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PART I

A Theoretical Investigation on Wing-Aileron-Tab Flutter

By
R. A. Frazer, B.A., D.5c., and W. P. Jonrs, M.A.

Summary —A theoretical discussion is given of wing—aileron-tab flutter, with special reference to the influence of
spring tab control. Numerical applications of the theory are made to two representative types of spring tab, and with
the aid of special stability diagrams certain conclusions are drawn regarding the conditions for flutter prevention.

In relavion to binary aileron-tab flutter it is shown that certain restrictions on the aileron—tab density ratio should
be ohserved, and that when a balancing mass for the tab is fitted its arms should be limited to a certain length.
Calculations relating to ternary flutter indicate that the possibility of ternary flutter occurring when all the possible
binary types are absent is very remote.

Introduction.—(a) Scope of the Paper—The paper gives a theoretical discussion of wing-—
aileron—tab flutter with special reference to the influence of spring tab control on the flutter.
Section I describes the analytical and graphical methods used, which are based on vortex strip-
theory. Section II deals with the calculated binary flutter characteristics of a particular wing
system (referred to as aeroplane S), the basic data for which are derived by simplifying assump-
tions from those of a modern fighter aeroplane. Section III gives numerical applications to
ternary flutter, and approximate methods are considered in Section IV. To avoid unnecessary
complication of the main text, the derivation of the numerical datais explained in three appendices.

The main purpose of the paper is to indicate the general rules which should be observed in the
design of spring tabs in order that flutter may be avoided. Numerical values for critical speeds
are occasionally given, but they are intended only to illustrate tendencies and should not be
interpreted as attempts to predict the critical speeds of any existing aeroplane. The graphical
methods on which the final conclusions of the paper are based, are briefly explained under headings
(h) and (¢) of this Introduction. The conclusions reached relate solely to non-preloaded spring
tabs.

(b) Spring Tabs Considered—The possible advantages in control to be gained from spring
tabs have been discussed by Gates' and Brown®. One form of spring tab is shown in Figs. la
and 1b: the two diagrams correspond respectively to the cases in which preloading of the spring
is absent, and present. Another device which has been fitted experimentally to a Spiffire and
tested in flight is shown in Fig. 2.

The two devices just mentioned have different elastic characteristics, and will be distinguished
as spring tabs Nos. 1 and 2. Both have in common a casing and a spring constrained plunger.
With spring tab No. 1 the operating force is applied to the casing, which is mounted in the main
wing and connected by a link FM to the tab lever TM; the plunger is attached to the aileron
lever AI. With spring tab No. 2, which contains a single compression spring, the casing is
mounted in the aileron, and the operating force is applied to a lever BCH. This lever is connected
directly to the plunger and also to the tab lever by a link FM.

In the theory two fundamental constants %, N, which are in the nature of gear ratios, are
introduced. They are defined by # = (AF — AI)/TM and N = AF/TM in the case of spring
tab No. 1, and by # = 0 and N = HQ x CS/HC X TM in the case of spring tab No. 2. If the
angular co-ordinates are chosen to be ¢ (aileron angle relative to main wing) and g (tab angle
relative to aileron) the constant # is the ratio g/¢ when the tab-aileron system is displaced but
the spring is assumed centralised and locked. The constant N is the ratio /& when the system
is displaced but the control point H is held undisplaced in the direction of the operating force.

3

(1752) ' A2



(c) The Elastic Cross-Stiffness—When ¢ and g are adopted as the angular co-ordinates, an
elastic cross-stiffness is present with both types of spring tab. This cross-stiffness is the sum of

two parts—the first proportional to # times the spring tab stiffness ¢, and the second proportional
to N times the effective stiffness o, of the control circuit.

(@) Barved Co-ordinates and Dynamical Coefficients—The presence of an elastic coupling is a
great inconvenience in flutter analysis, and it is generally preferable to choose angular co-ordinates
in such a way that such couplings are avoided. For example, with flexure—torsion flutter, the
reference centre for the definition of the flexural co-ordinate is usually chesen to be the flexural
centre with this special object in view. In the case of the spring tab if is necessary to use a linear
transformation of the co-ordinates & and p. Amongst the infinite number of possible transforma-
tions by means of which the cross-stiffness can be removed, there is a particular one which offers
the very great advantage that it depends only on the gear ratios # and N, and not on ¢ and o,.
The new angular co-ordinates £, B are connected with £, g by the relations & = £ - § and
f =mnfE + NB. The dynamical coefficients resulting from the transformation, which are of
- course linear combinations of the original coefficients, are referred to as the ¢ barred coefficients ’.
One of the barred direct elastic stiffnesses for the aileron—tab combination is directly proportional
to oy, the other is proportional to ¢, and the cross-stiffness is zero. With normal spring tabs
the values of the barred aileron and tab moments of inertia, and of the barred product of inertia,
are all roughly of the same order. To reduce the barred product of inertia to zero, the tab would
have to be provided with a prohibitive degree of mass overbalance.

(e) The Complete Dynamical System.—The complete system (Fig. 3) consists of the port and
starboard wing-aileron-tab combinations together with the control column and the inter-
connections. When the springs are not preloaded the possible varieties of flutter are symmetrical
flutter (control column locked) and antisymmetrical flutter (control column free). Each variety
can involve wing flexure and torsion and displacements of the tab and aileron, but as usually
the simpler binary and ternary types will mainly be considered in numerical applications. With
antisymmetrical flutter the stiffness o, is not operative. In the case of preloaded spring tabs

symmetrical and antisymmetrical oscillations can occur, and more general varieties are perhaps
also possible.

(f) Suffix Notation for Dynamical Co-ordinates and Coefficients—In-view of the large number
of parameters involved in the theory, it is convenient to adopt a single suffix notation for the
angular co-ordinates and a double suffix notation for the coefficients. Thus the usual angles
¢, 0, &, § denoting wing flexure, wing torsion and the aileron and tab angles, are replaced respec-
tively by g1, (!/co)qa, (2/co)gs, (2/co)qs, Where ¢, denotes the root chord and / is the spanwise distance
of the reference section from the root. The typical inertial coefficient then is 4,;, and the
corresponding non-dimensional coefficient is a,;. For example, g, a4y, @4, are the non-dimensional
aileron and tab moments of inertia, and the product of inertia. Similarly @,,. d4, @, are the
barred coefficients corresponding to the transformed co-ordinates §,(= ¢,), o(= ¢3), s, Ga-

A somewhat similar scheme of notation is used to describe the type and variety of flutter.

Thus symmetrical torsion-aileron flutter is indicated concisely as (23s) flutter, antisymmetrical
flexure-aileron—tab flutter as (184a) flutter, and so on.

(8) Air-Load Coefficients—In flutter analysis attention is usually restricted to critical con-
ditions and to a single complex constituent motion. In the present paper, in order to accord
with a notation which has now been standardised for matrices®, the complex amplitudes corre-
sponding to g, ¢, ¢s, ¢4, are denoted by &y, ks, ks, ks, so that the critical flexural motion for instance .
is g, = k™, where f derotes the critical frequency.

Now suppose Qy, 0,, O, O, to denote the non-dimensional aerodynamic moment coefficients.
On the hypothesis of small oscillations the complex amplitudes of each moment coefficient must
be linear in &,, %, k;, &, so that Q,, for example, is given by an expression of the form

Ql = — (Mllkl - o Ry + JZ{13]33 A A 1 4k,) €7,
and similarly for the remaining moments. The complex coefficients .« 5 = Cyy + 1B, are termed
the air-load coefficients. From dimensional considerations it is evident that, if scale effect is
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absent (as is assumed), the air-load coefficients can depend only on the value of the non-dimensional
frequency parameter referred to some datum length, e.g., on o = 2sfc,/V, where V denotes the
critical speed and ¢, the root chord.

In the numerical applications the values of the air-load coefficients for aeroplane S are calculated
by simple vortex strip-theory, in which the theoretical two-dimensional coefficients are integrated
over the span and allowance is made for the distortion modes.

(k) Inertia-Stiffness Diagrams*—When the flutter is binary and no elastic cross-stiffness is
present, the influence of the two moments of inertia and of the two direct elastic stiffnesses can
be discussed very conveniently by a graphical method similar to that applied for flexure~torsion
flutter by Cicala®. The method makes use of a ¢ base curve ’ and a * frequency parameter curve ’,
(e.g., Fig. 4), which depend only on the air-load coefficients and the product of inertia and are
for convenience usually plotted on separate sheets. The sheet with the base curve is referred
to as the inertia-stiffness diagram, and is used as follows. The current values of the moments of
inertia are plotted in the third quadrant, and through the inertia point I so obtained the stiffness
line IP is drawn having for its slope the ratio of the two elastic stiffness coefficients. Then if
P, is any intersection of IP with the base curve, and if IM; and PM, are parallel to the co-ordinate
axes, PM, is inversely proportional to the square of the critical frequency, and so »?PM, is
inversely proportional to the square of the corresponding critical speed. The appropriate value
of »®is read from the frequency parameter curve. If two such intersections occur there are two
critical speeds, and if no intersections occur flutter is avoided. Examples of binary inertia—
stiffness diagrams in which the product of inertia also is varied are provided by Figs. 8 to 18.
With some additional complications the method can be extended to ternary flutter.

(1) Prevention of Binary Aileron—Tab Fluiter—In the case of (34) flutter and spring tab No. 2,
if N is kept constant and the barred product of inertia 4 (= 4,,) is varied, the base curves resemble
a set of parallel wedges pointing towards the right and with their vertices in the third quadrant
(see Figs. 18, 15 and 16). With practical distributions of mass, the values of &, and &, do not
differ greatly from p, and it is found that the inertia point I always lies near the vertex of the
appropriate curve. In order that flutter may be prevented absolutely (i.e., for all values of &
and o) it is necessary that no stiffness line through I shall intersect the base curve. Since the
slope of the stiffness line is always positive, the abscissa of I (namely d,,) is required to be less
than the numerically smallest abscissa of the curve. Now it is found that this abscissa plots
linearly against p (Fig. 17). Hence if, in this new diagram, the vertical scale is adopted for
dy, all points J (p, 4.,) lying above the line represent inertial conditions for which flutter is possible,
whereas all points below the line represent conditions for which flutter is prevented absolutely.
The disadvantages of a low aileron—tab density ratio will be clear from the small sketches in
Fig. 17 indicating the type of covering. In para. 16 it is also shown by simple arguments that
any addition of mass to the main aileron will result in the inertia point J being displaced in a
direction which will improve the stability. On the other hand, addition of mass to the tab ahead
of the hinge axis will produce an advantageous displacement of J only when the offset of the
mass from the hinge axis is restricted within a certain limit.

The general conclusions regarding the absolute prevention of binary aileron-tab flutter with
non-preloaded spring tabs of type No. 2 are stated in para. 168. In paras. 18 and 19 it is shown
that the same conclusions are also valid for the more general spring tab type No. 1.

(7) Prevention of Ternary Fluiter—The problem of ternary flutter prevention is considered
in paras. 20 to 23, but owing to the complicated nature of the inertia—stiffness diagrams simple
stability conditions similar to those for binary flutter cannot be obtained. It is shown that both -
flexure-aileron—tab and torsion—aileron-tab flutter are possible under certain conditions when
aileron—tab flutter is absent. Flexure-aileron-tab flutter is eliminated by static balance of the
aileron (a,; = 0), but torsion-aileron—tab flutter is still possible. This also is prevented by
balancing the aileron dynamically (4., = 0). The possibility of ternary flutter occurring when
all the binary types are absent is very remote.

* A description of inertia-stifiness diagrams based on classical derivative theory is given in para. 10,
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Section 1. General Theory

1. Elastic Constraints.—(a) Spring Tabs—It is assumed first that the preloaded spring tab
No. 1 (see Fig. 1b) is fitted, and that & = 0, § = 0 when the plunger is centralized. When both
the aileron and the tab are given small displacements the rearward displacement of the plunger
from its initial position is Al#, and the corresponding displacement of the casing is AF¢ — TM§p.
Thus the right-hand spring will be picked up if

ALE > AF:E — TMg,
i.e., if
r8 > RE,
where » = TM and R = AF — AI. In this case, if P, denotes the preloading force in the spring,
and ¢ denotes the stiffness rate, the strain energy is given by

o, =o(vp—Re+2) . ..o

On the other hand, if 73 < R¢, the left-hand spring will be engaged, and the strain energy is
then given by

o, —o(Re—vp+20) . 9

If spring tab No. 2 is fitted (see Fig. 2) the additional spring compression when g > 0 is
(CK x TM/CS)p. Hence if o denotes the stiffness rate and P, the preloading force, the strain
energy is given by '

2W1:a<7fﬁ—|—%>z, s

where 7 = (CK x TM/CS). On comparison of (1.1) and (1.3) it is seen that the theory for spring
tab No. 2 is covered by that for the particular case R = 0 of spring tab No. 1.

(b) Control Circwit—In Fig. 3 the connections to the control column are represented by
segments of cables tensioned by springs, each of stifiness o, To simplify the diagram further,
the actual control column is replaced by a nominal column C, mounted in the plane of the wings,
and the movements are shown transmitted to the tabs through levers L, L..

The flexural and torsional wing displacements do not (in general) contribute to the strain
energy of the control connections. Thus the effective variables to be considered are &,, g, (the

port aileron and tab angles), £,, 8, (the corresponding starboard angles), and lateral displacement
Y of the points of attachment of the control cables to C,.

Suppose first that spring tabs No. 1 are fitted. Then in a general displacement of the complete
system the rearward displacement of the point H in Fig. 1b for the port wing is AF&, — TMg,.

Hence the corresponding displacement of the point H,’ of the lever L, in Fig. 3, measured inwards
along the span is

R'¢, —7'p,,
.where R’ = »AF, ' = »TM, and » is a gearing constant. Similar considerations apply for the

starboard wing. It readily follows that the strain energy of the control connections (excluding
spring tabs) is given by

oW, = 200 {(R'E, — 7' B,)* + (R'E, — 7/ B)* + 2V
+ 40,Y {(R'E, — v'f,) — (R'E, — #'B.)} . O ¢ )

The same expression applies for spring tabs No. 2 (Fig. 2), except that for this case R’ = vHQ
and 7" = »(HC X TM/CS). : - > < ]
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(¢) Complete System.—The total strain energy, obtained by the addition of W, and W, and
the usual terms arising from wing flexure and wing torsion, is given by

2W = 1,/($," + ¢ + mo(6,> + 6%
P,
+ o l(?ﬂp — R, + ) + <7ﬂs Re, + = ) }
+ 20{(R'E, — 7' B,)? + (R'E, — v'B,)* + 2Y%
+ 4o Y{R'E, — v'B,) — (R'&, —7'B,)} . .. . . . (L5)

In each of the round brackets containing amb1gu1t1es of sign, the positive or negative sign is to
be taken according as ¥ > Ré& or << R¢ for the relevant wing.

The complete set of elastic moments on the port wing—aileron-tab combination, obtained by
differentiation of the strain energy function, can be expressed by matrices as

G} G 0 0
{Lep Moy, H,y, T, = {é@ : a—gp ’ 8_51, ’ éfp w A
= Exy 4 Pé 4 208Y, . .. .. . .. (1.8
where Xp = {bs 04 &5 By},
E =Tl 0 0 0 ,
{O My 0 0 —‘
{0 0 o R® 4 20,R'2 — oRr — 20,R'7’
0 0 — o Ry — 20,R'v’ o7 + o0 J
& ={0 0 — R 7,
# = {0 0 R’ — 7'}
‘ The corresponding starboard elastic moments are
{L, M, H,, T,}=Ey, + Py — 2008Y , .. . .- .. .. (L7
and the restoring force on the ¢ control column ’ (mass M,) is
BZ,V — 20,R(&,— &) — 200" (B, — B,) + 40,Y
= 2009 (xp — Xs) + 40,Y , P )

where 9" denotes the transposed of 4, .e., the row [0, 0, R, — #’].

(@) Spring Tab Gear Ratios.—The constants defined by
n = Rfr N=R'ly .. . . . .. (1.9)
play an important part in the theory. They will be referred to as the spring tab gear vatios.
The first constant # measures the ratio of tab angle to aileron angle when the system is moved
but the spring is assumed centralized and locked. The second constant N measures the ratio of
tab angle to aileron angle when the system is moved but the control point H is held undisplaced

in the direction of the operating force (see Figs. 1 and 2). With spring tab No. 2, the first gear
ration = 0.

2. The Dynamacal Equations.—It will first be assumed that the plungers of the spring tabs are
in central position when the system is in equilibrium.

7



Let U, ={L,M,H, T}, and U, = {L, M, H, T}, denote the columns of the increments of
aerodynamical moment on the port and starboard sides in the disturbed motion : also let 4
denote the inertia matrix appropriate to each wing system, and E, &, ¥ be the matrices defined
for equations (1.6). Then the dynamical equations are as follows.

Port Wing

(AZ+E) s+ Po + 297 =T,. .. .. .. .. .. @
Starboard Wing

(A9 +E) P —2pY=0,. .. .. .. .. .. (@3
Control Column (of effective mass M)

Moi—zj+200ﬁ'(xg—xs) +40)Y =0. .. . . ..o (2.3)

To express these equations in the non-dimensional form a new time variable =, and modified
dynamical co-ordinates ¢ are introduced, defined by -

7 =tV ]e,; g =Y/l

. (2.4)
g =9; ¢ = (eoft)6; g =(afl)e;  qu=(cfl)B
The last four relations can be expressed by matrices as
x = (Ycong
where ¢ = {g,, ¢, ¢5, 9.} and
p=Tcfl 0 0 01. .. .. .. (2.5)
{0 10 01 |
1

[0 0 OJ
0 -0 0 1 )
On application of the preceding transformations to (2.1), premultiplication of the resulting

equations by u to retain symmetry of the inertial and elastic matrices, and division throughout
by p V%, we obtain

. . (aD® + €)g, + P& + nydg, = Q, , . .. .. (2.6
in which
P A
D= o a =udplples; e =ululpVic?
Do = PopV%c,; Hny = 200/p Ve, ,
and
_wU, { L M H T
QP = szlzCO - szls ’ pV2Z2CO > szlzco’ szlZCo]p'
A similar treatment of (2.2) yields
(aD? 4 e)q, 4- po&s — ndq, = Q, , .. .. .. .. 27
while (2.3), expressed non-dimensionally, can be written
(myD* 4 2c4m0)qo + ne®'(q, — q,) =0, .. .. ke .. (2.8

where my, = M,/pc .

In (2.6) the upper or the lower sign for & must be taken according as 7qsy — Rgy, > 0 or < 0.
Similarly in (2.7) the upper or lower signs are taken according as vq,, — Rgy, > 0 or < 0. With
non-preloaded springs these restrictions do not arise since 2o = 0. The dynamical equations with
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the simplification p, = 0 are also valid for small disturbed motions and preloaded or non-preloaded -
springs, if the controls are assumed to be non-centralized and the force applied to the control
column is kept steady. In this case the dynamical co-ordinates and the aerodynamical moments
represent the deviations from the equilibrium values.

The full expressions for the non-dimensional inertial and elastic coefficients a;, e,; are given by
a = [ Aulplcsd Aqlplcy® Ais/plPcy’® Aqafplc®], . . . .o (29)
Aalplcy’ Agefpley Agsfpley Aufpleyt 1

Aglplic®  Agwloled  Agfplest mwmw
L Aafpled Aylples® Aglpley Aufples

e = [L/pVF 0 0 0 ‘ . (2.10)
0 g/ p V2, 0 0 ]
0 0 @m+mmmmw_¢m+%mmwmﬁ
.0 0 — (6Rr + 20,R'?)[pV¥e  (o7® + 2o [p Ve

3. Classical Devivative Theory and Vortex Theory.—The aerodynamic moments can be expressed
either by derivative coefficients or by the more general air-load coefficients of vortex theory.
It is necessary to explain the different viewpoints.

(a) Classical Derivative Theovy.—THere the moment coefficients () are represented by expressions
which are linear in the accelerations, velocities, and displacements. Thus say

— Q= (@D*+ bD + t)q

where D = d/dr and 4, b, ¢ are the matrices of the constant derivative coefficients. An important
consequence of this assumption is the linearization of the dynamical equations. The most general
disturbed motion can then be represented by a superposition of a finite number of exponential
constituent motions g = % e*", and the relevant values of 1 are the roots of the usual determinantal
equation. Moreover, the free constants are determined uniquely by the displacements and
velocities which define the initial disturbance. In this theory the aerodynamic moments corre-
sponding to the typical constituent are given by

— Q = (@4* + bi t)ke” = Sker, say. S . . (3.1)

In particular, with a simple harmonic constituent of frequency f, the appropriate value of 1 is
1w, where w denotes the frequency parameter o = 2xfc,/V, and then

A = — fo? L+ ¢ + dho . . . . . . .. (82

(b) Vortex Theory—In this theory only the critical type of motion ¢ = ke** is usually
considered. Then

— Q=wake™ = (C +iBke™, say, .. .. .. .. .. (33

where # is the matrix of the ‘ air-load coefficients ’. These coefficients are functions of » only.

A theory restricted to simple harmonic oscillations is sufficient for calculations of critical
speeds, but is inadequate for a proof of the familiar resolution theorems concerning symmetrical
and antisymmetrical oscillations. Nor can it be applied with problems such as the discussion of
the stability of steady oscillations in the case of preloaded spring tabs. The appropriate
generalizations will be indicated without any attempt at formal proof.
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. The essential necessary assumptions are that the most general motion is expressible by the
superposition of exponential constituents g = k2e*, where 1 =u + iw is in general complex,
and that the moment coefficients corresponding to that constituent are

—Q=wrke™, . . (34

in which & depends on A only. The damping parameter x and the frequency parameter » are
here defined in terms of the true damping factor 4, and the true frequency f by the relations
v = poto/V and o = 2rfe,|V.

Now consider the small motions of a quite general aerodynamic system given by
(@D* +e)g=0Q,

where, as previously, D = d/dr. The trial solution ¢ = %k &*, in conjunction with (3.4) here leads
to the condition :

(@l 4+ e+ Ak =0,

so that the permissible values of 1 are given by the determinantal equation

a2 + e+ |=0. . . .. (3.5)
The corresponding equation obtained by classical derivative theory would be
(@ 4+ &2 +br+e+ 2] =0. P X -

If the system has # degrees of freedom (3.6) has 2» roots; on the other hand, (8.5) has an infinite
number, since &/ is in general a matrix of transcendental functions of 1. Hence, according to
classical theory, a disturbed motion is fully determined by 2# conditions, ¢.g., » displacements
and » velocities at a given starting instant. Whereas, in vortex theory, the term ¢ initial distur-
bance ’ is strictly speaking meaningless. For example, suppose a wing to be moved inexorably
in any manner before = 0, and to be released at # = 0 with known velocities and displacements.
Then, according to classical theory, the ensuing motion is quite independent of the movements
before £ = 0. On the other hand, vortex theory would take into account the antecedent air
disturbances.

