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Summary.--The following note has been written at the suggestion of the Chairman of the Stability and Control 
Sub-Committee. I t  is intended to explain the theoretical significance of camber derivatives, and to assess the various 
available methods of making experimental measurements with particular reference to the use of a curved-flow tunnel. 
The note amplifies the arguments put forward by  the writer in Ref. 1 (1950), that  there is particular need for sytematie 
information about the influence of curvature of flow on control hinge-moments as a step towards the understanding of 
three-dimensional viscous flow. 

After a definition of aerodynamic camber and a historical account of the development of the idea and its importance, 
the present state of knowledge of its aerodynamic derivatives is described. Camber derivatives are required for evaluating 
tunnel interference corrections and are useful for estimating corrections for aspect ratio and scale effect, in so far as the 
flow at a section of a finite wing can be represented as an equivalent two-dimensional flow. This cluasi two-dimensional 
approach to the problem of control surfaces should be combined with experimental checks on the aerodynamic derivatives 
of various wings with flaps and also with a study of three-dimensional boundary layers. 

Formulae for the camber derivatives of lift and pitching moment need confirmation. The derivatives of lift at the 
stall and of hinge moments over the whole range of incidence are virtually unknown and in consequence the determination 
of (Cz)~  and CR is seriously limited. The significance of these two-dimensional camber derivatives is illustrated by  
the quantitative uncertainties that  may arise. I t  is suggested that  these might be removed by establishing formulae 
for the unknown derivatives from a series of tests of uneambered aerofoils with a range of flaps in the curved-flow 
tunnel at the Langley Aeronautical Laboratory, U.S.A., by simulating a uniform rate of change of pitch. The uncertain 
characteristics of the curved flow would make necessary a check between results so obtained and those deduced from 
tests in a straight tunnel of aerofoils with various amounts of parabolic camber. There appears to be no other satisfactory 
technique for measuring camber derivatives. 

1. Introduction.---In the general form in which it appears in two-dimensional aerofoil design, 
camber is given by algebraic formulae or by a closely spaced set of ordinates defining the mean 
line of an aerofoil. Aerodynamic camber however is a single parameter which arises specifically 
from theoretical considerations. A first approximation to the load distribution on a thin finite 
wing does not satisfy the exact boundary condition 

downwash angle = local incidence 

at all points of the wing surface. When this condition has virtually been satisfied at each 
mid-chord position, there remains an excess downwash angle 

(downwash angle - -  local incidence) 

which to a sufficient approximation is linear along the wing chord. 

* Published with the permission of the Director, National Physical Laboratory.  
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I t  is convenient to define aerodynamic camber as that  corresponding to a small downwash 
angle, which vanishes at mid-chord and varies linearly from leading edge to trailing edge. Thus 
aerodynamic camber is equivalent to a parabolic camber line with its vertex and maximum 
ordinate at mid-chord and is given in magnitude by the rat io 

m a x i m u m  ordinate  

)P - -  aerofoil  chord 

Aerodynamic camber may be described as a fictitious curvature of flow, that  is useful in 
determining the incremental correction to wing loading which will cancel a given excess downwash 
angle. However in potential flow the principle of superposition may be applied to wing loading, 
defined as a velocity potential difference, and to downwash angle. Under such conditions aero- 
dynamic camber amounts to a special case of geometric camber. 

By a suitable approximation the three-dimensional problem of a cambered wing may be treated 
theoretically so that  the chordwise pressure distribution at each section is expressed in terms of 
the two-dimensional distributions corresponding to uniform incidence and aerodynamic camber. 
I t  is therefore profitable to s tudy the effects of aerofoil thickness and boundary layers on these 
two-dimensional distributions in order to explain some of the corresponding effects in three 
dimensions. Since aerodynamic camber is often of great importance in potential flow, this 
suggested approach to an understanding of viscous flow is at present limited by tile lack of basic 
two-dimensional data. 

2. Historical Devel@meq# of Theory.--The first use of aerodynamic camber appears to be due 
to PrandtP (1920) in his original paper on wind-tunnel interference, the change in upwash in a 
chordwise direcLion being an essential idea in the two-dimensional theory of tunnel interference. 
Its greater importance in the three-dimensional theory was recognised by Glauert and Hartshorn 
(R. & M. 9473, 1924), who obtained the interference correction to downwash angle at the tail 
of a model of small span. These tunnel corrections were expressed as an effective change of 
angle of incidence, regarded as uniform over a wing or tailplane. 

