3"0 --0.005963 
3.4 --0"006633 
3-6 --0.008236 
3"8 

L.O 
t-2 
.6 

--0"03184 
--0"008203 

--0.006419 
--0.006080 

--0.005886 
--0.005756 
--0.005652 
--0.005569 
--0.005412 

--0.005136 
--0.005758 
--0.004236 

+0-1884 
0.01744 

0-003195 
+0"037486 

- -0 .0J491  
--0-001705 
--0-002353 
--0-002805 
--0.003394 

--0-003645 
--0.003460 
--0-002932 

1 
--0-27899 
--0.03703 

--0-01727 
--0-01390 

--0-01186 
i--0"01055 
- -0 ' 09676  
--0"00901 
--0"008379 

--0.008219 
--0-009373 
--0-01468 

+0"01590 

+0-0a9515 
--0-002338 

--0-004714 
--0-005105 
--0.005298 
--0.005317 
--0-005297 

--0.005282 
--0.005241 
--0-005191 

--0.005135 

--0-005062 
--0-004698 

--0.03549 

--0-01504 
--0.01063 

--0"007021 
--0"006216 
--0"005797 
--0"005693 
,-0"005633 

--0.005620 
--0.005626 
--0-005654 

--0"005697 

--0"005763 
--0.005854 

--0"005301 

--0-005488 
--0-00554 

--0"006728 
--0-01980 
+0-008725 
+0"001135 
--0"001878 

--0"002503 
--0.003269 
--0.003740 

--0"004072 

--0"004333 
--0"004561 

--0"007895 

--0"006050 
--0-005702 

--0.002812 
--0"03156 
--0.01336 

--0-01081 
~--0.008844 
i 
--0-008315 
i--0-007605 
--0"007137 

--0-006796 

--0.006522 
--0.006279 

--0-005578 
--0.006793 
--0.005000 
--0.005190 

--0.005260 
--0.005288 
--0-005289 
--0.005283 
--0.005248 

--0.005183 

!--0.005024 

--0.007346 
--0.003923 
--0.006912 
--0.006311 

--0.006018 
--0.005851 
--0.005764 
--0.005703 
--0.005667 

--0"005677 

i-o.oo58o5 

+0.01248 
--0.035739 
+0 .3092  

0-008449 

O- 002899 
+0.0.~5848 
-- O. 037427 
--0-  001605 
--0-002681 

--0-003540 

--0.004286 

--0.03217 
--0"01439 
--0.03789 
--0.01836 

--0.01411 
--0.01193 
--0.01057 
--0-009645 
--0"008457 

--0.007480 

--0.006619 



TABLE l lB 

Flexure-Aileron-Tab Flutter (Aileron unbalanced) 

O1 

EO 

3"6 
0"8 
1.0 
1"2 
1"4 

1.6 
1"8 
2"0 
2"2 
2"6 

3.0 

z~ 

--0-005085 

--0.005441 

--0.006026 

--0.002619 
--0.002930 
--0.003278 
--0.003782 

X =  - - 3 - 0  

• W 1 Z 2 

--0.008399 

--0.006489 

--0.006014 

--0-008457 
--0.008157 
--0.007831 
--0"007277 

--0.004170 --0"006806 

t0"01769  

tO-003574 

--0-034285 

--0.004046 
--0-004554 
--0.004661 
--0-004741 

--0-004668 

w~ 

--0-03745 

!--0-01796 

--0-01331 

--0.006721 
--0-006157 
--0.006116 
--0-006084 

--0-006146 

z~ 

--0.005102 
--0.005255 
--0-005347 
i--0.005476 
--0.005702 

--0.006460 

--0.003699 
--0-003987 

X =  - - 2 - 5  

w~ 

--0.008359 
--0.007121 
--0.006553 
--0-006216 
--0.005963 

--0.005629 

--0.007165 
--0.006976 

& 

+0"01770 
0"008051 
0.003493 

+0.001034 
--0.034255 

--0.001224 

--0-004124 
--0.004502 

vG 

--0.03741 
--0.02400 
--0-01776 
--0.01446 
--0.01267 

--0-01234 

--0.006632 
--0.006330 

Z1 

--0-005282 
--0.005342 
--0.005409 
--0;005476 

--0.005566 
--0.005666 

--0.006143 
--0.01191 

X 

W1 

--0-007020 
--0-006456 
--0-006127 
--0.005913 

--0.005750 
--0.005600 

--0.005218 
--0.003722 

1.0 

& 

+0.007935 
0.003375 

+0"089130 
--0"0a5801 

--0.001519 
--0.002143 

--0.002793 
--0.002420 

--0.02378 
--0.01749 
--0-01411 
--0.01209 

--0.01083 
--0"01001 

--0.009336 
--0.01255 

¢3q 

TABLE 1 lc 

Flexure-Aileron-Tab Flutter (Aileron unbalanced) 

X = - - I O  X = - - 5  X = - - 4  

x_/.) 

