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Sumanary.—It has been suggested in some American investigations that differential gearing, combined with adjust-
ment of the aileron floating angle by means of a tab, may be a powerful method of balancing ailerons. This report sets
out the theory of this method of balance and analyses-it in relation to the most pressing problem of aileron design,
which is to obtain close balance at high speed without overbalance in any part of the range, or uncomfortable lightness
at slow speed. It is shown that this result can be achieved more directly by differential balance than by any other
method if the differential and the tab setting are nicely adjusted to the natural floating properties of the aileron. Thus
if the aileron tends to float up as incidence increases, a differential giving more downward than upward movement
must be used, and this must be combined with an upward-set tab; while if the aileron tends to float down as the
incidence increases, a differential giving more upward than downward movement must be used, combined with a down-
set tab. After examining the possible disadvantages of the downward differential, and the loads-set up by the tab,
it is concluded that there is a strong case for exploration in flight of differential gearing as a major means of aileron
balance.

Some notes on the geometry of differential gearing are given in an Appendix.

1. Imtroduction—In the past, when ailerons have been moved.differentially, it has always
been with the object rather of improving the rolling moments than of lightening the stick force.
- The potentiality of differential gearing as a major means of aileron balance has been broached
in two American reports®?, but the theory of this method is probably still unfamiliar to many
designers in this country, It may be profitable, therefore, to make a rather more extended
analysis of the subject, relating it particularly to the central problem of aileron design, which
is to make the aileron light enough at very high speed, while avoiding overbalance in any part
of the range and retaining sufficient feel at low speed. There seems to be much promise in the
development of differential balance, but only if the designer realises its power and its limitations
in relation to other balancing methods at his disposal, and designs his gear deliberately to fit
the hinge-moment characteristics of the aileron he is seeking to balance.

2. Definition of Differential Gearing.—A sketch of a method of analysis which seems 51mpler
and more illuminating than the American discussion has been given in Appendix I of Ref. 3,
and will now be developed in more detail. Instead of working with &,, &, defined respectlvely
as the settings of the up-and-down aileron, each being regarded as positive, it seems clearer to
base the analysis on two quantities, &, ¢ defined as

5‘:§u+£d, e:ﬁ’, ] _
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With these definitions the ailerons can be regarded as moving through + & from the common
setting ¢. ¢ will be called the displacement of the system and e the eccentricity. So long as the
setting of either aileron does not exceed the angular range in which the rolling-moment coefficient
C,is proportional to aileron setting, the displacement ¢ fixes C, whatever the differential. Under
this assumption ¢ is therefore the basic vatiable for assessing the balancing power of differential,
since it concentrates on the magnitude of the force to produce a given rolling moment.

A differential gear is specified when &, and &,, or alternatively & and e, are given as functions
of x, the movement of the pilot’s hand from the central position. A typical sketch is given in
Fig. 1. It should be realised at the outset that the essence of a differential gear, and the property
by virtue of which it provides balance, is that the eccentricity ¢ should vary as the stick goes over.
In an ordinary non-differential gear ¢ is zero, and when this is worked from a rigged up or down
position ¢ is constant. It is only when & varies with x or £ that a true differential is obtained
and the possibility of balance arises.

The amount of differential D) is usually taken to be the ratio of &, to &, at full movement.
The common usage will be retained here in spite of its failure to define the differential in any
strict sense, and using the suffix max. to denote full movement, we have

Thus for an upward differential (¢, > &,), D is greater than 1 and ¢ and de/d¢ are positive, and
for a downward differential D is less than 1 and ¢ and de/dé are negative. The spurious case of
non-differential from a non-central position (e constant) should be excluded from this definition.

3. Amalysis of Pilot’s Force—The equation of virtual work is
Pdx + {Cpodls+Cy  \—dE)} 1S . cq =0,

where P pilot’s force in the d1rect1on of displacement,
S total aileron area,
ce aileron chord,
Cu.,Cn, respectively ‘the hinge-moment coefficients of the up and downgoing
ailerons, referred to the area of one aileron,

g = 1oV

Rearranging in terms of ¢ and ¢ we have

(CH'M CHd_i_ CH:;'JIZ‘ dei)

3)

7
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Assume now that the hinge-moment coefficient of one aileron is linear in local incidence and
aileron displacement, so that

Cy = by + b, (mean aileron incidence) + b, (aileron displacement)*.

