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PART I
1. Intl'oduetion.-The subject of the present note is the increase of the drag of an aerofoil

which arises from the presence of limited shock waves when the forward speed lies between the
so~called shock stalling speed and the velocity of sound. Evidence from photographs and other
sources shows that under certain conditions a single limited shock wave exists on one or both
surfaces of an aerofoil when the local speed at some point of the surface exceeds the velocity
of sound. It is therefore suggested that ideal two-dimensional motions about an aeraicil may
exist, which satisfy the equations of motion of a non-viscous non-conducting compressible fluid,
at all points of the field outside a limited shock wave attached to one or both surfaces of the
aerofoiJ. The shock wave is to be considered merely as a surface of discontinuity across which
the usual conditions of continuity of flow, momentum, total energy and velocity parallel to the
surface, are satisfied; it forms the rear boundary of a limited region in which the flow is supersonic
and its intensity falls to zero at its outer edge where the velocity is equal to the local velocity
of sound.

As a result of the increase of entropy on passing through the shock wave, the density and
velocity at a large distance behind the aerofoil of a particle of fluid that has passed through
the shock wave will both be reduced below their free-stream values; the pressure will have
regained its free-stream value. The ordinary momentum integrals taken across lines far in
front of, and far behind, the aerofoil thus determine the drag in the ideal case; this may be
considered as the ideal (lowest possible) drag due to an actual shock wave.

2. Ideal Drag.-The object of the present note is to point out the possibility of converting
the momentum integral into an integral taken over the surface of the shock waves (one or two).
In the notation of Fi.~. la, 1t and v denote velocity components parallel and perpendicular to
the shock wave and q their resultant: suffix 0 denotes free-stream values (V, free-stream velocity) :
suffixes 1 and 2 denote conditions just upstream and just dO\vnstream of the shock wave, suffix 3
denotes conditions in the wake far behind the aerofoil. The ordinary momentum integral for
drag is

D = J(V - g.) p, g, du, (1)

per unit length, where da denotes an element of length normal to a stream tube which in this
case is nonnal to the free stream. Let ds be an element of length (measured along the surface

• The method of the present report, leading to the curves of Fig. 2, was developed early in 1939, but the paper has
been rewritten as a result of the advice of Mr. A. D. Young whose suggestions are gratefully acknowledged.
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of the two-dimensional shock wave C) containing the same stream tube as du,. Then by
continuity

p, qs du, = pz q. do, ,

= P. fit tis,

= mds,

where

If E be the total energy per unit mass, which is assumed to be constant throughout the fluid,

E = ~ '+ -y- 1', = ~ V' + _y_ 1', . ..
- q. r - 1 P3 - r - 1 Po (2)

Again since the conditions are assumed
(2) to section (3), .

:h. = h.- = p.
Pi' pl p,'"

to be isentropic along the stream tube from section

(3)

Hence ~(V' - q,') = -y- 1',/ (P,) (P.)" _ 1 ) .
r-1pol p, PI (4)

If 5 is the entropy, given by

expo (S/C.) = Pip'

for a perfect gas,

CJ (~:r = F (definition of F)

= expo {(So - S,)/yC.)]

Finally equation (I) may be transformed into

.. (5)

(6)

D = V Imds II - [I - (y 2 ]"' )I)M,,(F-I) (7)

taken over the whole surface of one or both shock waves, where

M '
_ PoV'

• - rP.

is the Mach number of the free stream. It may be shown that

p, = (y + I) p, + (y - I) p,
p, (y - I) p, + (y + I) p,'

and so
F _ (y + I) P, + (y - I) p,(p')" (8)

- (y - I) p, + (y + I) p, p, '
and F can be evaluated in a practical case if PI and pz are both measured. The value of 111,
however, requires the detennination of ft l or of the inclination of the shock wave to the stream.
The latter may be determined if Pl and P. are both known.
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(9)

(10)

It is proposed to attempt the measurement of p. and plover the surface of shock waves on a
5-in. chord aerofoil in the rectangular high-speed tunnel, to attempt to evaluate the integral (7)
for the ideal drag, and to compare it with the drag deduced from wake exploration and with
the form drag deduced from pressure measurement over the surface.