Z1 W1 Z2 W2 Z1 W1 • Z2 W2 Z1 W1 Z2 W~ 

0-4 ~0.004268 
0-6 0.003854 
0.8 .01262 
1.0 .005126 
1.2 

1.4 
1.8 
2-2 
2-6 
•3-0 

+0-0~1722 
--0.001840 
--0"002835 
--0.003428 
i--0.003828 

--0.01293 
--0.01221 
--0.02532 
--0.01807 

--0.01223 
--0.009744 
--0.008494 
--0.007749 
--0"007251 

+0-04180 
+0-008017 

--0"07394 Z~  - -  
--0-03148 --0-005021 
--0-006156 "005203 
--0-006154 .005495 

m 

--0"008560 +0.01745 --0.03750 --0.005056 --0-008484 
--0-005327 
i--0.005229 

--0-005264 
--0-005173 
--0.005132 
--0.005089 
~--0-005034 

--0-005832 
--0-005796 
--0-005766 
--0"005775 
--0.005851 

--0.003066 

--0" 0~5265 
--0.002044 
--0.002999 

--0.003951 

--0.007437 
--0-007275 
--0.01285 

--0"01155 
--0.009441 
--0"008287 

--0.007101 

0.007695 
+0.002582 
--0.004551 

--0.004943 
--0.005018 
--0.005008 

--0.004928 

--0-02419 
--0.01850 
--0.005088 

--0.005835 
~--0-005860 
--0"005851 

--0.005912 

--0.005381 
--0.005968 

+0.081796 
--0.002154 
--0.003084 
--0.003635 
--0.004019 

--0.006765 
--0.006647 

--0.01014 
--0.009210 
--0.008158 
--0-007491 
--0-007011 

+0.01763 

0-003332 
+0"036371 

--0.004040 
--0-004863 
--0.004915 
--0.004908 
--0.004860 

--0.03751 

--0.01805 
--0.01574 

--0"005572 
--0.005930 
--0.005917 
--0.005929 
--0.005979 



TABLE 12 

Binary Flutter (Aileron unbalanced) 

).2 
).4 
3"6 
3"8 
1"0 

1-2 
1-4 
1-6 
1"8 
2.0 

z = ~ ( u ~  = 0 - 0 8 4 0 )  w = ~ ( ~  = o .  0836 )  x = co ( ~ ,  = 0 - 0 0 5 4 0  

"(.0 

G wl G w~ G G G G G w~ G w~. 

2-4 
2-6 
3.0 
3.4 
~:.0 

4.2 
4.4 

22-544 

9.91504 

6.28488 

4.59006 

2.93724 

2.04236 

1.24974 

- -0 .096959 

--0 .0396836 

--0-0233476 

--0.0162405 

--0.0099887 

--0 .0070727 

--0.0049490 

- -11 .9983 

- -  5.96431 

- -  3.65010 

- -  2.40448 

- -  1.05762 

- -  0-262334 

+ 0.485629 

--0.0554072 

--0-0156952 

--0.0067231 

--0-0038635 

--0-0025141 

--0-0026469 

--0-0034600 

202.9 
41-44 

12.61 

6-996 

4.817 

3.617 

2-850 

2.077 

0.9332 

- -0-4068 
- -0-1078 

- -0 .0327  

- -0 .01786 

--0-01229 

- -0-009475 

- -0 .007658 

- -0 .005974 

- -0 .003734 

- -29 .61  
- - 17 .06  

- -  7-844 

- -  4"516 

- -  2"946 

- -  1"982 

- -  1"346 

- -  0.6330 

- -  0-4438 

- -0-2893 
--0"05719 

--0.007563 

--0.001646 

--0-036093 

--0.0~6250 

--0.039375 

--0.001502 

--0.002911 

--0.00444 

--0-00516 
- -0 .00523 

--0-005265 

--0.005225 

--0.005053 

- -0 .00494 

- -0 .00488 
- -0 .00476 

t 

- -0 .01222 

- -0 .00735 
- -0 :00643 

- -0 .00594 

--0-00574 

--0-00582 

- -0 .00590 

- -0 .00595 
--0-00610 

I 

+0.07061 

0.01201 
0-00591 

+0"036142 

--0.002155 

- -0 .00376 

--0.00437 

- -0 .00449 
- -0 .00466 

--0.09305 

--0.02658 
- -0 .01908 

- -0 .01266 

- -0 .009265 

- -0 .00729 

--0"00655 

--0.00641 
- -0 .00622 



TABLE 13 

Flexural-Aileron-Tab Flutter (Aileron statically balanced) 

,,J 

09 

9.4 
1.0 
1.6 
2-0 
2.6 

3.0 
3.0 
2-6 
2.0 
1.6 

1.0 
0.4 

X = oo (?%4 = 0"01074 

Z 

0.06577 
+0.001254 
--0-005399 
--0.006978 
--0.008253 

--0.008841 
--0"009879 
--0.01009 
--0.01032 
--0.01044 

--0.01054 
--0.009848 

W 

--0-09888 
--0.02511 
--0.01705 
--0.01512 
--0-01356 

--0.01285 
--0.01166 
--0-01145 
--0.01127 
--0.01127 

--0.01171 
--0.01741 

Z 

+0 .09266  
+0.001734 
--0-005360 
--0.006983 
--0-008271 

--0.008852 
--0-009911 
--0.01011 
--0.01033 
--0.01044 

W 

--0-10990 
--0.02524 
--0.01701 
- -0 -01507  
--0.01353 

--0-01283 
--0.01162 
--0.01143 
--0-01127 
--0.01127 

Z 

0.06672 
+0-001234 
--0.005589 
--0.007177 
--0.008484 

W 

--0-09801 
:--0"02480 
--0.01674 
--0.01484 
--0.01327 

--0.01161 
--0"01130 
--0.01126 

X - -  - - 5 . 0  

Z W 

+0.06742 
+0.0~9559 
--0.005588 
--0.007022 
--0-008285 

--0-09838 
--0"02485 
--0-01698 
--0.01506 
--0.01353 

--0.01279 
--0-01174 
--0.01149 
--0.01129 
--0.01126 

--0.01172 
--0-01950 

Z = oo (al4 = O" 0a436) W = oo 

W X 

--0-01050 
--0.008222 

X =  10 

--0.01181 
--0.02087 

--0-009925 
--0.01029 
- -0 .01046 

--0.01056 
--0-008984 

X = O  

--0.01183 
--0.01947 

--0.008893 
--0-009805 
--0.01005 
--0"01031 
--0.01044 

--0.01058 
--0.008969 

X 

No real values for ~o ~0.4 

Z 



TABLE 14A 

Torsion-A ileron- Tab. Flutter (Aileron unbalanced) 