Assume also that response in roll due to the mean displacement & is proportional to &, so that
the mean incidence is increased by #é at the upgoing aileron and decreased by #& at the downgoing
aileron. It follows that if « is the incidence before the control is applied, the downgoing aileron
has mean incidence « — #& and displacement £ — &, while the upgoing aileron has mean incidence
« + #n& and displacement — (£ - ¢). We therefore have

CH,u:bO—{—bl(O(‘_{_%E)_bZ(EJT— 8):
Cra=bo+ by (o0 — n&) + by (& — &),

* No attempt is made to discuss aileron types, such as the Frise whose hinge moments are far from linear.
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so that gﬂ#’l = (nb, — b,) & .

and  CmutCua_p g .

2
~ The discussion of response in Ref. 3leads to a responée factor
b
K=1—n2
n 5
and so we have
Cou—Cua_ _gpe. R 71

2

Again, if &, is the floating angle of the aileron at incidence «, measured positive when upward,
we have

by + b =105&, .. . . . . . . .. .. (5)
and so Qﬂgﬁuzm@—q.‘“ O (-
Substituting in (3) from (4) and (5) we have finally

P ' as de
= = — J— K —_ —_— &) — .. . .. .. 7
p=go=— b [Ke— =g @)
and in order that the control may never be overbalanced we must have
dp ’
%>0. .. .. .. . .. .. .. .. (8)

4. Preliminary Discussion.—Equation (7) is the fundamental expression for pilot’s force.
The aerodynamics of the control is represented by the quantities b, K and &,, the geometry of
the gearing by &, ¢ and %, and it is the designer’s problem to adjust the geometry to the aero-
dynamics of the control so that the force to provide a given rolling-moment coefficient is small
enough at high speed without being too small at low speed. An analysis of the geometry of a
simple form of differential gearing is given in the Appendix. It is clear from (7) that differential
provides balance in virtue of the term (¢, — ¢) de/dé. Now in all practical cases the eccentricity
¢ will increase steadily, either upward or downward, as the control goes over, that is, ¢ and d¢/d¢
will have the same sign. Hence to make the differential effective as a balance the floating angle
£, must be arranged to exceed ¢ numerically throughout the range. Thus with upward differential
a large upfloating angle, and with downward differential a large downfloating angle, is required
to produce an effective balance. The Americans"? have pointed out that a fixed tab gives a
simple and effective means of providing any floating angle that is required. It must be noted,
however, that the floating angle £, has in general an important variation with the incidence «,

since _
— bO bl

The tab is available for the adjustment of 4,, but as will be seen later, the part of &, represented
by (b/b)e must be carefully considered in designing a differential for satisfactory operation
over the whole of the incidence range.

One other general conclusion from equation (7) may be mentioned There will be a general
tendency for a differential to give most balance for small movements of the control, since &; — &
decreases as the control goes over and will not be compensated by an equal increase in de/dé
unless the gear is specially designed to provide this. :

' 3
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5. Basis of Comparison with no Differential.—Before discussing the matter further, a basis of
comparison with the case of no differential must be decided. Referring to Fig. 3 let us consider
more closely what the designer’s problem actually is. He makes the best use of cockpit space to
get a large stick movement, so that x,,, may be regarded as fixed. He then chooses a range of
aileron displacement - £, which gives what he considers to be a satisfactory maximum rolling-
moment coefficient with a linear non-differential gear, represented by the straight line OP. The
question at issue is, how much can he lighten the control by using a differential while retaining
the same aileron power ? If the differential is restricted to the linear rolling-moment range,
the condition is that £, must remain the same, and so in Fig. 1 we compare the non-differential
gear represented by the straight line OP with the differential gear represented by the curves
OP and OQ. This seems the fairest basis of comparison, admitting of course that if the differential
is extreme there will be some loss of power due to breakdown in linearity. Equation (7) can now
be modified to express this line of argument. The non-differential gearing m or &, [, is the
mean value of d¢/dx, and writing

% = um ,
equation (7) can be conveniently rearranged in the form
Sf — & da ’ 9
me @(1 P ()

