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Reports and Memoranda No. 2512
19th February, 1945

PART 1

1. Introduction.—The subject of the present note is the increase of the drag of an aerofoil
which arises from the presence of limited shock waves when the forward speed lies between the
so-called shock stalling speed and the velocity of sound. Evidence from photographs and other
sources shows that under certain conditions a single limited shock wave exists on one or both
surfaces of an aerofoil when the local speed at some point of the surface exceeds the velocity
of sound. It is therefore suggested that ideal two-dimensional motions about an aerofoil may
exist, which satisfy the equations of motion of a non-viscous non-conducting compressible fluid,
at all points of the field outside a limited shock wave attached to one or both surfaces of the
aerofoil. The shock wave is to be considered merely as a surface of discontinuity across which
the usual conditions of continuity of flow, momentum, total energy and velocity parallel to the
surface, are satisfied ; it forms the rear boundary of a limited region in which the flow is supersonic
and its intensity falls to zero at its outer edge where the velocity is equal to the local velocity
of sound.

As a result of the increase of entropy on passing through the shock wave, the density and
velocity at a large distance behind the aerofoil of a particle of fluid that has passed through
the shock wave will both be reduced below their free-stream values; the pressure will have
regained its free-stream wvalue. The ordinary momentum integrals taken across lines far in
front of, and far behind, the aerofoil thus determine the drag in the ideal case ; this may be
considered as the ideal (lowest possible) drag due to an actual shock wave.

2. Ideal Drag—The object of the present note is to point out the possibility of converting
the momentum integral into an integral taken over the surface of the shock waves (one or two).
In the notation of Fig. la, # and v denote velocity components parallel and perpendicular to
the shock wave and g their resultant : suffix 0 denotes free-stream values (V, free-stream velocity) :
suffixes 1 and 2 denote conditions just upstream and just downstream of the shock wave, suffix 3
denotes conditions in the wake far behind the aerofoil. The ordinary momentum integral for
drag is

D=J(V—gs)p,gsdas ERRMENIR S o el e e P

per unit length, where do denotes an element of length normal to a stream tube which in this
case is normal to the free stream. Let ds be an element of length (measured along the surface

* The method of the present report, leading to the curves of Fig. 2, was developed early in 1939, but the paper has
been rewritten as a result of the advice of Mr. A. D. Young whose suggestions are gratefully acknowledged.
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of the two-dimensional shock wave C) containing the same stream tube as do,. Then by
continuity
Ps 9s dog = Pz G2 do, ,
= ps Uy ds,
=m ds,

WhEI'e m = P ﬂl — pPa Usg.
If E be the total energy f)er unit mass, which is assumed to be constant throughout the fluid,

E=1g —”— it LA yilf;' e

Again since the conditions are assumed to be isentropic along the stream tube from section
(2) to section (3),

Br _Ps _po -
S T T e e < e as R
. PV
Hence %(V_qal)_y—-lp,l )( ) } i o Y 5 o
If S is the entropy, given by
exp. (S/C.) = p/p” e R ey TR -
for a perfect gas,
Pr\ (Pa\'" _ s
(p) ( p.) — F (definition of F)
= exp. {(S: — S))/¥C.)} .. - - 5 ¥ S )
Finally equation (1) may be transformed into
2 ve :
D—VJMS[[—[I—W(F—I)] } . .. . (7]
taken over the whole surface of one or both shock waves, where
| e PDV’
Lk vPeo

is the Mach number of the free stream. It may be shown that

o) ptr—1)py
pe p—1)p+(+1)p°

and so

_ A D) p A (v — 1) parpa\tir
F= = Dh+t o TDaE) - ®)
and F can be evaluated in a practical case if p, and $, are both measured. The value of m,

however, requires the determination of #, or of the in matlon of the shock wave to the stream.
The latter may be determined if p, and p, are both known.

l)
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It is proposed to attempt the measurement of $, and p, over the surface of shock waves on a
5-in. chord aerofoil in the rectangular high-speed tunnel, to attempt to evaluate the integral (7)
for the ideal drag, and to compare it with the drag deduced from wake exploration and with
the form drag deduced from pressure measurement over the surface.