By this time the quanti tat ive significance of camber as a means of producing lift had been 
explained by the theory of a thin aerofoil in two dimensions. The method of solution, first 
proposed by Munk ~ (1922), was developed by Glauert (R. & M. 9105, 1924), who showed tha t  
the incidence and pitching moment at zero lift could be computed in fair agreement with 
exper!ment. The analysis of R. & ~[. 910 was then extended by Glauert (R. & M. 10956, 1927) 
m an improved manner to cover hinge moments. 

The basis of the theory of aerodynamic camber is a special case of Glauert's thin-aerofoil 
theory, in which wing thickness is neglected altogether. Theodorsen and Garrick ~ (1933) gave 
an exact t reatment of the general problem of the potential flow past two-dimensional aerofoils 
of any shape. A particular solution is obtained for a section consisting of a circular arc without 
thickness. I t  is shown that  the lift slope and aerodynamic centre are unaffected by first-order 
changes Jn camber*. By an approximation, Goldstein has simplified the method of Ref. 7 to 
take account of first-order effects of wing thickness. It  appears from C.P. 698 (Goldstein, 1942) 
that  the incidence and pitching moment at zero lift are unaffected by first-order changes in 
thickness. There can however be first-order effects of thickness on the optimum incidence and 
the optimum lift coefficient, which arise from a change in lift slope. Apart  from this the design 
of mean camber lines is essentially based on Glauert's thin-aerofoil theory. 

The vital step in the development of ideas is that  the theory of cambered wings is of great 
significance in connection with tunnel interference and the distribution of load on uncambered 
wings. 

Once again the lead was given in the field of tunnel interference in R. & M. 15669, p. 41 
(Glauert, 1933), where induced curvature of flow is discussed in some detail. Although the 
theory had advanced since the early days of Ref. 2, it was not until  1941 that  Preston and 

* There may however be a first-order effect of camber on the binge-moment derivative b 1 = ~CR/~=, but this is likely 
to be small. 



Manwell (R. & I~{. 24651°) showed tha t  the interference corrections to the two-dimensional deriva- 
tives m~ (=  ~C,~/Oo:) and especially bl (=OCH/O~) were much greater than had been supposed. 
Indeed by comparison with the simple theory of Ref. 2, wi~ich assumed a constant correction to 
incidence given by the induced upwash at mid-chord, the interference correction to bl is increased 
four or five-fold when aerodynamic camber is taken fully into account. Miss Lyon 11 (1942) 
then provided the means of estimating the tunnel interference on three-dimensional wings with 
control surfaces, including the effect of a set-back hinge. Again it was found that  a considerably 
larger effective change of incidence was required to correct hinge moments to the free stream 
values than was needed to correct lift. 

The importance of aerodynamic camber in the determination of the load distribution on 
finite wings emerged from the lifting-surface theory. I t  became apparent from the work of 
Wieghardt 12 (1939) and others that  inaccuracies of the classical lifting-line theory became 
pronounced at low aspect ratios. The general t reatment of the lifting-surface theory by W. P. 
Jones (R. & M. 2145 ~", 1943) reduced the complicated mathematical  problem to a form suitable 
for evaluation and numerical solution. With the aid of approximations the writer 1~ (1946) has 
presented the theory of R. & M. 2145 la, so tha t  the loading on a wing of arbitrary plan form is 
obtained by a comparatively simple process. The local chordwise pressure distribution at each 
wing section is found to be a linear combination of the two-dimensional distributions appropriate 
to uniform incidence, aerodynamic camber and, if necessary, deflected flap. I t  is thus possible 
to relate the theoretical forces and moments on a finite thin wing with partial .span controls to 
the two-dimensional values (R. & M. 10956) for a thin wing. 

However, at this stage no consideration had been given to the effects of viscosity as introduced 
by aerofoil boundary layers. The writer 15 (1947) has extended the work of Miss Lyon 11 on tunnel 
interference to control surfaces of partial span. Ref. 15 also includes certain tentative formulae 
for the practical two-dimensional derivatives of lift, pitching moment and hinge moment with 
respect to aerodynamic camber. Swanson and CrandalP6 (1947) have produced semi-empirical 
charts for the aspect ratio corrections to lift and hinge moments as indicated by lifting-surface 
theory and experimental data. As pointed out in Ref. 1, Ref. 16 gives a suggested viscous 
correction to the hinge-moment camber-derivative, which differs widely from the corresponding 
formula of Ref. 15. This discrepancy has caused concern about the accuracy with which the 
three-dimensional OC~/Oo: can be estimated. 