F is a function of ¢ and « which is equal to — & When there is no differential. The factor g,
although introduced by the differéntial, is not a true differential effect since it would be produced
by a non-differential gear represented by the curve OP. The characteristic differential effect is

represented solely by the factor 1 — f—e 6}—8 The pilot’s force P is obtained from I by

multiplying it by mKb,S¢c,q. Ke ds

There is another basis of comparison which may be made when the designer finds that he has
some aileron power in hand and can sacrifice some of this to lighten his control. - He therefore
uses a differential which reduces the downward movement while retaining the maximum upward
movement. This is illustrated in Fig. 2, where the no-differential (straight line OP) is to be
compared with the differential curves OP’ 0Q. Here, quite apart {rom the true effect of the
differential, the loss of power represented by PP’ appears as a gain in lightness represented by
the angle POP’; it could of course be produced by merely reducing the range and retaining
equal up and down movement (straight line OP’). The equation for this comparison is

. Smax . —8d8 . A.
F=—éu <1 Lt e )

y max.

6. Form of Differential to give Constant Balance.—In general the variation of force with dis-
placement under a differential will not be linear, but the conditions for linearity are of some

interest. If the differential is to multiply the force at any displacement & by the constant factor
k, the general condition is from (9),

(-t ) =

and if the displacement remains linear with st1ck movement (,u = 1), the equation for the eccen-
tricity becomes

§,— e dé
1 — —== .
K§ ag ,
Integrating this under the condition that ¢ and & vanish together, we have
. ) 5 2 e - 2 o
K(1 k)<5> +<5_f 1) =1. .. I (11)
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This elliptic variation of ¢ with & is plotted in Fig. 8 for various values of K(1 — %). Complete
balance is obtained when & = 0, and so the number attached to any curve is the value of the
response factor K for which there is complete balance with that form of the eccentricity. For
instance, if the response factor is 0-6, any curve to the right of 0-6 will give less than complete
balance, and any curve to the left will give overbalance.

With K = 1 the eccentricity curve for complete balance is an arc of a circle. This has been
further analysed in Fig. 4, where curves of ¢/£,,, against £/£,,. are plotted for various values of
* &//€nax. » the condition being complete balance with K = 1 and d¢/dx is constant ; all these curves
are circular arcs. The point to notice here is that it is aerodynamically possible to get complete
balance by differential without using an impossibly large tab. It appears from Fig. 20 (reproduced
from Fig. 19 of Ref. 4) that a floating angle of at least 20 deg. can be obtained with a tab whose
chord does not exceed 20 per cent. of the aileron chord and whose angle does not exceed 15 deg.
Taking &; = 20 deg. and a maximum displacemént ., of 16 deg. we have the curve labelled 1-25
of Fig. 4. This differential gearing has been drawn in more detail in Fig. 5, and is aerodynamically
quite feasible. It represents about the lowest eccentricity which can be used in practice to give
complete balance. -Higher eccentricity, combined with a smaller tab, would give the same result,
the limit occurring when the floating angle is equal to the maximum displacement.

It should be noticed that if &, varies with incidence, complete balance can only be obtained
at one point of the incidence range. ’

7. Parabolic Differential.—In several actual examples of differential gear which have been
examined, the displacement & varies linearly with the stick movement x and the eccentricity
¢ varies as the square of the displacement £.* This typical parabolic gear is useful as a basis for
turther discussion. In this case we have

2
1 + 6 Emax.

w=1, g e ME, e = g, D = —
. 1 - § Emax.
and so equation (9) becomes ’
A A ‘
F:—E[I—I—{@f——z—?)}‘ R . .. . (12
. ~ dF z 3 .
Since Egz—(l—l?ﬁf—_l—_gglz?},
the balance decreases as the displacement increases, and the condition for stability is
A :
1 - K‘gf > 0 »
complete balance being obtained at & = 0 when
f =7 . .. .. . o .. .. . (13)

As illustrations of the kind of force reduction which can be obtained with various amounts of
differential combined with various floating angles, two cases have been worked out for parabolic
gears, assuming that K = 1, i.e., that the differential balance is independent of incidence :

(1) Parabolic gears with the same maximum displacement, £, = 16 deg.
(2) Parabolic gears with the same maximum upward movement &, ... = 20 deg.