3. Use of Low-speed Potential Flow.—A method will now be described of evaluating the drag
integral (7) in terms of the known low-speed potential flow round a body of given shape on the
basis of certain crude assumptions. Assume that the shock wave starts from the point of low-
speed maximum velocity N (Fig. 1b) and lies along a line of constant velocity potential NP
(everywhere normal to the streamlines). Let s be the distance along the curve measured from
N to an arbitrary point P. Write

“'=§;L_V? R h e § il B b S

at the point P where $, and V', stand for low-speed potential (incompressible) values ; then p,,
may be considered as a known function of s. At any Mach number M, above the critical value,
if p, is the pressure at P just in front of the shock wave it will be assumed that

%‘::p(m)p‘“ b e s Mrai. 0 Ay
where ¢ (M,) is a function of M, only, which will be taken here to be equal to the Glauert factor
¢ (M) = (1 — M)~ s o - oy o WLl
Equation (10) may be written in the form
%:=1—§7M,’¢(M.,]p¢, ) et a8 o
and (using the ordinary relations of constant energy and entropy) it follows that
T3 — 1) ME= (143 — 1) M3 (pup) 7 Sl

since the shock wave is everywhere normal to the local stream lines. The critical Mach number
M, is equal to the value of M, given by substituting in equation (13), M, = 1 and p.. equal to
its value p,y at the point N.

To express the integral in equation (7) for the drag as a function of M, (p,, V,) and p. only
we make use of the relations

_m _ pith

poV poV

M, 5% o A

=AM Pt ™, L L L L e
0

using (13), and the known relation

by .., 7—1 L T L |
pH r+1 * y+1° (19)

F being given by equation (8) and M, by equations (13) and (12).

* This assumption is made by Jacobs in his formula for the critical Mach number.
3
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The drag may then be evaluated, for any value of M, greater than M,, by equation (7), the
range of integration being from the surface of the aerofoil to the point Q (Fig. 1b) at which s = s,
and M, = 1, the value p,, of p, being determined by substituting M, = 1 and p, = po in
equation (13)

4. First Order Theory.—I1t is of some interest to establish in a general manner the order of
magnitude of the drag given by the above equations for a Mach number M, which exceeds the
critical Mach number M, by an amount

Z=M¢-—M,°,

which is considered as a small quantity. It will be shown that on the basis of the above assump-
tions, s, is in general of order 2, while it is known that (F — 1) is of order {(p./p,)— 1} or 4%,
and so the drag is of order A% .

Again the assumption that the shock wave coincides with the equipotential through the point
of maximum suction is not likely to be true in the limit for small values of 1 if a shock wave is
formed immediately M, exceeds M, Hence the conclusion that the ideal drag is of order not
greater than 2* will in fact hold for the ideal case.

In Appendix I the relation
Cp = Ki* + 0 (2% & o & - i3 £% Ve e
is deduced from the previous equations, and K is expressed as a function of M, p.y and «

where

P,;;,:P‘LN—'C(S-I‘O(S'). e a'a a5 S e (L o6 (17)

Also M, is a known function of p,y, being the value of M, given by putting M, =1 and
Pa = pax In equation (13).

In Appendix II K is evaluated for the case of an elliptic cylinder at zero incidence for which
it is necessary to write

Cp = 2K2*, . < e b o . - e W (18)
since there will be two symmetrical shock waves.

Curves of C,, deduced from formula (18) are plotted in Fig. 2 for a series of values of the critical
Mach number M, corresponding to a series of values of thickness ratio of the elliptic cylinder
(Table 1). On the same figure are plotted a selection of curves of €, for certain aerofoils deduced
from pitot traverse observations in the N.P.L.* High Speed Tunnel and a single curve of form-
drag coefficient deduced from observations of pressure in the N.A.C.A.} 24-in High Speed Tunnel.
No special significance is attached to this comparison except to bring out the point that even if
a shock wave is always formed immediately the velocity of sound is first exceeded on the surface,
the rise in drag to be expected apart from boundary-layer effects will be very small at first, being
in general of the fourth order of the intensity of the shock wave.