3. Use of Low-speed Potential Flow.-A method will now be described of evaluating the drag
integral (7) in tenns of the known low-speed potential flow round a body of given shape on the
basis of certain crude assumptions. Assume that the shock wave starts from the point of low
speed maximum velocity N (Fig. Ib) and lies along a line of constant velocity potential NP
(everywhere nonnal to the streamlines). Let s be the distance along the curve measured from
N to an arbitrary point P. Write

POL - PL
P.. = lp V'_ OL L

at the point P where PL and VLstand for low-speed potential (incompressible) values; then PeL
may be considered as a known function of s. At any Mach number J.U. above the critical value,
if p. is the pressure at P just in front of the shock wave it will be assumed that

po - p.
!Po V' = ~(Mo) P.. ,

where 4> 0',"10) is a function of M o only, which will be taken here to be equal to the Glauert factor

~ (Mo) = (I - Mo')~'"

Equation (10) may be written in the fonn

p
P, = I - !,Mo' ~ (Mo) P.. ,

o -

and (using the ordinary relations of constant energy and entropy) it follows that
,- ,

I +! (, - I) M,' ~ {I + t (y - I) M o'} (P./P.) --,

(11)

(12)

(13)

since the shock wave is everywhere normal to the local stream lines. The critical Mach number
M,o is equal to the value of M o given by substituting in equation (13), !Ill = 1 and /tL equal to
its value ALN at the point N.

To express the integral in equation (7) for the drag as a function of 1\10 (Po, Yo) and /tL only
we make use of the relations

,» P.U1

P.V = PoV

M ( j<..±..!~ AI: I - ! , Mo' ~ P,L "

nsing (13), and the known relation

b_ 2, M' ,-I
p. ,+1 • -,+1'

F being given by equation (8) and M, by equations (13) and (12) .

• This assumption is made by Jacobs in his formula for the critical ~{ach number.
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The drag may then be evaluated, for any value of M o greater than M <il, by equation (7), the
range of integration being from the surface of the aerofoil to the point Q (Fig. Ib) at which s = So
and M I = 1, the value PdQ of Pd. being detennined by substituting All = 1 and Pd. = P~l.Q in
equation (13).

4. First Order Theory.-It is of some interest to establish in a general manner the order of
magnitude of the drag given by the above equations for a Mach number M o which exceeds the
critical Mach numbel' ]\[.0 by an amount

A = Jl.l. - M ...

which is considered as a small quantity. It will be shown that on the basis of the above assump
tions, So is in general of order )., while it is knO\\<l1 that (F - 1) is of order {(P1IPI)- I}I or A',
and so the drag is of order ;,t.

Again the assumption that the shock wave coincides with the equipotential through the point
of maximum suction is not likely to be true in the limit for small values of A if a shock wave is
formed immediately Jl.l. exceeds AI... Hence the conclusion that the ideal drag is of order not
greater than J.4 will in fact hold for the ideal case.

In Appendix I the relation

CD ~ K,' + 0 (,') (16)

is deduced from the previous equations, and K is expressed as a function of M~, Pd..V and Gt

where

Also M .. is a knO'\l1 function of PeL\-, being the value of Alo given by putting M 1= 1 and
Po. = Pd..V in equation (13).

In Appendix II K is evaluated for the case of an elliptic cylinder at zero incidence for which
it is necessary to write

since there will be two symmetrical shock waves.

.. (18)

Curves of CD deduced from formula (18) are plotted in Fig. 2 for a series of values of the critical
Mach number ft[~ corresponding to a series of values of thickness ratio of the elliptic cylinder
(Table 1). On the same figure are plotted a selection of curves of CD for certain aerofoils deduced
from pitot traverse observations in the N.P.L.* High Speed Tunnel and a single curve of form
drag coefficient deduced from observations of pressure in the N.A.C.A.t 24-in High Speed Tunnel.
No special significance is attached to this comparison except to bring out the point that even if
a shock wave is always formed immediately the velocity of sound is first exceeded on the surface,
the rise in drag to be expected apart from boundary-layer effects will be very small at first, being
in general of the fourth order of the intensity of the shock wave.