These illustrate respectively the two bases of comparison discussed in section 5.

* See for instance the gears tried in flight in Ref. 2. It is shown in the Appendix that this gearing is obtained when
the stick crank is eccentric and the aileron crank central in the neutral position. :

5
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(1) Parabolic Gears with Same Maximum Displacement, .., = 16 deg.—The gearings as
developed from the black line representing no differential are shown for a range of D in Fig. 6,
and the force function F is plotted against ¢ for three floating angles (0, 10, and 20 deg.) in
Fig. 7. In Fig. 7 the black line at 45 deg. represents no differential, and overbalance occurs as
soon as the slope at the origin becomes positive, The diagram shows the marked increase of
curvature at a given floating angle as the differential increases, and indicates clearly that with this
form of gear it pays to use a moderate eccentricity combined with a large floating angle, rather
than a large eccentricity combined with a moderate floating angle, if the object is to get a large
reduction of force over the whole range of displacement. This is seen for example by comparing
the curves for D = 2, ;= 20, and D = 6, & = 10. These give roughly the same force up to
£ = 5 deg., but at maximum displacement the force with the small differential is still compara-
tively small, while with the large differential it is actually greater than with no differential,
since the eccentricity has exceeded the floating angle.

Figs. 6 and 7 are drawn for upward differentials (¢, > &,) but they apply unchanged for down-
ward differential if &, and &, are interchanged, ¢ and &; are changed in sign, and D is inverted.
This remark applies also to Figs. 8 and 9 (see below).

(2) Parabolic Gears with the Same Maximum Upward Movement, &, ... = 20 deg.—The gearings,
as developed from the black line representing no differential, are shown for a range of D in Fig. 8,
and the force function F is plotted against ¢ for the floating angle in Fig. 9.

In Case (1) above all the systems had the same maximum power. In this case the decrease in
... as the differential increases represents a deliberate loss of power, which is reflected by a
reduction in force quite independent of the true differential balance. The loss in power is shown

" in Fig. 9, and the corresponding reduction in force is represented by the broken line.

8. Chotce of Differential and Tab Setting when the Floating Angle Varies with Incidence—The
preceding discussion has assumed that the floating angle is independent of incidence. We have
now to discuss the crucial preblem of differential balance, which is how best to make it effective
over the incidence range between diving and landing when the floating angle varies with incidence.
Let the upfloating angle in the dive (i.e. near o = 0) be £;, and let the increase in upfloating angle
at landing (i.e. near « = 15 deg.) be A, so that the extreme values of the floating angle are
£ = &and & = &, + A. The corresponding values of the force function F are, for a parabolic
differential,

; :
Fo= — E{l — K(Eﬂ) —112—52>} in the dive
and F,=— 5{1 ——-K<Eﬂ] + A ——§§Z>} at landing

The designer’s problem may be put as follows. The sign and magnitude of A is fixed by the
type of aileron he has chosen. A will be positive or negative according as the aileron is convergent
or divergent (i.e. according as b,/b, is positive or negative)*, and since the range of &;/b, may
well be -+ 1 and the incidence range is of the order 15 deg., the range of A to be considered is
of the order + 15 deg. The designer has to arrange the sign of his differential (4 is 4+ or —
according as the differential is upward or downward) and the value of &, (controlled by tab size
and setting) to give, with the A with which he is working, the best distribution of balance over
the incidence range. The best balance distribution is governed by the following considerations:

(1) F, should be as small as possible.

(2) F, should be numerically considerably greater than F, if sufficient feel is to be retained
at slow speed, for the speed-squared factor between diving and landing is at least 20.

(3) Overbalance must be avoided in any part of the range. With a parabolic differential this
means that dF,/dé and dF ,[d¢ must both be < 0 when ¢ = 0, whatever the incidence.
That is, £ must not exceed K/4 numerically (see equation (13)).

