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Su~nrnary.--The field of flow round a flat aerofoil at incidence can be regarded in linearised theory as the result 
of both  bound and trailing vortices for supersonic as w~ll as for low-speed flight. This leads to a convenient method, 
given the lift distribution over an aerofoil, for calculating the flow round it at supersonic speeds. 

As an application Of the results the downwash is calculated in the wake of a delta wing lying within tile Mach 
cone emanating from its apex. The downwash is found to be least just aft the trailing edge and is everywhere less 
than the downflow at the aerofoil. I t  increases steadily to a limiting value which is at tained virtually within two 
chord lengths of the trailing edge. The ratio of the downwash at any point in the wake to the downflow at the 
aerofoil decreases with increasing Macti~'number and apex angle. 

t.  I n t roduc t i on . - - In  the first paper on three-dimensional supersonic aerofoil theory, written 
by Schlichting in 1936, the idea of a Supersonic horseshoe vortex was used as an auxiliary 
concept. However, the Prandtl-Lanchester vortex approach, which is of such fundamental  
importance in low-speed aerofoil theory, has been almost entirely abandoned in the subsequent 
t reatment of the matter. This, of course, is no accident, for it appears that  the alternative 
methods of the supersonic theory lend themselves more readily to the solution of the main prob- 
lem of finding the pressure distribution over an aerofoil of given shape and incidence ; furthermore 
there exists no supersonic counterpart to the lifting-line theory to which is due the remarkable 
success of Prandtl ' s  approach. The purpose of this paper is to show that  once the lift distribution 
is known, the vortex approach can still be of use in determining the flow round an aerofoil. 

The general linearised theory of a field of flow due to an arbitrary distribution of vorticity 
under steady supersonic conditions is developed in the College of Aeronautics Report No. 9, 
1947, and is applied in the present paper to aerofoil problems; in particular the downwash 
along the continuation of the centre line of a delta wing is calculated for the quasi-subsonic 
case (apex semi-angle smaller than the Mach angle). 

Other methods of determining the field of flow from the pressure distribution, such as first 
deriving the "acceleration potential" due to an equivalent doublet distribution, at least in some 
cases, lead to considerably more complicated calculations than those involved in the method 
adopted here. 

*College of Aeronautics Report  N o . > ~ ,  received 20th February, 1948. 
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2. R e s u l t s . - - T h e  downwash, w,  along the continuation of the centre-line of a delta wing moving 
at a supersonic speed such that  it lies entirely within the Mach cone emanating from its apex, 
is given by : - -  

when d <~ ~.c, 

W 

V~ 
2 t~c {1 d 2 

t - i' K(k) -- E(k) ak[ "l K(k)  E(k) dk + k2(1 + k2)  J " 
+ k + 2 a/~c 

0 

. .  O , i )  

When dJ~  .ac, 

W 

~ E ' ( 2 )  ~ -d- + jo k + 2 t 
. .  (1, i i)  
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where K, E and  E'  are the  wel l-known complete  elliptic integrals 

V = the  veloci ty 
0~ = the  incidence 
c = m a x i m u m  wing chord 
d = dis tance aft of the  trai l ing edge 
l* = Mach angle , ,~ 
r = wing apex semi-angle ~ / ]  -~ " . . . .  " 
Z ---- c o t # t a n ) ,  = __r ~¢ 

The condi t ion d < t c  indicates  tha t  the point  in 'question is outside the Mach cones emana t ing  
f rom the  wing tips, and  vice versa (see Fig. 4), 

The corresponding spanwise lift d is t r ibut ion over the  aerofoil as given in R.A.E.  Repor t  No. 
Aero. 2151 (A.R.C. 10222) 3 is : - -  