In the present paper vortex theory is adopted in preference to the simpler classical theory,
since in the particular numerical applications considered all the air-load coefficients required
can be calculated directly.

4. Symmetrical and Antisymmetrical Oscillations.—With non-preloaded spring tabs, or with
preloaded spring tabs oscillating about a non-central equilibrium position, equations (2.6), (2.7)
and (2.8) are applicable with the simplification p, = 0.  In this case, if a typical constituent
motion is denoted by {&,, &, k}e’” and the aerodynamic moments are defined by (3.4), the equations
require that

(ad® + e + Ak, + ngdky = 0,
(ad? + e + Ak, — ndky =0,
(moA? 4 2cqno)ky + 10’ (k) — k) = 0.
These may be written ‘
(al® + e+ L)k, + k) =0,
(@2* e + o2)(k, — k) + 2ngdko = O,
(mgd? 4 2egno) Ry + nd' (R, — k) =0,

and elimination of the complex amplitudes leads to the determinantal equation

art + e + of 0 0 =0,
0 ar* e o 2n4®
0 n' MpA® + 2047, |
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The permissible values of 1 are thus given either by

|lal® +e+4 4| =0 . .. .40
in conjunction with %, = &, and &, = 0 (symmetrical oscillations): or by
alt e+ 2nq0 =0 .. .. .. (42)
7,0’ MA® -+ 2con,
in conjunction with &, = — k, (antisymmetrical oscillations).

When, as will be assumed throughout, the inertia of the control column can be neglected
(my = 0), (4.2) simplifies to
|art + & + o7 |=0 . .. .. (4.3)
where e =e¢— Wop,
Co

The matrix e, giving the elastic stiffnesses appropriate to the antisymmetrical oscillations, is
then defined similarly to ¢ (see (2.10)) but with the terms dependent on o, omitted.

In the more complicated case where the spring tabs are preloaded and oscillate about the
central position, both symmetrical and antisymmetrical oscillations can occur, but a formal
proof that these yield the most general motion has not yet been devised. The symmetrical
oscillations (in which ¢, = ¢, ¢, = 0 and the terms involving p, have the same signs) are given
by

(aD* + e)g + pod =0,

where the upper or the lower sign is taken according as 7g, — Rg; > 0 or < 0. The anti-
symmetrical oscillations are given similarly by

(aD? 4 &)q + pois = Q .

5. Elimination of the Elastic Cross-Stiffness—For a discussion of the stability it is convenient
to remove the cross-stiffnesses which are present in the elastic matrices e and e. This requires
a change of the aileron and tab co-ordinates g,, ¢, to new ¢ barred ’ co-ordinates g¢;, g,, as explained
in the Introduction. If a general transformation is assumed, say

gs = %y -+ V4, .
Gy = Wqs + 2G4,

it is readily shown that the cross-stiffness will be absent in the transformed Langrangian equations
provided

or*(nu — w)(nv — 2) + 200"} (Nuw — w)(Nv — 2) = 0, .. .. .. (5.1)

where # ( = R/#) and N ( = R'/¢) denote the gear ratios (see (1.9)). This condition is satisfied
for all values of o and o, if the free constants are chosentobe # = v =1, w =n,z=N.  The
relations connecting the original and the modified co-ordinates then are

Gs = s + G1,
94:7’@3“!*]\79-4,

to which for symmetry may be added ¢, = §i, ¢. = J.. When this transformation is applied, the
equations for symmetrical oscillations become

@D+ é+s)G=0, .. .. .. (63
11

(5.2)



where the new inertial coefficients 4,; are given by
a1 A9 1y + Ny s + Nay , (5'4>
Qo1 Ao Qos ~F Nz Ass + Nag,
{“31 + Ny Asp - Ny Ay - %(“3‘4 + “43) + WP Ags + Ny, -+ 1y + %N%MJ
Ay + Nag g + Nay ag + nag, + Nay, + %Nﬂzu A3 + N(au -+ “43) + N?ay,

the new elastic coefficients &;; are given by

1,/p VP 0 0 0 . .. (5.5)
0 o p Ve, 0 0 _I
0 0 Q0 (N — #)/pV ey 0 J
0 0 0 o (N — n)?/pV?ic,

and the new air-load coefficients #;; = C;; + ¢B;; are defined similarly to (5.4).

The results just stated are also applicable for the antisymmetrical oscillations except that
oo = 01n (5.5).

From (3.3) and (5.8) it is seen that for critical conditions of the system
| —do*+é+C+iB| =0. .. .. . . .. (5.8)
For the further treatment of (5.6) it is convenient to.introduce the further symbols
X' =ty YV =&y 2 =6 W=bw .. .. .. .. (57
X'[o® =X + d, = L[4 Pcf?, l
Yo =Y + &y = my[4n’plcf?, [
|
[
!

5.8
Z'w* =Z + @ = 200" (N — n)*/4n®plc’f?, (5.8)
W' lw* = W + dy = or*(IN — n)?/dnplc,f?,
Dij = — d,ija)z "l“ C” B .. PN . .. .. . . .. (5.9)
x=X'+Dy; y=Y' 4 Dy; z=2" 4+ Dy, w=W"+ D,... .. (5.10)
The determinant (5.8), expressed at length, is then

x 4+ 1By D,, 4 1B, Dy - 1By, D, +iB,=0. .. .. (5.11)

D21 + iBu ¥+ Z.Bzz Dzs + 'L.Baa D24 + iBm

D31 -+ ile D32 + ":B:;z 233 Z.Bga* D34 + 'I;B:m

D41 + ".Beu D42 -+ ’5342 D43 -+ '5.343 w iB44

The preceding definitions, and equations are also applicable for antisymmetrical oscillations,
with the simplification Z' = 0. They can also be applied for divergence speeds, which correspond
to @ = 0. In this case there is the simplification B;; = 0.

8. Natural Frequencies in Vacuo and in Still Aiwr.—In the present theory a distinction is drawn
between the natural frequencies f, appropriate to oscillations 4z vacuo and the frequencies f,
appropriate to oscillation in still * perfect air’. The equation giving the irequencies f, can be

12



deduced from (5.11) by omission of the air-load coefficients and division of the rows by w®
If X, Y, Z, W are as defined by (5.8), the required equation is

| X, — @  — s — @ |=0... .. .. .. (81
- 521 YU - a—23 - 524
- dSl - 532- Zv‘ - 6‘234
; ﬂ—41 - a—42 - 543 V W’u

To obtain the corresponding equation for oscillations in still air, use is made of the asymptotic
expressions for the air-load coefficients. When o — o (V' — 0) it is found that
CH/COZ'-—)’ — ')7” ; . Bw/wz'—* O 5 .« . .. . (6.2)

 where 7,; are positive constants such that 7, = #;, which represent the aerodynamic (or
¢ apparent additional ’) moments and products of inertia of the system in still air. The limiting
form of (5.11), when the rows are divided by »®and w — 0, is

Xa — Vu — dis — P12 — &z — Vs — Gy — TP |= 0. ' < (6~3)
— dy — Pu Y, — Po — fos — Vs — o — P
— dy — Pa — gz — Va2 Zy, — P — dsy — Pm
— @y — Fa — @y — Pz - — s — Vs W — $u

7. The Inertial Coefficients.—In past theoretical investigations the control surfaces have usually
been treated as rigid and provided with two pivots only. However, on modern aeroplanes
control surfaces with three or more pivots, or even with a continuous  piano’ type of hinge,
are not uncommon. In the present analysis it is supposed that both the aileron and the tab
are provided with hinges which are effectively continuous along the span and capable of bending
deformation with the wing. On the other hand, since some limitation is necessary on the number
of degrees of freedom, the control surfaces are treated as rigid in torsion. The assumption of
continuous hinges ensures continuous connection between the control surfaces in all wing sections,
and is necessary for a satisfactory calculation of the air-load coefficients.

Now suppose the port wing, for example, to be given a general displacement ¢, 6, &, # and
let 2, 2. % denote, respectively the vertical displacements of a general point of the main
wing, of the main aileron, and of the tab. The terms ‘ main wing ’ and ‘ main aileron’ here
mean the parts of the wing that remain when the aileron and tab are removed, and the part
of the aileron that remains when the tab is removed. Then

Zgas = Plf () + 0xF(n), .. .. .- .. .. .. . .. (7.1)

Where, as usual y = ¥/I, and f(n), F(n) are the flexural and torsional distortion modes of the wing
proper. These functions are assumed chosen such that f(y) = F(y) = 1 at the reference section
p = 1.

Again, the twist of the wing proper at section # is 6 F(5). Hence the local aileron angle (z.e.,
the inclination to the wing at section #) is

g, =&+ 6{1 — F(n)}. 4
It follows that, if the aileron hinge axis lies at distance d, behing OY*,

for = GUF) + i+ fF0) — B0 + (e —d)E. .. .. .. .. (19
Moreover, if the tab hinge axis lies at distance 4, behind OY 4 ,
=%+ (x—d)p. .. .. .. .. .. .. .. .. (7.8)

* Tt is here assumed for simplicity that the hinge-line is parallel to OY.
13



Tt should be noted that when & = 0 (aileron locked central at the reference section) (7.2) does
not reduce to (7.1). Thus, in the discussion of flexure-torsion flutter, the distortion modes must
be taken as given by (7.1) for points of the main wing, and by (7.2) with & = 0 for points of the
aileron.

The inertial coefficients can be deduced from (7.1), (7.2), (7.3) in the usual way by expansion
of tllle kinetic energy function

2T =2 ms, . 0+ X2 mé, 2+ 2 ms?,

where the summations are taken over the appropriate parts of the system. To express the results
conveniently, let 2, %, X denote respectively summations taken over the complete wing (including

w a ¢
aileron and tab), over the complete aileron (including tab), and over the tab only. Then the
inertial coefficients are found to be

Ay =2 mlf?; Ap = 2 mx*F* + Zm {(x — d, + 4,F)* — £*F?%};
Ag=Zm(x — d); Auw=2mx— d);
Ar = Ay = E miafF — 2 mif(x — d)(F — 1);

Ay = Ay = %' mi(x — a,)f; A=Ay = - ml(x — d,)f;
Az = A, :%,m(x — )% — d, + dF); A= Ag :%,m(x — d)(x —d,+ d,F);
A34=A43:§m(x——da)(x—~dt). .. .. .. .. .. oo (7.4)

The corresponding non-dimensional coefficients a;; are given by equation (2.9).

In practice both the aileron and the tab would be ¢ mass-balanced ’ on some basis. In the
present paper an aileron is described as unsformly statically balanced if the centre of mass of the
aileron in every section lies on the aileron hinge-line. A similar definition applies for the tab.
If both conditions are satisfied the combination is said to be uniformly statically balanced.
From (7.4) it is seen that with such a system A, = A, = 0, Ay = Ay, and Ay = Ay = A
The inertia matrix then has the simple form

a:"au Q1o 0 01. .. .. .. .. (7.5)

23] 2% 233 m
[ 0 33 Qa3 2 J
0 n Ay 2

The corresponding barred inertial coefficients are

a=1[ay i 0 0 . (7.6)
{am Qss Ags + Ny A5 - Nay, —l
[ 0 Qgy - Ny ass + n(n + 2)ay, ass + (Nn + N + %)a44J
0 Ass + Nag, Ass + (BN 4 n -+ N)ay, ass + N(N + 2)a,,

It is readily verified that the aileron—tab barred inertias then satisfy the relation

(N4n+2p=(N+ Dag + 00+ Daw, .. .. .. .. (@7

in which p = 4, = 4,;. If on the other hand the tab balancing is such that the aileron-tab
product of inertia @, = a4, = 0, the barred inertias for the combination are

Ass = Ays + 1Py
15:.0'533—1—%Noz44 . .. .. .. .. .. (7.8
Ay = Ay -+ NPay, ‘
' 14



8. Binary Imertia-Stiffness Diagrams~—The graphical treatment of binary problems will be
explained in relation to aileron—tab flutter.

The determinantal equation appropriate to (34s) flutter* is (see 5.11))
2 -+ ’1:833 i D34 + 7“334 .

o - , (8.1)
Dy + 1By w + 1By
which yields
w0 — DDy - BuBu— BuBu = Eu. . . ... (82)
B44Z + Bssw = D34B43 -+ D43§34 = Iy, .
These equations can be solved for z and w to give the pairs of values
n=127 + -Z_)ss = <F34 + \/G34)/ZB44 , ! (8 4)
w, =W, + D44‘ = (—F34 — \/634)/2333 )
or .
2, =2, + Dsa = (F34 - \/G34)/QB44 ) ] (8 5)
w, = W," + Z_)44 = (F34 — ’\/G34)/2B33 ) '
in which o
Gy = Iy — 4B BLE, . .. .. .. .. .. .. .. (8.6

The roots Z,’, W,’" and Z,’, W,’ represent the critical values of the elastic stiffness coefficients
s, €y appropriate to any chosen frequency parameter . The locus described by those roots
in the (Z’, W’)-plane as o is varied is the analogue of the familiar test conic’ of classical
derivative theory. In fact, according to that theory, the air-load coefficients—C;;, B;; are,
respectively, expressions of the forms — d;;w® + ¢é;;, b0 (see (3.2)), and it is easy to shovv that
the (Z’, W’) locus then is a conic section.

The test conic (or its vortex theory analogue) is convenient when it is desired to find the influence
of changes of the elastic stiffnesses on the critical speed and all the inertias ave assigned. An
alternative graphical representation will now be described in which not only the elastic stiffnesses
but also both moments of inertia are left free to be varied. Inertia-stiffness diagrams of this type
have been applied by Cicala* to flexure-torsion flutter, and are particularly valuable in the
discussion of measures for the prevention of flutter. Use is made of (5.8), (5.9), (8.4). (8.5),
which give for the critical values of Z and W

: Zy = (5 — Ci_ss)/a’2 p W, = (wl — 644)/0)2;
or _ _ . .- .. .. (8.7)
Zy = (2, — Cg)[0?, Wy = (w, — Cy)/0?®

These critical values depend only on the air-load coefficients and on the product of inertia
P = dyy = Gys. Accordmgly, if Z and W are plotted as ordinate and abscissa, the locus of the
critical points, when w is varied, will be independent of the elastic stifiness coefficients and the
moments of inertia. In Fig. 4a, which illustrates such a diagram, the critical locus is called the
“base curve '. Two points of the curve will (in general) correspond to a given value of o.

To prepare the diagram for use, the current values of the moments of inertia are plotted in
the third quadrant, and through the * inertia point ’ I so obtained the * stiffness line * IP is drawn,
having for slope the stiffness ratio Z'/W' = 204%/o7* (see (5.5) and (5.7)). Let P,, P, be the pomts

* For notation see Introduction ( f).
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of intersection of this line with the base curve. Then from (5.8) and (8.7) it follows that the
critical frequencies f;, f, corresponding to these two points are given by

} Z, 4 Ay = 200" (N — n)*/4nplc'f 2 = PM, ,
Zy + Gy = 200 (N — n)2/4a?pletfs? = PM, , l

or, alternatively, by W, + @, = IM, and W, 4 @, = IM,.
The critical speeds V,, V', corresponding to f,, f, respectively, can be deduced from the relations
Z) = 200" (N — n)?pV 2lc® = w,"PM,, :

Z," = 200" (N — n)?pV %lc® = w,*P,M,, ] o -

where ;, o, are the values of the frequency parameter appropriate to the points P,, P,. The
required values of o (or its square) can either be read off directly from a scale of w marked on
the base curve, or a supplementary frequency parameter diagram ’ (Fig. 4b) can be used, in

which  is plotted as ordinate against the abscissa of the base curve. In Figs. 4 the dotted
portions of the base curve and frequency parameter curve are assumed to correspond.

With antisymmetrical flutter Z' = 0, and the stiffness line is parallel to the axis OW. The
critical speeds corresponding to the two intersections P,’, P, are then given by

o (N — n)*pV e = ,"IP," (8.10)
0‘7’2(N — %>2/PV22ZCOZ — ,”TP,’ . .. .. . . N ‘

(8.8)

(8.9)

Some of the simpler properties of a base curve may be noted. As already remarked each value
of o generates a pair of points of the curve. Such pairs may be described as ¢ conjugates ’: for
example, the points B, B’ in Fig. 4a corresponding to B, B’ in Fig. 4b are conjugates. However,
the conjugates corresponding to the peak 4 in Fig. 4b coalesce into a single point 4 on the base
curve*, From (8.4), (8.5) and (8.7) it is seen that the chord connecting a pair of conjugates has
the slope — By/B,,, which is independent of the product of inertia . When w is kept constant

but $ is varied, the centres of the chords connecting conjugate points are colinear, and the locus
of the conjugate points is a conic section.

A complete survey of the flutter characteristics for all possible inertias and stiffnesses would
require a specification of the base curves and frequency parameter curves for all values of 5
ranging from -« to — . A few additional theorems may be mentioned, which aid a general

description of this complete family of curves. The first of these concerns the asymptotic form
of the base curve. When [p| —

Z/ﬁ - {EM -+ B43 + A/ (— A-)}/ZBM )

_ - - - - . (8.11)
Wip— {Bsu + By £+ v/ (— A)}/ZB33 )

in which
A = 4333344 - (334 -+ B43)2
— (N — n)¥4ByyBy — (By + B)% = (N — w4 say. .. .. .. .. (812

The function 4 will be recognized as the discriminant of the dissipation function, and its sign is
(in general) positive when o is very large. The maximum value of » attained on the asymptotic
base curve is accordingly given by the condition 4 = 0, which is independent of the gear ratios
N, #. This value does not, of course, represent the greatest  attained as $ varies from -+ o
to — w. The maximum maximorum value is, in fact, given by the two conditions G, = 0,
0Gy,/0p = 0, which yield after considerable reduction

A—(Co—Colr=(N—=n¥d —Cy — Ca)B} =0 .. .. .. ..(813)
2P0 d = (Coy — Co)(Bot— B + Cod — Cd) . .. .. .. (8.14)
* The maximum value of v is given by the condition G,, = 0.
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From the first of these it follows that the greatest o attained is independent of N and #. The
corresponding value of 5 is, however, not invariant. Similar considerations apply for the minima
of w, which are in general definite and distinct from o = 0 in the case of aileron-tab flutter.
On the other hand, with some types of flutter, the range of o extends continuously down to
w = 0. It is to be noted also that with (34) flutter the base curves will have horizontal and
vertical asymptotes corresponding to the small definite values of o for which By, = 0 and By = 0.
The situations of these asymptotes are independent of p, but vary with N and #.

An inertia-stiffness diagram can be extended to provide also a graphical representation of
natural frequencies. The base curves H,, H, corresponding respectively to oscillations 7 vacuo
and in still air (see para. 6) are the two rectangular hyperbolae

(L)oo IW=F .. .. .. .. .. (815
(H) .. =7V —5u) =B+ 7 o o . .. .. (816

These curves are used in the way already explained for critical frequencies. Since dudy > p*
no inertia point I can lie above the lower branch of H,.

Finally it may be remarked that if the air-load coefficients accord with classical derivative

theory, so that, say, C;; = — d;;0* 4 ¢,; and B,; = b,;», the base curve will be a conic section.
This curve is an ellipse or a hyperbola according as > or < 0, where
V = 4’633244634643 - (634’6,13 "I‘ 643634)2. .. .. .« e . .« (8-17)

Examples of binary inertia-stiffness diagrams are given in Section IT.

9. Ternary Inertia-Stiffness Diagrams—The (134) type of flutter will be taken as an example.
In this case the determinantal equation (5.11) is

x + 1By, Dy +iB,; Dy +iByu|=0. . .. 9.0
Dy -+ iBy 2By Das + iBas
D, + iBy, Dy -+ iByg, w -+ 1By
This gives on expansion
5210 — Egt — Epz — Eyw + FyBy + FubBg -+ FuBy + Ky =0, .. .. (9.2
and
B zw 4 Bygwx + Buxz — Fygt — Fuz — Fgw + 2B, By By — Eyu By
' — EuBy — EuBu+H, =0, (93
where E,;, F,; are defined by relations similar to (8.2), (8.3) and ‘
Ko+ iH, = (Dy; + iB.3)(Dyy - iBy)(Dyy + iBy)
+ (Dgy 4 iBy)(Dys + iBys)(Dyy + 1By) . .. .. .. .. (9.4
The critical values of %, z, w, for any assigned value of w, are thus given by the curve of inter-
section of the cubic and quadric surfaces (9.2), (9.3).
For the ternary case
X=(x —Cp)lo*=X'|ow*— dy,
7= (7 — Cy)w®=2"w® — i . . . . .. (9.5)
W= (w— Cu)lo*=Wlo*— i,
17
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The direct analogue of Fig. 4a would be a three-dimensional representation, consisting of a
‘ base surface * defined by the critical values of X, Z, W, an inertia point situated in the appro-
priate octant, and a stiffness line determined by the values of the three elastic stiffness coefficients.
This representation must, of course, be replaced by a plane diagram.

The ternary plane diagram is shown in Fig. 5. The curve marked X = « corresponds to an
infinite value of X’ and thus to /, = c. It is accordingly identical with the base curve in Fig. 4a.
The remaining base curves in the ternary diagram correspond to assigned values of X, which
are marked against the curves. In the third quadrant two inertia points I (4,,, @) and 1’ (44,
a3 + @) are plotted, and stiffness lines IP, I'P’ are drawn through these points having respect-
ively the slopes Z'/W' and X'/WW’. Now suppose P, to be the critical point of IP which is
appropriate to all three assigned elastic stiffnesses. Then

' ' X' ’ X _]— dll) 5
BN = TN (55) = TN (g2 ) = X + .
But P,'N = P,'M - 4,;. It follows that P; must be chosen to lie on that base curve X = %
for which the condition P,'M = % is satisfied. The critical speed is then obtained from any one
of the relations X' = «’P,'N, 7' = «*P,M, W' = »*IM. The required values of o (or o?
can be found from a supplementary frequency parameter diagram.