• N.P.L. NationaJ Physical Laboratory, Great Britain.
t N.A.C.A. Kational Advisory Committee for Aeronautics, U.S.A.
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APPENDIX I

Write M 1 = 1 + 1'1.

and consider equations (13) and (12) as defining fll as a fWICtion of M o and pcL in the form

Then by definition of MoO, PrL.'< and PeLQ'

0= III (M<o. PcLN) ,

o~ p, (M" P,d .

Assume that f11 is small; then sQ is a small quantity of order PI and we can write

A, ~ Pd.N - '" S + O(s') ,

AU} ~ A" - '" So + O(so') ,

(AI)

(A2)

(A3)

(A4)

(AS)

where lX. is a constant derivable from the known low-speed motion. \Vnte,uwJ flip as abbreviations
for the result of putting 1'110 = l\{<6, Pel. = Pel-V in o#,/aMo, 0f.tlfaP.L respectively, after diffel entia
tion. Then (AI), (A2) and (A3) give

11-1 = )'flIM - IX SftlP,

o = }.f.ttM - ex: So flip,

and so

with
).f.t 1M

SQ =--.
C1. flip

By differentiating (13) with (12) we have

~<M ~ I (y + 1) M~ (I + I (yl_ I)M~'+ I(~:)NPd.N (2f + M~ f ')),

p" ~ m(y + 1) (~:t M~' f ,

where

It may be shown that to the first order equations (8) and (12) give

16 y - I •
F - I ~ :3 (y + I)'P' ,

and that
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Substitution in equation (7) gives to the first order

D
CD=!p VI'

.0<

~ f'Q (P~'{ ~ I 32 1((1.'«1,)1 (SQ _ S)' ds •
o p,;S 3(y + I) M~ c

= K),''' ,

where

2 (y + 1) (P,/po). ,"+."" I 1 (p!\ ' )'
a.cK= 3M~f(M..J I+Hy-llM..'+ PJNP<Lv(f+!M~fl,

which is a function of AI.. and ALN only, and ..,..·1.. is a known function of pel-v (Table 1). On the
assumption that

the factor

f ~ (1 - M~')'I',

f + !M.. f' ~ f' (I - !M..') .

APPENDIX II

For an elliptic cylinder of fineness ratio T at zero incidence, it may be shown that

P<'-N ~ (2 + T) ,

a.c = 4(1 + T)' r •

and the value of K is to be doubled since there are two shock waves (Table I).

TABLE 1

GencrnJ

Ko<

Elliptic cylinder at zero incidence

2K

0·5 1·848 6S' 0·687 I·SIS 7·83 175
0·55 1·385 293 0·544 1-385 5'19 113
0·6 1·036 138 0'427 ',036 3·47 79·3
0·65 0·766 67· I 0·329 0·766 2·33 57·7
0·7 0·555 33·S 0·247 0·555 1·54 .... ·0
0-75 0·390 18·9 0'179 0·390 0·996 37·9
O·S 0·261 10·6 0·123 0·261 0·620 34· I
0·9 0·082 3·35 0·040 0·082 0'174 38·5
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PART II
Ssunmary.-The method giVt:Jl in Part I of calculating a first approximation to the ideal th~'Ordical drag rise due to a

shock waye on an aerofoil is extended to cO\'cr the use of the Kanmin- Tsien !'olution in place of the Glaucrt relation.
It is !'hown how the drag rise can be calculated from the thooretical critical ~lach number and the I{oomctrical curvature
of the surface at the point of ma.xirnum suction. In particular for two aCTofoils having the same cnti("al ~[ach munber the
drag rise is proportional to the radius of curval ure; thus the drag ri<;e 011 a 17· 3% ellipse at 7.cro incidence will be three
times that for an NACA 0012 section having the samr' critical Mach numix'r.

Comparison with cx~riment in the N.ll.t. 20 in X 8 in High·Speed Tunnel shows that for a number of acrofoil
shapes the thCQreticaJ rise occurs consistently from At O· 1 to 0 ·13 later t1w.n the observed rbc.

The present method is simple and should give at least a better indication of the relative mcrils of different aerofoil
sha~ than a knowledge of the theoretical critical speed alone.

In A.RC. 5958', and Part I of this paper, a method was advanced of calculating the drag of
an aerofoil arising from the increase of entropy through a limited shock wa"e, on the basis of
some rather crude assumptions, In outline these assumptions were as follows.