2p V2~ 
l(y) = E'(Z) %/(c2 tan" y --  y"),  . . . . . . . . . . . .  (2) 

where  o = air dens i ty  y = spanwise co-ordinate  

As d tends to inf ini ty  in (1, ii), w/Vo~ tends to 1/E'(a), w h i c h  is exact ly  the same result  as 
obta ined for the downwash  in incompressible flow far behind  the  trai l ing edge of an aerofoil 
wi th  spanwise lift given by  (2). This is a special case/of a more general  result  s ta ted  in Ref. 3, 
according to which,  for a given spanwise lift distr ibution,  the  trai l ing vor tex field tends  in 
regions far beh ind  the aerofoil, where the chordwise co-ordinate is large compared  to the other  
co-ordinates,  to the same limit in supersonic as in subsonic flowe 

In  Fig. 1 the downwash  is p lo t ted  against the distance from the trai l ing edge for various 
values of the pa ramete r  Z. I t  will be noted tha t  for ~ = 0, tha t  is for very  small aspect ratios 
or at speeds very  near  tha t  of sound, the downwash  becomes equal to the donwflow at the 
aerofoil (w/V~ = 1). 

Fig. 2 shows wha t  the downwash  would be if the entire lift were regarded as being concent ra ted  
at  the trail ing edge for the  given value of 0 .4  for ~. 

To assist in applying the results given in Fig. 1 to par t icular  cases, the values of Z for specified 
values of aspect rat io and Mach number  can be found from Fig. 3, 

3. Vortex Plane Theory for Supersonic Conditions.--Consider a flat aerofoil placed approxi-  
ma te ly  in the xy-plane at a small incidence in an airs t ream of veloci ty  V, greater  t han  tha t  of 
sound, in the  positive x-direction. Then according to linearised theory  we have  : - -  

1 
p 

1 
p 

1 
p 

The equat ion  of c o n t i n u i t y - -  

__f12 + + 

where fl'-' = M 2 - -  1 

The Enler ian  e q u a t i o n s - -  

~P~x -- v ~U 

I 

8P _ VS_. v t 
~y ~x 

~P - V ~w 

- -  0 ~ . . • • 

q) = veloci ty potential .  

where  p = pressure 

. .  (3) 

u, v, w = veloci ty components .  
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I t  is assumed as in subsonic lifting plane theory that  the kinematic boundary conditions must 
be fulfilled at the normal projection of the aerofoil on the xy-plane rather than at the aerofoil 
itself, and that  # is continuous everywhere in the fluid except across the wake. The latter is 
taken to be the strip lying in the xy-plane subtended downstream by the aerofoil. Final ly it 
is assumed that  the pressure is continuous across the wake. The exact or approximate validity 
of these assumptions under supersonic conditions is, in the last resort, a matter  for experimental 
verification. 

Since the flow is assumed to be irrotational, ~v/~x and ~w/~x may be replaced in equations 
(4) by ~u/~y  and ~ u / O z  respectively. Integrating these we obtain the linearised form of 
Bernoulli 's Equation : m  

P 
- -  const . . . . . . . . . .  (5) Vq~ + p  . . . . . .  

where the constant is the same throughout space, that  is both sides of the wake. I t  follows that  
u, like the pressure p, is continuous across the wake. 

O.7 
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DISTANCE IN CHORD LENGTHS (~/C~ AFT THE 
TRAILING EDGE. 

FIG. 2. Downwash  on the  a s sumpt ion  t h a t  l if t  is c o n c e n t r a t e d  a t  the  t ra i l ing  edge. 

Furthermore the normal velocity, w, is continuous at the aerofoil, because it is assumed to 
be flat, and similarly across the wake, since a discontinuity would indicate the presence of 
sources contrary to the condition of continuity. 