* N.P.L. National Physical Laboratory, Great Britain,
+ N.A.C.A. National Advisory Committee for Aeronautics, U.S.A.
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APPENDIX 1
WriteM1: 1 _l—,u]_,

and consider equations (13) and (12) as defining x, as a function of M, and $,, in the form

'#1‘—_'.“1(Mu,pd.): . .a . . . . . . (AI)
Then by definition of M, p.y and p., ,

0 =uy (My, pun) , - s s s i s #b .. (A2)
0 = py (My, Do) - 3 o ¥ o3 = i ¥ .+ (A3)
Assume that y, is small ; then s, is a small quantity of order x4, and we can write
P = Pun — as + 0(s?) , v a . s s e .. (A4)
fo = s O I R L e R )

where o 1s a constant derivable from the known low-speed motion. Write p,y, #,, as abbreviations
for the result of putting M, = M.y, b = Pan in 8uy/0M,, 2uy/2p,, Tespectively, after differentia-
tion. Then (Al), (A2) and (A3) give

Py = Aty — & Sthyp ,

0= Apyyy — 5 HBap 5

and so By = o 1, (S —8) ,
; Ant
with 85 = iy
O fh1p

By differentiating (13) with (12) we have

1 o
My = '% (? T 1) M, {1 3 é (? = l)ﬂffws_l_ ?l‘i(i_x)'\fpzm (24 + Mq ¢ ’)

Hip = (i) ('}' 4 1) (ﬁ NM',U’QS )

%)N =1— M ¢ pux .

where

It may be shown that to the first order equations (8) and (12) give

IGy—~1

F—1= (?+ )!Jul)

and that

poV Pu)? : l/ My -
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Substitution in equation (7) gives to the first order

D
Ll

—J‘(p)us(ﬁw MY (50 — P %,

= K2,

where

2 (y + 1) (pufpo)y 0"
ac K =331 ‘l+i(?—l)M¢e (p) pax (¢ + IMa#)]

which is a function of M, and $_ only, and M, is a known function of p.y (Table 1). On the
assumption that

¢ = = (1 (- M’wl)lis ’
the factor ¢ + 3Mo ¢’ = ¢* (1 — M) .

APPENDIX II
For an elliptic cylinder of fineness ratio r at zero incidence, it may be shown that

?:'I.N AT (2 + t) 1
ac =41+ 1)~
and the value of K is to be doubled since there are two shock waves (Table 1).

TABLE 1
General Elliptic cylinder at zero incidence
M, Perx Kac T Ders oc 2K
0-5 1-848 684 0-687 1-848 7-83 175
0-55 1-385 203 0-544 1-385 5-19 113
0-6 1:036 138 0-427 1-036 3-47 79-3
0-65 0-766 671 0-329 0-766 2-33 577
0-7 0-555 33-8 0-247 0-555 1-54 44-0
0-75 (-390 189 0-179 0-390 0-996 37-9
0-8 0-261 10-6 0-123 0-261 0-620 34-1
0-9 0-082 3-35 0-040 0-082 0-174 38-5
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PART II

Summary.—The method given in Part [ of calculating a first approximation to the ideal theoretical drag rise due to a
shock wave on an aerofoil is extended to cover the use of the Kdrman-Tsien solution in place of the Glauert relation.
It is shown how the drag rise can be calculated from the theoretical critical Mach number and the geometrical curvature
of the surface at the point of maximum suction. In particular for two aerofoils having the same critical Mach number the

drag rise is proportional to the radius of curvature ; thus the drag rise on a 17-3%, ellipse at zero incidence will be three
times that for an NACA 0012 section having the same critical Mach number.

Comparison with experiment in the N.P.L. 20 in X 8 in High-Speed Tunnel shows that for a number of aerofoil
shapes the theoretical rise occurs consistently from M = 01 to 0-13 later than the observed rise.

The present method is simple and should give at least a better indication of the relative merits of different aerofoil
shapss than a knowledge of the theoretical critical speed alone.

In A.R.C. 5958, and Part I of this paper, a method was advanced of calculating the drag of
an aerofoil arising from the increase of entropy through a limited shock wave, on the basis of
some rather crude assumptions. In outline these assumptions were as follows.

1. The shock wave starts from the point of maximum velocity on the upper surface as calculated
for incompressible flow and follows the course of the low-speed equipotential through this point.