0.2 
0.6 
0 . 8  
1-0 
1.4 

1"8 
2.2 
2"6 
3"0 
3.4 

3.8 
4-2 
4"6 

z~ 

+0.2249 
+0.02280 
--0"01563 
--0.005284 
--0.005393 

--0.005395 
~-0-005370 
i--0-005569 
--0.008741 
--0.001373 

--0.003758 
--0"004413 

Y = O  Y = 0 - 5  Y = I O 0  

W 1 Z 2 W 2 Z 1 W1 Z2 W2 Zl  I~l  Z2 W2 

--0.3081 
--0.03885 
--0-05072 
--0"006807 
--0"0059285 

--0-005709 
--0-005634 
--0.004399 
--0.007957 
--0.006939 

--0-006519 
--0-006219 

--0-004955 
--0-005465 
--0.006385 
--0.0~4055 
--0.002276 

--0-003705 
--0-004643 
--0.005378 
--0-005313 
--0-005265 

--0.005208 
--0-005123 

--0-02604 
--0.007197 
--0-0~9292 
--0.01552 
--0-01083 

--0-008580 
--0.007165 
--0.005457 
--0"005561 
--0"005590 

--0.005629 
--0-005697 

--0-006089 
--0.009422 

--0.007675 
--0.035849 
--0.002310 
--0-003136 
--0.003640 

--0-003989 
--0.004273 
--0.004563 

m 

--0"005094 
--0.009117 

--0.01336 
--0-009831 
--0-008492 
--0.007737 
--0.007241 

--0-006884 
--0.006586 
--0.006278 

--0.032250 
--0.005132 

--0-005277 
--0.005264 
--0"005230 
--0"005183 
--0"005127 

--0.005067 
--0.004982 
--0-004837 

m 

--0.01430 
--0-006282 

--0.005799 
--0.005694 
--0"005669 
--0.005681 
--0.005717 

--0-005765 
--0.005844 
--0.005990 

+0.005961 
+0.086465 

--0.001511 
--0.002618 
--0.003274 
--0.003711 
--0.004027 

--0.004273 
--0.004507 

--0.01911 
--0.01267 

--0-01005 
--0.008712 
--0.007920 
--0"007393 
--0"007013 

--0.006719 
--0.006442 

7 

--0.005230 
--0.005261 

--0"005254 
--0.005224 
--0.005185 
--0"005135 
--0-005077 

--0.005012 
--0"004908 

--0.006429 
--0.005916 

--0"005758 
--0.005715 
--0.005719 
--0.005751 
--0"005803 

--0-005867 
--0"005979 



TABLE 14B 

Torsion-Aileron-Tab Flutter (Aileron unbalanced) 

¢9 

0-2 
0-6 
0-8 
1.0 
1.2 

1.4 
1.8 
2.2 
2.6 
2 .8  

3.0 
3.4 
3.8 
4-2 

z~ 

-}-0"2251 
0.02230 

-]-0.08353 
--0.05254 
--0.005378 

--0-005406 
--0.005415 
--0.005402 
--0.005379 
--0.005373 

--0.005729 
--0.003205 
--0.004132 
--0.004715 

Y = --  0-05 

W1 & W~ z~ 

--0"3083 
--0.03869 
--0.02775 
--0.007098 
--0-006261 

--0.005967 
--0.005722 
--0"005630 
--0"005626 
--0"005734 

--0.006489 
--0.006362 
--0"006159 
--0"005960 

--0.004943 
--0.005440 
--0.005717 
--0-036166 
--0-001205 

--0-002167 
--0"003468 
--0"004248 
--0.004851 
--0.005184 

--0"005338 
--0.005305 
--0-005257 
--0.005176 

--0-02608 
--0-007269 
--0-004853 
--0-01547 
--0.01298 

--0.01112 
--0.008996 
--0.007902 
--0.007347 
--0.007774 

--0.005414 
--0.005538 
--0.005580 
--0.004645 

+0.02192 
0.02186 

+0.005168 
--0.005395 

--0.005430 
--0-005452 
--0"005456 
--0.005458 

--0"005494 
--0.002091 
--0.004959 
--0.005156 

Y =  - - 0 - 1  

--0.03857 
--0.02561 
--0.007948 
--0.006375 

--0-006014 

--0.005418 
--0.005714 
--0.001971 
--0.001347 

--0.002114 

W2 

--0"007332 
--0.005495 
--0.01504 
--0-01327 

--0-01146 

z~ 

-}-0.02163 
+0.01527 

--0.005624 

--0"005482 

Y =  -- 0"15 

W1 

--0.03849 
--0.02468 

--0.006257 

--0"006090 

Z2 

--0"005398 
--0.005487 

--0.001572 

--0.002152 
--0-005731 
--0.005613 
--0.005561 

--0.005539 
--0.005545 
--0.005686 
--0.005631 

--0"003276 
--0.003943 
--0.004354 

--0.009438 
--0.008572 
--0.008871 

--0.001672 
--0.005458 
--0.005547 
--0-005616 

--0.005523 
--0.005560 
--0"005613 

--0.005774 

--0.005736 
--0.005578 
--0.005482 

--0.005378 

--0.003118 
--0.003667 
--0"003897 

--0.003532 

v¢~ 

--0.007385 
--0.005942 

--0.01412 

--0.01198 
--0.01007 
--0.009599 
--0.01275 

--0.003972 



TABLE 14c 
Torsion-Aileron-Tab Flutter (Aileron unbalanced) 