10. Semplified Theory of Binary Adlevon—Tab Flutter and Comparison with Servo-rudder
Flutter—To conclude Section I the treatment of (34) flutter will be reviewed independently in
the light of classical derivative theory and without the use of non-dimensional coefficients. The
equations obtained will be compared with those given for binary servo-rudder flutter by Duncan
and Collar® in R. & M. 1527. The springs are assumed to be non-preloaded.

(a) Aileron-Tab Flutter—As in paras. 1 and 2, let g denote the tab angle and & the aileron
angle. Then the simplified dynamical equations appropriate to symmetrical flutter, stated in a
notation similar to that used in R. & M. 1527, are as follows.

Tab Hinge Moments.

b + VB + (B + 8 +pE+3VEF (R + e =0 .. .. .. (10.0)
Aileron Hinge Momenits. '
PE A VB + (fVE D) B+ g& + 5V E A+ (R h)e =0, .. - - (10.2)

In these 4,, f;, # denote the inertial constants, ¢, f, 4, £ are the aerodynamical derivatives, and
(see para. 1 (c))

ty=107" 4 200", ti=hy= — oRr — 20,R'v"; h,=0R®+ 20,R"™. . .. (10.3)
The equations for antisymmetrical flutter are similar except that ¢, = 0.

If, as in para. 5 a general transformation

= 3 g E
pr=2ab+we | . (10.4)
§=of 4 uf |
is applied, the cross-stiffness is found to be absent from the new dynamical equations provided
zwty + (200 + wo)hyy + wohe =0 ... .. .. .. (10.5)

On substitution from (10.3) this condition becomes
o(z2r — vR)(wr — uR) + 2o4(2r" — vR")(wr' — uR') = 0.

The particular transformation given by 2 = R’fr' = N, w = RJr = n, v = u = 1, is independent
of the elastic stiffnesses, and yields the set of barred coefficients given in Table A below.
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TABLE A

Bayred Dynamical Coefficients

New coefft. Value in terms of original coefficient New coefft. Value in terms of original coefficient
dy dN? + 2PN + g, ? dpN + pln + N) + g
& aN? + (Jo + e3)N + 73 e &N + goht + €N + g
f—z V2 + (Ry + )N + Ry Ts JnN + kon + fuN + kg
P dnN + p(n + N) + g, g dyn® + 2pn + gy -
;2 etN + joN + esn + 7, ;3 e + (Jo + en + s
ks JanN + BN + fon + ky 733 e+ (By + fo)n + By
5 15N2 + 28N - he = o} (N — n)? g 0
% 0 e tn? + 2 + he = o (N — n)?

The stability can now be discussed either by a test conic, or by means of an intertia-stiffness
diagram. In either case use is made of the condition for simple harmonic oscillations. This can
be written

— ‘izmz + ,7:-2 +1weé, + W, — ﬁmz + ,732 + '1:60]72

- - N - =0, .. .. (10.8
— po® + fy + iwé,, — 830" + ks + t0g; + 27 o (109)

where - )
W' =t/V? = or*(N — n)?/V?,

Z' = hV? = 209" (N — n)/V?,
and o = 2x=f/V, where f denotes the critical frequency*.

To obtain the test conic, w is eliminated between the two real equations implicit in (10.6), and
W' + fo, Z' + ks are treated as co-ordinates in a plane. The stiffness line has the slope
Z'|W' = 204 "*[ov*, and the stiffness point has the co-ordinates f,, Zs.

To obtain the inertia-stiffness diagram use is made of the substitutions

oW = — dyw® - W’
w2 — gnwz 1z : 4(10'7)
The two real equations implicit in (10.8) then are
(W + ) (0*Z + k) = E } 108)
(W + f)js + (022 + B)gy=F |’ -+ (10

where

(
(

N3

w® 4+ ]-32)(— ?ng -+ f-s) + wz(éﬁ; - 53;2) )
0 + ko) (& + (— po + i) -

E
F

i

74

* Note that in the present form of analysis the ¢ frequency parameter *  is not non-dimensional.
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Equations (10.8) can be solved to give
. F
w'Z = — ky + ——iz_\/G
, A
R e VACH I
W = — f, + ———
h 275 J ,
in which G = F? — 44,7,E. These results correspond to equations (8.4) to (8.7). The locus of
points W, Z is the base curve, the inertia point I has the co-ordinates — d,, — 25, and the slope

of the stiffness line is 204 '%/o7*. 'With antisymmetrical flutter ¢, = 0. The diagram is used as
explained in para. 8 for Figs. 4a and b, except that in the present case o = 2af/V.

(0) Servo-vudder Flutter—Equations (10.1) and (10.2) are applicable for servo-rudder flutter
provided f, & are taken to denote, respectively, the displacement of the servo-rudder relative
to the main rudder, and the displacement of the main rudder relative to the fuselage. The
expressions given in R. & M. 1527 for the elastic stiffnesses, converted to the notation of the

~ present report, are*
ty = (eflq) + (eoc/q) + o¢,

he = v¥(eflq) + (fo/q) ,
be == hy = — ”(5f/9),-

In these, » is a non-dimensional constant defined solely .by the geometry of the servo-control

mechanism, e, f, o;, o, are independent elastic stiffnesses, and ¢ = f 4 »* 4- ¢,. Equation (10.5)
here leads to the condition

(2 — vo)(w — vur)ef + (2we —]~'7/wf)a¢ + zwgo, = 0. oL .. . ..(10.10)
The particular transformation of co-ordinates adopted in R. & M. 1527 leaves the rudder
co-ordinate unchanged and is given by z = 1, v = 0, » = 1 with

w = vef/(ef + eo, + go,) . .- . . .. ..(10.11)

The new direct stiffnesses are then

by =ty = (eflq) + (eoe/q) + o
hy = fi(v*e + o)or - eo}/(ef + eo (4 goy) .

This transformation, although relatively simple, has the disadvantage that the value of w given
by (10.11) depends on the elastic stiffnesses. Hence if a test conic is calculated by means of the
transformed dynamical co-ordinates appropriate to a given w, it should strictly only be used
for stiffness variations restricted by the condition (10.11)%.

. (10.9)

In general, a transformation which satisfies (10.10) and is independent of all four stiffnesses
¢, f, ¢ o, does not exist. However, in the important special case where o, = 0 (direct spring
constraint at rudder hinge axis absent) the required conditions are satisfied by 2 = », w = 0
v = u = 1, and these yield

= v, he=eflg). .. .. .. .. .. ..(10.12)

It will be seen that the theory is then the same as that for aileron—tab flutter with # = 0. The
correspondence is indicated below.

J

Servo-rudder Flutter ‘ Aileron-Tab Flutter
o — 0 R—=0(@n—0)
» (= OA/ASIn R. & M.1527) | N (= R'fr')
Og 0’7’2
eflq 209"

* The symbols 8, &, ¢4, ke, t;, », correspond to &, &, ke, me, e, n, of R. & M. 1527,
1 This difficulty appears to have been overlocked in R. & M. 1527.
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Section I1. Numerical Applications to Binary Flutter

11. Specification of Aeroplane S.—The numerical applications relate to a particular system
which will be referred to as ‘ aeroplane S°. The dimensions, stiffnesses, and inertias are derived
in Appendices 1 and 2 by simplifications from data supplied for the Spitfire. Appendix 3 deals
with the calculation of the air-load coefficients. A brief specification of the system follows.

(a) Plan-form and dimensions.—The tapered Spitfire wing—aileron—tab combination is replaced
by a rectangular combination of constant section, but the effective areas, spans, and mean chords
of the components are left unaltered (see Appendix I and Fig. 6).

(6) Flexural axis and distortion modes.—The straight flexure axis is assumed to lie at 0-3¢ from
the leading edge*. To avoid unessential complications, both the flexural and the torsional dis-
placements are taken to vary linearly with the distance y from the wing root. The two displace-
ments are, respectively, chosen proportional to the distance from the sections y = 0-35s and
vy =0-2s, and the displacements inboard of these sections are neglected. These simplified linear
modes offer a fair first approximation to the curved modes adopted by Duncan and Lyon® for a
typical cantilever wing.

(¢) Positions of spring tab and veference section.—In the sztﬁra tests spring tab No. 2 (n = 0)
was used, and two alternative lengths of the tab lever TM were available. The short lever
correspond‘ed to N = 5-61 and the long lever to N = 3-03. The link FM was fitted at about
two-thirds of the tab span from the inboard end of the tab. In the calculations the link is for
convenience assumed to be placed at the inboard end, and the corresponding wing section is
chosen as the reference section (see Fig. 6). Rounded values are adopted for the gear ratios,
namely N = 6 and 3: the cases N = 2 and 10 are also investigated. -

(d) Elastic and inertial coefficients—The results of the calculations are analysed mainly by
means of inertia-stiffness diagrams. In the practical interpretation of these diagrams, the values.
of the stiffnesses and inertias deduced from the Spitfire are accepted as the standard of reference,
but allowance is made for possible variations due to changes of spring-tab design or to modifica-
tions of the weight of outer cover. The numerical values of the elastic stiffnesses are given in
Tables 4 and 5, and the inertial coefficients are summarised in Tables 6, 7, and 8 and Fig. 7.

() Adr-load coefficients.—Both the aileron and the tab are assumed to be hinged continuously
along their leading edges. The air-load coefficients are given in Tables 9.

12. Flexure—Torsion (12) Flutter —The tab and aileron are here assumed to be locked in central
position to the wing in the reference section. In this first example the steps involved in the
calculation of the base curve will be explained in some detail. The case is relatively simple,
since barred coefficients are not introduced, and the distinction between symmetrical and anti-
symmetrical flutter does not arise.

The equation corresponding to (8.1) is here
% + 4By Dy, + 1B, =0,
Dy + 1By ¥y + By

where o ,
D21:—PC‘)2+C21; Dlzz—_ﬁwz‘jr‘cml P = G1p = Qa1 ,
and :
. % = 0*X 4 Cy; Y= Y 4 Co .
Also.
: X' = ld,/szlg , X|o* =X+ a,, = l¢/47zzpl3co2fz ,
Y = my[p V7, Y'je* =Y + ap = m9/4n2pl604f2 .

* From later information it appeared that tlie flexural axis on the Spitfire lay unusually far forward at about 0-27c.
The difference is unlikely to invalidate the conclusions of this report, which are intended to be purely qualitative,
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The critical pairs of values of X, Y, corresponding to (8.4), (8.5), (8.6), (8.7), may be written

Y:<Fi%.c;_mr_ C‘22>/Cz)2 ’

. (12.1)

in which
E12 = D12D21 -+ BnBzz - Bmle .
Flz = DlzBm -+ D21B12 s
Glz = Flz2 - 4BuBzzE12 .

Now suppose that the base curve corresponding to j = 0-1 is required. From Table 7 it is seen
that the appropriate value of the product of inertia is p = 2-19. Also the air-load coefficients
required are given by the first four columns in Tables 94 and 98. The calculations of the functions
Fiy, Ey, Gy, are most conveniently arranged in tabular form*, with the first column reserved for
the entries w. To obtain a preliminary rough description of the base curve, the values
w =1, 2,3, 4,5 can first be tried, and spaces can be left for intermediate values, if required
later. In the case considered each of the first four trial values of o leads to a positive value
for Gy, and consequently to a real pair of points on the base curve (see (12.1)). However Gy, < 0
when o = 5-0. The actual maximum permissible » can be determined by interpolation from a
graph of G, against w. An extension of the calculations to a few lower values of @ (e.g., w =0-4
and 0-2) yields a perfectly satisfactory plot of the base curve. The total time occupied is a
matter of a few hours—provided, of course, the values of the air-load coefficients are known.

Figs. 8a and 8b show the base curves and frequency parameter curves for »=0,1-10, 2-19,
4-39 (corresponding to j = 0, 0-05, 0-1 and 0-2). To illustrate the use of these diagrams in the
prediction of critical speeds and critical frequencies, the two moments of inertia are assumed
to be a,; = 27-5 and a,, = 1:09, as for aeroplane S in Table 7. These values are plotted in the
third quadrant, to give the marked inertia point I. Next, the elastic stiffnesses for aeroplane S
taken from Table 5 are [,/pl* = 3-74 x 10° and myfplc,® = 1-16 x 10°, which yield the value
Y'[X" = 1-16/3-74 = 0-31 for the slope of the stiffness line IP. The critical frequencies f, fa,
when 7 = 0-1 for example, can then be found from the relations

Yy + an = myfdntolef? = P,M, — 19-09
Yy 4 do = myfdnplogfyt = PM, — 2-68 .

which yield (when ¢, = 5-87) f, = 6-68 c.p.s. and f, = 17-84. To obtain the critical speeds

V1, Vs, the ordinates w, = 0-09 and o, = 0-675 are read from the curve for 7 =0-11in Fig. 8b.
Then

Yy = mofpV e, = 0,*PM, = (0-09)® % 19-09
Yo' = mylpV Mo = 0 2PM, = (0-675)® X 268

V, = 2740 ft/sec (1870 m.p.h.),
V, = 976 ft/sec (665 m.p.h.)

In the present case the equations giving the natural frequencies are

XY, =#* .. .. . .o 129
(Xa - 711)(Ya - ')’12) = j) -+ 712)2 s .. .. .. .. .. (123)

where by (23.16) y,;, = 2:608, y,, = 0-1167, 712 = 0:4079. These represent the aerodynamic
inertias.

giving

* The parameter p should first be left general in the tabulation of F and E if curves are required for a range of
values of the product of inertia, - ) )
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Table 1 illustrates the influence of changes of the product of inertia. The critical speeds and
critical frequencies were read from the curves in Figs. 8a and 8b, and the natural frequencies
were directly calculated by (12.2) and (12.3). It may be noted that in the three cases leading to
flutter the critical frequency corresponding to the lower critical speed is roughly equal to 0-8 of
the mean natural frequency i vacuo.

13. Flesure—Adleron (13) Flutter—The tab is here assumed to be locked in central position to
the aileron. Figs. 9 and 10 show the appropriate diagrams, which will be almost self-explanatory
after the details given in para. 12.

In Fig. 9a the two inertia points I,, I, represent respectively an unbalanced (complete) fabric
aileron and an unbalanced aluminium aileron. An indication of the type of covering is provided
by the small rectangles drawn against the inertia points : a plain rectangle signifies fabric, and

- a shaded rectangle aluminium.

The stiffness lines drawn through I, and I, and marked by arrows are appropriate to sym-
metrical flutter, and have the slope (see Table 5)

Z' _ (20,R"[pley) 4227
X' el 374 x 10°
The stiffness lines for antisymmetrical flutter (not shown in Fig. 9a) are horizontal. In Fig. 10a,

which illustrates the advantages of static balance and static overbalance, the curves are shown
to a greatly reduced scale.

= 0-0112; .

14. Torsion—Aileron (28) Flutter—The appropriate diagrams are Figs. 1la and 11b (for,
unbalanced or statically balanced ailerons), and Figs. 12a and 12b (for dynamically balanced
ailerons, @, = 0). In Fig. 1la the code rectangles drawn against the inertia points are similar
to those in Fig. 9a, except that a balancing arm is shown when the aileron is uniformly statically
balanced. The points I;, I, relate to fabric covering, and I, I, to aluminium. In Table 7 the
product of inertia appropriate to a balanced aileron with aluminium’ covering is given as 0-0395.
To avoid unnecessary calculations, the base curve already available for a,; = 0-037 is adopted
for this case, and the density of the aluminium is assumed reduced by about 6 per cent. Thus

"1, is shown plotted with an ordinate 0-037 instead of 0-0395.

The numerical results appended to Fig. 11a are of some interest. Antisymmetrical flutter
occurs with both types of covering, whether the aileron is statically balanced or not. The
balancing is definitely advantageous here because it raises the lower critical speed and also tends
to compress the speed range leading to flutter. Symmetrical flutter is present only with the.
metal covering. In this case the static balancing is markedly disadvantageous in the sense that
it greatly reduces the lower critical speed, but is advantageous in the sense that it greatly com-
presses the speed range for flutter. Briefly, static balancing tends to suppress the antisymmetrical
Jlutter at high speeds and the symmetrical flutter at low speeds. To effect this pressing out process
completely, it is necessary to proceed to true dynamic balance (a.; = 0), which involves static
overbalance. This is shown by Fig. 12a. ’

15. Aileron—Tab (34) Flutter with Spring Tab No. 2—The diagrams relating to aileron—tab
flutter were calculated by the formulae given in para. 8. For simplicity those appropriate to
spring tab No. 2 were considered first. -

Results for N = 2—Table 8 shows that when N = 2 the practical range of values for p is
from about 0-005 to 0-04. It was, however, thought desirable in this first case to extend the
calculations to a few higher values of §, in order to indicate the changes as the asymptotic
condition $ — o is approached. Figs. 13a and 13b show, to a large scale, the parts of the curves
for 5 = 0 to 0-0125 which are of practical interest. The complete curves for $=1-0, 10-0
and « are shown to a greatly reduced scale in Figs. 14a and 14b. ‘
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~ The inertia point I, in Fig. 13a is appropriate to a fabric aileron and fabric tab (both unbalanced)
with p = 0-0054, while I, refers to a fabric aileron and aluminium tab (both balanced) with
p =0-0128. As in Fig. 4a the slope of the stiffness line for symmetrical flutter is given by
Z'|W" = 204 "%[67*; this is independent of N. If the elastic coefficients for aeroplane S are
adopted (Table 5) the slope works out as 29-27, and the line is accordingly nearly parallel to OZ.
The stiffness lines corresponding to antisymmetrical flutter (not marked in Fig. 18a) are, of
course, parallel to OW. :

In practical cases the values of @y, 4y, and p for any given aileron-tab combination do not
differ widely, and the inertia point always lies close to the vertex of the base curve. In Fig. 13a
both I, and I, lie wholly to the right of their appropriate base curves, so that in these cases
flutter could not occur for any values of the elastic stiffnesses.

The curves in Fig. 14a and 14b are mainly of theoretical interest. One complicating feature is
the presence of the vertical and horizontal asymptotes. These are common to all the curves,
and correspond to the values @ = 0-085 and 0-06 for which the two direct damping air-load
coefficients by, and 5,; respectively vanish*. From an inspection of the directions along which
w decreases along the base curves (as indicated by the arrows), it is seen that for the smaller
values of p (e.g., p = 0 to 1-0) the point of the base curve corresponding to maximum o is
situated on the small sharp indentation of the curve near the origin. The wedge-shaped curves
in Fig. 12a are, of course, merely the indentations shown on enlarged scale. As $ increases from
zero, the indentation becomes more and more rounded, and moves away from the origin towards
one of the asymptotest. Eventually it passes through the asymptote and thus arrives, greatly
modified, in the third quadrant. The curled parts of the branch shown in the third quadrant
for p = 10, though to some extent diagrammatic, illustrate one stage of development.

It is of some interest to compare the curves in Fig. 14a with those which would be obtained on
the basis of classical derivative theory. The theoretical air-load coefficients used to construct
Fig. 14a can be represented approximately, over the restricted range w = 1-0 to 5-0, by the
expressions

B, =10,  Cy=2ty — dyo*
where
102?9:[0-896 1-00}; 102A={1;46 2~85}; 10‘“:[5-56 5-727 .
0-912 1-03 1-48 2-97 5-72 5-90]

I1 these values are adopted for the derivative coefficients the expression defined by (8.17) is found
to be negative, so that the new base curves will be hyperbolic. This is illustrated by the dotted
curve marked C in Fig. 14a, which is the single hyperbolic branch forming the complete new
base curve corresponding to # == 0. The nose of this hyperbola, fits closely into the indentation
of the original base curve, as is seen better from Fig. 13a where points calculated for C are
represented by black spots.

Results for N = 3, 8, 10.—The diagrams for these cases (Figs. 15 and 16) are similar to Figs. 13
and require no separate explanation. For the relevant practical values of the inertias, reference

should be made to Table 8. The natural frequencies calculated for N = 3 by formulae similar
to (12.2) and (12.3) are given in Table 2.

16. Absolute Prevention of Ailevon--Tab Flutter with Spring Tab No. 2.—With diagrams of the
types shown in Figs. 18a, 15a and 16a flutter is prevented absolutely (i.e., for all stiffness
ratios) when the inertia point I lies to the right of the vertex of the base curve. The condition to
be satisfied is accordingly : '

G < — Wone oo o Lo8)

- * See remarks following (8.14).
T The particular asymptote has not been determined,
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where W, denotes the maximum abscissa of the base curve appropriate to the particular values
of § and N considered*. The values of W, for the various cases are given in Table 3, and plotted
against $ in Fig. 17. To simplify the diagram the actual entries from Table 3 are not marked,
but it is found that the points corresponding to any given N lie very closely on straight lines
passing just above the origin. If now the vertical scale in the diagram is adopted for d., it
follows from (16.1) that all points J (p, da) lying below the line appropriate to a given N represent
inertial conditions for which flutter is prevented absolutely. To illustrate this, seven particular
points are marked in Fig. 17, all referring to N = 6. The pair J,, ], relate to an aluminium
aileron-tab combination, J,, J. to a fabric-aluminium combination, and J;, Js, J-to a fabric-steel
combination. An inspection of the positions of these points relative to the line for N = 6 shows
that a low value for the aileron-tab density coefficient 4 is extremely disadvantageous. In
Appendix II, the mass and density coefficients are defined as follows. If u,’ (slugs) denotes the
mass of the unbalanced aileron with the tab removed, and g, denotes the mass of the unbalanced

tab, then

o, (aileron mass-coefficient) = u,"/(s.c.> — s.¢.7) ,

o, (tab mass-coefficient) = p,fs.c?, .

¢, (aileron density ratio) = p/ao,, .. . .. (16.2)
¢, (tab density ratio) = plo, ,

A (aileron—tab density ratio) = p,fo, = &,/e, .

The values for fabric, aluminium, and steel components are estimated respectively as
o = 0-08837, 0-1151, 0-3125 (or ¢ = 0-06197, 0-01675, 0-006197 with standard air). These
give 4 = 1-0, 0-27, 0-1 for fabric-fabric, fabric-aluminium, and fabric-steel combinations.