1. The shock wave starts from the point of maximum velocity on the upper surface as calculated
for incompressible ftow and follows the course of the low-speed equipotential through this point.

2. The velocity just upstream of the shock wave is deduced from the low Mach number
potential field by means of one of the standard assumptions (in the previous reports l and Part I
of this paper, by the Glauert relation as applied by Jacobs and alternatively in the present
report by the Kannan-Tsien relation).

3. The shock wave occurs whenever the maximum velocity exceeds the local velocity of sound
and ends at the point at which 111 = I, as deduced from assumption 2.

Calculations were made in A.R.C. 59581 on the basis of the above assumptions for two elliptic
cylinders at zero incidence and for an aerofoil shape at two values of incidence. These calcu
lations involve no further simplifying assumptions.

In Part I the increase of CD due to the sh~k wave was treated as an expansion in positive
powers of (/1.10 - A/cO)' where 1110 is the actual free-stream Mach number and .i\1.o is the free-stream
Mach number at which the velocity of sound is first attained on the surface. It was shown
that the first term of the expansion involves the fourth power of (Mo - Mea). The value of the
coefficient K in the relation

(1)

was evaluated in a general manner as a function of .\1.. and lX, where :x. is the coefficient of s in
the expansion

(2)

Pd. (= -Pltp FI) is the suction coefficient in potential Bow at low Mach number at a point at
distance s from the surface of the body along the equipotential line through the point N of
maximum velocity, P.LN being the value of PeL at this point. Thus a knowledge of the values
of 111.0 and K gives a first approximation to the entropy drag.

The numerical value of K was calculated for the general case of the elliptic cylinder at zero
incidence.

It has since been noticed that the value of lX can be expressed as a function of 1I1cO (or PeL'l)
and of the geometrical curvature of the surface at the point ,by the fonnula

(JJ; = (2c/R) (1 + Pd.-v) .

7
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This is demonstrated in Appendix A, or it could be deduced from the relation between centrifugal
force and curvature in a cun'ed stream. It would therefore be a simple matter to determine K
for any shape or incidence for which the theoretical value of -'fee (or P'I.S) is kno\\n, provided
that the shape can be expressed as a reasonably simple algebraical formula (or a rough value
can be obtained from the plotted shape). The method of Ref. I on the other hand is too laborious
for extensive use.

The opportunity has also been taken of general ising the fonnulae slightly, so as to cover the
type of relation between compressible and incompres.<:;ible suction coefficient given by Karman
and Tsien. This generalisation is made in Appendix H, which also contains the explicit results
arising both from the Glauert-Jacobs relation, as in Part I and from the Karman-Tsien relation.

In Part I the relation between compressible suction coefficient p& and incompressible coefficient
Pel. was assumed to be of the form

where Alo is the Mach number of the free stream. This has been generalised into the form

p, <J>(P'L' M.) ,

which covers the Karman-Tsien relation.

It is shown in Part I that the fommla for the coefficient K in terms of lX and ~lee (for a given
form of relation between P,L\' and Jlee) is of the form 2cK = Function of .'\-fee only. Values of
a.cK have been tabulated in Table 2b both for the Glauert and for the Karman relation; the
fonner supersedes Table I of Part I which is not very accurate; the corresponding relations
between P.L\· and .11&0 are gi\"en in Table 2a. From Table 2b, values of K can be deduced when
PoL'" and ex are known, the latter being deduced from the geometrical curvature by use of equation
(AS) of Appendix A.

Additional arguments in favour of the use of (I) are:-

1. The basic assumptions become less and less justifiable as M o - A1.o increases from zero,
so that it is doubtful whether it is worth while to go beyond a first order theory.

2. Fig. 3 (reproduced from Fig. 2 of Ref. 1) shows that for two elliptic cylinders at zero inci
dence, the first approximation of Part Tagrees reasonably well with the calculations of Ref. 1*.

In Table 3 are given values of Al.o and K calculated by the formulae of the Appendices using
the Kannan relation for a number of typical aerofoils; values of 1\1&0 range from 0·65 to O·S.
Curves of LlCD , calculated for a selection of these aerofoils by Formula I, are given in Fig. 4a.
The value of LiCD is taken as the sum of the values for the upper and lower surfaces calculated
separately.