3. Existing Kuowledge of Derivatives.--As explained in section 1, the magnitude of aerodynamic 
camber is defined by  the ratio 

maximum ordinate 
- -  aerofoil chord 

In practice 7 is a fairly small quant i ty  and does not usually exceed a value 0.1. Cambers of 
such magnitude are treated with sufficient accuracy by  a linear theory. To this approximation 
it can be shown that  a parabolic and circular camber are equivalent. But  it is important  to 
realise tha t  aerodynamic camber must not be regarded as just any camber that  is symmetrical 
about the mid-chord position. This is well illustrated in Ref. 17 (Abbott, von Doenhoff and 
Stivers, 1945), which includes aerofoils with the N.A.C.A. mean line 65, which is parabolic, 
and with the N.A.C.A. mean line a = 1.0. These correspond respectively to elliptic and uniform 
chordwise loadings and both have max imum camber at mid-chord. For the same maximum 
camber, 7 -- 0.06, the theoretical angle of zero lift of the mean line a = 1.0 is 44 per cent greater 
than tha t  of the mean line 65. I t  follows tha t  most cambered aerofoils cannot be used to simulate 
aerodynamic camber. I t  would for example be incorrect to use experiments on an aerofoil with 
N.A.C.A. mean line a = 1.0 to deduce a correction factor* for the effect of boundary layers on 
aerodynamic camber derivatives. 

* A c c o r d i n g  to  Ref .  17, errors  of abou t  20 per  cent  in no- l i f t  angle  wou ld  b e  expec ted .  
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I t  is necessary to consider the  derivations oi lift, p i tching moment  and hinge moment ,  which 
are defined respect ively to be 

aCL 
Oy , 

8C,, 
t ___ a b o u t  the  q u a r t e r - c h o r d  ax i s  ; 

8y 
8CH 
8y 

For  a th in  aerofoil these derivatives are ca lcula ted  theoret ical ly  from Ref. 6. The ordinate y 
of a parabolic camber line (Ref. 9, p. 41 el seq.) satisfies 

d x - - 8 ~  2 c = 4 ~ c o s 0 ,  
where 

x = } c ( 1  - c o s  0) 

is the  distance downst ream of the leading edge. In  the  nota t ion of R. & M. 1095", it follows tha t  
the  lift per uni t  area is 

p V k  = 2pVM1 sin 0 ] 

: 8pV2y sin 0 l . . . . . . . . . . . . . . .  (1) 

Simple chordwise integrat ions give the theoretical  derivatives 

( a ' ) ~  = 4 ~  ! 

( ~ ' ) T  = - ~ [ . . . . . . . . . . . . . . . . .  (2 )  

For  two-dimensional  control surfaces, let 

0 = 01 denote the  position of the  hinge line, 
0 = 0~ denote the  position of the nose of the  control, 

Ec : ½c(1 + cos 01) denote tile control chord measured from the hinge. 
Then  the hinge moment  corresponding to equat ion (1) gives 

4 f~2sin2 (b ' )T - -  E ~ 0 ( c o s  01 - -  c o s  o)do 
4 j 

= - - f i 2  2 ( a - -  02) cos 0 1 +  sin 202 cos 0 1 +  ~ sin ~02 . . .  (3) 

Wi thou t  nose balance, 01 = 02 and equation (3) gives 

(b')r --  E 2 2(a --  01) cos 01 + ~ sm 01 + ~ sin 301 . . . .  (4) 

As discussed in section 2, ~0 and C,,~o, the  incidence and p i tching-moment  coefficient at zero 
lift are unaffected b y  first-order changes in thickness (C.P.698), and the lift slope, ch, and aero- 
dynamic  centre are unaffected by  first order changes in camber (Ref. 7). 
In  accordance wi th  a l inear theory  

where  

OC~o 
~y 

~ o  
~ 2 o 

~7 

~c~0 

4 

. . . . . .  (5 )  



But there are first order effects of thickness on at and mt ( =  aC,,/a~), which may be deduced 
from Refs. 18 and 19 (Bryant, 1950)*. In the case of a 15 per cent thick wing, the theoretical 
corrections for thickness to the values in equation (2) are about 

+ 12 per cent to (6')~; 

+ 8 per cent to (m')r.  

If it is assumed that  the hinge moment at zero lift is unaffected by first-order changes in thickness 
and that  the derivative bt is unaffected by first-order changes in camber, then there would be a 
corresponding correction to (b')r. On this basis 

would be independent of thickness. On estimating the effect of thickness on (bt)~ from the curves 
g i v e n  by Bryant  in Ref. 18, Fig. 19a (1950), it is found that  for a 15 per cent thick wing there 
would be a correction for thickness of roughly 

- -  7 per cent to (b')~. 