The disadvantages of a low aileron—tab density ratio are confirmed if, as an approximation on
the safe side, the straight lines in Fig. 17 are replaced by lines actually passing through the
origin and the true and approximate values of W,,, are made to agree closely for the highest
value of 5 to be considered. Then W,,, becomes proportional to $, so that , '

— Wl =M, .. .. . . .. . .. (18.3)

where M is a positive constant depending on N onlyt. The values adopted for M are stated
below Table 3, which also compares the true and approximate values of W,,. From (16.1)
and (16.3) it follows that the stability condition can be replaced safely by

Fulp < M . A ¢ (- X

The values of the ratio d,/p, as calculated for unbalanced tabs from the formulae in Table 6
are shown plotted against 4 in Fig. 18. The points shown as heavy black spots on the curves
have for ordinates the appropriate values of M. Hence the safe values for the density vatio lie to
the vight of the black spots. The danger associated with a low density ratio is immediately obvious.

The influence of mass balancing on the stability will next be considered. First, assume any
datum inertial condition for the combination, and suppose a mass 7 to be added to the aileron
(but %ot to the tab) at any distance X from the aileron hinge axis. Then the aileron moment of
inertia A, will be increased by mX?, and the other two inertial constants will remain unchanged.
From the relations '

1433:,14.33, 14:44:1‘133_}— 2NP+N2A44, P :A33+NP, . .« (16.5)
it follows that 64, = mX® and 6P = mX? so that both these increments are positive and
8A,/0P = 1. Thus also 6d,/ép = 1. Now it is important to note that the gradients of all the
lines in Fig. 17 exceed unity. Hence, in the particular mass variation considered, the inertia

* Note that this abscissa is negative in the cases considered.
T It may be noted the J plots almost linearly against V.
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point J in the diagram will be moved downwards in relation to its appropriate line (¢.¢., J approaches
closer to the line if initially in the unstable region, and away from the line if initially in the

stable region). Hence any addition of mass to the main ailevon, and in particular balancing or
overbalancing, is beneficial.

Next, suppose the mass # to be added to the tab instead of to the aileron. Its position is
assumed to be at distance 4 = A,¢, forward of the tab hinge axis and at distance 4 = D — 2

behind the aileron hinge axis, where D denotes the distance between the axes. Then it is readily
shown that

6 Ay = m(NA — A)*
8P = mA(A — N2 .

Hence 0 A, O A
sP  8p ! _N<A>‘
The increment 6 4,, is always positive, but P is positive only when
A4 (Dje) — 2,
_Z=———/1';—*“>N. .. .. - .. .. (18.6)

The gradient 6A4,,/6P is then less than unity, and the displacement of the inertia point J is
accordingly in the safe direction. The condition (16.8) requires the tab balancing mass to lie
behind the point which divides the distance between the aileron and tab hinge axes in the ratio N.
When, on the other hand 4 << N1, 6P is negative and 64,, is positive as before. J then moves
upwards and to the left, and the displacement is in the unsafe direction. In particular, mass-
balancing of the tab alone may be expected to be disadvantageous if (16.6) is violated.

Tt ¢,Je, = 4-35, as for aeroplane S, the limiting values of 1, given by (16.6) for N = 2, 3, 6, 10
are respectively about 1-11, 6-83, 0-48, 0;3. The ineffectiveness of the tab balance when

4, =1-0 and N = 6, and its effectiveness when 2, = 0-3, are illustrated by the relative positions
of the points J,, J," and J, in Fig. 17.

The following general conclusions are drawn regarding the absolute prevention of binary
aileron—tab flutter with non-preloaded spring tab No. 2. '

(@) The density ratio 4, as defined by (16.2), should if possible exceed 05, and is preferably
of the order unity.

(b) Any addition of mass to the main aileron only (e.g., an aileron balancing or overbalancing
mass) is advantageous. - :

(c) The tab-balancing mass, if present, must be placed behind the position which divides
the distance between the aileron and tab hinge axes in the spring tab gear ratio N.

(@) If condition (c) cannot be satisfied, tab mass balance should not be attempted.

Condition (4), which requires the omission of tab mass balance in certain cases, may at first
sight appear surprising. The ineffectiveness of the balancing in those cases is, of course,
attributable to the presence of the elastic cross-stiffness due to the spring tab. The importance
of this elastic coupling is strikingly illustrated by a comparison of the base curves already
considered (e.g., Fig. 13a) with those shown in Fig.19 for the same aileron—tab combination,
but with the cross-stiffness removed. The new curves are appropriate to the unbarred dynamical
coeflicients, and are thus applicable for an aileron with the normal type of control, but carrying
an elastically hinged tab. It is seen that as the product of inertia a,, reduces the oval base curves

shrink continuously, and disappear when a; << 0-44 x 10~* about. Hence mass balance in
this case has its normal stabilising influence.

Another relevant illustration is provided by a simpler problem—the flexure—torsion flutter
of a cantilever wing. If, in the analysis of this motion, the reference centre R is chosen behind
the flexural centre F instead of at F as normally, a negative cross-stiffness is introduced, as with
the spring tab. The flexural and torsional co-ordinates defined in relation to R here correspond
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to the unbarred aileron and tab co-ordinates, and the conventional wing co-ordinates referred
to F correspond to the barred aileron and tab co-ordinates. It is easy to see that in this case
mass balance of the wing about R (corresponding to tab mass balance) is not necessarily always
advantageous. For example, if the balancing mass is added behind F, the product of inertia
relative to F is increased, and the critical speed is therefore likely to be reduced.

17. Bearing of the Preceding Conclusions on Servo-rudder Flutter.—In para. 10 a correspond-
ence was established between binary tab-aileron flutter and binary servo-rudder flutter. It is
therefore of some importance to consider the bearing of the conclusions drawn in para. 16 on servo-
rudder flutter.

Numerical data appropriate to a particular full-scale aeroplane are given in para. 8 of R. & M.
15275. Expressed in the notation of para. 10 the data are as follows.

TABLE A (para. 17)
Dynawmical Coefficients for Servo-rudder System
(units : slug/ft/sec)

fggﬁg} Value for full scale rﬂlé?érér Value for full scale
dy 0-037 (standard) b 0-22 (standard)
¢ 0-008 e 0-09
fo 0-0038 fs 0-088
b2 0-22 (standard) s 6-0
s 0-025 Js 0-80
By 0-0013 ks + 0-072
s +126-3 Tig —305-76
te —305-76 he 1-834-7

The standard values of d, and g, are stated to have been derived from experiments in air,
and p was calculated. For the special servo-linkage considered ¢, = 0 and » = 2-73: hence the
transformation formulae in Table A of para. 10 are applicable with # = 0 and N (= ») = 2-73.

The barred elastic stiffnesses for rudder-bar locked work out as Z, = 106-56, %, = 8347,
[ = hy = 0. With rudder-bar free 4, = 0. The barred inertias corresponding to various inertial
conditions of the system are as follows.

TABLE B (para. 17)
Values of Barved Inertias

(4 denotes length of balancing arm in inches)

Inertial condition of system d, p 25
Standard. . .. .. .. .. .. 7477 6-601 6-0
Servo-rudder statically balanced* (1 = 6) 7-615 6-912 6-724
Servo-rudder dynamically balanced (4 = 6) 7-667 7-047 7-047
Servo-rudder dynamically balanced (1 = 10-2) 7-488 6-525 6-525

* New inertias calculated from data given in Ref. 7.
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It may be added that the values of ¢, and f, estimated by vortex strip-theory, and the use of
approximate representations for the air-load coefficients, worked out as 0-0065 and 0-00314
(compared with the tabulated values 0-008 and 0-0038). In this calculation the triangular fin
was replaced by a rectangular fin of approximately equal area, and a correction factor 1-4/x
was applied to the derivatives to allow for the small aspect ratio 1-47 of the fin-rudder—servo
combination.

Figs. 20a and 20b show the base curves and the frequency-parameter curves corresponding to
values of p ranging from 6-601 to 7-2. With the standard inertias (point I,) the critical speeds
for rudder-bar locked and rudder-bar free roughly estimated from the diagrams are respectively
285 ft/sec and 290 ft/sec. The corresponding speeds given in R. & M. 1527 are 292 and 286.
When the tab is statically balanced (point I,) or dynamically balanced by the short arm (point I)
no flutter occurs. This is also shown by the points J;, J,, J; in' Fig. 21, which corresponds to Fig. 17.

The values of the constants in (16.6) for the particular aeroplane considered are D = 34-55 in.,
¢,=10-21in., and N = 2-73. The maximum advisable length of the servo-balancing arm is then
given by 4 = D/(N 4 1) =9-26 in. The point J," in Fig. 21, corresponding to i = 10-2,
illustrates the case in which mass balance fails. :

18. Atleron—Tab Flutter with Spring Tab No. 1.—With spring tabs No. 1 the gear ratio defined
by # 1s not zero, and the ‘ barred ’ inertial and aerodynamic coefficients for this case accordingly
differ from those given for spring tabs No. 2. Formulae for the new inertial coefficients are
given by (5.4) and the appropriate aerodynamic coefficients are defined similarly. The two gear
ratios # and IV are always subject to the restriction N > #. . The numerical values of the inertial
coefficients for N = 3 and » = 0-5, 1-0 and 2-0 are given in Table 10, and the corresponding
elastic stiffnesses are obtained from (5.5) and Table 5.

19. Flutter Prevention with Spring Tab No. 1.—The inertia-stiffness diagrams for spring tabs
No. 1 closely resemble those for spring tabs No. 2 which are shown in Figs. 15a and 15b. In view
of this similarity, the actual diagrams for spring tabs No. 1 are omitted, but the maximum
abscissa W, for each curve is plotted against 4 in Fig. 22. The values of the gear ratios assumed
in the calculations are N = 3 and » = 0-5, 1-0 and 2-0. The case #n = 0 corresponds to spring
tabs of No. 2 type. For each value of #, W, plots linearly against $, so that — W,,./p tends
to a constant value M for large values of 4, where M is a function of N and # only. As for spring
tabs No. 2, the stability condition &, << — W, is then replaced by

@qq

| <M e
where M > 1. ‘

This inequality can be written alternatively
' Gy —p < (M — 1)p .. e .. .. (19.2)

where 4, — p is independent of @, and therefore unaffected by addition to mass to the main
aileron. It should be noted that in practice @, > $ since by (5.4)

Gy — p= (N —n)(p + Nay) .

The expression on the right is necessarily positive unless the tab is considerably over-mass-
balanced.

It will now be shown that the conclusions drawn in para. 18 regarding the effects of mass-
balancing apply to both types of spring tab. Firstly, if a mass m is added to the main aileron at
a distance X from the aileron hinge axis, the resulting increments of the inertial constants are

C0A, = mXE, oP =0, 64, =0,
0 Az = mX?, 0P = mX?,  6A, = mX*?.
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In this case, the stability condition (19.2), for the modified system, can be written
A-44“p < (M - 1)(P -+ sz) ’
and it is then clear that the addition of the mass # is beneficial.

Secondly, suppose a mass # to be added to the tab at a distance 4 (= 4,¢,) forward of the tab
hinge axis and at a distance 4( = D — 1) behind the aileron hinge axis. Then the additions to
the inertias are

0A 4 = mdA?, 0P = — mAl, 0A 4y = mi?
8A = mA?, 8P = m(4 — nA)(4 — N1, 8 A, = m(4 — N2~
The stability condition (19.2) for the modified system can here be expressed as
Ay — P =mi(N —n)(4 — N2 < (M — 1)(P + sP).
Now both mA(N — #)(4 — N2) and 6P are positive provided 4 > N1, and hence, in this case
also, mass-balancing of the tab is beneficial. '

It may be noted that since spring tab No. 2 can be regarded as a particular spring tab of
No. 1 type for which # = 0, the stability conditions for both types may be expected to be similar
as just shown.

Section 111.—Numerical Applications to.Ternary Flutter

20. Preliminary Remarks—In this section flexure-aileron—tab (134) and torsion-aileron—tab
(234) flutter are investigated for a wing fitted with spring tab No. 2. Inertial values corresponding
to a fabric aileron and tab are used in the calculations, and a value N = 2 is taken for the spring
tab gear ratio. A qualitative analysis of ternary flutter under the following inertial conditions
is made :—

(i) flutter of (134) type with
(a) aileron unbalanced
() aileron statically balanced (a,; = 0),

(ii) flutter of (234) type with
(a) aileron unbalanced
() aileron statically balanced (a,; = 0)
(c) aileron dynamically balanced (@, = 0).

The correspnnding inertia stiffness diagrams show that

(a) flutter of the (134) and (234) types is possible when the aileron is unbalanced although
binary (34) flutter is absent

(b) flutter of (134) type is eliminated by static balancing (a,; = 0), but (234) fype flutter is
still possible

(c) flutter of (234) type is prevented by balancing the aileron dynamically (@,.= 0).

The ternary inertia-stiffness diagrams are usually complicated, and no simple criterion for
ternary flutter prevention analogous to that given for binary (34) flutter in para. 16 and para.19
can be deduced. However, the least favourable conditions for flutter can be recognised from an
examination of the relatively simple binary curves from which the positions of the asymptotes
for the ternary diagrams are determined. When the vertical asymptotes are far to the left
and the horizontal asymptotes are well below the first inertia point I, the possibility of flutter
is very remote. This condition implies that all types of binary flutter must be eliminated.

The notation used in the following analysis is listed in Section II except for some symbols
which are introduced in para. 21 to simplify the computational work.
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21. Flexure—Aileron—Tab (134) Flutter—The equations of motion for (134) type flutter are
given by (9.2) and (9.3) and they can be expressed in the binary form of para. 8 by writing ‘

, Es ; E, ]
2= — =, w=w— —
X X
- E - E
C33l:C33‘_”f: C44:C44_‘ 71%
- F BLE
Bsg’ = Bsa - 713 + 19162 =
, = F, B11E14
B, = By — x + P ' . (21.1)
K ELE
E34’ = E34 - ?1 + 1;2 =
F34I — F34 _ HO —I— 2‘511333‘344
+ Klgll + EpFi, + EyFyy . 2BnEmEm
x* %3
K1 = Ko + BIIF% -+ B33F14 + B44F13
On substitution, equations (9.2) and (9.3) reduce to
Zw' =Ly (21.2)
Bu'z' + Bg'w' = Fy' o
and give
F I3 G !
SRR ML L
. - . (21.3)
, , i 4 i ’
w = W -—l— CM = w
where

G34I - F3412 - 4333,B44’E34, .

The method of calculation adopted is to regard the value of X(= (x — Cy)/w? as assigned
and to derive by (21.3) pairs of values of Z and W corresponding to a range of values of o for
which G, is positive (see para. 9 and Fig. 5). The graph of Z against W is the required base
curve appropriate to the given value of X. ' '

The base curves are usually complicated by the presence of asymptotes. From (21.2) and
(21.3) it is seen that when o is such that B’ is zero, w’ becomes infinite and 2 = 0. Accordingly,
W —ow at Z = — Cy'/w® (where w has the appropriate value or values), and similarly Z — o
at W= — Cu,'[w® when B, = 0. Alternatively the positions of the asymptotes and the
corresponding o values can be deduced from the base curves and frequency parameter diagrams
relevant to the various associated types of binary flutter. For instance, equations (9.2) and
(9.3) reduce to :

xz = Eyy, Byx + Buz = Fy,

which define flutter of the flexure—aileron (13) type. The values of Z and o at which W —
for a particular value of X can therefore be read off the curves, in Figs. 9a and 9b corresponding
to the appropriate value of a,;. For example, if a;; = 0-0836, and —7-0 < X < — 2-0, the
values of Z are greater than — a,, and therefore lead to asymptotes above the inertia point in
the ternary diagram (see Fig. 23a, 23b).
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Diagrams for (134) type flutter are given for the following conditions :—

(a) aileron unbalanced (Figs. 23a, 23b),
and
(b) aileron statically balanced (Fig. 24).

The diagrams show that flutter can occur in the first case but not in the second, as then the
relevant curves have no branches to the right and above the inertia point (—dy, — &;). Tables
11, 12, 13 give the values of Z and W for a range of values of and X for each inertial condition,
but some of the results are omitted in the diagrams.

22. Torsion—Aileron—Tab (234) Flutter—The simplified equations of motion for this type of
flutter are similarly obtained by writing ¥ for x and replacing the suffix 1 by 2 wherever it occurs
in para. 21. Inertia-stiffness diagrams of Z against W are plotted for assigned values of Y for
the following cases :—

(@) aileron unbalanced (Figs. 25a, 25b, 25c¢)
(b) aileron statically balanced (Figs. 26a, 26b)
(c) aileron dynamically balanced (Fig. 27).

Flutter is possible under conditions () and () but not under (c).. The calculated values of Z
and W are given for various values of w and Y in Tables 14, 15, 16, 17, 18 and most of these
results are included in the diagrams.

23. Analysis of Diagrams—A graphical method of analysing the ternary inertia-stiffness
diagrams is described in para. 9, but it is not always easy to apply. It is sometimes more
convenient to find the values of /, which lead to flutter for various values of X. It is shown in
para. 9 and Fig. 5 that flutter occurs when X = £, if /, is such that

X' (k+an)  Led

where W, is the abscissa of the point of intersection P, of the Z’/T¥’ stiffness line with the curve
for X = %, and where Z', W' are assumed to be known. Values of /, can be calculated by (23.1)
for various values of k for which curves have been drawn. The value of & corresponding to the
flexural stiffness , of the wing can then be deduced from a curve of /;against 2. The corresponding
frequency parameter can be obtained by a supplementary curve of w; against % or ,, where w,
is the value of the frequency parameter at P;. The critical flutter speed would then be given
by X' = w*k -4 d@.). However, critical speeds are not estimated in this section as the intervals
between the values of X, Y and o chosen in the calculations are not sufficiently small to allow
a quantitative analysis of the diagrams. ‘

. (23.1)

Section IV —Approximations to some Binary Inertia-Stiffness Diagrams

24. Approxvimate Air-Load Coefficients—Good approximations to the inertia-stiffness diagrams
for flexure—torsion, flexure—aileron, torsion-aileron and aileron—tab flutter are obtained by using
approximate air-load coefficients of the form C;; = ¢;; — d;;0% By = di; + b0 as listed in
Table 19. The constants 4,; and b;; represent the limiting values of — ¢;;/o® and B;;/» as o —> o,
and &;;, d;; are chosen to yield the true values of the air-load coefficients at » = 2. The co-
efficients 4,; correspond to the aerodynamic inertias and their numerical values are given by
formula (16) of Appendix III. Approximations were also tried on the basis of classical derivative
theory in which d,; is assumed to be zero, and in which allowance is made for the aerodynamic
inertias. They were found to be unsatisfactory except in the case of aileron-tab flutter where
“ barred ’ air-load coefficients which depend on the gear ratio N are used (see para. 5).
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25. Binary Flutter—In the calculations the inertial values corresponding to a fabric aileron
- and a fabric tab are assumed (see Tables 7 and 8). Approx1ma,t10ns to the curves for the following
cases are considered :—

(i) flexure—torsion (a,, = 2:19; 5§ = 0-1),

(i) flexure-aileron (a,5 = 0-0836, unbalanced),
(iif) torsion—aileron (ay, = 0-0307, unbalanced, ay, = 0-0107, balanced)
(iv) aileron tab (@, = 0-0054; N = 2; @, = 0-006, N = 6).

Comparisons of the true curves and their approximations are made in Figs. 28 to 32. In all
cases good approximations are obtained for values of » > 1. For lower values of o, the approxi-
mate derivatives are less accurate, and lead to errors in the approximate forms of the various
curves. For this reason, approxnna,tmns were not made for the cases where the wing and the
aileron are mass- balanced as the true maximum value of o for both flexure-torsion (a,, = 0)
and flexure—aileron (a,; = 0) flutter is about 0-25 (see Figs. 8b and 10b).

The approximate curves for aileron—tab flutter are shown in Figs. 31 and 82. They are in
good agreement with the true curves for both values of N. Equally good agreement is obtained

by the use of air-load coefficients of the classical type, namely, C;; = &,;, and B,; = b,,», where
allowance is made for the aerodynamic inertia «,; by adding it to the true value of the product of
inertia in vacuo. It may be recalled that the inertia stiffness dlagram depends only on the product

of inertia and the aerodynamic coefficients. Since the values of d,; requ1red in the calculation of

the aileron—tab inertia-stiffness diagrams are small compared Wlth bys,. they can be neglected
without appreciable loss of accuracy when o > 1.

26. Stability Condition.—In para. 16, it is stated that (34) flutter is prevented when d,, << Mp,
where
M= — Wi“ =
b2
It can be readily proved that — W, — Mp when p is large, if it is assumed that the air-load
coefficients are of the classical type. For N = 2, the approximate values of -the aileron—tab
“ barred ’ coefficients obtained by the use of (5.4) and Table 19 are

C =¢— dow™ =0-01431 — 0-0,53830?, 0-02810 — 0-0,5507 »*
0-01449 — 0-0,5507 w?, 0-02926 — 0-0,5651 ®

and
' B =b%w =10"%»0-9079 1-018] .. . . . .. (26.1)
0-9246 1-049
where the terms d;; have been neglected.
The abscissa W is given by
' B .  F+ \/G] / ,
W_[_C44+ 2B-33 w” .
Let o = p'0* = (P + @) w* where p’ represents the effective « barred * inertia, then
W
?7 = — b+ A g *  LL Ve %b“/g . (26.2)
38

* & here denotes a matrix of the aerodynamic inertias.
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"~ where F ) - . ,

f = Zo— == — oc(b34 ‘l— 643) ’l" 534b43 + 543634 P
¢=FE=0o—a 534+543—@“;ﬂ)+5345@,
. G o

§=75 = f? — 4bysbye Egomz"*‘gl“_,_ng

For large values of p’, the above expressions become functions of « only, since the term
Bygbay — bgubys is then small compared with p'(Gs - Gi). When W is a maximum §W/éa = 0,
and then (26.2) gives '

4 s o
(1 _oﬁ) (f + /&) = 2Butuas .. .. .. (263
which leads to the quadratic equation
o -+ 2g,)° s
gz@'—ljm—g”:goa + gt g, .. (289

where D = 2B,:64 — Csabss — Casbse. From equation (26.4) the values of «(= p’w?) are then readily
determined. When p’ is large a—0-0343; for p’ = 0-008, « = 0-0353; hence, since
+ 2D+/g = g« + 2g, when W is a maximum equation (26-2) gives after some reduction

P s (D

W pax = —2533<bs4+b43—2D zzgst + Ay
:-0-981p'—(w§355~3+01035651 L (265)
— —1-04p — 0-0,8.