3.2 
3-6 
3-8 
1.0 
1"2 

1-4 
1.8 
2.2 
2"6 
2"8 

3.0 

z~ 

+0.02140 
0.01287 

+0 .1550  
--0.005828 

--0"005626 
--0"005693 
--0"005834 
--0"006234 
--0"008546 

Y =  - - 0 - 2  

W1 G 

--0.03843 
--0.02429 
--0"01738 
--0"007000 

--0.006260 
--0.005739 
--0"005497 
--0-005258 
--0.004860 

--0-005381 
--0.005443 
--0.005429 
--0-002843 

--0" 002401 
--0-002984 
--0- 003309 
--0-  002798 
- - 0 - 0 5 2 8 5  

--0.007433 
--0"006134 
--0.004426 
--0.01668 

--0.01333 
--0.01166 
--0-01427 
--0-035621 
--0-004484 

+0-2262 
0-02108 

0.00673 
0-005072 

+0"  00332 
- -  O" 00283 

Y =  - - 0 . 3  

--0"3091 
!--0"03837 

--0.01688 
--0.01189 

--0.00945 
--0.00644 

--0"00491 
--0"00535 

--0.00535 
--0.005373 

--0-00487 
--0"00391 

I 
W2 

--0.0262 
--0.00751 

--0.00570 
--0.00516 

--0-005102 
--0.005770 

G 

+0-009790 
--0.004457 

-0 .0a4969 
-0 .002509  
-0 -003474  
-0 .004024  

--0.004410 

Y =  - - 0 . 5  

w~ 

--0-02385 
--0-001699 

--0.01105 
--0-008742 
--0.007627 
--0.006981 

--0.006516 

G 

--0.005345 
--0.05311 

--0.005209 
--0-005111 
--0-005033 
--0.004966 

--0-004866 

w~ 

--0.006542 
--0.006054 

--0.005776 
--0.005755 
--0"005796 
--0"005858 

--0-005967 

z~ 

TABLE 15 
Binary Flutter (Aileron unbalanced) 

0"4 
0.2 
0-8 
1-0 
1-2 

1.4 
1.8 
2.0 
2.2 
2-6 

3.0 

v¢~ G 

--0.00444 

--0.00516 
--0.00523 

--0.005265 

--0.005225 

--0.005053 

Y = ~o ( ~  = o .oo54)  

W2 

i--0.01222 

--0-00735 
--0.00643 

+0-07061 

0-01201 
0"00591 

+0-0a6142 

--0.002155 

- - 0 -  00376 

Y~ 

--0.09305 

--0-02658 
--0.01908 

--0.01266 

--0.009265 

w~ G 

7.5686 
3.4189 
1-98256 
1.30540 
0.92469 

0.68561 
0.40341 

Z = ~  (~24=-0.0373) 

w~ 

--0.19537 
--0.092492 
--0.056145 
--0"0389624 
--0.029359 

+2.1296 
+0.41645 
--0.038268 
--0-197355 
--0.257846 

--0.27881 
--0"27536 

--0.17824 

Y~ 

--0.14302 
--0"056279 
--0"028943 
--0"0174284 
--0"011739 

--0-008618 
--0"005728 

G G 

2.96957 
1"71775 
1.11770 

0-561585 
0"303•93 

W = co (~'2z = 0. (/370) 

0.0487691 
--0.0308518 
--0.0222463 

--0.005940 

I--0"00574 
! 

--0.00582 --0.00729 0.040583 

--0.023374 
--0.016442 

--0.008116 
t 

--0" 0045736 

0"148744 
0"0330638 

--0"0142179 
--0"0104444 

--0-0081852 
--0-0064882 

+0"47594 
+0"009234 
--0"157503 

--0-247829 
--0-247449 

--0.221083 
--0"17833 

G 

--0.021711 
--0"0104437 
--0"0061487 

--0.0033874 
--0.0028707 

--0-0030156 
--0.0035063 

See results for X = oo ill Table 11 



T A B L E  16 

Torsion-Aileron-Tab Flutter (Aileron statically balanced) 