An interesting comparison is that between NACA 0020 and the 20 per cent ellipse, both at
zero incidence. The value of J[.. for the latter, exceeds that for the former by 0,058, but the
difference of the values of ]\[.. for a LiCD of 0·02 is only 0·023; thus the advantage of the ellipse
gets smaller as the drag rises. Although this comparison does not include the effect of breakaway,
it may help to explain the rather disappointing results of attempts to reduce shock stalling
effects by improving the shape of a section leaving the thickness unaltered.

Table 3 also illustrates the fact that for two aerofoils (symmetrical and at zero incidence) of
different shape and thickness having the same critical speed, the ratio of the drag rises is equal
to the ratio of the radii of cunrature. Thus the drag rise for a 17·3 per cent. ellipse is three times
that for the 0012 section which has the same critical Mach number.

*The Glauert relation is used in both cases.



In Fig. 4b some of the calculated values of LIeD are compared with values of profile drag
measured in the N.P.L. Rectangular High Speed Tunnel (details are given in Appendix C). In
all cases the theoretical value of /.JC D has been increased by the approximate amount of the
observed value below the shock stall.

It is remarkable that the difference between the calculated ideal drag rise and the rise observed
in the tunnel can be represented by a change of Mach number which lies between 0·10 and 0·1:l
for four ,"ery diverse cases. Apart from errors in the theoretical curves due to the approxi
mations employed, this difference has been commonly attributed to a breakaway of the boundary
layer caused by the shcck wa'·e. Of other possible causes of discrepancy, tunnel interference
should be small, since the flexible walls of the rectangular tunnel were shaped to agree with free
streamlines by the method of A.R.C. 8073'.

The curve of the flight results on NACA 2218 (, Tornado '), derived from A.R.C. 599W, though
of very limited extent, might suggest that the breakaway in flight is about one half of that occur
ring on the mcdel ; similar results of diving tests on the' Mustang' and' Spitfire' will be of the
greatest interest.

Humidity is another possible factor tending to give a spuriously high drag coefficient in the
N.P.L. tunnels which might account for a part of the discrepancy.

In a recent report, A. R.C. 8?-86. :Monaghan and Fowler have calculated the drag corresponding
to the irreversible loss through a shoe};: wave on the basis of measured static pressures near the
shock wave on an aerofoil in the N.P.L. rectangular high-speed tunnel. In the case considered
the corresponding drag values based on the assumptions of the present paper were seriously in
error, so that at a Mach number slightly more than 0·1 above the critical the rise of drag coeffi
cient as calculated by the formulae of the present paper occurs at a Mach number about 0·05
higher than the 5.:'\me value as based on observed static pressures, and the latter again at about
0·05 higher than the same value as measured in the tunnel by pitot traverse. The extreme
difference of O· I agrees with the other cases iUustrated in Fig. 2.

If it were legitimate to argue from a cross comparison of two different aerofoils (a modern shape
14·5 per cent. thick of A.R.C. 8286' and NACA 2218 of Fig. 3) it might be suggested that there
is no appreciable breakaway in flight, the drag agreeing with that calculated from the pressures
near the shock wave on the model.

In general the results suggest that the present method may give a better indication of the
relative merits of different aerofoil sections than is given by the theoretical critical speed above
and that it would be worth while to undertake the small extra labour of calculating the factor
K whenever the theoretical critical speed is calculated.

APPENDIX A

Determination of the Coefficient IX of Equation (2)
in Terms of the Geometrical Curvature

Take as origin 0 the point of maximum suction on the surface of a body in two dimensions
(incompressible fluid) ; take axes Ox tangential to the surface downstream and Oy normal into
the fluid. Then since the total velocity q is stationary at the origin and paraUeJ to the axis of x,
we can write,

andso

where

11 - tV qo + ih.z + O(rl) •

~ ~ q.) + tb, (x' - y') + 0 (r') ,

,,~q.-b,)'+O(T') ,

yl=r+),I.