The slight variation in « with p’ does not affect the slope of this line appreciably so that when
$' > 0-008, which represents roughly the lower limit of the ‘ barred ' effective product of inertia
in practice, the value of the stability factor M is 1-04 as compared with a true value of 1-05
obtained graphically for N = 2. (See Table 3 and Figs. 13a, 13b).
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LIST OF SYMBOLS

Notes: For the significance of barred symbols see Introduction (d). Symbols with double
suffices, unless specially defined, denote the elements of a corresponding square matrix. Numbers

in round brackets indicate equations.

A Matrix of inertial constants para. 2
a Matrix of non-dimensional inertial coefficients (2.9)
a (as suffix) Relating to the aileron
a para. 3 (a)
o(=C 4 iB) Matrix of air-load coefficients (3.3)
B See o (3.3)
B,, B, Statically balanced aileron, statically balanced tab Appendix IT
b Matrix of damping derivatives para. 3 (a)
B Tab angle relative to aileron Figs. 1a and 1b
C See o (3.3)
c, ¢ Local chord of wing, root chord
c,, C; Aileron and tab chords Appendix I
¢ Matrix of aerodynamic stiffness derivatives para. 3 (a)
D Square matrix — aw® 4 C; also denotes d% para. 2 (5, 9)
a,, d, Distances of aileron and tab hinge axes behind 0Y (7.2), (7.3)
4 Aileron~tab density ratio ¢,/0,; discriminant » (16.2), (8.12)
E Matrix of elastic stiffnesses (1.6)
E,; Defined generally as in (8.2)
e . Matrix of non-dimensional elastic coefficients (2.10)
& Defined as ¢, but with ¢y = 0 (4.3)
&, &, Aileron and tab density ratios p/o,, p/o, (16.2)
7 7L ‘
F), fin) Torsional and flexural distortion modes (7.1)
F; Defined generally as in (8.3)
f Frequency ; critical frequency
o fo Natural frequency in still air and 4 vacuo para. 6
Gi; Defined generally as in (8.6)
y Matrix of aerodynamic inertial coefficients (6.2),
Appendix ITI
H, H, H, Constants in calculation of inertias Table 6
H Aileron hinge moments para. 2
H, Used in calculation of ternary diagrams (9.4)
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LIST OF SYMBOLS—-continued

Elastic stiffnesses in simplified theory

Inertia point in inertia-stiffness diagram
Inertia point in stability diagram

Distance of c.g. behind OY as function of chord
Used in calculation of ternary diagrams
Column of complex amplitudes of motion
Aerodynamic flexural moment on wing
Distance reference section from wing root
Flexural stiffness of wing

Distance of tab-balancing mass behind aileron
hinge axis

Distance of tab-balancing mass ahead of tab hinge
axis

Complex exponential time factor

Distances of aileron and tab-balancing masses
ahead of hinge axes, as fractions of aileron and
tab chords

Aerodynamic torsional moment on wing
Slope of lines in stability diagram
Equivalent mass of control column
Mo/pcyt

Torsional stiffness of wing

Damping factor; matrix of transformation
Second spring-tab gear ratio R'/r’

First spring-tab gear ratio R/r

200/p Ve,

A gearing constant of control circuit

Aileron angle in reference section; local aileron
angle

Preloading force of spring tab

Generic symbol for product of inertia: also used
as suffix to denote port side

Pylp Ve,

Column {0, 0, — R, 7}
Column of aerodynamic moment coefficients
Column {¢, (co/1)8, (cof)€, (cofl) B}
Angular co-ordinate of control column
35

para. 10
para. 8
para. 16

(9.4)
(3.1)
para. 2

(16.6)
(16.6)

para. 3
Appendix II

para. 2
(16.3)
(1.7)
(2.8)

para. 3 (b), (2.5)

para. 1 (d)
para. )
(2.6)

para.

para. 7

para.
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LIST OF SYMBOLS—continued

R = AF — Al in Figs. 1; for spring tab No. 2 R =0 para. 1 (@)
R’ vAF in Figs. 1; »HQ in Fig. 2 para. 1 ()
7 TM in Figs. 1; CK x TM/CS in Fig. 2 para. 1 (a)
7' »TM in Figs. 1; »HC x TM/CS in Fig. 2 para. 1 (d)
p Air density
S Wing span: also used as suffix to denote starboard
Su Si Aileron and tab épans
o Stiffness rate of spring tab para. 1 (a)
o Stiffness rate of control cables para. 1 (b)
gy Oy Aileron and tab mass coefficients (16.2)
T Aerodynamic tab hinge moment
¢ Time variable
Ig, be Elastic stiffnesses para. 10
T Non-dimensional time variable £V /c, (2.4)
0 Torsional co-ordinate of wing
0, Local angle of twist at section Appendix IIT
2 Column {0, 0, R', — 7} (1.6)
9’ Transposed of ¢ (1.8)
U Column of moments {L, M, H, T} para. 2
U, U, Unbalanced aileron, unbalanced tab Appendix II
14 Airspeed ; critical speed
X, Y zZ W Co-ordinates in inertia-stiffness diagrams (5.8)
X, Y, Z, W, Values of X, Y, Z, W for oscillations in still air (6.3)
X,Y,Z, W, Values of X, Y, Z, W for oscillations % vacuo (6.1)
XYz, W Barred direct elastic stiffness coefficients (5.7)
X, Y, %, W X' + Dy, etc. ; also spatial co-ordinates (5.10)
¢ Flexural co-ordinate of wing
X Column of angles {¢, 0, &, £} (1.8)
w Non-dimensional frequency parameter 2zfc,/lV (3.2)
v A modified discriminant (8.17)
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APPENDIX I

Dimensions, Distortion Modes, and Elastic Stiffnesses of Aevoplane S

The numerical constants adopted for the wing—aileron—tab combination were based—with
drastic simplifications—on design data supplied for the Spuifire.

1. Dimensions.—The relevant data for the Spitfire are as follows.

Dimensions of Spitfire
(Areas in ft* and lengths in ft)

Gross wing area 242
Area of each aileron 9-45
Area of each tab 0-68
Overall span 37 -
Span of each aileron (s,) 6-85
Span of each tab (s,) 2-14
Root chord of wing 8-33
Tip chord 4-2
Aileron chord/wing chord (c,/c) 0-235
Tab chord/aileron chord (c¢,/c,) 0-23

For aeroplane S the geometrical characteristics were modified in accordance with the following
assumptions:

(a) The tapered Spitfire wing was replaced by a rectangular wing—aileron-tab combination
of constant section

(b) The effective areas of each component and the values of s, s,, ¢./c, ¢,/c, were left unaltered.
(c) The ratio of wing area outboard of aileron to aileron area was left unaltered.

d) The wing dihedral was removed, and the flexural axis was assumed to lie as normally at
0-3c¢ from the leading edge.

(¢) The aileron and the tab were assumed to be hinged continuously along their leading edges.
Thﬁs, for aeroplane S
' ‘ s, = 6-85; ¢, = 9-45/6-85 = 1-38
s, = 2-14; ¢, = 0-68/2-14 = 0-32 (rounded)
¢ = 1-38/0-235 = 5-87; s = 217/(2 X 5-87) = 18-5*.
For the Spitfire the ratio of wing area outboard of aileron to aileron area was estimated as

0-695. Hence for aeroplane S the wing span extending beyond the aileron was taken as
(0-695 x 9-45)/5-87 = 1-12 ft.

The finally accepted rounded dimensions are as shown in Fig. 6.

2. Reference Section and Distortion Modes—The tab connection is for convenience assumed
to be situated at the inner end of the tab, and the corresponding wing section is adopted as
the reference section. The choice of this position for the tab connection simplifies the calculations,
and it would also greatly simplify the construction of a model should wind-tunnel tests be required

to check the theory.

* The effective Wing area was taken to be 217 ft2, 25 {2 being allowed for the centre section,
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The simplified linear distortion modes adopted are (see (7.1) and para 11 (5))

0-57n — 0-35 0-35 ' 0-35
Jn) = To.og  foran > 5o 57and fln) = 0 for g < < 557

0-579p — 0-2 0-2 . 0-2
Fn) = —0.37 forn>057andF()_0forn <557

3. Elastic Stiffnesses.—(a) Wing Stiffnesses.—The figures supplied for the elastic stiffnesses
of the Spetfire measured at mid-aileron span are as follows :—

Flexural stiffness 3-6 x 10°1b ft/radian
Torsional stiffness (symmetrical torques) 0-488 x 10¢Ib ft/radian
Torsional stiffness (antisymmetrical torques) 0-406 x 10° Ib ft/radian.

The distance from the effective wing root to mid-aileron span is taken to be 11-42 ft.

The elastic stiffnesses for aeroplane S are chosen so that the values of the stiffness rates measured
at mid-aileron span agree with those for the Spiffire. Now for aeroplane S the reference section
and the mid-aileron span section lie at distances 0-22s and 0-405s respectively from the axis for
linear flexure, and at distances 0-37s and 0-555s from the axis for linear twist. Moreover
[ {distance of reference section from wing root) = 10-54 ft. Hence, if /,, m, denote the elastic
stiffnesses defined on the usual basis for aeroplane S

load at reference section )

I, = I’ & . _
¢ linear deflection at reference section

. (0-405Z >2< load at mid-aileron span )
-\ 0-22 linear deflection at mid-aileron span
Or, on substitution of the value appropriate to the Spitfire

‘4 Y 1 M 2 .
00‘2025;110-4524 X 3-8 x 10° = 10-4 x 10°1b ft/radian.

l¢:

Similarly, for symmetrical conditions of loading

. 5\2
%,%57“ X 0-488 x 10° = 1-1 x 10°,

while for antisymmetrical loading m, = 0-915 x 10°. The rounded values finally adopted are

I, = 10-4 x 10%; m, = 1-0 x 10° (for both types of loading),
giving ‘ 7 :
Ly/plP = 3-74 x 10°%; my/plc* = 1-16 x 10°,
(0) Control Stiffnesses.—The followmg. dimensions relate to the spring tab No. 2 which was

tested on the Spitfire. Two alternative lengths for the tab lever TM were provided: these are
denoted below by (TM); and (TM),

CK =2-30in.; CS=1:7in.; HQ=2:-8in.; HC=1-6in. ;
(TM), = 0-54in.; (TM), = 1-0in.
These yield the two sets of values
r = 0-0609 (ft); N (= R’[r") = 5-61 (short lever)
7 = 0-113 (ft) ; N (= R'[r') = 3-03 (long lever) ,
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Five different springs (Nos. 1 to 5) were provided for the spring tab, but it is understood that
only spring No. 1 was tested in flight. The specified spring rates and preloadings are as below.

: Stiffness rate Preloading P,
Spring No. (Ibin.) (Ib
1 77* 238
2 40 21-8
3 23 18-6
4 115 13-7
5 6 9-0

In numerical applications it may be assumed that the practical values can range up to
100 (Ib/in.) for the stiffness rate and up to 40 Ib for P,.

The value of the control circuit stiffness was obtained from a loading test carried out by the .
R.A.E. on the Spitfire aileron, under conditions appropriate to symmetrical flutter. This test
gave 2R"%¢, = 3650. The numerical values of the elastic stifinesses with o taken as 89 Ib/in.
(1068 1b/ft) are as given in Tables 4 and 3.

APPENDIX II
Inertial Coefficients

1. Main Wing Inertias.—General expressions for the inertial coefficients are given in para. 7.
The flexural and torsional natural frequencies given for the Spitfire are 10 and 28 c.p.s. respectively
and the same frequencies are adopted for aeroplane S.  Thus, since /; = 10-4 X 10° and
my = 1-0 x 10° (see para. 3, Appendix I), :

Ay = 10-4 X 10°/47°10* = 2640 slug ft?, giving a;; = 27-5
A= 1-0 X 10°/47228% = 32-3 slug ft?, giving a,, = 1-09.

The value of A,, appropriate to the Spitfire was not specified, and this coefficient is—so far as
possible—left general in the calculations. If A, = 2640 as above, and if the wing masses for
aeroplane S are assumed to be distributed uniformly along the span, then the total wing mass
is about 12-5 slugs. In this case the estimated value of 4,, is about 11705 (giving a;, = 21 -97)
~where jc denotes the distance of the centre of mass in each section behind OY. The condition
Ay, As > Ay? requires that 7 < 0-25.

2. Inertias of Control Surfaces—For the evaluation of the remaining inertial coefficients, the
dimensions and distortion modes are assumed to be given as in Appendix I, and the masses of
both the aileron and the tab (excluding any balancing masses) are taken to be distributed uni-
formly along the span and to be proportional to the distance from the trailing edge. Thus the
mass per unit span (slug/ft) of an element of width dx situated at distance » from 0Y is taken
to be 20,(0-7¢c — x)dx in the case of the aileron, and 20,(0-7c — x)dx in the case of the tab,
where o, and ¢, are density constants. In order to define the aileron density in practical terms,
it is convenient first to imagine the actual tab to be replaced by one constructed of the same
material as the main aileron. Then, if 4, (slugs) denotes the mass of the complete homogeneous
aileron so obtained, and if 4, denotes the mass of the actual tab

Ou = HafS:C°5 0, = ‘ut/stctz .
Alternatively, o, may be defined as g,/(s,c.” — s,c,%), where p,” is the mass of the aileron with its

tab removed. For the purposes of these definitions balancing masses are to be excluded from
o and u,.

* Direct measurement of the stiffness rate of spring No. 1 at the N.P.L. gave 89 Ib/in.
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The following additional synibols are introduced

¢, (aileron density ratio) = p/lo,
¢, (tab density ratio) = p/o,
4 (aileron-tab density ratio) = o,/0, = ¢,/e, .

The values o, = o, = 0-03837, (slug/ft?), giving &, = ¢, == 0-06197 and 4 = 1, correspond
to a fabric covered combination. If the dimensions are as given for the Spitfire, the total
weight of the combination (without balancing masses) is about 161b. The actual combination used
for the Sputfire tests consisted of an aluminium tab and a fabric covered aileron, and the density
constants corresponded more nearly to ¢, = 3-70, = 0-1151 (slug/ft*), giving &, = 0-06197,
e, = 0-01675, 4 = 0-2703. When these values are adopted the estimated weights are 1-311b
for the balanced tab and about 29 1b for the balanced aileron, as against 1-31b and 265 1b obtained
from direct weighing of the components at the N.P.L.  The density constants appropriate to a
fabric-steel combination would be about ¢, = 0-06197, &, = 0-006197, 4 = 0-1.

In the theoretical investigation, any balancing masses present are (unless the contrary is
stated) understood to be distributed along the span so as to render the relevant control surface
uniformly statically balanced (see para. 7). The masses are assumed to lie at distances 2., and

A,c, ahead of the aileron and tab hinge axes, respectively. For brevity, the three cases considered
are distinguished as follows

Case (U,, U) unbalanced aileron, unbalanced tab,
Case (B,, U, balanced aileron, unbalanced tab,
Case (B,, B, balanced aileron, balanced tab.

Table 6 and Fig. 7 give the calculated inertial coefficients with &, 4, 4, and 1, left general,
when the dimensions of the combination and the distortion modes are as specified in paras. 1
and 2 of Appendix I. For the practical ranges of 1, and 1,, the values of a,; appropriate to cases
(B., Uy) and (B,, B, differ only slightly. The contribution of the tab balancing mass to
ass8, X 10° is given by H, — H, (in Table 6): the values of this correction are shown below.

Values of Hy — H,

A
Ay
0-1 0-3 ’ 0-5 1-0 ] 15
0-25 0-08122 002423 | 0-01298 0-004652 ‘ 0-002085
0-5 0-1016 003060 0-01650 0-006124 0-002859
0-75 0-1220 0-03697 0-02007 0-007597 \ 0-003630

Table 7 summarises the estimated coefficients for the special cases of fabric covering
(¢ =0-06197) and metal covering (e = 0-01675). When balancing masses are fitted, their
positions are standardised in this table as 2, = 0-5and 2, = 1-0. The values of the corresponding
barred coefficients dy, @, 4, calculated for spring tab No.-2 with N = 2, 3, 6 are given in Table 8,
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APPENDIX III
Air-Load Coefficients

. The air-load coefficients for a semi-rigid wing—aileron-tab combination can~ be calculated by a
method similar to that adopted for flexure torsion flutter in R. & M. 1952° and R. & M. 1943°.
The basis of the method may be described as “ vortex strip theory .

For the present application the necessary values of the two-dimensional coefficients were
calculated by the formulae obtained in R. & M. 1948, In that paper the reference point adopted
lies at mid-chord, and the complex amplitudes of the air force and moments per unit span are
given in terms of the air-load coefficients by the relation

Z = — mp Vi Zy  Zw  Zs  Zu T2, o .o oo (D)
M My, My, M,  Mgl| 0
H H, H,  Hg o] &
T To T Tw  Tullp

where z', 6’, &', B’ denote the complex amplitudes of the motion. The air-load coefficients
Z;, M, etc., are all functions of the frequency parameter* o, the functional form being typified

by
Zyp = d + ew® + ifo + (p + iqo)C, P 124

in which d, e, f, p, g are constants depending only on the geometry of the aerofoil system, and
C is a known function expressible in terms of Hankel functions of argument «/2. When o is
very great C— 0-5, and when o is small C — 1 + }s0 log o.

A relation similar to (1) applies when the reference point lies at distance 4’c forward of mid-
chord, except that My, M, Mg, M, must then be replaced respectively by

My + W Zo Myt h'(Zey+ My) + 17325, Mg+ h'Zss,  Mas + 2,
and Zg,, Ha, Ta by
Zy+h'Zy Hy+hHy Tut+h'Ths.

Next consider a semi-rigid wing with aileron and tab. Asin para. 7 the distortion modes are
assumed to be

Zyas = PI() + 05 F(n) .. .. . .. . ee (3)
for points of the main wing
| Zor = $Uf(n) + [ + d {F(n) — 110 + (v — )¢, T ()
for points of the main aileron, and ‘ .
7, =2, + (x — d,)p . . . . . (5

for points of the tab.:

Let P,_,, P, P, denote typical forces applied at (x, ) to the main wing, the main aileron,
and the tab, respectively. By the principle of virtual work, the first force is equivalent to a
force P’ applied at x’ in the reference section » = 1, if

Pgl+ 65") = Py, ($1f() + 05F(n)) |

# In preceding reports the frequency parameter is usually denoted by 4,

41




Hence the flexural moment L and the torsional moment M equivalent to P,_,., are

L=IP =Ilfn)P,,,; M=xP =Fu)xP,,,. .. . .. . (6)
Similarly the three moments equivalent to P, , can be written
=lfn)P.y; M= F(n)xP,,+ {1 — Fin)}x —d)P,,; H=@x—4d)P,,, .. (7)

while the moments equivalent to P, are similar to (7) with 7' = (x — 4,)P, in addition.

From the preceding relations it follows that if a complete distribution of loads represented by

1Z,dn, IM,dn, IH,dn, IT,dn is applied to a wing element of width /dy, then the total equivalent
moments on the system are given by

L = Pfn)Z,dn, . . .. .. .. . . .. 8)
M =I1F(g)M,dn + I{1 — F(q)}H,dn, .. .. .. .. .. 9)
H=IHdy, .. . .. .. . .. .. .. .. (10)
T=I[T,dy. .. . .. .. .. .. . .. . (11

If the wing section considered does not contain the tab then (11) is to be ignored, and if it does
not contain the aileron then (10) and (11) are to be ignored..

Now suppose the system of forces applied to the wing element to be the air-loads. Then the
complex amplitudes of these loads per unit span are given by

Z, = —mpe V[ Zy'  Zy'  Zy  Z [z 7, . .. (12
M, M, My Mg My'l|e’
H, |- H, H, Hy  Hyl||é&’
T, T  To'  Tw  Tlwllp)

where the accented symbols'in the square matrix denote the two dimensional air-load coefficents
appropriate to a reference centre at 4’c forward of mid-chord, and z,, 6,’, &', 8, denote the
amplitudes of the local flexural displacement #,, the local angle of twist 6, and the local aileron and
tab angles ¢, 8, From equations (2.4) and para. 7 of the main text it is readily shown that
these local dlsplacements are expressible in terms of the dynamical co-ordinates ¢ by the relations

sje]  I[ft) 0 010f T .. .. . .. .. (13
6, ¢ 0 F(n) 010 7
:, 0 1—F@ 1]0]g
B 0 0 Jlﬁ

= (I[c)Wgq say.
Hence, in the notation (3.3) for complex amplitudes

#fc, 0,7, &)/, B,"} = (Ye) Wk . e . e . . o (14)
From (12) and (14) it follows that

cZ, = —awapclV?[fZy' FZy' + (1 — F)Zs Zs' Zx' [k oo (158)

M, M FM,' + (1 — F)M,' Ms' My ||k,

H, fH,' FHy' + (1 — F)Hy' Hy' Hy' || ks

T, T FTu + (1= )Ty T Ty ||k

If the wing section considered does not contain the tab, the last row and last column in the
square matrix in (15) will be null. If the section does not contain the aileron, the last two rows
and columns will be null and also Z,;' = M,;,’ = 0. .
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Expressions for the total effective moments on the system can now be derived by integration of

the air-loads. Let Jdﬂ f dn, Jdﬁ denote integration with respect to 5 over the complete wing

span, over the complete alleron span, and over the tab span only. Then the complex amplitude
of the flexural moment is given by

— LfpV = — J Fn)(Z,Je VD)
— nk f P dy - why U FEZy'dn + j 1 — )256'477}

+ why j FZss'dn + ak, f 2w dn

and the remaining moments can be evaluated similarly. The elements of the final matrix
of the air-load coefficients are

g [ F2Z,, dn
st = [ fFZ/dn +a [ [(L— ) Zu'dn
= | fZs'dn
Ay = J [ dn
/
Ay = [ FfM,, dy + = j f(1 — F)Hy'dy
Ay = JFM —{—7sz (1 — F)(My,' + HyVdy + = j (1 — F)*Hy'dn
A gy = jFMaG dn+a [ (1— F)H.'dn

A gy = JF]W%:ICZ"? + J 1 - H7sld77

Ay =n f fH.y'dn
sty =n [ FHy'dy +a [ (1 - F)Hs'dy
H gy =7 J Hss’dn
A gy =T JHw,d’?
t
Ay =mn J‘me/d"]
£
o 4 :njFTM'dn . j (1 — F)Ts'dn
4 I3 R
Ao =m | T 'dn
43 4!’ 56
.&f“ -7 J T78,dﬁ v
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In the particular case of a rectangular wing-aileron-tab combination, the coefficients Z,,’

M,;". etc., are independent of 5, and may be brought in front of the integrals. In this case the
actual integrals required in the calculations of the air-load coefficients are

]11=n£f§dn; ]zzznlﬁzczn;‘]%:ﬂujdn; ]44:%@;
Ju=Ju=n [fEdn; Ju=Tu=n[fd; Ju=Jo=afd;
]23=]32:nJFd17; ]24:]42:7z[Fd7]; ]34:]43=nldn;
Km:njfa — F)dy; Kzz—_—njz?(l — F)dy;

Kszznj(l—ﬁ)dn; K[lg:n'f(l—F)dn.

a [
The numerical values of these integrals for aeroplane S are given by
J =110-425 8-3441  3-7540 , 0-79684
8-3441 6-8713 3-0588 0-73005

3-7540 3-0588 2-0392 0-63209
0-79684 0-73005 0-63209 0-63209

and Ky, = — 2-1627; K, = —1:6992; K, = — 1-0196; K, =—0-09796.