The writer t5 has expressed tile effect of viscosity on these derivatives in the following way: 

61 
6 '  = 4 =  ( )/6t~ T 

( 6 )  

61 

~ t  ~ - -  = (61) T 

bt 
b ' =  (b')r (bt)r' . . . . . . . . . . . . . .  (7) 

where (bl)r and (b')~ denote the theoretical values of bt and b', as given by thin-aerofoil theory 
in equations (3) or (4), and the ratios (b')r/(bt)r are .tabulated in Ref. 15. 

Equations (6) are based entirely on the evidence of Jacobs, Ward and Pinkerton ~° (1933), 
who give experimental data for a series of rectangular wings of aspect ratio A = 6 and 
thickness/chord ratios 0.06 ~< t/c <~ 0.21, each without camber and with parabolic N.A.C.A. 
mean lines 25, 45 and 65. The two-dimensional derivatives a' and m' were deduced by applying 
corrections for aspect ratio based on the approximate lifting-surface theory (Ref. 14).  The 
writer is unaware of any more recent data that  seriously conflict with equations (6). I t  is 
concluded from ReI. 17, Fig. 37, that  experimentally wing thickness has little effect on e0. 
Moreover for N.A.C.A. four-digit aerofoils, which include sections with parabolic camber, c~0 is 
approximately 0.93 times the value given by thin-aerofoil theory (Ref. 5). From equations 
(5) and (6), 

- N - . . . . . . . . . . . . . . . .  ( 8 )  

which, for aerofoils of thickness/chord ratio 0.06 < t/c < 0. la, lies within 3 per cent of 0.98. 
I t  is recommended that  equation (6) should be used provided that  there is no separation of the 
boundary layers. 

Equation (7) is based on the combined evidence of Kirk 2t (1943) and Preston, Sweeting and 
Cox (R. & M. 2007 ==, 1944). In Ref. 21, a two-dimensional aerofoil with three types of control 
surface of chord ratio E = 0.3 was tested in a closed rectangular tunnel of variable height, and 
measurements of lift and hinge moment were made. For each control surface the measured values 
of the derivatives at, a=, bl, b ~ were obtained for two ratios of 

C __ aerofoil chord 
]~ tunnel height " 

* tZefs. 18 and  19 are combined in R. & M. No. 2730. 



Tunnel interference was expressed as an equivalent change 
camber (Ref. 11), viz." 

(d  = 

of incidence and aerodynamic 

. . . . . . . .  ( 9 )  

For a given control, one estimate of b' can be deduced from the two values of b~ corresponding 
to the two ratios of c/h and another estimate from the two values of b2. The two estimates of 
b' so obtained were not consistently in agreement, but suggested the empirical relation (7) even 
for overbalanced controls. In R. & 1~[. 2007 ~2, a two-dimensional Piercy section was pressure- 
plotted in a closed rectangular tunnel, in which the roof and floor could be adiusted to follow 
the free streamlines and thus remove the tunnel interference, given approximately in (9). These 
experiments did not yield a Satisfactory estimate of b', but within wide limits of accuracy tended 
to substantiate equation (7). However, more data are needed before this can be accepted as an 
established relation. 

Swanson and CrandalP 8 (1947) have suggested a tentative empirical formula 

b' 
(b')T -- 1 -- 0.0005~ ~ . . . . . . . . . . . . . . . . .  (10) 

where ~ is the trailing-edge angle measured in degrees. I t  will be shown in section 4 that  the 
uncertainty in b', as defined by the discrepancy between equations (7) and (10), is of considerable 
importance. 

To summarise, 

(i) the formula (6) for a '  seems well-founded for low incidences ; 

(ii) tile formula (6) for m' needs confirmation; 

(iii) tile formula (7) for b' is insecurely based and differs widely from formula (10), when b~ 
is small. 

4. Practical Significance of Derivatives.---Aerodynamic camber is essentially a theoretical 
device. Practically speaking, camber derivatives are useful in so far as the flow at a section of 
a finite wing can be represented as an equivalent two-dimensional flow. It  is very unlikely that  
a quasi-two-dimensional approach to the general problem of wing loading will be a complete 
resource, as the three-dimensional boundary layer is subject to lateral pressure gradients and 
velocities which culminate in tile formation of trailing vorticity at the trailing edge. Especially 
towards the wing tips a full appreciation of the fluid motion must be pioneered by direct 
experiment. 