9
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(A2)

(A3)
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If R is the radius of curvature of the surface at the origin (which coincides with the streamline
" = 0), it follows from (A2) that

R = q./b, .

and therefore by (3),

( Cl<) = _ q./R .
oy " 0)

Since
PLN - PL qt - UI

peL = !Pu. UI = U t

it follows that the value of oc in equation (2) is given by

( CP'L) (CP")IX = - ?S at 0 = - cy at 0 ,

'lLj. (cr\ 2q. (Cl<)
~ - U' cy) at 0 ~ - U' cy at 0 ,

= 'lLj.'/(RU') ,

(Xl; ~ (2c/R) (I + P,L'-) _

.. (A4)

(AS)

(AG)

(A7)

(AS)

APPENDIX B

Slight Generalisation of the Formulae of Ref. 2 so as to
Cover the Kdrman-Tsien as well as the Glauert-Jacobs Relation.

In Part I and A.R.C. 59581
, the pressure PI just in front of the shock wave is deduced from

the pressure at the corresponding point in incompressible flow on the basis of a relation (assumed
known) of the form

p, = P'L ~(M.) , (10, Part I)
where

_p.-p _POL-Pc
A - tPo VI , AL - !POL VtL

are suction coefficients at corresponding points in compressible and incompressible flow respec
tively, and AIo is the Mach number of the free stream. This covers the use of the Glauert-Jacobs
relation

PoL = p,P , (11, Part I)

where p ~ (I - M.')'''_ Equation (10, Part I) will here be replaced by the more general form

p, = <I> (P,L, M.) ,

which covers the use of the Karman-Tsien relation

P
Pp, •

,L ~ I + t (I P) p, -

(BI)

(B2)

• This formula is usually quoted in terms of pressure coefficients in place of suction eo<:fficients; the plus sign in the
denominator then becomes a minus.
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If PI is the pressure just in front of a shock wave (assumed normal to the local streamlines)
and M I the Mach number at the same point, it follows from the ordinary adiabatic relation that

I + ! (y - I) M,'
,-.

{I + ! (y - 1) M.'} (P,/P.)-'"" , .. (13, Part I)

while it follows from (BJ) on putting iP,V" = tyPo!!f,"

that P, 'Po - I - !yM.'<I> (Pd.' M.) , (B3)

which takes the place of (12, Part 1). At the point of maximum suction N (at which PeL =
PcL....) and at the free-stream Mach number (At..) at which the velocity of sound is first attained.
a relation between .)1.. and peLS can be deduced by putting /all = J in (13. Part I) and eliminating
P,/p. between (3, Part I) and (B3).

The formulae of (Part I) Appendix I are then modified as follows. Writing as before 1'", and
1'1' for the result of differentiating the value of M I deducible from (13, Part I) and (B3) with
respect to /af, and peL respectively and then putting M I = 1, /af, = /at... PoL = Pu....... after
differentiation, we find

where

and

, 1'", = t (y + I) M.. jl + t (y ~ I) M ..' + (~JN <1>, ) , (B4)

(BS)

(B6)

where <D Mand (1)" stand for the result of putting Mo = Me and peL = peW in o~/oMoand o<b/aPeL
after differentiation. The formula for K then becomes

2 (y + I) (P,/P.) {C.,. .,,,, I I t!!. j'
acK= 3M.. <1>, 1+!(y I)M,.'+p,·<I>,

,
On substituting the Karman-Tsien relation (B3) for (BI) we have

'D" = p-' {I + t<l>} <l>M,.,

<1>, = p-'<I> {I - tM,.' (I - !<I»} ,

<1>, = P (<I>/P,~)' .

For the Glauert-Jacobs relation,

<1>", = p-I /afe<b ,

<1>. = (I - !M..'l p-'<I> ,

~ - .-,'V, _" .

11
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APPENDIX C

Notes on Fig. 2b, Experimental Curves, Drag Coefficient by Pitot Traverse Method

Mustang Section: 5-in chord model in 20-in X 8-in High Speed Tunnel at N.P.L. A.R.C.81355 ,

NACA 2218 (' Tornado ') : 5-in chord model in 2O-in X 8-in tunnel. A.R.C.6661'.

NACA 2218 (' Tornado ') : Flight experiment. A.R.C. 5990'.