Tables 9 give the air-load coefficients calculated for aeroplane S on the foregoing basis. The
asymptotic values for o — oo are as follows.

y = — Clo® = [2-606 0-4079 0-01617 0-00009084 7 .. (16)
0-4079 0-1167 0-005009 0-00003554 |
0-01617 0-005009 0-0005383  0-0,6194
0-00009084 0-00003554 0-0,6194 0- 045057
Blo = [ +5-213 3-765 0-3452 0-008407 7 .. (17
- | —0-2138 0-6266 0-09936 0-003236

+0-009010 0-02145 0-009079 0-0005493
| 0-00004654 0-0001511  0-00008344 0-00003559

44



Sy

\BLE 1

Flexure—1orsion Fiutter Characteristics of Aevoplane S

Upper Critical Lower Critical Nat“fal(f;es‘l;mmies
7 b2 Vy(m.p.h.) A 0y Vy(m.p.h.) fa 0y S fa J1a fou
0-2 4-39 ? ? ? 649 21-7 0-84 9-60 48-7 9-17 42-0
0-1 2-19 1868 6-69 0-09 665 17-9 0-675 9-89 30-9 9-43 29-9
0-05 1-10 1453 8:67 0-15 778 16-6 0-535 9-97 28-6 9-52 27-6
0 0 None — — None — — 10-0 28-0 9.56 26-7
TABLE 2
Ailevon—Tab Natural Frequencies with Spring Tab No. 2
(N =3)
f.» [ denote frequencies (c.p.s.) corresponding to oscillations 7 vacuo and in still air
Description of Control column locked Column free Column Column Column free
system (symmetrical oscillations) (antisymmetrical) locked and locked and nd aileron
: tab locked to | aileron locked locked to
Aieron | Tab | f fu fu fe fu o | aileron(f) | towing(f) | wing ()
FU FU 4-25 288-0 4-05 2700 51-2 o 242 277-0 50-1
FB ru 3-04 285-0 2-96 267-0 51-4 17-1 277-0 50-1
B FB 3-03 134-0 2-95 132-0 24-2 17-0 159-0 28-7
FU AU 3-72 166-0 3-58 162-0 28-4 22-1 144-0 26-0
FB AU 2-76 157-0 2-70 154-0 27-6 15-9 144-0 26-0
FB AB 2-77 92-3 2-71 91-7 16-4 15-8 82-7 15-0
AU AU 2-21 159-0 2-18 156-0 28-3 12-6 144-0 26-0
AB AU 1-58 154-0 1-57 151-0 277 8-87 144-0 26-0
AB AB 1-57 71-7 1-57 71-4 12-9 8-86 82-7 15-0

* I denotes fabric covering; A aluminium covering ; U not mass-balanced; B uniformly statically balanced.
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TABLE 3
Values of W ., for Ailevon—Tab Fluiter

N =2 N=3 N=26 N =10
p — Waas 1-05p b — Woas 1-07p P — W o 1-i8p p — Woas 1-81p
0 0-00014 0 0-00544 0-00587 0-00582 0-006 0-00733 0-00708 0-01 0-0134 00131
0-002 0-00218 0-00210 0-006758 | 0-00741; 0-00723 0-007155 | 0-00869 0-00844 0-04 0-0524 0-0524
0-0054 0-00574 0-00567 0-01 1 0-0108 0-0107 0-008 0-00970 0-00944
0-010 0-0105 0-0105 0-0125 0-0135 0-0134 0-01 0-0122 0-0118
0-0125 0-0131 0-0131 0-015 0-0162; 0-0161 0-04 0-0473 0-0472
0-02 0-0215 0-0214
0-04 0-0429 0-0428
M=1-05 M =1-07 M=1-18 M =1-31
TABLE 4
Spring-Tab Constants (units : feet and pounds)
(See Appendix I, para. 3 (b))
, n N 2 1yt 25712 2
R 7 \ (= RJy) ’ (= R'[7) | ¢ ‘ P, ‘ 20,R ‘ 20,R7 ‘ 2oy ‘ o7
Short lever 0 0-0609 0 ‘ 5-61 1068 24 3650 851 116 3-96
Long lever 0 0-113 0 ’ 3-03 1068 24 3650 1205 398 13-6




Ly

TABLE 5

Constants for Elastic Matrices e and ¢
(See Appendix I, para. 3 (b), and equations (2.10), (4.3))

Iy g 20,R" 204" 204" o oR? oRr
pl pleg? plcy? pley? pley? pley? plcg pleg®
Short lever (N = 5-61) 3:74 x 108 1-16 x 108 4227 754 134 4-59 0 0
Long lever (N = 3-03) 3-74 x 108 1-16 x 108 4227 1395 461 15-75 0 0
1/plog? = 1-158.
TABLE 6
Inertial Coefficients of Ailevon and Tab*
Coefficient Case (U,, U Case (B,, Uy) Case (B,, B,)
A58, X 108 (-1488 + 5-0204 0 0
e, X 108 | 0-08692 + 2-20174 H + 4,(0-02770+0-63224) = H, | H,*
age X 105 | 0-02855 - 0-30644 = H | H, H,
aye X 103 0-01348 0-01348 0
dpp8s X 108 0-007958 0-007958 0-0002884(1+-24,)
dgye, X 108 | 0-002220 0-002220 0-0002884(1--24,)
age X 105 | 0-0002884 0-0002884 0-0002884(1--21,)

Note—U denotes not mass balanced ; B denotes uniformly statically balanced; 4 = o,/0, and & = p/o, (see Appendix II).

*Hy=H + 2, <0-02519 -+ 0-63224 +

0-008397
X

0-01091
A

(0-77 — 0-232,)2
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. TABLE 7
Inertial Coefficients for Fabric or Metal Components (see Appendix I1)
(U denotes inertial un-balance : B denotes uniform static balance)

Description of System 102, 10ay; 1044, 103y, 10%a,, 10%a,, 10%a,,
Fabric aileron (U); fabric tab (U) 0-836 0-370 0-0533 0-218 1-29 - 0-358 0-0463
" o (B); o s (U) 0 0-107 0-107 0-218 1-29 0-358 0-0463
), . (B); s (B) 0 0-108 0-108 0 0-140 0-140 0-140
Fabric aileron (U); Al tab (U) .. .. .. 0-901 0-408 0-0636 0-806 4-76 1-33 0-171
. . B ., . (U) .. .. .. 0 0-123 0-123 0-808 4.76 1-33 0-171
. . By o, . (B 0 0-127 0-127 0 0518 0-518 0-518
Al aileron (U); Al tab (U) 3:09 1-87 0-197 0-807 4-76 1-33 0-171
” N ) I (9] 0 0-395 0-395 0-807 4-76 1-33 0-171
» . B . L, (B) 0 0-399 0-399 0 0-518 0-518 0-518

Notes : (i) Inall cases it is assumed that ay; = 27-5, g = 109, a;, = 21-95 where jc denotes the distance of the inertia axis behind the flexural axis.

(ii) The density constants for fabric-covered and aluminium-covered components are taken respectively as ¢ = 0-03837 (e =10-06197) and
o = 0-1151(e = 0-01675).
(iii) Factors used in conversion to non-dimensional coefficients are 1/pl%? = 0-01043; 1/pl*c® = 0:01873; 1/plc* = 0-03364.

TABLE 8
Barred Inertial Co-efficients of Aileron and Tab with Spring Tab No. 2 (n = 0)

N=2 N=3 N=86
Description of System

10%54 10%a,, 10%@,, 10325, 1037, 10%d,, 1084, 1038, 10°2,,

Fabric aileron (U); fabric tab (U) 5-33 5-403 5-49 5-33 5-439 5-59 5-33 5-547 5-93
" . By . . () 10-7 10-74 10-8 10-7 10-78 10-9 10-7 10-88 11-3
. LB . . (B 10-8 10-84 | 11-0 10-8 10-86 | 11-1 10-8 109 11-6
Fabric aileron (U); Al tab (U) 6-36 6-624 6-96 6-36 6-757 7-31 6-36 7-155 8-57
B . B . . (U 12-3 12-57 | 12:9 12-3 12:70 | 13-2, | 12-3 13-10 | 14-5
v . B . . B 12-7 12-80 13-1 12-7 12-85 13-48 12-7 13-01 15-2
Al aileron (U) Al tab (U) 19-7 19-99 20-3 19-7 20-13 20-7 19-7 20-52 21-9
y . B, . (U) 39-5 39-75 40-1 39-5 39-88 40-4 39-5 40-28 41-7
v . B .. (B) 39-9 40-00 40-3 39-9 40-06 40-7 39-9 40-21 42-4




Air-Load Coefficients Cy; and B,; (see Appendsx 111)

TABLE 9a

@ Cu By Creo By, Cis By Cu By,

0 0 0 7-064 0 2-223 0 0-2337 0
0-02 [+ 0-008476 0-2048 6-942 — 0-2129 2-184 —0-09115 0-2206 |—0-01042
0-04 0-02719 0-4019 6-817 — 0-3148 |—2-148 —0-1468 0-2253 |—0-01708
0-06 0-05186 0-5911 6-695 — 0-3709 2-103 —0-1875° 0-2209 |-0-02216
0-08 0-08006 0-7729 6-576 — 0-3970 2-063 —0-2181 0-2167 |—0-02615
6-10 0-1101 0-9476 6-463 — 0-4011 2-025 —0-2414 0-2126 |—0-02935
0-12 0-1408 1-115 6-356 — 0-3885 1-989 —0-2589 0-2086 [—0-03192 °
0-16 0-2008 1-435 6-158 — 0-3259 1-921 —0-2809 0-20183 |—0-03566
0-2 0-2550 1-735 5982 |— 0-2284 1-861 —0-2904 0-1947 |—0-03803
0-4 0-3690 3-034 5-342 -+ 0-4967 1-641 —0-2489 0-1684 |—0-03995
0-6 [+ 0-1834 4-159 4-932 1-343 1-510 —0-1564 0-1563 |—0-03603
0-8 |— 0-2919 5-212 4-622 2-201 1-426 —0-0551 0-1471  |—0-03099
1-0 |— 1-035 6-233 4-350 3-048 1-366 +0-0449 0-1410 [—0-02599
1-2  |— 2-029 7-240 4-088 3-880 1-322 0-1415 0-1366 |—0-02132
1-4 |— 3-263 §-241 3-818 4-699 1-286 0-2344 0-1333 |—0-01701
1-6  [— 4-729 9-242 3-532 5-508 1-256 0-3241 0-1308 |—0-01304
1-8  |— 6-422 10-24 3-224 6-308 1-230 0-4111 0-1289 [—0-009379
2-0 |— 8-334 11-25 2-891 7-101 1-205 0-4955 0-1274 |—0-005957
2-2  |—10-47 12-25 2-531 7-888 1-182 0-5781 0-1261 |—0-002748
2-4 |—-12-81 13-26 2-143 8-674 1-159 0-6592 0-1251 +0-0002837
26 |—15-38 14-27 1-722 9-450 1-137 0-7386 0-1242 0-003164
2:8 |—18-16 15-28 1-273 10-22 1-114 0-8171 0-1235 0-005916
3-:0 |—21-15 16-29 0-7934 11-00 1-091 0-8946 0-1228 0-008558
3-2 1—24-36 17-31 0-2815 11-77 1-067 0-9711 0-1222 0-01111
34 |—27-78 18-33 —0-2622 12-54 1-042 1-047 0-1217 0-01357
36 |—31-41 19-35 —0-8373 13-30 1-017 1-122 0-1212 0-01597
3-8 |—385-24 20-37 —1-444 14-07 0-9905 1-197 0-1208 0-01830
4-0 |—39-29 21-39 —2-084 14-83 0-9633 1-271 0-1204 (-02058
4-2  |—43-55 22-41 —2-755 15-60 0-9348 1-345 0-1200 | 0-02281
4-4 |—48-02 23-44 —3-459 16-36 0-9054 1-418 0-1196 0-02500
4-6 |—-52:70 24-46 —4-195 17-12 0-8748 1-491 0-1193 0-02715
4-8 |—57-59 25-49 —4-963 17-88 0-8431 1-564 0-1190 0-02926
50 |—62-69 26-52 —5-764 +18:65 0-8105 ' |+1-636 0-1186 |40-03135

(1752)
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TABLE 9B

Air-Load Coefficients C,; and B,; (sée Appendix I111)

Ca By, Co . By Ca By
0 0 0 0-2169 0 0-05787 0
0-02 |—0-0005536 0-02476 0-2185 0-006110 0-03806 -0-0005560
0-04 |—0-001940 0-04481 0-2202 0-01072 0-03826 0-0009377
0:06 |—0-003980 0-06231 0-2219 0-01471 0-03846 0-001246
0-08 |—0-006578 0-07976 0-2235 0-01828 0-03866 0-001503
0-10 |—0-009665 0-09565 0-2251 0-02154 0-03885 0-001724
"0-12 |{—0-01319 0-1108 0-2266 0-02455 0-03903 0-001916
0-16 |—0-02142 0-1397 0-2254 0-03003 0-03937 0-002235
0-2 |—0-03105 0-1670 0-2319 0-03498 0-03968 0-002489
0-4 |—0-09759 0-2935 0-2404 0-05601 0-04037 0-003304
0-6 |—0-1928 0-4148 0-2447 0-07489 0-04146 0-003847
0-8 1—0-3175 0-5357 0-2468 0-09343 0-04185 0-004339
1-0  |—0-4724 0-6571 02472 0-1120 0-04214 0-004832
1-2 —0-8579 0-7792 0-2465 0-1807 0-04232 0-005341
1-4 —0-8747 0-9013 0-2451 0-1496 0-04245 0-005866
1-6  |—1-124 1-025 0-2429 0-1686 0-04254 0-006408
1-8  |—1-405 1-148 0-2402 0-1877 0-04260 0-006962
2-0 [—1-717 1-271 0-2369 0.2069 0-04264 0-007530
2-2  |—2-062 1-395 0-2331 0-2262 0-04266 0-008104
2-4 |—2-438 1-520 0-2288 0-2456 0-04268 0-008692
2-6  |—2-849 1-644 0-2241 0-2650 0-04268 0-009281
2-8 |—8-201 1-768 0-2189 | 0-2845 0-04267 0-009878
3-:0 |—38-765 1-892 0-2133 0-3041 0-04265 0-01048
32 |—4-272 2-017 0-2072 0-3236 0-04263 0-01109
3:-4 |—4-812 2142 0-2007 0-3432 0-04261 0-01170
36 |—5-383 2266 0-1938 0-3628 0-04257 0-01231
3-8 1—5-088 2-391 0-1865 0-3824 0-04253 0-01293
4-0 |—6-625 2-516 0-1788 0-4020 0-04249 0-01355
4-2  1—7-294 2-641 0-1707 0-4217 0-04244 0-01417
4-4  |—7-997 2-766 0-1621 0-4414 0-04239 0-01479
4-6 |—8-731 2-891 0-1532 0-4611 0-04234 0-01542
4-8 |—9-498 3-016 0-1438 0-4809 0-04228 0-01605
5-0 |—10-30 3-140 0-1341 0-5005 0-04222 0-01668
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TABLE 9c

Air-Load Coefficients Cy; and Bs; (see Appendix 111)

w 10C,, 108, 10C,, 108, 10C, 108, 10%2C,, 1025,
0 0 0 -+0-06283 0 0-1680 0 0-7294 0
0-02 14-0-00009983| 0-003540 | 0-06080 |-—0-0004975 | 0-1670 |—0-0007407 0-7281 |—0-002933
0-04 0-000283 0-006945 | 0-05867 1-40-0008560 | 0-1859 |—0-000556 0-7265 |—0-004435
0-06 0-0004764 | 0-01022 0-05655 0-002971 0-1648 |}-0-00001977] 0-7248 |—0-005331
0-08 0-000637 0-01336 0-05444 0-005586 0-1638 0-000856 0-7232 |—0-005818
0-10 0-0007369 | 0-01638 0-05240 0-008567 0-1628 0-001886 0-7216 |—0-006000
0-12 0-000755 0-01929 0-05044 0-01183 0-1618 0-003066 0-7201 |—0-005945
0-16 |40-000484 0-02481 0-04667 0-01896 0-1600 0-005763 0-7174 |—0-005297
0-2 |—0-0002628 | 0-0300 0-04315 0-02668 0-1583 0-008789 0-7149 |—0-004109
0-4 |—0-01228 0-05244 0-02737 0-06914 0-1520 0-02622 0-7054 . [40-005499
,0:6 [—0-03885 0-07189 |+0-01192 0-1136 0-1476 0-04501 0-6997 0-01732
0-8 |—0-07973 0-09009 |—0-005302 | 0-1583 0-1440 0-06399 0-6966 0-02958
1-0 |—0-1346 0-1077 |{—0-02539 0-2027 0-1407 0-08295 0-6940 '0-04184
1-2 |—0-2031 0-1252 | —0-04877 0-2469 0-1374 0-1018 0-6921 0-05398
1-4  |—0-2851 0-1425 |—0-07577 0-2908 0-1339 0-1206 0-6902 0-06599
1-6 |—0-3803 0-1598 | —0-1065 03347 0-1301 0-1393 0-6890 |. 0-07781
1-8 |—0-4891 0-1771 —0-1410 0-3783 01260 0-1579 0-6877 0-08957
2-0 |—0-6108 0-1944 | —0-1795 0-4220 0-1216 0-1765 0-6871 0-1013
2:2  |—0-7455 0-2118 |—0-2218 0-4653 0-1169 0-1950 0-6858 0-1128
2-4 |—0-8934 0-2202 |—0-2681 0-5087 0-1117 0-2134. 0-6852 0-1243
2:6 |—1-055 0-2466 | —0-3184 0-5521 0-1062 0-2319 0-6840 0-1358
2-8 |—1-229 0-2641 —0-8725 0-5954 0-1002 0-2503 0-6831 0-1472
3-0 |—~1-416 0-2817 . |—0-4308 0-6386 0-09380 0-2687 0-6820 0-1585
32 |—1-616 0-2992 | —0-4929 0-6817 0-08708 0-2871 0-6812 0-1698
3-4 |—1-829 0-3168 |—0-5593 0-7248 0-07990 0-3054 0-6803 0-1811
3:6 |—2-055 0-3344 |—0-6292 0-7681 0-07230 0-3237 0-6793 0-1924
3-8 |[—2-294 0-3521 |—0-7035 0-8112 0-06427 0-3420 0-6782 | 0-2036
4-0 |—2-546 0-3697 | —0-7819 0-8543 0-05583 0-3603 0-6770 .| 0-2148
4-2  |—2-811 0-3874. |—0-8640 0-8975 0-04695 0-3786 0-6761 0-2261
4-4  |—3-089 0-4051 —0-9502 0-9404 0-03766 0-3969 0-6749 0-2372
4-6 |—3-380 0-4228 |—1-040 0-9835 0-02794 0-4151 0-6737 0-2484
48§ |—3-684 0-4406 |—1-135 1-026 0-01779 0-4334 0-6725 0-2596
5.0 |—4-002 0-4584 |—1-233 +1-070 0-007220 |+0-4516 0-6713 [40-2707

11752)
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Atr-Load Coefficients C,; and By; (see Appendix I111)