* An aileron is convergent or divergent according as it tends to float upwards or downwards when the incidence is
increased. It is null when the floating angle is not affected by incidence.
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We can now see in diagrammatic form the solution of the problem. |

7 Convergent Aileron
PQ=AX=YB=A

AQ = 0B = K/a
AP:XQ:QY:%fA

——————— low speed
high speed

Suppose that a convergent aileron (A positive) is to be balanced by a differential 4 which may
be of either sign. If the floating angle is zero at the high speed limit, the range of floating angles
is represented by the sector OPQ), where PQ = A. Now the floating angle for complete balance
is K/4 ; this is represented by OA when the differential is upward, and by OB when it is downward.
Adjustment of the floating angle £,, by means of a tab is represented by rotation of the sector
OPQ within the limiting sector OAB. Thus if upward differential is used, the most that can be
done through the adjustment is to rotate OPQ to the position OAX through the small upward
floating angle AP, thus reaching complete balance at slow speed (OA) and XQ/AQ of complete
balance at high speed (OX)*. This is the opposite of what is wanted. If, however, downward
differential is used, tab adjustmient can rotate OPQ to the position OYB through the large negative
floating angle OB, thus reaching complete balance at high speed (OB), and QY/OB of complete
balance at low speed (OY). This is what is wanted. :

. The condition for balancing a divergent aileron (A negative) being exactly the opposite of
the above, we are led to the following general rule:

To obtain good balance by differential, a downward differential, combined with an upward-
set tab, must be used to balance a convergent aileron, and an upward differential, combined
with a down-set tab, must be used to balance a divergent aileron. If the aileron is null
(& = 0), differential of either sign may be used, but in this case the balance is invariable
over the speed range.

This discussion establishes one favourable factor which seems to be peculiar to differential
balance, namely, that the convergence or divergence of the aileron can be used to make the
hinge-moment coefficient progressively heavier as the speed falls, and so the speed-squared law
can to some extent be defeated.

The above argument has been illustrated in Figs. 11 to 15 by working out the force functions
Fyand F, for the parabolic gearing 2 = + 0-05 (Fig. 10) when it is used to balance

(@) a convergent aileron, 8,/b, = 1, A =15 deg. (Figs. 11 and 12),
and (b) a divergent aileron, 4,/0, = — 1, A = — 15 deg. (Figs. 14 and 15).

The value of K is taken to be 1 — é b,/b,.

To round off the argumient, results for a null aileron (A = 0) are shown in Fig. 13.

. *The argument is of course limited to & == 0 ; balance decreases as £ increases
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Fig. 16 shows the force functions when these parabolic gears are combined with the various
ailerons to give the best possible results, that is, when &, is arranged so that in each case there
is complete balance, when & = 0, at one extreme of the incidence range. -

9. Design Conditions for Optimum Balance by Differential with Fixed Tab.—It will now be clear
that if differential gear is to be used as a major means of aileron balance, its design is bound to run
counter to accepted practice, which is to balance mainly by other means and to use an upward
differential to improve the aileron rolling and yawing moments at large displacements and high
incidence ; as no more than the natural floating angle is used, the differential balance at high speed
is feeble and may be of either sign. Now it is highly probable that an unbalanced aileron will be
markedly convergent, and can only be made divergent when it is aerodynamically in close balance.
Hence if the designer decides to balance such an aileron by differential, he is virtually committed

-to a downgoing differential in combination with an upward-set tab. He will enter on the credit
side of his design account :(— ’

(1) A direct attack on his main objective—fine balance at small displacements at high speed,

coarse balance at large displacements at low speed—which is very difficult to attain
by any other means. . y

(2) Suppression of most of the serious troubles arising from lack of hinge-moment linearity
in common types of nose balance, such as the Frise. '

On the debit side of his account there will appear :(—

(3) Some loss of rolling moment and increase in adverse yawing moment due to the sign of
the differential.

(4) Increases in load in the control system, in pitching moment and in drag, due to the tab.

As regards (3) a very rough idea of the losses involved in a downward differential is given in
Figs. 17 to 19, which show the variations in rolling and yawing moment coefficients (wind axes)
when the differentials of Fig. 6 are applied to results for plain‘ailerons on rectangular wings
given in Table 2 of Ref. 5. The loss in rolling moment is due to the earlier breakdown in flow
over the downgoing aileron. This can be retrieved to some extent by the use of a slot. The
increase in adverse yawing moment is due partly to increase in profile drag of the downgoing
aileron and partly to increased induced drag moment ; the former, but not the latter, is recover-
able with a slotted aileron. Lacking full-scale evidence, it is impossible to say how serious the
adverse yaw effect is likely to be, but the fact that opposing moments from rudder power and
weathercock stability are both much greater now than formerly is a strongly mitigating factor,
Certainly the ill effects of adverse yaw are much less noticeable now than they used to be, and

the possibility of trouble from this source should not act as a deterrent to exploration of the full
potentialities of differential balance.