This also follows from the boundary conditions which require # --  V x  to be anti-symmetrical 
with respect to the x y - p l a n e ,  so that  q~(x, y ,  - -  z) -~ - -  q~(x, y ,  - -  z). 
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Hence we have : -  

At  the aerofoil, 

and  at the wake, 

u(x,  y ,  + o )  - v = - 

v (x ,  y ,  + O) = - -  

w ( x ,  y ,  + O) = + 

u (x ,  y ,  + O) = + 

v (x ,  y ,  + O) = - -  

w ( x ,  y ,  + O) = + 

[u(x, y ,  - -  O) - V] 
v(x,  y ,  - -  O) 

w(x,  y ,  - -  O) 

u ( x ,  y ,  - 0 )  

v(x,  y ,  - -  O) 

w ( x ,  y ,  - -  O) 

= + V  

(6)  

(7) 

These equat ions show tha t  we m a y  regard the 
a vor tex sheet wi th  a surface dis t r ibut ion co (x, y) of vortices given b y  

area comprising the  aerofoil and its wake a 

= ( -  iv+ - v - l , / - +  - . _ / ,  o) ( -  - , / ,  o ) .  

and, in part icular ,  in the  wake, 

co = ( - -  2 v+ , O, 0), where u+ = u( x,  y ,  + 0) etc. 

. . . .  (8 )  

. . . .  (9 )  

Now, since the flow is i rrotat ional ,  we have 

aV+ 0~+ 
ax ay - o ,  . . . . . . . . . . . . . .  ( lO)  

and 
by_ ~u_ 

- -  0 .  ~x ~y 

Hence,  at  the aerofoil 

(11) 

a(v+ - -  v )  O(u+ --  u_) _ 0 . . . . . .  (12) ~x ay . . . . .  

and  at  the  wake, tak ing  into account  equat ion (7), 

~ ( v +  - v _ )  _ 2 ~v+  = 0 . . . . . .  ( 1 3 )  
Ox Ox . . . . . . .  

Equat ions  (12) and (13)show tha t  div ,o = 0, as required for a vor t ic i ty  vector. 

To f ind the field of flow due to this  vor t ic i ty  dis t r ibut ion we app ly  formula (60) of Ref. 2, 
which s tates  t ha t  the  veloci ty vector (u, v, w) due to vor t ic i ty  (~, ~, e) is given by  : - -  

(u, v, w) = curlh T + (V, O, O) 

1 *~i d x d y d z  = (~, n, q) . . . . . . . . . . . .  (14) ~(x ,  y ,  z) ~ ~, s ' 

where (a)  s = V { ( x  - x0) 2 - a" [ ( y  - y0 )  2 + (z  - z0 )2 ]}  

(b) R '  is the  subdomain of the region concerned for which s is real and x,, < x .  

(c) curlh is the hyperbolic curl and *~ H a d a m a r d ' s  "f ini te  par t  of an infinite 
# 

in tegra l"  as defined in Ref. 2. 



In  our case the vortex layer  becomes infinitely thin, while the product  (~, ~, e)dz,, remain 
finite and  equal to o~. We obtain 

1 *f dxody; where nowzo = 0 i n s  . . . . . . .  (15) 
- '2= ,~."2 ( x ° ' y ° )  s ' 

The vor t ic i ty  dis t r ibut ion over the aerofoil will be called the bound  vor t ic i ty  and tha t  in the 
wake the  trai l ing vort ici ty.  The lat ter  consists of s traight  vor tex  lines of constant  s t rength  
ex tending  from the trail ing edge to infinity in the negat ive x-direction. 

If we write u* = u~_ - V and 7,* --- v~, equat ion (15) becomes 

. _ !  f ....... . . . . . . . . .  
~. ( ...... v*, u*, O dxo dy,, . .  

S 

By equat ions  (7) and (13) we have in the wake 

u* = 0 . . . . . . . . . . . . . . .  (17) 

- -  o . . . . . . . . . . . . . . .  (~s) 
ax 

Also, by  equat ion  (5), u* is connected with the pressure difference, &p ~= p+ -p  .... be tween 
the  top and bo t t om aerofoil surfaces by  the relation 

u * =  AP . . . . . . . .  (19) 
2 Vp . . . . . . .  