But it is reasonable to suppose that  the growth of a boundary layer is primarily governed-by 
the Reynolds number and the longitudinal pressure distribution. Preston (R. & M. 27252a, 1949) 
has clearly shown that  two-dimensional quantitative analysis of the effect of boundary layers 
is possible, given accurate knowledge of their profiles in a considerable region containing the 
trailing edge. Great advance has been made towards the correlation between aerofoil shape and 
the effects of boundary layers on two-dimensional derivatives18, ~9 (Bryant, 1950). This basic 
information has opened up possibilities of extending the scope of semi-empirical calculations 
to include three-dimensional viscous effects. In Ref. 24 and subsequently the writer has found 
an encouraging measure of agreement between experimental and computed characteristics of 

* It was necessary to estimate C,~ as pitching moments were not measured. 
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ailerons, which suggests tha t  a closer knowledge of camber derivatives would be profitable and 
might explain the discrepancies. 

I t  will be helpful to illustrate the sort of uncertainties tha t  exist, when the principles of 
aerodynamic camber are applied. 

Pankhurst  and Pearcey (C.P.28 ~, 1950) have pointed out tha t  the free-stream maximum lift, 
as estimated from two-dimensional tunnel experiments, is often uncertain within 4- 1½ per cent. 
The interference correction to (CL)m~ is a'(A),), where (Ay) is given in equation (9). At maximum 
lift a~ = 0, and, according to equation (6), a' = 0. I t  can safely be asserted tha t  a '  lies some- 
where between zero and its theoretical value 4~. If a value a'  = 2~ is used, there is an element 
of uncertainty 

(dc m x) = 4-  N • . . . . . . . . . . .  

= 4- 0'0165 (Cr)~..~, when c/h = 0 . 4 .  

(tl) 

t 

The corresponding uncertainty in pitching moment is 

(AC,~) = 4- 0"004(Cc)max, 

which is not quite so important,  as it only represents a margin of error 

4- 0.004 × Chord 
in tile centre of pressure. 

The discrepancy between equations (7) and (10) is illustrated in the case of the two-dimensional 
aerofoil section 1541 (Ref. 18) with ¢ ---- 15 deg and plain controls of chord ratios E = 0-2 and 
0.4. From experiments with forward transition the respective values 

bl = -- 0.180 and -- 0. 275 

were obtained. Then . . . . . .  (12) 
formula (7) gives b' = -- 1. 315 and -- 1" 81 respectively; 

formula (10) gives b' = -- 3.24 and -- 4-35 respectively. 

In two-dimensional control testing the interference correction to C~ from equation (9) is 

(AC~) --  192 CL. , 

where, say, the measured CL = 2~c~ and c/h = 0" 4. Thus 

(A bl) -- - -  0" 0165 b' 

By choosing a value of b' midway between those given in equation (12), the uncertainty in 
estimated free-stream bl would be about 

4- 9 per cent when E =.0"  2 ] 

/ 4- 7½ per cent when E = 0 .4  

the 

(13) 

These magnitudes would be larger ill the three-dimensional case. Such margins of error may 
not aIways mat ter  in ad hoc research, but  are imp0rtant  in experiments of a fundamental nature. 

7 



From calculations by the approximate lifting-surface theory of Ref. 14 for an unswept wing 
of medium taper and aspect ratio A = 5.83, it is found identically for flaps of any constant E, 
that  

(a) for fuU span 0 < rj < 1, 

OC~ 
0-~ ---- 0-744(bl)r -- O. 0166(b')r 

. . . . . . . . . .  (14) (b) for outer half-span ½ < ~ < 1, 

OC~ 
&z -- 0.703(b~)r -- 0.0247(b')r. 

By substituting the practical values of bl and b' in equation (12) for the theoretical values in 
equation (14), the following values of a CH/a c~ are obtained" 

Using b' from (7) . . . .  

Using b' from.(10) . . . .  

(a) full span 

E = 0 . 2  

--0"112 

--0" 080 

E = 0 . 4  

--0" 1745 

--0" 132 

(b) ½ <  ~2< 1 

E = 0 . 2  

--0.094 

--0.0465 

E = 0 . 4  

--0-149 

--0.086 

The magnitude of the coefficient of b' in equation (14) increases as aspect ratio decreases and is 
very roughly proportional to 1/A. It  can reasonably be deduced that  for wings of low aspect 
ratio, say A < 3, with ailerons of section 1541 the present uncertainty in OCH/Oc~ would exceed 
+ _ 0 . 0 5 .  