TABLE 9p

» 10°C,, 105B,, 10°C,, 10°B,, 10°C 10°B,, 108C,, 108B,,
0 0 0 1-0-06827 0 +0-1106 0 0-2547 0
0-02 | 0-00004857| 0-001827 | 0-06668 |—0-0001945 | 0-1100 |—0-0002582 | 0-2545 |—0-0002678
0-04 | 0-0001344 | 0-003585 | 0-06520 |-+0-0008457 | 0-1092 |+0-0001815 | 0-2541 |—0-0001880
0-06 | 0-0002193 | 0-005273  0-06380. | 0-002395 | 0-1084 0-0009152 | 02537 |+0-00003881
0-08 | 0-0002816 | 0-006894 | 0-06238 | 0-004279 | 0-1076 0-001846 0-2533 | 00003652
0-10 | 0-0003065 | 0-008453 | 0-06104 | 0-006410 | 0-1069 0-002922 0-2529 | 0-0007655
0-12 | 0-0002831 | 0-009954 | 0-05970 | 0-008729 | 0-1061 0-004111° | 0-2525 | 0-001224
0-16 | 0-0000610 | 0-01280 | 0-05714 | 0-01378 0-1047 0-006745 0-2518 | 0-002270
0-2 |—0-0004781 | 0-01546 | 0-05468 | 0-01888 0-1037 0-009610 0-2513 | 0-003413
0-4 |—0-007570 | 0:02701 | 0-04371 | 0-04915 0-09861 | 0-02579 0-2490 | 0-01024
06 |—0-02271 0-03705 | 0-03298 | 0-08044 0-09481 | 0-04292 0-2478 | 0-01757
0-8 |—0-04590 0-04646 | 0-02047 | 0-1116 | 0-09165 | 0-06024 0-2465 | 0-02497
1-0  |—0-07690 0-05562 |--0-006606 | 0-1435 0-08786 | 0-07775 0-2459 | 0-03224
12 |—0-1155 0-06462 |—0-01021 | 0-1745 0-08470 | 0-09481 0-2453 | 003982
1-4 |—0-1618 0-07355 |—0-02904 | 0-2050 0-08091 | 0-1119 0-2446 | 0-04715
16 |—0-2151 0-08207 |—0-05091 | 0-2360 0-07648 | 0-1289 0-2440 | 0-05449
1-8 |—0-2765 0-09164 |—0-07570 | 0-2672 0-07206 | 0-1460 0-2434 | 0-06194
2:0 |—0-3450 0-1004 |—0-1028 0-2976 0-06700 | 0-1631 0-2427 | 0-06890
2-2 | —0-4207 0-1092 |—0-1827 0-3286 0-06194 | 0-1801 0-2427 | 0-07648
2-4 |—0-5036 0-1179  |—0-1660 0-3590 0-05626 | 0-1972 0-2421 | 0-08344
2:6  |—0-5941 0-1273 |—0-2014 0-3895 0-04970 | 0-2138 0-2414 | 0-09080
2-8 |—0-6919 0-1363 | —0-2399 0-4200 0-04290 | 0-2306 0-2408 | 0-09800
3-0 |—0-7968 0-1450 |—0-2815 04503 0-03565 | 0-2478 0-2402 | 0-1049
3-2  |—0-9094 0-1544 | —0-3253 0-4810 0-02790 | 0-2643 0-2394 | 0-1124
34 |—1-029 0-1635 |—0-3723 0-5114 0-01970 | 0-2812 0-2387 | 0-1196
3.6 |—1-156 0-1726  |—0-4221 0-5418 0-01090 | 0-2980 0-2380 | 0-1268
3-8 |—1-290 0-1817 |—0-4748 0-5723  |+0-001700 | 0-3148 0-2372 | 0-1339
4.0 | —1-432 0-1904 |—0-5305 0-6025  |—0-008028 | 0-3318 0-2364 | 0-1410
4.2 |—1-581 0-1999 |—0-5886 0-6331  |—0-01810 | 0-3483 0-2356 | 0-1483
4.4 |—1-787 0-2091 |—0-6497 0-6634  |—0-02890 | 0-3652 0-2347 | 0-1555
4.6 |—1-900 0-2183 |—0-7138 0-6938  |—0-04000 | 0-3819 0-2337 | 0-1626
48 |—2-071 0-2273 | —0-7806 0-7241  |—0-05170 | 0-3987 0-2328 | 0-1698
5-0 |—2-249 0-2367 |—0-8479 |--0-7540 | —0-06380 |+0-4153 0-2320 |+0-1770
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Barred Inertial Coefficients for Aileron—Tab with Spring Tab No. 1

TABLE 10

N=3; =05 N=3;2=1-0 N=3;, n=2-0 N=3
Description of System , —

103745 1035 1074, 10% 10%7, 10%p 1037,

Fabric aileron (U); Fabric tab (U) 5-37 5-462 5-41 5-487 5-49 5-587 5-59
v . B L, . @U) 10-7 10-83 10-8 10-86 10-9 10-91 10-90

,, ,, ®; . ., B 10-8 10-87 10-8 10-90 10-9 10-95 11-10
Fabric aileron (U); Al.tab (U) 6-50 6-851 6-64 6-943 6-96 7-128 7-31
. . B); . , (U) 12-4 12-79 12-6 12-88 12-9 13-07 13-25

v v B); . ., B 12-8 12-96 12-9 13-06 13-1 13-27 13-48
Al aileron (U); Al tab (U) 19-8 20-19 20-0 20-28 20-3 20-47 20-70
v » B); .o, (U) 39-6 39-99 39-8 40-08 41-0 40-27 40-40
" . B . . (B) 40-0 40-16 40-1 40-26 40-3 40-47 40-70

Al denotes aluminium, U unbalanced, B uniform static balance.
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TABLE 11a

Flexure—Aileron—Tab Flutter (Aileron unbalanced)

X=0 X=25 X =10
«

Z; Wi Z, w, Z w, Zy W, Zy w, Zy W,
02 |—0-002360 |—0-03184 |40-1884 —0-27899 — — — — — — — —_
0:6 |—0-005161 |—0-008203 0-01744 |—0-03703 |+0-01590 |—0-03549 |—0-005301 |—0-007895 |—0-005578 |—0-007346 |-+0-01248 |—0-03217
0-8 — — — — — — — — —0-006793 |—0-003923 |—0-04,5739 |—0-01439
1:0 |—0-005329 |—0-006419 0-003195 |—0-01727 [40-0,9515 |—0-01504 |—0-005488 |—0-006050 |—0-005000 |—0-006912 |+0-3092 —0-03789
1-2 |—0-005397 |—0-006080 |+0-0,7486 |—0-01390 |—0-002338 |—0-01063 |—0-00554 |—0-005702 {—0-005190 |—0-006311 0-008449 |—0-01836
1-4 {—0-005431 |—0-005886 {—0-0,7491 |—0-01186 |—0-004714 |—0-007021 |—0-006728 |—0-002812 |—0-005260 |—0-006018 0-002899 | —0-01411
1-6 |—0-005464 |—0-005756 |—0-001705 |—0-01055 |—0-005105 |—0-006216 |—0-01980 |[—0-03156 |—0-005288 |—0-005851 {4+0-0,5848 |—0-01193
1-8 |—0-005500 [—0-005652 {—0-002353 |—0-09676 |—0-005298 |—0-005797 |+0-008725 |—0-013836 |—0-005289 |--0-005764 | —0-0,7427 |—0-01057
2-0 1—0-005537 |—0-005569 | —0-002805 |—0-00901 [—0-005317 |—0-005693 |+0-001135 [—0-01081 |—0-005283 |—0-005703 |—0-001605 |—0-009645
2-4 |—0-005649 |—0-005412 |—0-003394 |—0-008379 |—0-005297 |—0-005633 |—0-001878 |—0-008844 —0-005248 |—0-005687 |—0-002681 |—0-008457
2-6 — — — — —0-005282 |—0-005620 |—0-002503 |—0-008315 — — — —
3-0 |—0-005963 [—0-005136 {—0-003645 |—0-008219 | —0-005241 |—0-005626 |—0-003269 |—0-007605 |—0-005183 | —0-005677 |—0-003540 |—0-007480
34 |—0-:008633 {—0-:005758 |—0-003460 {—0-009373 |—0-005191 {—0-005654 |—0-003740 |—0-:007137 — — — —
3-6 |—0-008236 | —0-004236 |—0-002932 | —0-01468 — — — — — — — —
3-8 — — — — —0-:005135 |—0-005697 —0-004072 |—0-006796 — — — —
4.0 — — — — — — — — —0-:005024 —0-005805 |—0-004286 |—0-006619
4-2 — — — — —0-005062 |—0-005763 |—0-004333 |—0-006522 — — — —
4-6 — — — — —0-004698 |—0-005854 |—0-004561 |—0-006279 — — — —




\
S W "

11B

tter (Aileron unbalanced)

S

X=—30 X=—25 X=—-10

Zl 'Wl Z 2 WZ Z 1 Wl Z 2 W2 Z 1 Wl Z2 W2
0-6 |—0-005085 —0-008399 |+0-01769 |—0-03745 |—0-005102 |—0-008359 +0-01770 —0-03741 — — — —
0-8 — —_— — — —0-005255 |—0-007121 0-008051 |—0-02400 |—0-005282 {—0-007020 |-+0-007935 |—0-02378
1-0 |—0-005441 | —0-006489 |+0-003574 |—0-01796 |—0-005347 |—0-006553 0:003493 |—0-01776 {—0-005342 |—0-006456 0-003375 |—0-01749
1-2 — — — — —0-005476 |—0-0062168 |4-0-001034 |—0-:01446 |—0-005409 |—0-006127 +0-0,9130 |—0-01411
1-4 |—0-006026 | —0-:006014 |—0-0,4285 |—0-01331 —0-005702 |—0-005963 |—0-044255 |—0-01267 —0-005476 |—0-005913 |—0-0,5801 |—0-01209
16 - — — — —0-006460 |—0-005629 —0:001224 {—0-01284 |—0-005566 |—0-005750 |—0-001519 —0-01083
1-8 |—0-002619 |—0-008457 [—0-004046 ‘—0-006721 — — e — —0-005866 |—0-005600 |—0-002143 |—0-01001
2.0 |—0-002930 |—0-008157 |—0-004554 |—0-008157 — — — —_— — — — —
2.2 [—0-003278 |—0-007831 |—0-004661 | —0-006116 |—0-003699 |—0:007165 |—0-004124 |—0-006632 —0-006143 |—-0-005218 |—0-:002793 |—0-009336
2.6 |—0-003782 |—0-007277 |—0-004741 :~—O~006084 —0-003987 |—0-006976 |—0-004502 |—0-006330 |—0:01191 |—0-003722 |—0-002420 —0-01255
3.0 |—0-004170 |—0-006806 |—0-004668 |—0-006146 — — — — — — — —

TABLE 1llc
Flexure—Ailevon—Tab Flutter (Aileron unbalanced)
X=—10 X=—5 X =—4

Z 1 Wl ZZ W2 Z 1 . Wl ’ Z2 W2 Zl Wl ZZ W2
0-4 |—0-004268 |—0-01293 [40-04180 |—0-07394 — — — — — — — —
0-6 {—0-003854 |—0-01221 +-0-008017 |—0-03148 {—0-005021 |—0-008560 +0-01745 |—0-08750 {—0-005056 —0-008484 |--0-01763 |—0-03751
0-8 |+0-01262 |—0-02532 {—0-005327 |—0- 006156 |{—0-005208 |—0-007437 0-007695 |—0-02419 — — — —
1-0 0-005126 |—0-01807 |—0-005229 |—0-006154 |—0-005495 |—0-007275 |+4-0-002582 —0-01850 |—0-005381 |—0-006765 0-003332 |—0-01805
1-2 — — — — —0-003066 |—0-01285 |—0-004551 |—0-005088 | —0-005968 |—0-006647 |+0:0,6371 —0-01574
1:4 |4+0-0,1722 |—0-01223 —0-005264 |—0-005832 |—0-0,5265 |—0-01155 —0-004943 |—0-005835 |+0-0,1796 |—0-01014 —0-004040 |—0-005572
18 |—0-001840 |—0-009744 | —0-005173 |—0-005796 |—0-002044 |—0-009441 |—0-005018 —0-005860 |—0-002154 |—0-009210 |—0-004863 |—0-005930
9.9 |_0-002835 |—0-008494 | —0-005132 |—0-005766 |—0-002999 |—0-008287 |—O0- 005008 |—0-005851 |—0-003084 |—0-008158 |—0-004915 |—0-005917
2-6 |—0-003428 | —0-007749 |—0-005089 |—0-005775 — — —_ — —0-00363; |—0-007491 —0:004908 |—0-005929
3.0 |—0-003828 |—0-007251 |—0-005034 | —0-005851 |—0-003951 {—0-007101 —0-004928 |—0-005912 |—0-004019 |—0-007011 |—0-004860 |—0-005979




9¢

TABLE 12

Binary Flutter (Aileron unbalanced)

Z = w (7, = 0-0840)

W = (@ = 0-0836)

X = o (7 = 0-00540)

% W X, W, X3 Zy X, Zy Zy w, Zy W,
Q-2 — - — — — 202-9 —0-4068 —29-61 —0-2893 —_ — — —
0-4 — — — — 41-44 |—0-1078 —17-06  |—0-05719 |—0-00444 |—0-01222 [+0-07061 |—0-0930;
0-6 | 22-544 |—0-096959 |—11-9983 |—0-0554072 — — — — .= — — —
0-8 — e — — 12-61 —0-0327 — 7-844 |—0-007563 |—0-00516 |—0-00735 0-01201 |—0-02658
1:0 9-91504 |—0-0396836|— 5-96431 |—0-0156952 — — — — —0-00528 |—0.:00643 0-00591 |—0-01908
1-2 — — — — 6-996 |—0-01786 | — 4-516 |—0-001646 — — — —
1-4 6-28488 |—0-0233476|— 3-65010 |—0-0067231 — — — — —0-005265 |—0-00594 4-0-0;6142 | —0-01266
1-6 — — — — 4-817 |—0-01229 | — 2-946 |—0-0,6093 — —_— — —
1-8 4-59006 |—0-0162405|— 2-40448 |—0-0038635 — — — — — — — —
2-0 — — — — 3-617 |—0-009475 | — 1-982 |—0-0,6250 |—0-005225 |—0-00574 |—0-002155 |—0-009265
2-4 — — — — 2-850 {—0-007658 | — 1-346 |—0-0,9375 — — — —
2-6 2:93724 |—0-0099887|— 1-05762 |—0-0025141 — — — — — — — —
3:0 — — — —_— 2.077 |—0-005974 | — 0-6330 |—0-001502 |—0-005053 |—0-00582 |—0-00376 |—0-00729
3-4 2-04236 |—0-0070727|— 0-262334|—0-0026469 — — — — — — - —
4-0 — — — — 0-9332 |—0-003734 | — 0-4438 {—0-002911 |—0-00494 |—0-00590 |—0-00437 |—0-00655
4-2 1-24974 |—0-0049490|4 0-485629|—0-0034600 — — — — —0-00488 |—0-00595 |—0-00449 |—0-00641
4-4 — — — — — — -0-00476 {—0-00610 |—0-00466 |-0-00622




TABLE 13
Flexural-Alevon—Tab Flutter (Aileron statically balanced)

X = o (@ = 0-01074) X=10 X=0 X = —50 Z = oo (G = 0-04436) W =

Z- W z | 9w | z W z w X w | X

L8
S 0 WRmO

O HOHOO HOBHOE

S

0-06577 |—0-09888 |+0-09266 |—0-10990 0-06672 |—0-09801 |--0-06742 |—0-09838
+0-001254 |—0-02511 |+0-001734 | —0:02524 |-+0-001234 |—0-02480 |4-0-0,9559 |—0-02485
—0-005399 |—0-01705 |{—0-005360 |—0-01701 |—0-005589 |—0-01674 |—0-005588 |—0-01698
—0-008978 |—0-01512 |—0-006983 |—0-01507 |—0-007177 |—0-01484 |—0-007022 \—0-01506
—0-008253 |—0-01356 |—0-008271 |—0-01353 |—0-008484 |—0-01327 |—0-008285 —0-01353

—0-008841 |—0-01285 |—0-008852 |—0-01283 — — —0-008893 |—0-01279 N
—0-009879 |—0-01166 |—0-009911 [—0-01162 — — —0-009805 |—0-01174

—0-01009 |—0-01145 |—0-01011 |—0-01143 |—0-009925 |—0-01161 |—0-01005 |—0-01149
—0-01032 |—0-01127 |—0-01083 |—0-01127 |—0-01029 |—0-01130 |—0-01031 |—0-01129
—0-01044 1—0-01127 |—0-01044 |—0-01127 |—0-01046 {—0-01126 |—0-01044 |-—0-01126

o real values for o >0-

—0-01054 {—0-01171 |—0-01050 [—0-01181 |—0-01056 }—0-01183 |—0-01058 |—0-01172
—0-009848 |—0-01741 |—0-008222 |—0-02087 {—0-008984 |—0-01947 |—0-008969 |—0-01950




8¢

TABLE 14A

Torsion—Adleron—Tab. Flutter (Aileron unbalanced)

Y =0 Y =0-5 Y = 100
w
Z, w, A W, A W, Z, W, z, W, Z, W,y
i
0-2 |[+0-2249 |—0-3081 [—0-004955 |—0-02604 — — — — — — — —
0-6 |+0-02280 (—0-03885 |—0-005465 |—0-007197 — — — — — — — —
0-8 |—0-01563 |—0-05072 |—0-006385 |—0-0,9292 — — — — — — — —
1-0 |—0-005284 |—0-006807 |—0-0,4055 |—0-01552 |—0-006089 |—0-005094 |—0-0,2250 |—0-01430 |+0-005961 (—0-01911 |—0-005230 |—0-006429
1-4 |—0-005393 |—0-005928,|—0-002276 |—0-01083 |—0-009422 |—0-009117 |—0-005132 |—0-006282 |4-0-0,6465 |—0-01267 |—0-005261 |—0-005916
1-8 |—0-005395 |—0-005709 |—0-003705 |—0-008580 |—0-007675 |—0-01336 | —0-005277 |—0-005799 |—0-001511 |—0-01005 |—0-005254 |—0-005758
922 [-~0-005370 |—0-005634 |—0-004643 |—0-007165 |-—0-0,5849 |—0-009831 —0-005264 |—0-005694 |—0-002618 |—0-008712 |—0-005224 |—0-005715
96 |—0-005569 |—0-004399 |—0-005378 |—0-005457 |—0-002310 |—0-008492 |—0-005230 |—0-005669 |—0-003274 |—0-007920 |—0-005185 |—0-005719
3.0 |—0-008741 |—0-007957 |—0-005313 |—0-005561 |—0-003136 |—~0-007737 —0-005183 |—0-005681 |—0-003711 |—0-007393 |—0-005135 |—0-005751
3.4 |—0-001373 |—0-006939 |—0-005265 |—0-005590 |—0-003640 |—0-007241 (—0-005127 |—0-005717 |—0-004027 |—0-007018 |—0-005077 |—0-005803
3-8 |—0-003758 |—0-006519 |—0-005208 |—0-005629 |—0-003989 |—0-006884 |—0-005067 |—0-005765 |—0-004273 |—0-006719 |—0-005012 |—0-005867
4-2 |—0-004413 |—0-006219 |—0-005123 |—0-005697 |—0-004273 |—0-006586 |—0-004982 |—0-005844 |—0-004507 |—0-006442 {—0-004908 |—0-005979
46 — — — — |—0-004563 |—0-006278 |—0-004837 |—0-005990 — — — —
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TABLE 148

Torsion—Ailevon—Tab Flutter (Ailevon unbalanced)

Y =—0-05 Y=—01 Y =—0-15

w

Zl Wl Z2 W2 Zl Wl Z2 WZ Zl W] ZZ WZ
0-2 |40-2251 —0-3083 |—0-004943 |—0-02608 — —_— — — — — —_ —
0-6 | 0-02230 |—0-03869 [—0-005440 |—0-007269 (+0-02192 |—0-03857 |—0-005418 {—0-007332 |}+0-02163 |—0-03849 |—0-005398 |—0-007385
0-8 |+0-08353 |—0-02775 |—0-005717 |—0-004853 | 0-02186 |—0-02561 |—0-005714 |—0-005495 |4-0-01527 |{—0-02468 |—0-005487 |—0-005942
1:0 {—0-05254 |—0-007098 |—0-0,6166 |—0-01547 |4-0-005168 |—0-007948 —0-001971 |—0-01504 — — — —
1-2 |—0-005378 {—0-006261 |—0-001205 |—0-01298 |—0-005395 {—0-006375 |—0-001347 |—0-01327 |—0-005624 |—0-006257 |—0-001572 |—0-01412
1-4 |—0-005406 |—0-005967 |—0-002167 |—0-01112 | —0-005430 |—0-006014 |—0-002114 [—0-01146 |—0-005482 |—0-006090 |—0-002152 |—0-01198
1-8 [—0:005415 {—0-005722 |—0-003468 |—0-008996 |—0-005452 | —0-005731 |—0-003276 |—0-009438 [—0-005523 |—0-005736 |—0-003118 |—0-01007
22 |—0-005402 |—0-005630 |—0-004248 {—0-007902 |—0-005456 |—0-005613 |—0-003943 |--0-008572 |—0-005560 |—0-005578 |—0-003667 |—0-009599
2.6 |—0-005379 |—0-005626 |—0-004851 |—0-007347 |—0-005458 |—0-005561 |—0-004354 |—0-008871 |—0-005613 |—0-005482 |—0-003897 |—0-0127;
2-8 |—0-005373 |—0-005734 |—0-005184 |—0-007774 — — — — — — — —
3-0 |—-0-005729 |—0-006489 |—0-005338 |—0-005414 |—0-005494 |—0-005539 |—0-004631 |—0-001672 |—0-005774 |—0-005378 |—0-003532 |—0-003972
3-4 |—0-003205 |—0-008362 |—0-005305 |—0-005538 [—0-:002091 |—0-005545 |—0-004877 |—0-005458 — — — —
3-8 |—0-004132 |—0-006159 | —0-005257 |—0-005580 [—0-004959 |—0-005686 |—0-005231 {—0-005547 — —_ — —
4-2 |—0-004715 |—0-005960 |—0-005176 |—0-004645 [—0-005156 |—0-005631 |{—0-005177 |—0-005616 —_ — — —
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TABLE 14c
Torsion—Ailevon—Tab Flutter (Aileron unbalanced)

Y=-—-02 Y=-—0-3 Y=—-0'5
w

Zl Wl Z2 W2 Z 1 Wl Z 2 W2 Z 1 Wl Z 2 W‘.!
0-2 — — _ — -+0-2262 —0-3091 —0-00491 |—0-0262 — — — —
0-6 |+0-02140 |—0-03843 {—0-005381 |—0-007433 0-02108 [{—0-03837 |—0-00535 [—0-00751 - — — —
0-8 0-01287 |(—0:02429 |—0-005443 | —0-:006134 — — — — +0-009790 |—0-02385 |—0-00534, |—0-006542
1-0 [+0-1550 —0-01738 |—0-005429 |—0-004426 0-00673 |—0:01688 |—0-00535 [—0-00570 |—0-004457 |—0-001699 |—0-05311 |[—0-006054
1-2 1—0-005828 \—0-007000 {—0-002843 |—0-01668 0-005072 |—0-01189 |—0-005373 |—0-00516 — — — —
1-4 |—0-005626 |—0-006260 |—0-002401 |—0-01333 |[+0-00332 |—0-00945 |—0-00487 |—0-005102 {—0-0,4969 |—0-01105 |[—0-005209 |—0-005776
1-8 |—0-005693 |—0-005739 | —0-002984 |—0-01166 |—0-00283 |—0-00844 |—0-00391 |—0-005770 |-—0-002509 |—0-008742 |—0-005111 |—0-005755
2-2 1—0-005834 |—0-005497 |—0-003309 |—0-01427 — — — — —0-0038474 |—0-007627 [—0-005033 |—0-005796
2-6 |—0-006234 | —0-005258 |—0-002798 |—0-0,5621 — — — — —0-004024 | —0-006981 |—0-004966 |—0-005858
2-8 |—0-008546 |—0-004860 |—0-05285 |--0-004484 — —_ — — - — — —
3:0 — — —_ — — — — —_ —0-004410 |[—0-006516 [—0-004866 |—0-005967

TABLE 15
Binary Flutter (Aileron unbalanced)
Y = o (@ = 0-0054) 7 = oo (7 = 0-0373) W = oo (G, = 0-0370)
w .