Hence,  if the  lift d is t r ibut ion is known,  so is u* and vice versa. Equa t ion  (18) shows that  
v* is independen t  of x in the wake, so tha t  to evaluate  the integral  (16) over the wake it is 
sufficient to know the var ia t ion of v* along the trail ing edge only. It  will be shown tha t  at the 
trai l ing edge, as well as elsewhere on the aerofoil, 

v* -- O f u*dx, where the integral  is taken along a chord from the leading edge. 
o y  

Consider a circuit  AI3CI)D'C 'B 'A 'A,  where AB,CD are parallel to the x-axis and AD,BC 
to the  y-axis,  so tha t  AB and CD are separa ted by  a small distance 83, ; A,B,C,D, are just  above 
the xy-plane and A',B' ,C' ,D' form their  image just  below i t ;  A ,A ' ,D ,D '  are points  ahead  of 
the aerofoil (see Fig. 4). Applying Stokes'  theorem to the flow round this circuit  we obtain : - -  

u+dx + v+dy + u_~dx + u_dx + v_dy + u dx = 0 . . . . .  (20) 
B C D '  C '  B " 

This m a y  be wr i t ten  

B fc f ( u + - - u ) d x - -  (u+ - u _ ) d x + ( v + - - ~ _ ) O y = O .  
A D 

. .  (21) 

Hence,  as ay tends to zero, 

( v + - - v )  ..... @O f~ (u+ ...... u )dx, sinceu+ = u , as far as theaerofo i l .  . .  ( 2 2 )  

6 



Now u . - - u _  = 2u* I 
at  the aerofoil, so tha t  

v~ --  v_ = 2v*) 

v *  = g-y j" u*dx, as asserted . . . . . . . . . . . . .  (23) 

This relat ion might  have been derived directly from equat ion (12), which can be wri t ten as 

~v*__ ~u* _ O, but  for the possible irregularit ies of ~u_* and Ov__* at  the leading edge and at 
~x ~y ~y ,fx , 

the envelope of the Mach cones emanat ing  from it. ~dk~j~, ~;.4,2 ~'k~'~',~.,~.~ef \.J~o~., t~ ,; .:~?0~ ,~ ,,~,,,! "~' t-," ~-~. 

Define g = ~ u*dx with the condit ion ~ = 0 at  the leading edge. Then v* -- I t  will ~y 

be seen from equat ion (19) tha t  g is proport ional  to the excess pressure integral  from the leading 
edge to the point  in question. 

Divide R '  into two subdomains S '  and 1¥', belonging to the normal  project ion on to the xy-plane 
of-the aerofoil, S, and the wake, W, respectively. 

Then 

' 01 x0  o+,f t 
, ,  s.-t ~y, a~, t ~  ~ , , . , i - , , ~ j ,  ° , °  , 

where ~ , is the value of ~ at  the trail ing edge for given Y0. 

t s "  ~X S S s, 

by in tegrat ion by  parts,  where C' is tha t  segment of the trail ing edge included in R'  

. .  (24) 

We can now represent ~ as the sum of two vectors, 

u d ' =  ( ~ , '  ~ '  g'3') and ~ "  = ( ~ , " ,  g-'~", ~3"), where 

1 i" aS dxodyo 
~ l '  

. u S , -  " S 

:N uS,  

~(x - Xo) dXo dyo 
$3 

~ 5  t ~ 0 

O Q ... (25) 

~'~ ,. W" t S 

(. 
1 ~ d2__2o ~-'~"= + - 

S 

~[J 3 f' ~ O ,  

. .  ( 2 ~ )  



I t  will be seen that  T conincides with T "  if we imagine that  the whole bound vorticity, for 
any given span position, is concentrated at-the trailing edge. 