I t  is desirable to know whether the derivative b' is significant in scale effect. R. & M. 2730 t8 
indicates that  for medium values of ¢, two-dimensional scale effect on bl is not large. It  is worth 
noting that  neither formula for b' suggests important  changes with Reynolds number. 

5. Techniques of Measureme~t.--There are four techniques for simulating aerodynamic camber, 
which will now be considered. 

(a) cambered models, 

(b) principle of tunnel interference, 

(c) whirling arm, 

(d) curved-flow tunnel. 

(a) Cambered models.--Tests of a series of two-dimensional models varying in camber and 
trailing-edge angle would be a possible way of estimating the derivatives a', m' and b'. But, 
unless the tests were carried out on the scale of those reported in Ref. 20, the results by themselves 
would be of limited value. An investigation on such a large scale would require a large number 
of models and be very costly in labour. I t  should be borne in mind that  in viscous flow the 
principle of superposition no longer applies and that  with boundary layers present aerodynamic 
and geometric cambers may not be equivalent, even though the geometric camber is parabolic. 
However in two-dimensional flow it is difficult to imagine that  there is much difference, since 
in both cases the changes in boundary layer with camber are small changes from a given state. 

Though indirect this is probably the most accurate method of measuring the derivatives, the 
chief limitation being the difficulty in setting an aerofoil at an absolute incidence. This technique 
is clearly useful as a check on any proposed formula. 

8 



(b) Principle of tunnel interference.--The use of this principle is exemplified in Refs. 21 and 22. 
By testing a given aerofoil in a given tunnel and varying the magnitude of the tunnel interference, 
forces and moments can be measured under the influence of a variable aerodynamic camber. 
By applying the interference corrections under the different conditions, each free-stream derivative 
may be equated and an estimate of the corresponding camber derivative may be obtained. 
This is the ideal approach to the problem, as it returns to the basic definition of aerodynamic 
camber and is not subject to any of the uncertainties in (i). Kirk ~ used a closed rectangular 
tunnel whose height could be varied, and Preston (R. & M. 200722) attempted to remove the 
tunnel interference altogether by  adjusting the roof and floor of a closed tunnel to follow the 
free streamlines. 

However the results of Refs. 21 and 22 were inconclusive in  that  the estimates of b' were 
erratic. The technique demands a high degree of accuracy in all the aerodynamic measurements 
and tunnel calibrations ; and small inaccuracies due to a reduced length of working-section or 
approximate streamlined wall settings cannot be overlooked. 

(c) Whirling arm.---The use of a whirling arm to determine camber derivatives is based on the 
conception tha t  to the first order a rate of change of pitch is equivalent to an aerodynamic camber. 
As far as the boundary conditions at the surface of a thin two-dimensional aerofoil are concerned, 
a camber line given by 

d y_ q 
dx 2 V '  

where q is the rate of change of angle of pitch, corresponds to an aerodynamic camber (see 
section 3) 

c q .  
= s v  . . . . . . . . . . . . . .  ( i s )  

Thus the pitching derivatives 

OC,~ 
= 

. . . . . . . . . . . . . .  

OCH 

could be measured on a whirling arm and, if qc is small enough, 

m ' - -  16mq l . . . . . . . . . . . . . . .  (17) 
b ' =  16hq / 

The advantage of this technique is tha t  of direct measurement, but there seem to be three 
practical difficulties : 

(i) the difficulty of simulating two-dimensional flow, 
(ii) the low Reynolds number (about 0.5 × 10"), 

(iii) that  qc/V is fixed for a given wing in a given whirling arm and the corresponding aero- 
dynamic cambers* are rather small. 

Added to these there is the complication tha t  the fluid in the boundary layer will tend to follow 
the circular path of the model and wiU be under the action of an appreciable outward centrifugal 
force. This feature of circular flight will cause a possible extraneous effect on the aerodynamic 
moments, not required for the purposes of aerodynamic camber. 

cq c 
* r = 8--V = ~ ' w h e r e  R is t h e  r a d i u s  of t h e  a r m  

= a b o u t  0 . 0 0 6  for  t h e  N . P . L .  W h i r l i n g  A r m .  



(d) Curved-flow tum~el.--Some experiments on lateral stabili ty have been conducted in the 
Langley 6-It Square Tunnel with a curved-flow test section ~° (Bird, Jaquet  and Cowan, 1948). 
The measurement of longitudinal derivatives due to rate of change of pitch was being con- 
templated. As suggested by the writer in Ref. 1, this raises the possibility of measuring m e 
and h e without the outward centrifugal force on the boundary layer, which arises on a whirling 
arm. The Langley tunnel is suitable for two-dimensional tests at Reynolds numbers somewhat 
greater than 106. Furthermore the curvature of the tunnel can be varied, so that  with an aerofoil 
of 2-ft chord it would be possible to cover a range of aerodynamic camber given as in eqnation 
(15) by  

cq 
0 < Y - - 8 V  < 0 " 0 1 5 "  

Thus all the difficulties associated with the use of a whirling arm for camber derivatives would 
not enter into the curved-flow technique. 