‘As regards (4), the loads due to the tab, let 8¢, be the increment in floating angle which it
provides. Then the neutral load in the control circuit is simply that due to a hinge-moment
coefficient 6,8 £, Again it appears from the multi-flap theory of R. & M. 11716 that the corre-
sponding increment in pitching moment coefficient about the quarter-chord point is roughly
represented by " :

6Cyo = 0-1 6&;

over the part of the wing covered by the tab, the angle being measured in radians. Thus if the

tab increases the downfloating angle by 20 deg., it produces a local increase of C,, of about ¢-03
and an average increase of C,, over the whole wing of about 0-01.

10. Upward Differential to Balance Convergent Adleroms. The necessity of using downward
differential for close balance of convergent ailerons arises only if the differential tab is fixed.
Upward differential can be used in association with a tab which is arranged to move downwards
as the incidence decreases. This could be achieved by way of the fore-and-aft stability by arranging
a suitable gearing between the differential tab and the fore-and-aft movement of the stick.

8



Apart from a tendency to give less balance in a turn than in straight flight at the same incidence,
this should be aerodynamically quite satisfactory. There is, however, no need to face the
mechanical complication of this scheme until it has been proved in ﬂ1ght that downward differ-
ential has serious drawbacks.

11. Conclusions.—(1) The essence of balance by differential is that the eccentricity ¢ varies
with the displacement ¢, and that the naturally small floating angle near no-lift is augmented
by a tab so that it exceeds ¢ numerically over the range of & It is theoretically possible to
design the gear so that the hinge moment remains linear with displacement, but with the simple
crank system in common use the heaviness increases with the displacement. ‘

(2) The main object of current aileron design is to get the balance as close as possible for small
displacements at low incidence while retaining coarser balance for large displacements at high
incidence, thus defeating the speed-squared law as far as may be. If the aileron is convergent
this can be arranged by using a downward differential with an upward-set tab; and if divergent,
- by an upward differential with a down-set tab. If the aileron is null either differential system
may be used, but in this case the balance will be invariable with incidence.

(3) There is a strong case for exploring in flight the possibilities of balancing an initially un-
balanced aileron by differential action alone. - The downward differential may have some un-
favourable effects on rolling and yawing moment at slow speed; this can only be determined by
full-scale work. Close balance can probably be obtained by using a fairly small tab set at an angle
not exceeding 20 deg. ; the loads introduced by the tab are not prohibitive.

(4) If downward differential should prove to have serious effects on aileron control, there
remains the possibility of balancing convergent ailerons by upward differential combined with
a tab geared to the fore-and-aft movement of the stick.

Notatron o
&, up aileron angle.
&, down-aileron angle.

__,_2

, displacement.

&, — & .
£ = g eccentricity.

D = ¢,/&, at maximum displacement.

P pilot’s force in direction of movement of stick.
x  movement of pilot’s hand.

S, total aileron area.

¢ aileron mean chord.

Cuu, Cys  hinge-moment coefficients of the up and downgoing ailerons, referred to
the area of one aileron.

Cy = by + b, (mean aileron incidence) + b, (aileron displacement).
, b
K response factor = 1 — n 7" (# is taken as é) .
b= P
T Seeeq”

m  gearing between stick and aileron in radians per foot when there is no
differential, = &, [Fma.
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_La
= mdx-
P P .
F mKb, — mKb,S: i’ force function.
k  factor by which the force at any displacement is multiplied by the

differential gear.
i EZ? = 2¢ for parabolic gear.

¢, floating angle, positive when upward.
£, floating angle at minimum incidence.
A" increase in floating angle between minimum and maximum incidence.
8¢, increment in floating angle provided by tab.
F, force function at minimum incidence.
F, force function at maximum incidence.