2. The velocity just upstream of the shock wave is deduced from the low Mach number
potential field by means of one of the standard assumptions (in the previous reports' and Part I

of this paper, by the Glauert relation as applied by Jacobs and alternatively in the present
report by the Karmén-Tsien relation).

3. The shock wave occurs whenever the maximum velocity exceeds the local velocity of sound
and ends at the point at which M = 1, as deduced from assumption 2.

Calculations were made in A.R.C. 5958' on the basis of the above assumptions for two elliptic
cylinders at zero incidence and for an aerofoil shape at two values of incidence. These calcu-
lations involve no further simplifying assumptions.

In Part I the increase of C, due to the shock wave was treated as an expansion in positive
powers of (M, — M), where M, is the actual free-stream Mach number and M, is the free-stream
Mach number at which the velocity of sound is first attained on the surface. It was shown

that the first term of the expansion involves the fourth power of (M, — M,). The value of the
coefficient K in the relation

Cp = K(M, — M,))* + O(M, — MJ)* b e s S

was evaluated in a general manner as a function of M, and «, where « is the coefficient of s in
the expansion
P:L:Pcu—-ats-i—ﬂ(S’). = > e 3 = - e e (2)

Pa (= —p/3pV7?) is the suction coefficient in potential flow at low Mach number at a point at
distance s from the surface of the body along the equipotential line through the point N of
maximum velocity, p..y being the value of $, at this point. Thus a knowledge of the values
of M, and K gives a first approximation to the entropy drag.

The numerical value of K was calculated for the general case of the elliptic cylinder at zero
incidence.

It has since been noticed that the value of a can be expressed as a function of M, (or p..y)
and of the geometrical curvature of the surface at the point N, by the formula

L O e acei )+ "% i o o et )
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This is demonstrated in Appendix A, or it could be deduced from the relation between centrifugal
force and curvature in a curved stream. It would therefore be a simple matter to determine K
for any shape or incidence for which the theoretical value of M, (or .. is known, provided
that the shape can be expressed as a reasonably simple algebraical formula (or a rough value

can be obtained from the plotted shape). The method of Ref. 1 on the other hand is too laborious
for extensive use.

The opportunity has also been taken of generalising the formulae slightly, so as to cover the
type of relation between compressible and incompressible suction coefficient given by Karman
and Tsien. This generalisation is made in Appendix B, which also contains the explicit results
arising both from the Glauert- Jacobs relation, as in Part T and from the Kdrmén-Tsien relation.

In Part I the relation between compressible suction coefficient p, and incompressible coefficient
P was assumed to be of the form

p‘ =T _f)c.[. (#(Mﬂ) )

where M, is the Mach number of the free stream. This has been generalised into the form

Pc i ¢(P&LJ M 0) 3
which covers the Karman-Tsien relation.

It is shown in Part I that the formula for the coefficient K in terms of « and M, (for a given
form of relation between p,,, and M,,) is of the form xcK = Function of M, only. Values of
xcK have been tabulated in Table 2b both for the Glauert and for the Kirmén relation ; the
former supersedes Table 1 of Part 1 which is not very accurate ; the corresponding relations
between p,, and M, are given in Table 2a. From Table 2b, values of K can be deduced when

pax and « are known, the latter being deduced from the geometrical curvature by use of equation
(A8) of Appendix A. :

Additional arguments in favour of the use of (1) are :(—

1. The basic assumptions become less and less justifiable as M, — M, increases from zero,
so that it is doubtful whether it is worth while to go beyond a first order theory.

2. Fig. 3 (reproduced from Fig. 2 of Ref. 1) shows that for two elliptic cylinders at zero inci-
dence, the first approximation of Part I agrees reasonably well with the calculations of Ref. 1*.

In Table 3 are given values of M, and K calculated by the formulae of the Appendices using
the Karmén relation for a number of typical aerofoils ; values of M, range from 0-65 to 0-8.
Curves of 4C,, calculated for a selection of these aerofoils by Formula 1, are given in Fig. 4a.

The value of AC,, is taken as the sum of the values for the upper and lower surfaces calculated
separately.