(55 

0.6 
0.8 
1.0 
1.2 
1.4 

1.6 
1.8 
2.0 
2.2 
2.4 

3.0 
3.0 
2.4 
2.2 
2-0 

1.8 
1.6 
1.4 
1.2 
1.0 

0.8 
0.6 

Y = I . 0  

Z 

+0.02014 
--0.01077 
--0.03276 

0.002867 
--0.002912 

--0-006200 

--0.007990 

--0.008921 
--0.009951 
--0-01021 

--0.01042 

--0"01053 
--0"01057 
--0.01056 

--0.007117 
--0-01063 

W 

--0.04543 
--0.01152 
--0.03374 
--0"02152 
--0"01849 

--0.01567 

--0.01377 

--0.01272 
--0"01157 
--0.01132 

--0-01121 

--0"01127 
--0-01140 
--0 '01178 

--0.02105 
--0"01300 

Y = 0 . 5  

Z 

+0-01510 
-[-0-007878 
--0.01093 
--0.01074 
--0.01386 

--0-003401 

--0"007344 

--0"008392 

--0-009300 
--0"009849 
--0-01013 

--0.01030 

--0"01033 
--0"01003 
--0.007605 
--0.009169 

--0"01061 
--0.01057 

W 

--0.04414 
--0"03005 
--0"01353 
--0.01186 
--0.01344 

--0"01462 

--0.01389 

--0-01311 

--0.01224 
--0.01165 
--0"01136 

--0.01122 

--0"01110 
--0"01030 
--0.03191 
+1-0194 

--0"01199 
--0'01313 

Z 

+0.01503 

+0-081012 
--0.002615 

--0.01208 
--0"01161 
--0.01156 
--0"01182 

--1"3440 
+0"002639 

--0.001197 
--0"001101 

--0.01025 
--0.01052 

--0"01054 

Y = 0 - 2  

W 

--0.04439 

--0"02293 
--0-01768 

--0.01075 
--0"01069 
--0"01058 
--0.01036 

--0.006488 
--0-002670 

+0"088964 
--0.003216 

--0"01132 
--0"01157 

--0"01319 

Y = O  

Z 

+0.01518 
+0.004648 
--0"083445 
--0-003234 
--0"005195 

--0" 008623 

--0.008986 

--0.01026 
--0.01043 
--0"01053 

--0.01057 
--0.01053 

W 

--0.04461 
--0.03036 
--0.02355 
--0-01963 
--0"01701 

--0-01281 

--0.01243 

--0-01141 
--0-01143 
--0"01163 

--0-01212 
--0 "01322 

Y =  - - 0 . 2  

Z 

+0.01538 

--0.0a2911 

--0.004856 

--0.006907 
--0"007552 

! 

i 

i--0.009998 

--0.01013 

--0.01038 

--0.01053 

--0.01051 
I 

W 

--0.04483 

--0.02388 

--0"01789 

--0-01525 
--0.01444 

--0.01156 

--0"01146 

--0.01137 

--0"01166 

--0.01325 



TABLE 17 

Binary Flutter (Aileron statically balanced) 

X or Y = co (a34 = 0.01074) W = co (~23 = 0.0107) Z = oo (~24 = 0.01096) 

LO 

Z1 ~f l  j 22 W2 Z1 ~"r2 Y1 W1 ~z2 W2 

0.4  
0-6 
0"8 
1.0 
1.2 

1.4 
1.6 
1.8 
2 .0  
2 .4  

2 .6  
3"0 

+0-06577  

+0 .001254  

--.0.005399 

- -0 .006978 

- -0 .008253 
--0.008841 

- -0 .09888 

--0.02511 

m 
--0"01705 

- -0 .01512 

- -0 .01356 
- -0 .01285 

- -0 .009848 

--0"01054 

--0"01741 

--0"01171 

- -0 .08739 
- -0 .03889 
- -0 .02188 
- -0 .01394 
--0"009500 

5.8415 - -0 .06624 
2.5623 - -0 .02613  
1.4160 - -0-01405 
0"8793 --0"009158 

"0.5787 --0.006861 

3.4741 
1.3868 
0-7600 
0.5003 
0.3767 

m 
3.051 

1"090 

- -0 .08208 

--0"03017 

--0"01044 

- -0 .01032 

- -0 .01009 
- -0 .009879 

- -0 '01127  

--0.01127 

- -0 .01145 
- -0 .00166 m 

m 

0.5557 

O" 3294 
O. 2592 
0.1996 

--0-01581 

--0"009768 
- -0 .00794 
- -0 .00646 

q 
1. 105 

0.4160 

0.2145 

0.1475 
0-1330 
0.1306 

--0"06071 

- -  O. 02052 

--0"01061 

- -  O. 006986 
- -  O" 00592 
--0"00535 

m 



T A B L E  1 8  

Torsion-Aileron-Tab Flutter (Aileron dynamically balanced) 

0.4 
0-6 
1-0 
1.4 
1.8 

2.2 
3"0 
3.0 
2.2 
1"8 

1.4 
1.0 
0.6 
0"4 

Y = O  

Z 

m 

+0.01333 
--0.002067 
--0.006559 
--0.008534 

--0.009717 

--0.01211 
--0.01237 

--0.01250 
--0.01268 
--0-01264 

W 

--0.04752 
--0.02676 
--0.02073 
--0.01816 

--0.01663 

--0.01381 
--0-01362 

--0.01363 
--0.01391 
--0.01552 

Z 

+0.01307 
--0.002218 
--0.006924 

m 

Y = 0 . 2  

W 

- -  0.04722 
--0" 02644 
--0.01994 

m 

Y = 0 . 5  

Z W 

m 

+0.01274 - - 0 " 0 ~ 8 8  
--0.001980 --0-02540 
--0.007147 I--0.01935 
--0"009541 --0"01626 

--0.01073 --0.01515 

Y - -  co (~a = 0"01291) 

Z 

+0"06381 
+0"01967 
--0.0~6566 
--0.006036 
--0-008299 

--0"009537 
--0"01117 

W 

--0-1013 
--0"05133 
--0.02754 
--0.02104 
--0"01828 

--0"01677 
--0.01481 

Z = co (:~4 = 0 " 0 3 2 5 8 )  