EC 1250 : 5-in chord model in 2O-in X 8-in tunnel. Not yet issued8
. (Compared with theoretical

curve for 12 per cent. ellipse).

NACA 0020 : 2-in chord in 20-in X 8-in tunneL Not yet issued8
•

Circular High Speed Tunnel. 470911
,

5-in X 2-in tunneL 71531°,
All experimental curves are subject to an unknown correction (in the direction of increased

Mach number for given CD)' for the effect of condensation of moisture. This will be less for the
S-in X 2-in tunnel and may in part account for the discrepancy between this tunnel and the
other two for the NACA 0020 section.

Critical Mach numbers are indicated by arrows; values for' Mustang' are derived from pressure
observation; the remainder are calculated.
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TABLE 2a
Values of M cO and Prl.N

Kanml.n Glaucrt

M~
0·50
0·55
0·60
0·625
0·65
0·675
0·70
0·725
0·75
0·775
0·60
0·85

p.~

\·6170
1·2184
0·91680
0·79300
0·68365
0·58675
0·50062
0·42391
0·35546
0·29440
0·23993
0'14487

P,L."
1 ·8476
1·3849
1·03546
0·892401
0·76641
0·655O-t
0·55636
0·46881
0·39103
0:,..12200
0·26078
0·15908

Kdrman

TABLE 2b
Values (f.cK for given M

Karman

M log <;t.cK .,K Diff. M ) Jog a.cK Diff.

0·50 2·92066 833·03 72·276 0·675 1·73021 53·729 3·515
2·88125 760·76 65·38

',70082 50·214 3·266
2·84222 695·38 \·67162 46·9-18
2·S0355 636'14

59·24 1 ·64262 43·916 3·032

2·76525 582·44 53·70 1·61382 41·098 2·818

0·525 2·72731 533·72 48·72 0·700 1·58520 38·477 2·621

2·68975 489·50 44·22 1·55677 36·039 2'438
40·19 2·271

2·65254 449·30 36·56 1·52851 33·768 2· 114
2·61568 412·74 33·29 1·50043 31·654 2·0712·57916 379·45 \·47251 29·683

0·55 2·54296 349·11 30·34 0·725 1·44476 27·846 \·837

2·50708 321'42 27·68 1·41717 26'132
1 ·714

25·26 l ·600
2·47154 296'17 23·07 1·38973 24·532 1 ·4932·43632 273·10 1·36246 23·039
2·40140 252·00 21 ·10 1·33533 21·644 1 ·395

0·575 2·36678 232·69 19·31 0·75 1 ·30834 20·339 1·305

2·33248 215·02 17·67 1 ·28149 19·120
1 ·219

16·20 1 . \41
2· 298·t6 198·82 14·86 1 ·25477 17·979 Hl682·26472 183·96 13·64 1·22817 16·911 1·0002·23125 170·31 1·20171 15·911

0·600 2·19806 157·78 12·53 0·775 1·17537 14 ·975 0·936

2'16515 146·26 11 ·52 1·14914 14·097 0·878
10·59 0·823

2·13250 135·67 9·75 1·12299 13·274
0'7732·10011 125·92 1·09694 12·501

2·06798 116·94 8·98 1·07098 11'776
0·725

0·625 2·03611 108·67 8·27 0·8 1 ·04509 11 ·094 0·682

2·00448 101·04 7·63 1·01928 10·454 0·640
7·045 0·602

}'97309 93·992 6·505 0·99354 9·8524 0·5661·94194 87'486 0·96785 9·2865
1·91102 81·474

6·0\2
0·94221 8·7541

0·532
0·650 1·88034 75·917

5·557
0·825 0·91661 8·2530

0·501

1·84988 70'775
5·142

0·89103 7·7810 0'472

1·81964 66·015 4·760
0·86548 7·:J36.l 0'445

1'78962 61·606 4·409 0·83995 6·9176 0'419

1·75981 57·519 4·087 0·81444 6·5229 0·395

0·675 1·73021 53'729 3·790 0·85 0·78894 6·1509 0·372
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•

TABLE 2b (cantd.)
GJaunt

DiHlog 'UK I uKM OS"" ""K Difl.