APPENDIX
Geometry of Differential Gear

Differential gearing as used at present consists essentially of a stick crank and an aileron crank,
which may be of different radii, one or both of which are set eccentrically in the neutral position.
Actually of course the control system must make a right-angle turn between stick and aileron,
but the general features of the system will be obtained by confining the geometry to two dimen-
sions, and in the common case when the crank radii are small compared with the distance between
their centres, the approximation is probably fairly close. '

Taking the distance between the crank centres as the unit of length, the neutral position of the
system is defined by

%,y  the radii respectively (ﬁ stick and aileron crank,
and fo, $o  the angular settings of the crank, as shown below.

STICK ! AILERON
CRANK CRANK

Neutral Position.

When the stick is displaced through an angle 6, let the up-aileron movement be ¢ and the

down-aileron movement ¢’. Then the displaced position for the up-aileron movement will be as
shown below:— ‘

Displaced Position.
10



Considering a small change d6, d¢ from this displaced position we have

5 — (0 + 6) —{—l) yaé . cos(

xdb . cos(
- d¢  xsin (0+00—z)

)+ 1),

or A6~ ysin(p + ¢o— )’
, ysin (¢ 4 ¢,) — xsin (6 + 6,)
where tanl—l_xcos(0+9)+ycos(¢+¢)

" and so, eliminating 2, we have

dg % sin (0 + 6) 4 ysin (6 — do+ 6 — 4)

i~y sm(gb—l—qb)—!—xsin(60—¢0+6—¢)"
If 6 and ¢ are small, this can be expanded in the form

d¢
d6—40+“16+42¢:
where
Sin 0, — y sin (¢y — o) . ¥ %P
& = Sin ¢y — xsin (g — 6,) ¥ - T yq’
a sin ¢, {cos 8, — % + y cos (po — 0o)} _ ssin ¢,
dy  {sin 6, — Y sin (¢g — 00)} {sin $o — x8in (dg — o)}  pg
ay — sin 6, {cos ¢, + v — % cos (¢g — 04)} __ —rsiné,
2

@y {SIn O, — 4 SIn ($ — O4)} {SIN do — ¥ SIN (o — O))

and p, g, 7, s are as shown below :—

Thus @, = 0 if a — #/2, and @, = 0 if § = =/2.

If in addition x and y also are small we have from (2)

d$ % sin (0 + 6)

40—y sin (¢ + fo)’
% sin 09,
Y sin ¢’

a():

! t 6
= CO
6l0 0>

Ay
= cot ¢,.

11
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In this case a, = 0 if 6, = #/2 and 4, = 0 if ¢, = =/2.

Similarly, if ¢ is the movement of the downward aileron corresponding to the stick movement
6 we have :

aé’ :
disgzao—-alﬂ—azqﬁ’. .. .. .. .. .. RS (5)
It follows now from (3) and (5), by writing
I A Bl i
£ = 9 y &= 2 ’
(as in the main analysis), that
dé
d_é' —_ dof—l— azﬁ
de )
a6 = a0 + a.¢

These are equivalent to

A
Jot = a’8 = ma,0 ,

d?e

2
402 — Ay € == @y + Ayty,

and so they may be integrated in.the form
(%S inh a2 |,
&= P -+ . sinh a,0 . 6 |-

a  a
e = (—“ + é) (cosh a,0 — 1)

Specral Cases.—(a) If a, = 0 we have:

ao .
‘= — sinh a,0 ,
723

a
& = a—" (cosh a0 — 1),

and so (Z—z s+ 1)2 — (Z—: 5)2 —1.

Thus the variation of ¢ with ¢ is hyperbolic.
If x, y are small, we have in this case 8, = =/2 and a,/a, = — cot o

Hence the eccentricity ¢ is positive or negative (z.e. ¢ is greater or less than ¢') according as
¢, 1s greater or less than #/2. The differential depends only on ¢, and is independent of x/y.

(b) If a, = 0 we have from (6)
= a,0 ,
e = a0,

2
Thus ¢ = aﬁ% §2~ and the variation of ¢ with &is parabolic.

0
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This is the case which has been used for illustration in the aefédynam’ie analysis.

If x and y are small we have ¢, = #/2
4, ) Cos N
> xsin® 0, " 7
Thus the eccentricity & is positive or negative according as 0, is less than or greater than =/2,
and is increased by making the aileron crank larger than the stick crank.

and
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