An interesting comparison is that between NACA 0020 and the 20 per cent ellipse, both at
zero incidence. The value of M, for the latter, exceeds that for the former by 0-058, but the
difference of the values of M, for a 4C,, of 0-02 is only 0-023; thus the advantage of the ellipse
gets smaller as the drag rises. Although this comparison does not include the efiect of breakaway,
it may help to explain the rather disappointing results of attempts to reduce shock stalling
effects by improving the shape of a section leaving the thickness unaltered.

Table 3 also illustrates the fact that for two aerofoils (symmetrical and at zero incidence) of
different shape and thickness having the same critical speed, the ratio of the drag rises is equal
to the ratio of the radii of curvature. Thus the drag rise for a 17-3 per cent. ellipse is three times
that for the 0012 section which has the same critical Mach number.

Cow The Glauert relation is used in both cases.

8
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In Fig. 4b some of the calculated values of 4C, are compared with values of profile drag
measured in the N.P.L. Rectangular High Speed Tunnel (details are given in Appendix C). In
all cases the theoretical value of AC, has been increased by the approximate amount of the
observed value below the shock stall.

It is remarkable that the difference between the calculated ideal drag rise and the rise observed
in the tunnel can be represented by a change of Mach number which lies between 0-10 and 0-13
for four very diverse cases. Apart from errors in the theoretical curves due to the approxi-
mations employed, this difference has been commonly attributed to a breakaway of the boundary
layer caused by the shcck wave. Of other possible causes of discrepancy, tunnel interference
should be small, since the flexible walls of the rectangular tunnel were shaped to agree with free
streamlines by the method of A.R.C. 8073°.

The curve of the flight results on NACA 2218 (* Tornado '), derived from A.R.C. 59907, though
of very limited extent, might suggest that the breakaway in flight is about one half of that occur-
ring on the mcdel ; similar results of diving tests on the * Mustang ' and ¢ Spitfire * will be of the
greatest interest.

Humidity is another possible factor tending to give a spuriously high drag coefficient in the
N.P.L. tunnels which might account for a part of the discrepancy.

In a recent report, A.R.C. 8286, Monaghan and Fowler have calculated the drag corresponding
to the irreversible loss through a shock wave on the basis of measured static pressures near the
shock wave on an aerofeil in the N.P.L. rectangular high-speed tunnel. In the case considered
the corresponding drag values based on the assumptions of the present paper were seriously in
error, so that at a Mach number slightly more than 0-1 above the critical the rise of drag coeffi-
cient as calculated by the formulae of the present paper occurs at a Mach number about 0-05
higher than the same value as based on observed static pressures, and the latter again at about
0-05 higher than the same value as measured in the tunnel by pitot traverse. The extreme
difference of 0-1 agrees with the other cases illustrated in Fig. 2.

If it were legitimate to argue from a cross comparison of two different aerofoils (a modern shape
14-5 per cent. thick of A.R.C. 8286 and NACA 2218 of Fig. 3) it might be suggested that there
is no appreciable breakaway in flight, the drag agreeing with that calculated from the pressures
near the shock wave on the model.

In general the results suggest that the present method may give a better indication of the
relative merits of different aerofoil sections than is given by the theoretical critical speed above
and that it would be worth while to undertake the small extra labour of calculating the factor
K whenever the theoretical critical speed is calculated.

APPENDIX A

Determination of the Coefficient o of Equation (2)
in Terms of the Geometrical Curvature

Take as origin 0 the point of maximum suction on the surface of a body in two dimensions
(incompressible fluid) ; take axes Ox tangential to the surface downstream and Oy normal into
the fluid. Then since the total velocity g is stationary at the origin and parallel to the axis of x,
we can write,

u — iv = g + bz + 0(r%) , 2 s e 1 <z 3= -+ (A1)
and so v=¢qy+ i (*x—3»)+0(), .. .o . > - .. (A2
#=g,— by—+0(?, = i - = g & .. (A3)
where =2 |y,
9
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If R is the radius of curvature of the surface at the origin (which coincides with the streamline .
y = 0), it follows from (A2) that

R = qo/b, , (A4)
and therefore by (3),
Gy). ., = — %R (a3)
Since
v — — U
}"c‘:.—p;,m b _& s s Johodiym sy el angeing)
it follows that the value of « in equation (2) is given by
E (78 E €
=4(—§’—s- at0=-(—§ﬁ)ato, B TR = - e 7
o = __q, cu
= ( ;) at 0 = ( at 0,
= 2¢'/(RU7) ,
RO IR Uog, fy setiqmps it 90 heet v 3k gilhools o (AS)
APPENDIX B

Slight Generalisation of the Formulae of Ref. 2 so as to
Cover the Kdrmdn-Tsien as well as the Glauert-Jacobs Relation.