Y W ¸ 

6.716 --0.1784 
2- 703 --0.07545 

No values for a > 0.8 

--0.01239 
--0.01268 
--0.01265 

m 

m 

m 

--0"01369 
--0.01391 
--0.01551 

--0.01165 
--0"01199 

--0"01216 
--0"01259 
--0.01266 

--0"01418 
--0.01383 

--0"01367 
--0"01401 
--0 '01550 

--0-01157 
--0"01223 
--0.01243 

--0.01259 
--0.01269 
--0-01255 
--0.01204 

--0.01434 
--0.01367 
--0.01354 

--0.01354 
--0.01388 
--0.01571 
--0-01951 

1"830 Z~ '06492 
3.895 .1512 

W = co ( : ,~ = O) 

Y Z 

5" 151 --0.07893 

No values for co > 0.6 

4.422 --0.07242 



TABLE 19 

Approximate Air-Load Coefficients* 

Cll 
G2 
CI,~ 
Cla 

C21 
C,z2 
C23 
C~ 

C31 
C32 
G~ 
C3a 

C41 
C4~ 
Q~ 
C44 

2"090 - -2-606o ~ 
4"523 --0-4079w 2 
1.270 --0-01617w e 
0"1278 --0.049084o~ ~ 

--0'08540 --0"4079a ~ 
--0"3632 - -0 .1167a ~ 
40"2569 --0"005009a 2 

0"04278 --0.043554~ ~ 

0"003600 --0-01617~ e 
0"002086 --0-005009~ 2 
0"01431 --0"035383w ~ 
0"006896 --0"056194~ ~ 

0.041836 --0.049084~ ~ 
O. 043936 --0-043554 ~o~ 
0.049178 --0.056194o~ ~ 
0.032447 --0.0650577(o2 

Bll 
Bj2 
B13 
B14 

B~ 
B~ 
B~a 

B31 
/332 
B~3 
B~4 

•41 
B~2 
~3 
~4 

+0.8240 
--0"4290 
--0-1949 
--0.02277 

--0.03350 
40.01780 

0.O08180 
0.001058 

+0.001420 
--0.037000 
-o.o~5o8o 
-o.o~856o 

40"057320 
--0.054600 
--0.053780 
--0"0~2280 

+5"213~ 
+3"765w 
+0"3452o 
+0"008407o 

+0"2138~ 
+0"6266~ 
+0"09936~ 
+0"003236o 

4 0 "  009010 o 
+0"02145~0 
4 0 "  009079 o 
+ 0 '  035493 

+0" 044654 
+0"031511~ 
+0"  048344 
4 0 "  043559 

* ' Barred ' coefficients are obtained by use of formula (5.4). 
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(Note. 

FIG. la. Diagram of non-preloaded spring tab No. 1. 

Both the aileron and the tab are shown displaced from central position in the positive senses which are standard 
in flutter theory.) 

Opcr'~eir'~ f o r " r . ¢  i n e . H i s  olir~ceion ~ H  i)o 
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FIG. lb. Diagram of preloaded spring tab No. 1. 
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FIG. 2. Diagram of spring tab No. 2. 
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~ A , v ~ , ,  ~,  Hs~°~ " 

Diagram of control circuit connections with spring tab No. l. 

(System is shown with small general displacements. For convenience the levers Lo, Ls, and the control column Co 
are drawn in the plane of the wings.) 
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FIG. 4a. Inertia-stiffness diagram (para. 8). 
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FIG. 4b. Frequency parameter diagram (para. 8). 
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X= ~ ~ - ~  

/ 

Z 

5P£FFn*~ lln= Z~/W J 

W 0 ~p' 
line 

FIG. 5. Ternary inertia-stiffness diagram (para. 9). 

Explanation : P1 lies on that  base curve X = k for which P~'M = k. 
The critical speed is then given by any of the relations 

X '  = ~P~'N ---- ~ (k  + a~), z '  = ~o~I~M, W' = o~IM. 
The appropriate value of ~o 2 can be found from a supplementary 

frequency parameter diagram. 

r -  

~ c  

/ C~ =0"25C~ 

T 5~'-0"515~ 

5pr~/n~ -e, go 

Axis For li~e.~r- Pl~xur'~ 

0 w i ~  root; 

FIG. 6. Diagram of wing-aileron-tab combination. 
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FIG. 7. Aileron-tab inertial coefficients. 
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FIG. 8a. Flexure- tors ion inertia-stiffness diagram (para. 2). 
Base curves. 

FIG. 8b. Flexure- tors ion ineftia-stiffness diagram (para. 12). 
F requency  parameter  curves. 
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Flexure-aileron inertia-stiffness diagram 

(para. 13). Base curves. 
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FIG. 9b. Flexure-aileron inertia-stiffness diagram (para. 13). 
Frequency parameter curves. 
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FIGS. 12a and 12b. Torsion-aileron inertia-stiffness diagram 
(para. 14). Case a2a = 0. 



i 

-0.0~, 

Z 

%tll~ ~ % %  0.010 -b\ 

\ ~o 

0"00,~ 

(--~' , l**) ~ o - 0 2 i  ~ ~l~L 0'. 0 

N=2 [ '~ 
O . . . .  ~o = -3-0 
[~i___¢d = 1,0  

Ae-r~ow5 or~ c~r'~.~5 ~J~ow 
sivis= oF cticr'=~slr~ 9 ca.  