The aerofoil must be placed so that  the chord line is parallel to the direction of flow at the 
mid-chord. This introduces the difficulty of setting an aerofoil at an absolute incidence. If, 
for example, the incidence can be set to an accuracy of 

i 0.1 dog = 4- 0-00i7~ radians, 

then corresponding to the maximum camber, ~ = 0-015, the accuracy in lift, i.e., a'; would be 
about q- 6 per cent, which is not serious. The error in m', the camber derivative of pitching 
m o m e n t  about the quarter-chord, would be trivial:  and the error in b' on this account would 
be less than q- 2 per cent. Thus for the purposes of determining m' and b' a tolerance of 4- ¼deg 
in absolute incidence could be allowed, but a closer setting is necessary in the case of a'. 

I t  is concluded tha t  in so far as longitudinal stabil i ty derivatives can be measured in a curved- 
flow tunnel, this technique is ideal for estimating derivatives of aerodynamic camber. The 
usefulness of the Langley tunnel will now be critically examined from this standpoint. 

6. Langley Curved-Flow Turn, el.---The conditions in the Langley curved-flow tunnel are 
described in Ref. 26. The tunnel is designed to give the motion of the air relative to a body in 
steady curved flight. The required fluid velocity is directly proportional to the distance from the 
centre of rotation, and is reproduced by means of curved side walls combined with drag screens 
of variable density,spaced close together towards the inner wall and far apart towards the outer 
wall. The desired relative motion is accompanied by gradients of static pressure and total  head 
normal to the streamlines. The resulting curved flow past an aerofoil differs from that  required 
to-simulate an aerodynamic camber in respect of 

(a) the normal pressure gradient, 

(b) the centrifugal force on the boundary layers, 

(c) the partially curved wake, 

(d) the high degree of turbulence. 

From the following paragraphs it will appear that  (a) is fully accounted for by  a known buoyancy 
correction, unless there is a further small correction due to (b), that  the effect of (c) is negligible, 
but  tha t  there may be artificial boundary layer t ransi t ions and small errors due to an oscillatory 
wake associated with (d). 

The radius of curvature corresponding to a small rate of change of pitch, q, is V/q, I t  is easily 
shown that  the corresponding normal gradient of static pressure is 

Oy - p Vq 
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This gradient produces a buoyancy, giving a correction to the lift force, which can be calculated 
quite accurately (R. & 1K. 1166~7). I t  seems that  the buoyancy corrections to pitching and hinge 
moments are likewise calculable. By  way of a check these corrections could perhaps be com- 
pared with measured moments on a thin aerofoil of circular camber of radius V/q at zero incidence. 

The force of buoyancy balances the centrifugal force on the undisturbed curved stream and 
exceeds the centrifugal force on the retarded air in the aerofoii boundary layers, which therefore 
tends to move towards the centre of rotation. This effect is in the opposite sense to that  found 
on the whirling arm and in actual flight. Although it is considered in Ref. 26, tha t  this effect 
is probably of second order, the corrections to aerodynamic measurements on this account are 
uncertain and might be deduced from a comparison of equivalent experiments on a whirling arm 
and in a curved-flow tunnel. 

Provided that  the flow is steady, there is no appreciable effect due to a curvature of the wake 
in two-dimensional flow, since there is no total  vorticity at any section of the wake. I t  is important  
to bear in mind tha t  Glauert (R. & M. 1242 ~8, 1929) showed tha t  the oscillatory damping derivative 
about a pitching axis at quarter-chord is double the corresponding derivative in steady circular 
motion, viz. : 

ms = 2rag . . . . . . . . . . . . . . . . .  (18) 

But  the curved flow is presumably steady enough to preclude any large effect of this nature. 
For a thin aerofoil the value of mq given in (R. & M. 1216"0), which corresponds to a curved wake, 
is related to the camber derivative m' by  equation (17), viz. : 

m'---- 16mq. 