In Part I and A.R.C. 5958', the pressure $, just-in front of the shock wave is deduced from
the pressure at the corresponding point in incompressible flow on the basis of a relation (assumed
known) of the form

Pe = pa (M), o3 & o 3 wa 4 .~ (10, Part I)
where
b = Po—2 P = Do — P1
: ‘}Pn s %Pof. iy Ty

are suction coefficients at corresponding points in compressible and incompressible flow respec-
tively, and M, is the Mach number of the free stream. This covers the use of the Glauert-Jacobs

relation

Pa =P8 . N .5 . a5 - 3 - s i d, Part 1)
where # = (1 — My*)'%. Equation (10, Part I) will here be replaced by the more general form
Pr=0(pd'Mo)’ . . - - 7 - . - . .. .. .. - = (BI)
which covers the use of the Karmén-Tsien relation
15 B P
pd_l‘i‘i(l—‘ﬁ)ﬁ . .. . . . .. . (B2)

* This formula is usually quoted in terms of pressure cocfficients in place of suction coefficients ; the plus sign in the
denominator then becomes a minus.

10
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If f{, is the pressure just in front of a shock wave (assumed normal to the local streamlines)
and M, the Mach number at the same point, it follows from the ordinary adiabatic relation that

143 — DM = +30— ) MY B 5 .. .. .. .. (18 Part])
while it follows from (B1) on putting 1p.V? = lyp. M,
that Pi/pe =1 — Iy M32® (o, M) , o ad = o " .. (B3)

which takes the place of (12, Part I). At the point of maximum suction N (at which p,, =
p..x) and at the free-stream Mach number (M ,) at which the velocity of sound is first attained,
a relation between M, and p,,, can be deduced by putting M, = 1in (13, Part I) and eliminating
P1/p, between (3, Part I) and (B3).

The formulae of (Part I) Appendix 1 are then modified as follows. Writing as before x5 and
uy, for the result of differentiating the value of M, deducible from (13, Part I) and (B3) with
respect to M, and p, respectively and then putting M, =1, M, = M,, p. = pun, after
differentiation, we find

1 )
hl'":%(?—iﬁl)Mw|1+%(?—1)M¢’+(%.)N‘D"]’ e = (B4)
where o,=0 4+ M0, , .. o5 EC e T o e .. (BS)
and pl,,:i(y—}—l)(%:)me’(Dp, ORI [Py of e S S O LB )

where @, and ®, stand for the result of putting M, = M, and p, = p.y in 8®/6M,and 2®/p,,
after differentiation. The formula for K then becomes

2 (y + 1) (Pafpo) >+ 1 2o :
B ol = 3M,, o, {1+%(?—1) w‘+E-¢d]

On substituting the K4rmén-Tsien relation (B3) for (B1) we have
Oy = {1 + 0} OM,,
D, = p7"0 {1 — 1M, (1 — 30)},
D, = B (®/pux)” -
For the Glauert- Jacobs relation,
O, =p*Mo,
o, = (1—3IM,) g7,

(B7)

11
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APPENDIX C
Notes on Fig. 2b, Experimental Curves, Drag Coefficient by Pitot Traverse Method
Mustang Section : 5-in chord model in 20-in % 8-in High Speed Tunnel at N.P.L. A.R.C. 8135°.
NACA 2218 (‘ Tornado ’) : 5-in chord model in 20-in X 8-in tunnel. A.R.C. 6661°.
NACA 2218 (* Tornado ’) : Flight experiment. A.R.C. 5990".