I 

(-~.,,) 

61~FFncs~. line ~,r" =____ 

-0.010 

.0,015 

FIG. 13a. Aileron-tab inertia-stiffness diagram (para. 15). 
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FIG. 21. Stability diagram for servo-rudder flutter (para. 17). 
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P A R T  II 

Experiments on Binary Aileron-Tab Flutter 

By 
C. SCRUTON, B.Sc., J. WILLIAMS, B.Sc., and C. J. w.  MII~BS 

1. Summary.'--A theoretical discussion of the effect of non-preloaded spring tab control on 
wing-aileron-tab flutter, in which the binary aileron-tab case is included, is given by Frazer and 
Jones in Part I. The experiments here described were made to test certain of their conclusions 
for binary aileron-tab flutter. 

2. The Model.--The model was designed for tests in a 4-ft square wind tunnel. The wing 
(see Fig. 1), of 1.47-ft chord and 3-It span and of NACA 2209 section, was rigidly constructed 
in wood. Fillets were fitted to the inboard end, where the wing was built into a plate for fixing 
to the tunnel floor. 

Both aileron and tab were initially made of solid pine in order to obtain a density ratio (A)* 
of 1/1. Later this ratio was reduced by lightening holes in the aileron. The at tachment of 
aileron to wing was by two small journM hinges and that  of tab to aileron by two point and cup 
hinges. Balance arms, which were offset from the chord lines, were fitted to the aileron and to 
the tab, but subsequently that  of the tab was changed to an arm with no offset and the necessary 
recess was cut from the aileron. 

Details of the model representation of tile elastic characteristics of the spring control are shown 
in Fig. 2. Here the flat spring (a), which represents the stiffness of the control circuit (2ao), is 
earthed at one end to the wing by an adjustable mounting and is fixed at the other end to the 
floating arm (b). The arm (b) is pivoted at the aileron hinge axis and is elastically connected to 
the aileron by means of the adjustable clamping link (d) and the piano-wire spring (c). Spring (c), 
which represents the stiffness of the tab mechanism spring (a), is built into the aileron on the 
hinge axis. Connection between F at the top of arm (b) to M on the tab lever was made by a l ink  
of hypodermic tubing which was pin-jointed to F and M. It  can easily be shown by comparison 
of the strain energies that  this system is elastically equivalent to the spring tab control system 
of Fig. la ,  Part I. The equivalent leverages AF, AI and TM, are similarly denoted in Fig. 2 of 
this Part and in Fig. la of Part I. For the model AF and TM were of fixed length such that  
N = 6, AI was variable to give values of n between 0 and 2. 

No measurements of the inertial values were made when the aileron was of solid pine. After 
the aileron was lightened and without any additional masses the aileron and tab had the following 
inertial values. 

~ = 0.39 lb 

#~ = O. 02 lb 

A83 = 0" 93 ib/in. 2 

A4~---- 1 "6 × 10 .3 lb/in." 

P = 3"0 × 10 .8 lb/in. 2 

3 .  Results.~Tests of Recommendatioras of Part I.--(a) The Effect of Derasity Ratio A.--No 
systematic variation of A was attempted. Before the aileron was lightened the density ratio was 
approximately unity. No flutter within the speed range of the tunnel could then be obtained 

* The symbols used accord with those used in Part I. 

90 



but successive additions of masses to the trailing edge of the tab progressively lowered the critical 
speed. The aileron was then lightened in order to obtain flutter without addition of mass to the 
tab and a critical speed within the tunnel range obtained. If the lightened aileron Call be regarded 
as homogeneous the density ratio was then about 1/3. 

(b) The Effect of Additio~ of Mass to the Aileron (see Table).--Addition of mass to the aileron 
invariably increased the critical speed. A comparison was made of the effect of equal additions 
to the moment  of inertia of the aileron by masses a -added firstly to the aileron balancing arm 
and then to the trailing edge. The first method was slightly more effective than the second. 
This may have been due to very slight movements of the main wing. 

(c) The Effect of the Locatio~ of the Tab Balancing Mass.--Tests were made with an offset 
balancing arm before the disadvantageous nature of such an arrangement was realised. In the 
Appendix it is shown that  the neutral point (i.e., the position forward of the hinge axis behind 
which mass has to be placed in order to be advantageous) recedes as the offset increases. The 
offset for the model arm was such that  the neutral point was behind the rearmost tab balancing 
position available (D/21). It  was found that  any addition of mass to the arm reduced the critical 
speed. 

The results of tests for n = 0 and n = 2 with the non-0ffset balancing arm are given in Fig. 3 
and Fig. 4. Here the neutral point was distance D/7 forward of the tab hinge axis and the curves 
show that  for ~ = 2 addition of mass was advantageous only when placed behind this position 
and that  the addition of a mass at the neutral point which statically balanced the tab did not 
appreciably affect the critical speed. This conforms well with the theory but heavier masses 
added at the neutral point tended to decrease the critical speed. This decrease is more marked 
when ~ = 0 although the curves show the same general characteristics as those for ~ = 2. In 
both cases no flutter occurred within the tunnel speed range when the tab was statically mass 
balanced at position 2D/21. Unfortunately no position intermediate between 2D/21 and D/7 
could be used but from the asymptotic trend of the curves it is probable that  the system would 
be stable for all wind speeds if the tab were statically balanced by a mass rearward of the 2D/21 
position. 

Fig. 4 shows the rate of increase of the critical speed with the addition of mass at the 2D/21 
position. If, as is deduced from Fig. 3, the system is stable when the tab is balanced by mass 
at the 2D/21 position then it appears that  a close approach to static mass balance is necessary 
to raise the critical speed appreciably. 