It  will be observed that,  if the aerofoil is assumed to be symmetrical with respect to the 
zx-plane and to have a straight trailing edge, T "  'may be regarded as being due to the sum of 

a set of horse-shoe vortices of strength -- 2 \ ~ / t  whose spanwise segments extend from --Y0 to 

4- 3'0 (see Ref. 2, section 6. (64)). To find the velocity components (u",  v " , w " )  due to this 
combination it is necessary to integrate the expression given in equation (68) of Ref. 2 from the 
midpoint of the trailing edge to the positive endpoint with respect to y,,, t hus : - -  

7e I 

f ~ (y  - yo)z . dyo 
~yo E(x - -  ~o)'~! - -  ~"z" V { ( x  - Xo) ~ - ~ [ ( y  - y o ) "  + ~ ! }  

f ~ (y + yo)z. dyo 
- ~ fo  E(~ - Xo)"3 - ~"~" v ' { ( x  - Xo) ~ - ~ [ ( y  + yo)  ~ + ~ t } i '  

. .  (27) 

where the integrals extend over those segments of the trailing edge for which Y0 is positive and 

the integrands are real. From the above assumption it follows that  v* Ou -- Oy is anti-symmetrical 

with respect to the zx-plane, so that  the second integral in  (27) is equal to but opposite in sign 
to the first taken over the remainder of the pa th  of integration, C'. 

~ ~ ~ ( y  - yo )Z  . d y o  
Hence u" - -  j - - -  f12z2 . • . . . . .  (28) ~, ~yo [ (x  - X o )  ~ - ] s ""  

Similarly v" --  1 t 3---u (x - -  Xo)Zo dyo . . . . . .  (29) 
c ,  ayo [ ( y  - y o )  ~ + z ~] . ~  . . . . .  

and w" -- 1 ( 3~ (x --  x0) (y -- Yo) {(x -- Xo) 2 --/32 [(y -- y0) 2 + 2z23 dyo} 
Jc '  ~Yo [ (x  - -  Xo) 2 - - / ~ 2 z  23 [ ( y  - -  yo) 2 + P ]  . s 

. .  (30) 
In calculating (u", v ", w "), Xo will take the value of x at the trailing edge. 

To calculate the field of flow due to T '  behind the aerofoil on the assumption that  it is sym- 

metrical with respect to the zx-plane and that  it has a straight trailing edge, or more precisely 
one that  is not so curved that  it meets a line parallel to the y-axis in more than two points, we 
rewrite equation (25) in the form : - -  

~ , '  = X~(xo)dXo; ~ = X2(xo)dXo, ~ '  o ,  . .  (31) 

where 

X,  --  1 i ~u dY° X~ --  l * l ' u ' ( x - - x ° ) d Y °  (32) 
~ Y O  S ' ~ • S 3 . . . .  

8 



I t  will be observed that,  for a given x0, X, is obtained from ~ , "  by differentiating it with 

respect f o x  and putt ing ( ~ )  OU t -- ~Y0' since 

'f @*° @ 9~ C '  t S t 
being independent of xo. 

Similarly we may derive X2 from ~2"- I t  will be noted that ,  though the limits of integration 
may be dependent on x, we are justified in differentiating under the integral sign of the finite 
part  of an infinite integral as demonstrated in section 2 of Ref. 2. 

Thus (u', v', w') is obtained from ( u  ", v ", w ") by differentiation with respect to x and subsequent 
integration with respect to x0 across the aerofoil. Hence 

s, ~Yo ~x [(X--Xo) 2 - ~2z2] . s dxo  dyo  • . . . . . . .  (33) 

• * ~ ~ { ( x - - x o ) z  t d x o d y  ° v ' -  ~1 fs,~yo ~x [(y-yo) ~+z ~].s 

1 , (  ~ _a ~(~ - ~o) ( y  - yo)  { ( x  - xo) 2 - ~2[  ( y  - yo)  ~ + 2z~]} ,  
W I dxo 4yo 

Js.  ~yo ~x t [ (x  - Xo) ~ - ~ z  ~] [ ( y -  yo)~ + z 2] . s , 

I t  will be seen that  these latter equations involve the representation of a vortex sheet by a 
system of line vortices. Hence, in accordance with a remark at the end of Ref. 2, they are not 
valid everywhere, but  can be shown to be so inside the envelope of the Mach cones emanating 
from the trailing edge. In particular, the formulae are valid in the region of the wake. Thus 
for the downwash, w - -  w '  + w ", we have in the wake, where z = 0, by equations (30) and (33) : - -  