EC 1250 : 5-in chord model in 20-in X 8-in tunnel. Not yet issued®. (Compared with theoretical
curve for 12 per cent. ellipse).
NACA 0020 : 2-in chord in 20-in X 8-in tunnel. Not yet issued®.
Circular High Speed Tunnel. 4709°.
5-in X 2-in tunnel. 7153".
All experimental curves are subject to an unknown correction (in the direction of increased
Mach number for given C,), for the effect of condensation of moisture. This will be less for the

54n x 2-in tunnel and may in part account for the discrepancy between this tunnel and the
other two for the NACA 0020 section.

Critical Mach numbers are indicated by arrows ; values for * Mustang ' are derived from pressure
observation ; the remainder are calculated.
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TABLE 2a
Values of M, and b,
Kdrmén Glauert
Mal] le IJ.:L.Y
0:50 1-6170 1:8476
0-55 1-2184 1-3849
0-60 0-91680 1:03546
0-625 0-79300 0-89244
0-65 0-68365 0-76641
0-675 0-58675 0-65504
0-70 0-50062 0-55636
0-725 0-42391 0-46881
0-75 0-35546 0-39103
0-775 0-29440 032200
0-80 0-23993 0-26078
0-85 0-14487 0-15908
TABLE 2b
Values acK for given M
Kdrmdn Kdrman
M log acK acK Diff. M log acK welS Diff,
0-50 2-92066 833:03 0-675 1-73021 53:729
2.88195 | 76076 | 42 220 1-70082 | 50-214 | 3242
2-84222 69538 59-24 1-67162 46-948 3.032
280355 636-14 53-70 1-64262 43-916 2.818
2-76525 | 582-44 o 1-61382 | 41-098 g
0-525 2-72731 533:72 44'27, 0-700 1-58520 38-477 2.438
2-68975 489-50 . 40,15 1-55677 36-039 2.971
2-65254 449-30 3856 152851 33-768 2.114
2-61568 412-74 33.99 1-50043 31-654 2.071
2-57916 379-45 30-34 1-47251 29-683 1-837
0-55 2-54296 349-11 27.68 0-725 1-44476 27-846 1-714
250708 321-42 25-26 1-41717 26-132 1-600
2-47154 | 296-17 S 1-38973 | 24-532 5203
243632 | 273-10 21-10 1-36246 | 23039 e
2-40140 | 252-00 tous1 1-33533 | 21-644 o
0-575 2-36678 232-69 17-67 0-75 1-30834 20-339 1-219
2-33248 215-02 16-20 1-28149 19-120 1-141
2:29846 | 198-82 | . 5o 1-25477 | 17-979 hes
2-26472 183-96 13-64 1-22817 16-911 1-000
2:23125 170-31 12-53 1-20171 15-911 0-938
0-600 219806 157-78 11-52 0-775 1-17537 14-975 0-878
2-16515 146-26 10'55 1:14914 14-097 0-823
2-13250 | 135-67 b 1-12299 | 13-274 o
2-10011 125-92 8-98 1-09694 12-501 0-725
2-06798 | 116-94 oo 1-07098 | 11776 Gt
0-625 | 2-03611 | 108-67 e 08 1-04509 | 11-094 s
2:00448 | 101-04 i 1-01928 | 10-454 Sl
1-97800 | @8-83 | SLE 0-99854 | 98524 | R
1-94194 87-486 6-012 096785 92865 0-532
1:91102 81-474 5.557 094221 §:7541 0.50’1‘
0-650 1-88034 75-917 5-142 0-825 091661 8-2530 0-4792
| 1-84988 70-775 s 0-89103 378100 | e
1-81964 66-015 100 0-86548 7-3364 | o7
1-78962 61-606 it 0-83995 6:9176 | o202
1-75981 57-519 3.790 0-81444 6+5229 0-372
0-675 173021 53-729 0-85 0-78894 6-1509

13



HE

ABBOTT AEROSPACE

TECHNICAL LIBRARY

TABLE 2b (contd.)