Tests with Fluid Damping a~¢d Solid Frictio~.--Fluid damping and solid friction were applied 
separately between the floating arm (b) and the wing to represent such dampings on the spring 
Casing of spring tab No. 1 of Part I. 

Increase in damping or friction invariably increased the critical speed. The largest amount of 
fluid damping applied, that  due to a 0.5 sq in. vane attached to the outer end of arm (b) and 
moving in heavy gear oil, only increased the critical speed from 44 to 48 feet per second.  Solid 
friction, provided by a felt pad attached to the arm (b) and rubbing on a brass plate, was more 
effective. The critical speed increased with the pressure on the felt pad until there was no move- 
ment  between the felt pad and the brass plate. In this condition flutter at a high speed was stilt 
possible because of flexibility in the connection of the felt pad to the arm. 

4. Comlusior~s.--The recommendations (a), (b), (c) and (d) of para. 16 of Part I are confirmed 
by the model tests. In the application of recommendation (c) it is important to consider the 
dependence of the' position of the neutral point on the offset of the balancing mass.  

91 



T A B L E  

The Effect of Addition of Mass to the Aileron 

The inert ial  condit ion of model  before the  addi t ion  of masses is as s t a ted  in para.  3 for the  
l ightened aileron 

0 
0 
0 

2 
2 
2 
2 
2 
2 
2 

Mass added to aileron (lb) at 

Balancing arm 

0 
0.070 
0 

0 
O" 037 
0 
0.70 
0 
0"079 
0 

Trailing edge 

0 
0 
0.012 

0 
0 
0.012 
0 
0"021 
0 
0.024 

Added moment  
of inertia 

(lb in. z) 

0 
O. 177 
O. 177 

0 
O" 177 
O" 177 
O. 333 
0-333 
0-374 
0.374 

Critical speed 

(feet per second) 

47.5 
52.0 
52 "2 

5 2 - 4  
61.2 

• 59.7 
72-1 
67.4 
76.6 
70.6 

A P P E N D I X  

The Position of the Neutral Point for an Qffset Balancing Arm  

Let  a mass m be added  to the  tab  at  a distance ~ forward of the tab  hinge axis (i.e., at  a dis tance 
D --  Z beh ind  the  aileron hinge axis) bu t  offset by  a perpendicular  distance 2 t an  0 from the tab  
chord line produced,  Where 0 is the  angle be tween  this line and  the  line which joins the  tab  hinge 
to the  mass (see sketch which  follows). 

Then  

Hence  

~A33 = m ( D  2 - -  22D -¢- 2 ~ sec ~ 0) , 

OA44 = m~ ~ sec 2 0 , 

a P = m ( ~  2sec ~ 0 -  ~D) .  

(1) 

&/i4~ = m{~ ~ sec ~ O(N -1- l) 2 --  2ZD(N + 1) + D ~} . . . . . .  (2) 

~P = m{~ ~sec 20(N + 1)(n + 1) --  ;~D(N + n + 2) + D~}. . .  (3) 

F rom para.  16, Pa r t  I, the  loading will be advantageous  if 0d4~/@ < 1 and 0 f  is positive. 
(0d~ is a lways posit ive since sec 2 0 > 1.) 

F rom (2) and  (3) ad4~/@ < 1 i f  
2 2 sec ~ O(N + 1)(N --  n) --  2 D I N  --  n] < 0 . . . . .  .. (4) 

For  positions forward of the  tab  hinge axis Z(N -- n) is posit ive and  condit ion (4) becomes 
D 

~ < N +--~1 c°s~ 0 . . . . . . . . . . . . .  (5) 

This condit ion determines  the  neut ra l  point,  provided @ is posit ive be tween 2 = 0 and  
Z -- {D/ (N + 1)} cos ~ 0. This is so since if the  case of 0 = 0 is considered it is easily shown tha t  
@ is posit ive when  2 < D/(N  -¢- 1) (or > D/(n + 1)) and the  effect of offset is to make  @ more  
positive. 
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Thus, for a particular spring tab a circle ,~ ---- { D / ( N  + 1)} cos~0 (as in sketch below) can be 
drawn which is the locus of the neutral points. Any tab balancing mass which is placed outside 
this circle will be disadvantageous. 

A A I L E R O N  y, 
//'•,/•'•'-.,•LOCUS OF NEUTRAL POINTS 

i~ . [O ~f TAB 

' I 
I D t 
~"- ' f f= ' i  - - " l  

I 

I 

The following physical explanation of this rearward movement of the neutral  point can be 
given. When Z is constant OA4~ is increased by offset without any change in the mass moment 
about the hinge axis. The effect on the barred coefficients is immediately seen if equations (2) 
and (3) are written : - -  

~-/i44 = (N -l- 1)2~A44 - -  2 ( N  + 1)Din;, + m D  ~ . . . . . .  (2a) 

~ P =  ( N +  1 ) ( n +  1)~A44-- ( N + n + 2 ) D m ~ + m D  2. .: . .  (3a) 

Hence, since N > n, ~A~4/~P would increase with offset if ~ were constant and to compensate 
it is necessary to reduce the value of 4. 

In the case of a spring tab control on a S#i t f i re  aileron the tab was fitted with balancing arms 
on the upper and lower surfaces of which the angular offsets were 60 deg and 50 deg respectively. 
The distance forward of the neutral point was thus only about one-quarter of the maximum 
possible distance. 
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