There is, however, a high degree of turbulence, particularly towards the inner side of the 
tunnel, where the drag screens are closely spaced. Again it is believed that  the corrections to 
aerodynamic characteristics are small ('Ref. 26). This is more likely to be true for longitudinal 
derivatives such as mq and hq, defined ill equation (16), than for lateral rolling and yawing deriva- 
tives. There may be artificial effects on boundary-layer transitions due to increased turbulence. 
But  comparative tests Oil a whirling arm using fixed positions of transition on both aerofoil 
surfaces should show up any serious discrepancies. 

7. Concluding R e m a r k s . - - T h e  problem of predicting three-dimensional control characteristics 
can be tackled in three ways : - -  

(a) an extended series of ad hoc experiments, 

(b) a quasi-two-dimensional approach 

(c) a systematic investigation of three-dimensional boundary layers. 

The first of these provides usable information throughout, but as a direct at tack on the general 
problem is impracticable in view of the excessive number of geometric and aerodynamic variables. 
The second is an analytical approach in which the problem is subdivided into stages, all the 
variables entering into at least one stage and the number of variables in any particular stage being 
kept small. This method is unlikely to give a full explanation of three-dimensional viscous flow. 
The third approach amounts to  a s tudy of viscous fluid motion, vital in the fundamental develop- 
ment of the subject, but in itself too indirect. I t  seems to the writer tha t  (c) should be pursued 
whenever possible, but tha t  the main effort should be concentrated on (b). I t  is also important  
to undertake a wide range of checks between (a) and (b) and an explanation of any discrepancies 
b y  means of (c). 

This note has set out to show that  a quanti tat ive analysis of viscous flow on these lines requires 
more detailed knowledge of two-dimensional camber derivatives. I t  is stated tha t  the theoretical 
forces and moments on a finite thin wing with controls of partial span can be approximately 
related to the corresponding two-dimensional theoretical derivatives with respect to uniform 
incidence, deflected flap and aerodynamic camber. The quasi-two-dimensional approach involves 
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the substitution of the practical values of these derivatives. The derivatives with respect to 
incidence and flap are usually available, but those of lift, pitching moment and hinge moment 
with respect to aerodynamic camber, viz. a', m' and b', are far from certain. It -is considered 
that 

(i) the formula (6) for a' is well-founded for small incidences only; 

(ii) the formula (6) for m' needs confirmation; 

{iii) the two tentative formula (7) and (I0) for b' differ seriously, when b~ is small. 

At low incidences it seems desirable to know a' and m' within ± 5 per cent. and b' within 
± 10 per cent. Near the stall it is desirable to know a' within, say, !15 per cent. Knowledge 
to this accuracy is necessary to ensure 

(I) a reliable estimation of tunnel interference on (CL) .... and C~; 

(2) a useful evaluation of aerodynamic derivatives, particularly aCH/a~, for any given 
finite wing; 

(3) estimation of scale effect on (CL)max and control derivatives. 

The two most promising techniques for measuring camber derivatives are 

(A) tests on a series of two-dimensional aerofoils varying in parabolic camber and trailing- 
edge ang!e ; 

(B) direct tests of uncambered aerofoiis in a curved-flow tunnel simulating a uniform rate 
of change of pitch. 

The former technique is rather costly in model construction and involves more experimental 
time ; the lat ter  could only be carried out in the United States of America, as the Langley curved- 
flow tunnel is the only equipment of its kind. The latter method is the more economical, but  
is subject to uncertainties in the condition of flow. These uncertainties could be checked in 
three ways 

(c) by. a check between a', as measured at low incidences, and the fairly reliable value given 
m equation (6); 

(D) by a comparison of camber derivatives of a given aerofoil by  both techniques, or 

(~) by  comparative measurements of longitudinal stabil i ty derivatives on a whirling arm 
and in the curved-flow tunnel. 

Until  more t rustworthy estimates of b' can be made, much of the accumulated data on two- 
dimensional hinge moments is of limited use. Until  m' can be estimated with certainty the aero- 
dynamic centre of finite wings can only be predicted in a tentative way. Unti l  a '  is known at 
the stall the determination of the free stream (CL)m,x from tunnel experiments will not be satis- 
factory, nor will be the estimation of scale effect on (CL)~ax. This lack of fundamental knowiedge 
is retarding the understanding of three-dimensional viscous flow. 

It  is urged that  there is particular need for systematic information about the influence of 
curvature of flow on the hinge moment experienced by  a control surface and on the aerodynamic 
centre and maximum lift of a wing. I t  is recommended tha t  the Langley Aeronautical Laboratory 
should be approached to ascertain the a'~ailable results from which such information could be 
deduced and to promote further tests on two-dimensional aerofoils varying in thickness and 
trailing-edge angle with a range of control flaps. 
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