AN IZA7 Zy W, Y, Wy Y, W, Y, Z, Y, Z,
0-4 (—0-00444 |—0-01222 ([40-07061 |—0-0930, 7-5686 —0-19537 |4-2-1296 —(0-14302 —_— e —_ —
0-2 — — —_ —_ 3:4189 —0-092492 |-+0-41645 —0-056279 2-96957 0-0487691{-+0-47594 |—0-021711
0-8 |—0-005168 |—0-00735 0-01201 |—0-02658 1-98256 |—0-056145 |—0-038268 |—0-028943 1-71775 |—0-0308518|1-0-009234 |—0-0104437
1-0 [—0-00523 |—0-00643 0-00591 |-—0-01908 1-30540 |—0-0389624{—0-197355 |—0:0174284{ 1-11770 |—0-0222463|—0-157503 |—0-0061487
1-2 — — — — 0-92469 |—0-029359 |—0-257846 |—0-011739 — — — —
1-4 1—0-00526; |—0-005940 [4-0-0,6142 |—0-01266 0-68561 '|—0-023374 |—0-27881 |—0-008618 0-561585 |—0-0142179|—0-247829 [—0-0033874
1-81|. — — — — 0-40341 |—0-016442 |—0-27536 |—0-005728 0:303193 |—0-0104444;—0-247449 |—0-0028707
2:0 |—0-00522, {—0-00574 |—0-002155 |—0-009265 — — — — — — — —
2.2 — — — - — — — — — 0148744 {—0-0081852(—0-221083 |—0-0030156
2-6 — J— — — — — — — 0-0330638|—0-0064882{—0-17833 |—0-0035063
3-0 |—0-:005053 |—0-00582 —0-:00729 0-040583 |—0-008116 |—0-17824 |—0-0045736 — — — —

—0-00376

See results for X = oo in Table 11
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TABLE 16

Torsion—Aileron—Tab Flutter (Aileron statically balanced)

Y=1-0 Y =05 Y =0-2 Y=0 Y=—02
w

Z w VA w z w zZ w zZ w
O-G —}—07-02014 —0:04543 {4-0-01510 |—0-04414 |+0-01503 |—0-04439 |40-01518 |—0-04461 |+40-01538 |—0-04483
0-8 |—0-01077 |—0-01152 [-0-007878 |—0-03005 — — +0-004648 (—0-03036 — —
1-0 |—0-03276 |—0-03374 |—0-01093 |—0-01353 |--0-0,1012 |—0-02293 |—0-0,3445 |—0-02355 |—0-0,2911 |—0-02388
1-2 ] 0-002867 |—0-02152 |—0-01074 [—0-01186 |—0-002615 |—0-01768 |—0-003234 |—0-01963 — —
1-4 |—0-002012 |—0-01849 |—0-01386 |—0-01344 o — — —0-005195 {—0-01701 |—0-004856 [—0-01789
1-6 — — —0-003401 [—0-01462 |—0-01208 |—0-01075 — — — —
1-8 1—0-006200 |—0-01567 — — ~—0-01161 |—0-01069 |—0-008623 |—0-01281 |—0-006907 |—0-01525
20 — — —0-007344 | —0-01389 |—0-01156 |—0-01058 —_ — —0-007552 | —0-01444
2-2 — - — — —0-01182 |—0-01036 — — — —
2-4 |—0-007990 {—0-01377 |—0-008392 |—0-01311 — — — — — —
3:0 (—0-008921 |—0-01272 |—0-009300 (—0-01224 — — — — — —
3:0 |—0-009951 |—0-01157 |—0-009849 |—0-01165 — — — — — —
2-4 (—0-01021 |—0-01132 |—0-01013 —0-01136 — — — — — —
2-2 — — —_ — —1-3440 | —0-006488 — — _ —
2-0 — — —0-01030 |—0-01122 |4-0-002639 |—0-002670 — — —0-009998 |—0-01156
1-8 |—0-01042 —0-01121 — — —0-001197 |4-0-0,8964 |—0-008986 |—0-:01243 |—0-01018 |—0-01146
1-6 — — —0:01033 |—0-01110 |—0-001101 |—0-003216 — — — —
1-4 [—0-010583 |—0-01127 [|—0-01003 |—0-01030 — — —0-01026 |—0-01141 |—0-01038 |—0-01137
1-2 1—0-01057 |—0-01140 |—0-007605 |—0-03191 |—0-01025 |—0-01132 |—0-01043 |—0-01143 — —
1-0 (—0:01056 |—0-01178 |—0-009169 |4+1-0194 —0-01052 |—0-01157 |—0-01053 —0-01163 [—0-01053 |—0-01166
0-8 |—0-007117 |—0-02105 |-0-01061 |—0-01199 — — —0-01057 |—0-01212 — —
0-6 |—0-01063 |—0-01300 |—0-01057 |—0-01313 |—0-01054 |—0-01819 |-—0-01053 |—0-01322 —0-01051 |(-—0-01325
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TABLE 17

Binary Flutter (Aileyon statically balanced)

Xor Y = oo (Ggg = 0-01074)

W = w0 (s = 0-0107)

7 = o (@, = 0-01096)

Z W, Z, W, Z Y, Zy Y, Y, w, Y, W,
0-4 {40-08577 |—0-09888 |—0-009848 |—0:01741 |—0-08739 5-8415 |—0-06624 3-4741 — — — —
0-6 — — — — —0-03889 2-5623 |—0-02613 1-3868 3-051 —0-08208 1-106 |—0-06071
0-8 — — — — —0-02188 1-4160 |—0-01405 0-7600 — — — —
1-0 4+0-001254 |—0-02511 |—0-01054 |—0-01171 {—0-01394 0-8793 | —0-009158 0-5003 1-090 |—0-03017 0-4160 |—0-02052
1-2 — — — — —0-009500 0-5787 [ —0-006861 0-3767 — — —_ —
1-4 — — — — — — — — 0-5557 |—0-01581 0-2145 |—0-01061
1-6 |—0-005399 {—0-:01705 |—0-01044 |—0-01127 — — — — — — — —
1-8 — — — — — — — — 0-3294 |—0-009768 0-1475 |—0-006986
2-0 \—0-008978 |—0-01512 |—0-01032 |—0-01127 — — — — 0-2592 | —0-00794 0-1330 |—0-00592
2-4 — — — — — — — — 0-1996 |—0-00646 0-1306 |—0-00535
2.6 {—0-008253 |—0-01356 |—0-01009 |—0-01145 — — — — — — — —
3-0 |—0-008841 |—0-01285 |—0-009879 |—0-00166 — — — — — — — —




TABLE 18

Torsion—Ailevon—Tab Flutter (Aileron dynamically balanced)

€9

Y=0 Y =02 Y =0-5 Y = o (g3 = 0-01291) | Z = 0 (@, = 0-0,258) W = (@ = 0)
Z w VA w Z w Z w Y w Y Z
0-4 — — — — — — +0-06381 |—0-1013 6-716 —0-1784 5-151 —0-07893
0-6 {+0:013833 |—0-04752 |40-01307 |—0-04722 |4-0:01274 |—0-04688 |4+0-01967 |—0-05133 2-703 —0-07545
1-0 |—0-002087 |—0:02676 |—0-002218 {—0-02644" |—0-001980 |—0-02540 |—0-0,6566 |—0-02754
1:4 |—0-006559 |—0-02073 |—0-006924 |—0-01994 |—0-007147 {—0-01935 |—0-006036 |—0-02104
1-8 |—0-008534 |—0-01816 — — —0-009541 |—0-01626 |—0-008299 |—0-01828
2-2 |—0-009717 |—0-01663 — — -0-01073 |—0-01515 |—0-009537 —0-01677
3:0 — — — — — i — —0-01117 |—0-01481 No values for w > 0-8 | No values for v > 0-6
30 — — — — — — —0-01157 |—0-01434
2:2 |—0-01211 |—0-01381 — — —0-01165 |—0-01418 [{—0-01223 |—0-01367
1-8 |—0-01237 |—0-01362 — — —0-01199 |—0-01383 |—0-:01243 |—0-01354
1-4 |—0-01250 |—0-01363 |—0-01239 |—0-01369 |—0-01216 [—0-01367 |—0-01259 |—0-01354
1-0 |—0-01268 |—0-01391 |—0-01268 |—0-01391 |—0-01259 [—0-01401 |—0-:01269 |—0-01388 ’
0-6 |—0-01264 |—0-01552 |—0-01265 |-—0-01551 |—0-01266 |—0-01550 |—0-01255 |—0-01571 1-830 —0-06492
0-4 — — — — — - —0-:01204 |—0-01951 3-895 —0-:1512 4-4292 —0-07242




TABLE 19
Approximate Air-Load Coefficients*

i
o

=
133

oy
w0

=
B>

[
=

g
3

e
=3

OO0 OO0D

b3

oW
Pt

[
%3

o
&

0
il

1
jurd

™
1)

gﬁgﬁﬁﬁ OO OO

2:090  —2-606w? By 408240 +5-2130
4523  —0-40790? By —0-4290 43-7650
1-270 —0-01617? By —0-1949  --0-34520
0-1278 —0-0,9084 ¢ By, —0-02277 ++0-008407w
—0:08540 —0-4079w? 3 —0-03350 +0-2138w
—0-3632 —0-1167w? B +0-01780 +0-6266w
+0-2569  —0-005009 ? B 0-008180 -+0-09936
0-04278 —0-0,3554 0 By, 0-001058 +0-003236¢
0003600 —0-01617 ? By, +0-001420 -+0-009010 e
0002086 —0-005009 2 By - | —0-0,7000 +0-021450
0-01431 —0-0,53830? By —0-0,5080 +0-009079
0-006896 —0-0,6194 0 Bs, —0-0,8560 00,5493
0-0,1836 —0-0,9084 ? By +0-0,7320 +0-0,4654c
00,3936 —0-0,3554 w2 By —0-0,4600 +0-0,1511 e
0-0,9178 —0-0,6194* By —0-0,3780 40-0,8344 e
00,2447 —0-0450577 0 By —0-0,2980 +0-0,35590

* ¢ Barred ’ coefficients are obtained by use of formula (5.4).
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Fig. la. Diagram of non-preloaded spring tab No. 1.

(Note. Both the aileron and the tab are shown displaced from central position in the positive senses which are standard
in flutter theory.)

F
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. Operating Force inthis diruction _H VYV VVRIVV VY K
R
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Fic. 1b. Diagram of preloaded spring tab No. 1.

Casing wikh single compreesion spring .
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R(reference canbre
o Sntre) ) : P y— ) M T 33
& P e A R 2}
z=1p H 14)°48 — :
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Opu'dé«'ing :Forez in bhis direékion.

Fic. 2. Diagram of spring tab No. 2,
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Nominal conkro] column.

Port reference sackion.

Starboard reference seckion ,

Fic. 3. Diagram of control circuit connections with spring tab No. 1.

(System is shown with small general displacements. For convenience the levers L,, L,, and the control column C,
are drawn in the plane of the wings.)

Stiffress Line
For Symmebtical
Fluttar (Slope Z‘/W')

o w
N
~
~
\\ A
\\ )
N P
- - Y
MR M2 - M \\\ \
- Inertia Point Qg S~ JB

Fi1c. 4a.

Stiffrees Line For
Antisymmatrical Flutter (Slope 0)

Inertia-stiffness diagram (para. 8).
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F1a. 4b. Frequency parameter diagram (para. 8).
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Stiffress line 27/W'
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M

Fic. 5. Ternary inertia-stiffness diagram (para. 9).

Explanation : P, lies on that base curve X = & for which P;'M = %&.

The critical speed is then given by any of the relations
X' = o®P'N = ok + ay), Z' = P M, W' = o?IM.
The appropriate value of «® can be found from a supplementary
frequency parameter diagram.

r— C=587FC. —

i
o osc | 0:08s
Car0-2Psc
S,=037s
/ Cypr0-23C,
=18-5FL . )
520515,
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- Spring -tak
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1w0-578 I
2
i
3 Axis For linear Flexure
0158
Axis For= linear torsior
0-28
¥
v

Wing root

F1c. 6. Diagram of wing—aileron—tab combination.
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Values of azy For case (Ba, Uy)
apply also approximately For
coase (By, By ). Corrections given in kext.
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Fi1c. 7. Aileron~tab inertial coefficients.

‘ z 5
Aileron ~Tab Density Ratio (8=0, /o =€, /€,).
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12 j=0-06
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15
G,=2:19
125 (j=04)
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a,zs 4-39 .
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b 0 4
T AN N T
I
l Ma \ M,
. mp.h, 25
j=02 V(sa5-7) Critical Froquency end critical spessl
Jj =o't V(665-1868) (_a ) corresponding to P, are given by
j =005 V(778-1453) 2 m,/d-n’ekgg’ =P, M,
j=0 None me/pv? ek = wWIRM,
" -5 1
F1c. 8a. Flexure-torsion inertia-stiffness diagram (para. 2).

Base curves.
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Fi1G. 8b. Flexure-torsion inertia-stiffness diagram (para. 12).

Frequency parameter curves.
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F1G. 9a. Flexure-aileron inertia-stiffness diagram Fic. 9b. Flexure—aileron inertia-stifiness diagram (para. 13).

(para. 13). Base curves. Frequency parameter curves.
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PART II

Experiments on Binary Aileron-Tab Flutter

By
C. Scruron, B.Sc., J. WiLLiams, B.Sc., and C. J. W, MiLzs

1. Summary>—A theoretical discussion of the effect of non-preloaded spring tab control on
wing-aileron-tab flutter, in which the binary aileron—tab case is included, is given by Frazer and
Jones in Part I. The experiments here described were made to test certain of their conclusions
for binary aileron—tab flutter.

2. The Model.—The model was designed for tests in a 4-ft square wind tunnel. The wing
(see Fig. 1), of 1-47-ft chord and 3-ft span and of NACA 2209 section, was rigidly constructed

in wood. Fillets were fitted to the inboard end, where the wing was built into a plate for fixing
to the tunnel floor.

Both aileron and tab were initially made of solid pine in order to obtain a density ratio (4)*
of 1/1. Later this ratio was reduced by lightening holes in the aileron. The atfachment of
aileron to wing was by two small journal hinges and that of tab to aileron by two point and cup
hinges. ‘Balance arms, which were offset from the chord lines, were fitted to the aileron and to

the tab, but subsequently that of the tab was changed to an arm with no offset and the necessary
recess was cut from the aileron. :

Details of the model representation of the elastic characteristics of the spring control are shown
in Fig. 2. Here the flat spring (a), which represents the stiffness of the control circuit (2o,), is
earthed at one end to the wing by an adjustable mounting and is fixed at the other end to the
floating arm (b). The arm (b) is pivoted at the aileron hinge axis and is elastically connected to
the aileron by means of the adjustable clamping link (d) and the piano-wire spring (c). Spring (c),
which represents the stiffness of the tab mechanism spring (o), is built into the aileron on the
hinge axis. Connection between IF at the top of arm (b) to M on the tab lever was made by a link.
of hypodermic tubing which was pin-jointed to F and M. It can easily be shown by comparison
of the strain energies that this system is elastically equivalent to the spring tab control system
of Fig. la, Part I. The equivalent leverages AF, AI and TM: are similarly denoted in Fig. 2 of
this Part and in Fig. la of Part I. For the model AF and TM were of fixed length such that
N = 6, Al was variable to give values of # between 0 and 2. ‘

No measurements of the inertial values were made when the aileron was of solid pine. After

the aileron was lightened and without any additional masses the aileron and tab had the following
inertial values. -

#, = 0-39 1b
p, = 0-021b
Agy = 0-93 Ib/in.*
Ay =16 x 103 Ib/in.?
P = 3-0 x 10~*1b/in.
3. Results.—Tests of Recommendations of Part I.—(a) The Effect of Density Ratio A~ No

systematic variation of 4 was attempted. Before the aileron was lightened the density ratio was
approximately unity. No flutter within the speed range of the tunnel could then be obtained

* The symbols used accord with those used in Part I.
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“but successive additions of masses to the trailing edge of the tab progressively lowered the critical
speed.” The aileron was then lightened in order to obtain flutter without addition of mass to the
tab and a critical speed within the tunnel range obtained. If the lightened aileron can be regarded
as homogeneous the density ratio was then about 1/3. ' '

(b) The Effect of Addition of Mass to the Aileron (see Table)—Addition of mass to the aileron
invariably increased the critical speed. A comparison was made of the effect of equal additions
to the moment of inertia of the aileron by massest—added firstly to the aileron balancing arm
and then to the trailing edge. The first method was slightly more effective than the second.
This may have been due to very slight movements of the main wing.

(¢) The Effect of the Location of the Tab Balancing Mass.—Tests were made with an offset
balancing arm before the disadvantageous nature of such an arrangement was realised. In the
Appendix it is shown that the neutral point (i.e., the position forward of the hinge axis behind
which mass has to be placed in order to be advantageous) recedes as the offset increases. The
offset for the model arm was such that the neutral point was behind the rearmost tab balancing
position available (D/21). It was found that any addition of mass to the arm reduced the critical
speed.

The results of tests for # = 0 and # = 2 with the non-offset balancing arm are given in Fig. 3
and Fig. 4. Here the neutral point was distance D/7 forward of the tab hinge axis and the curves
show that for # = 2 addition of mass was advantageous only when placed behind this position
and that the addition of a mass at the neutral point which statically balanced the tab did not
appreciably affect the critical speed. This conforms well with the theory but heavier masses
added at the neutral point tended to decrease the critical speed. This decrease is more marked
when # = 0 although the curves show the same general characteristics as those for » = 2. In
both cases no flutter occurred within the tunnel speed range when the tab was statically mass
balanced at position 2D/21. Unfortunately no position intermediate between 2D/21 and D/7
could be used but from the asymptotic trend of the curves it is probable that the system would

-be stable for all wind speeds if the tab were statically balanced by a mass rearward of the 2D/21
position.

Fig. 4 shows the rate of increase of the critical speed with the addition of mass at the 2D/21
position. If, as is deduced from Fig. 3, the system is stable when the tab is balanced by mass
at the 2D/21 position then it appears that a close approach to static mass balance is necessary
to raise the critical speed appreciably. o

Tests with Fluid Damping and Solid Friction.—Fluid damping and solid friction were applied
separately between the floating arm (b) and the wing to represent such dampings on the spring
casing of spring tab No. 1 of Part I. :

Increase in damping or friction invariably increased the critical speed. The largest amount of
fluid damping applied, that due to a 0-5 sq in. vane attached to the outer end of arm (b) and
moving in heavy gear oil, only increased the critical speed from 44 to 48 feet per second.. Solid
friction, provided by a felt pad attached to the arm (b) and rubbing on a brass plate, was more
effective. The critical speed increased with the pressure on the felt pad until there was no move-
ment between the felt pad and the brass plate. In this condition flutter at a high speed was still
possible because of flexibility in the connection of the felt pad to the arm.

4. Conclusions.—The recommendations (a), (b), (¢) and (d) of para. 16 of Part I are confirmed
by the model tests. In the application of recommendation (c) it is important to consider the
dependence of the position of the neutral point on the offset of the balancing mass.
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TABLE
The Effect of Addition of Mass to the Aileron

The inertial condition of model before the addition of masses is as stated in para. 3 for the
lightened aileron

Mass added to aileron (Ib) at
Added moment | (yitica1 speed
n of nertia
. s (b in.%)
Balancing arm | Trailing edge {feet per second)

0 0 0 0 47-5

0 0-070 0 0-177 52-0

0 0 0-012 0-177 52-2

2 0 0 0 52-4-

2 - 0-037 0 0-177 61-2

2 0 0-012 0-177 ©59-7

2 0-70 0 0-333 72-1

2 0 0-021 0-333 674

2 0-079 0 0-374 766

2 0 0-024 0-374 70-6

APPENDIX

The Posttion of the Neutral Point for an Offset Balancing Arm

Let a mass 7 be added to the tab at a distance A forward of the tab hinge axis (s.e., at a distance
D — 2 behind the aileron hinge axis) but offset by a perpendicular distance 4 tan 6 from the tab
chord line produced, where 6 is the angle between this line and the line which joins the tab hinge
to the mass (see sketch which follows). : '

Then 4
0 Az = m(D* — 24D + A*sec®6) ,
04, = mi*sec? 0, ' Co .. .. .. .. (1)
0P = m(A*sec® 9 — AD).
Hence
0A 4 = m{A*sec* (N + 1)* — 2AD(N + 1) + D3} .. . .. (2)
0P = m{a*sec* 6(N + 1)(n + 1) — 2D(N + n + 2) + D%} . )

From para. 16, Part I, the loading will be advantageous if 8d,/6% << 1 and 85 is positive.
(6d4, is always positive since sec? 6 > 1.)

From (2) and (8) 6d,/6p < 1 if -
2sec? O(N 4+ 1)(N —n) — ADIN — u] < 0. .. . . (4)

For positions forward of the tab hinge axis (N — #) is positive and condition (4) becomes

D
Z<Zv—_f_**1008207. .. - . - .. . (5)

This condition determines the neutral point, provided ¢4 is positive between i = Q and
A ={D/(N + 1)} cos® 6. This is so since if the case of 0 = 0'is considered it is easily shown that
dp 1s positive when 4 << D/(N + 1) (or > D/(n + 1)) and the effect of offset is to make 5 more
positive, ' :
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Thus, for a particular spring tab a circle 2 = {D/(N 4 1)} cos®@ (as in sketch below) can be
drawn which is the locus of the neutral points. Any tab balancing mass which is placed outside
this circle will be disadvantageous. '
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The following physical explanation of this rearward movement of the neutral point can be
given. When 1 is constant 64, is increased by offset without any change in the mass moment
about the hinge axis. The effect on the barred coefficients is immediately seen if equations (2)
and (3) are written :—

54w = (N & 1)%6 44 — 2N -+ 1)Dmi - mD* )
5P = (N 4+ 1)(n + 164w — (N 4 - 2)Dmd - mD*. .. .. (3a)

Hence, since N > n, 6 4,/6P would increase with offset if 4 were constant and to compensate
it is necessary to reduce the value of A.

In the case of a spring tab control on a ‘Spitfire aileron the tab was fitted with balancing arms
on the upper and lower surfaces of which the angular offsets were 60 deg and 50 deg respectively.
The distance forward of the neutral point was thus only about one-quarter of the maximum
possible distance. ‘
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