ABBOTTAEROSPACE.COM

Glauert Glawert
M log acK acK Diff. M log acK acK Diff.
0-50 | 2-83507 | 684-02 0-675 | 1-68243 | 48-132
2.79667 | 626-14 | 2158 1-65417 | 45-100 | 5932
2-75865 | 57365 | o2 a0 1-62612 | 42-279 | 2221
2.72101 | 52608 | 4792 1-50826 | 39-652 | 2:$%7
268374 | 48277 | o2 1-57059 | 37-204 | 510°8
0525 | 2-64684 | 44345 | S27% | 0700 | 1-54309 | 349m | 223
2-61030 | 407-66 | 357 1-51578 | 32-708 | 27228
2-57413 | 375-09 | 3227 1-48865 | 30-807 | 1930
2:53830 | 34538 | =71 1-46170 | 28-953 | 1'34
2-50282 | 318-39 | 27°%2 1-43402 | 27.222 | 178
0550 | 246767 | 293-54 | 3°7% | 0-725 | 1-408%0 | 25-604 | 1618
2-43285 | 270-93 | 281 1-38184 | 24-000 | 1314
2-3083 | 250-24 | 20'%° 1-35553 | 22.674 | 1318
2.36418 | 231-30 | 1894 1-32038 | 21-349 | 132
2-33083 | 213-96 | 17°3 1-30337 | 20-108 | 1'%
0-575 | 220677 | 198-05 | 1390 | 0-750 | 1-27749 | 18-945 | 1'163
2-26352 | 183-45 | 13-%0 1-25176 | 17-855 | 1099
2:23056 | 170-04 | 1341 1-22615 | 16-833 | 2°0%2
2-19790 | 157-73 | 1231 1-20066 | 15-873 | OO0
2-16554 | 146-40 | 10738 117528 | 14-972 | 9901
0-600 | 2-13345 | 135-97 0.0 | 0775 | 1-15001 | 14-126 | 9:3%8
2.10166 | 12637 < 112485 | 13-331 | 979
2.07011 | 117-52 e 1-00977 | 12:583 | O'7°8
2-03879 | 109-34 : 107478 | 11-879 | 0703
2.00777 | 101-81 s 104087 | 11-217 | 3862
0625 | 197702 | 94847 | 2908 | 0-800 | 1-02503 | 10-508 | O'8%4
1-94651 | 88412 | 435 100025 | 10006 | 0287
1-91624 | 82.460 | 392 0-97553 | 9-4523 | 03587
188621 | 76951 | 3909 0-95085 | 8-9300 | 0323
1-85642 | 71-849 | 3192 0-92620 | 8-4373 | 01927
0650 | 1-82688 | 67-125 | 7 | 0825 | 0-90156 | 7.9720 | 04653
1-79755 | 62741 | 4§34 0-87603 | 7-5324 | 01396
1-76846 | 58-676 | 5 000 0-85231 | 7-1173 | O3
1-73957 | 54.900 | 3776 0-82770 | 67252 | 0391
1-71000 | 51-308 | 3507 0-80309 | 63547 | 03705
0-675 | 1-68243 | 48-132 0-850 | 0-77849 | 6-0047
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TABLE 3
Ideal Drag Rise Summary
at =
: Incidence| #, %
Wing tity i TS el gl E M, ac K
c
‘Mustang’ U.S 0° 0-512 | 0-4 1-0% 0-697(Y) | 8-024 | 13-22
j ¥ 0-256 | 0-46 0-4% 0-792(!) 1:005 | 12-18
NACA 2218 US. |, G 0-763 | 0-161 2-34 0-632(% | 825 11-88
LS 0-1 0-620 | 0-036 | 7-45 0-666(2) | 24-12 2-50
129, Ellipse 0° 0:2544 | 0-5 0-24 0:793() | 0-602 | 20-18
209, Ellipse 0° 0-440 | 0-5 0-40 0-720(2) 1-15 25-85
NACA 0020 0° 0-663 | 0-151 1-67 0-655() | 5-56 12-65
29-09, Ellipse 0° 0-663 | 0-5 0-58 0-655(2) 1-93 36-4
NACA 0012 0° 0-375 | 0-151 1-:030 | 0-742(3 | 2-83 7-95
17-39, Ellipse 0° 0-375 | 0-5 0-345 | 0-742() | 0-949 | 23.7

* Approximate values by interpolation.
(*) From observed pressures.

(*) By calculation.
U.S. Upper surface.
L.S. Lower surface.

|
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|
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