,
0·50 2·83507 684·02

2·79667 626·]4 57·88 0·675 1·682-13 48· 132

2·75865 573·65 52-49
),65-117 45·100 3·032

2·72101 526·03 -17·62 1·62612 42·279 2·821

2·68374 482-71 43·26 J·59826 39·652 2·627

0·525 2·64684 443·45 39·72
),57059 37·2().I 2'448

2·61030 407·66 35·79 0'700 )·54309 3-1·9'11 2·283

2·57413 375·09 32·57 ),51578 32·793 2·128

2·53830 345·38 29·71 1-48865 30·807 '·986

2·50282 318·39 27·09 ),46170 28·953
),854

0·550 2-46767 293·54 24·75 1'43-192 27·222 1·731

2-43285 270·93 22·61 Q.7?-5 )'40830 25 .60-1 1·618

2·39836 250·24 20·69 ),38184 24·090 J·514

2·36418 231·30 18·94 ),35553 22·674 1-416

2·33033 213·96 17·34 ',32938 21-349 1'3'>...5

0·575 2·29fm 198·05 15·91
)·30337 20"08

),241

2·26352 183·45 14·60 0·750 )'21749 18·945 )-163

2·23056 170-04 13·41 1·25176 17·855 ',090

2· 19790 157'73 12·31 )·22615 16·833 ',022

2'16554 146-40 11·33 '·20066 15·873 0·960

0·600 2-13345 135·97 10·43
),17528 14·972 0·901

2 ·10166 126·37 9·00 0·775 )'15001 14·126 0·846

2·07011 117·52 8·85 1'12-185 13·331 0·795

2·03879 109·34 8'18 1·09977 12·583 0'7.,\8

2·00777 101·81 7·53 1·07478 11 ·879 0'704

0·625 1·97702 94 ·847 6·963 1·0.,\987 11·217 0·662

1·9.,\651 88·412 6·435 0·600 1·02503 10·593 0·624

1·91624 82'460 5·952 1·00025 10·006 0·587

1·88621 76·951 5·509 0·97553 9·4523 0·5537

1·856-12 71 ·849 5'102 0·95085 8·9300 0·5223

0·650 1·82688 67·125 4·724 0·92620 8·4373 0·4927

1·79755 62·741 4·38-1 0·825 0·90156 7·9720 0·4653

1·768-16 58·676 4·065 0·87693 7·532.,1 0·4396

1·73957 54·900 3·776 0·85231 7·1173 0'4151

1'71090 51·393 3·507 0·82770 6·7252 0'392'

0·675 1·682.,\3 48·132 3·261 0·80309 6·3547 0·3705

0·850 0·n849 6·00-17 0·3500
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TABLE 3

Ideal Drag Rise Summary

at
Incidence P.u

,
Wing x

M~ Kor Cl. = -CliO
- "'- - R,

• Mustang' USJ 00

f512
0·4 1-0· 0'697(') 3·024 13·22

L.S. 0·256 0·46 0·4- Q·792(1) 1·005 12·18
NACA 2218 U.S.. C, 0'763 0·161 2·34 0,632(') 8·25 11 ·88

L.S. (f\ 0·620 0·036 7·45 0,666(') 24 ·12 2·50
12% Ellipse 00 0·2544 0·5 0·24 O' 793(') 0·602 20'18
20% Ellipse 0 0 0·440 0·5 0·40 0'720(2) 1 ·15 25·85
NACA 0020 00 0·663 0·151 \·67 0,655(') 5·56 12·65
29 ,0% Ellipse 00 0·663 0·5 0·58 0'655(2) 1 ·93 36·4
NACA 0012 00 0·375 O' lSI 1·030 O' 742(2) 2·83 7·95
17'3% Ellipse 00 0·375 0·5 0·345 O' 742(2) 0·949 23·7

• Approximate values by interpolation.
(l) From observed pressures.
(2) By calculation.
U.S. Upper surface.
L.S. Lower surface.

l')

,- Q
1" ,

-' • P/

" :' I ~I -, I, "

(0)

FIG. I.
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FIG. 3. Theoretical Variation of Drag Increment Due to Shock
Waves with Mach Number for 12 per cent. Thick and 40 per

cent. Thick Ellipses.

Calculations of 5958'
o 0 0 First approximation of Part 1.
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