7 i f )  = - -  ~ " 

C "  

a~  V { ( x  - xo) ~ - a 2 ( y  _ y ) ~ }  ayo 
~yo (x - Xo)(y - yo) 

+ f ~,~ a [ V { ( ~ _ - _ ~ o ~ - - a 2 ( y - y o ) 2 } l  aXodyo,' 
s ,  ayo ~x ( x  - Xo) (y  - yo)  ] 

. .  (34) 

i.e. 

1 ~ I a~ V { ( x  - Xo) 2 - a 2 ( y  - y o ) ~ }  ayo 
W = - -  - -  

I c, ~yo ( x - - x o ) ( y - - y o )  

+ Is, a~ Y ( y - y o )  ayo (x - x0) 2 V { ( x  - x0) 2 - a " ( y  - y0)  2} dx0 dy0 . 
.. (3s) 

Before applying our results to calculating the downwash in the wake of a delta wing, it is 
instructive to consider the case of two-dimensional flow. 

9 
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111 t w o - d i m e n s i o n a l  flow. para l le l  to  t he  zx-plane v* := 0, so b y  e q u a t i o n  (16) ~r~ is g iven  b y  
V'E = ~.~ = O ,  a n d  = 

. . . . .  j- .d 0dy,,, , . .  . . . .  . . . . . . . .  

which  we can  i n t e g r a t e  d i r ec t l y  w i t h  respec t  to  3),, s ince u* is i n d e p e n d e n t  of Yo. H e n c e  

~ 2  = ~ i . . . .  ~ s in-  V ' { ( x - - x o )  ~ - ~ z  ~} ,,,I dx ,  

where  yL a n d y 2  are t h e  roo t s  of s °- -= O. The re fo r e  

(37) 

1 r 
~'~ --- t u* dxo, ? J 

. .  ( 3 s )  

where  t he  i n t eg ra l  is t a k e n  f r o m  the  l ead ing  edge  to  x,) = x - -  fl z [, or to  t he  t r a i l ing  edge ,  
w h i c h e v e r  is t he  smal ler .  

I n  pa r t i cu l a r ,  if u* is c o n s t a n t  a n d  the  l ead ing  edge  coinc ides  w i th  xo ----- 0 a n d  t he  t r a i l ing  edge  
w i t h  x,, = c,  t h e n  : - -  
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1 1 
7/2 = ~-- u* (x - - [3  I z I ) , ° r =  ~ ~*c 

The components ,  ~ - -  V and w, are given by  the hyperbolic curl of 

a ~2 #~ 0 ~)~ 
Oz ' O, - -  ~ j .  H e n c e : - -  

. . . . . .  (39) 

, which in this case is 

u - -  V + u * l  i f x _ ~ ] z ] <  c 
w = - -  $u*  J 

. .  (40) 

and  
o-_v } 
W = 0  

i f x - B l z l >  c, 

which is in agreement  wi th  Ackeret ' s  theory. On the other  hand  formulae (33), while providing 
the  right answer for x --/~ J z ] > c, fail for x --/~ J z [ < c for the  reasons ment ioned  previously. 

4. The Downwash in the Wake of a Delta Wing.--Consider a del ta  wing at a small angle of 
incidence m, in a uniform airs tream of supersonic velocity so tha t  the  apex semi-angle, ~,, is less 
t han  the  Mach angle. The apex is at  the  origin, and x ---- c at  the  trail ing edge, such tha t  the  
wing is approximate ly  in the  xy-plane wi th  its axis along the  x-direction. 

\ 
\\ X+#y =0 

\x 
x 

~.c C ~_ 

LZ 

FIG. 4. Diagram of delta wing 
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U n d e r  t h e s e  c o n d i t i o n s  a c c o r d i n g  to  Ref .  3 we h a v e  

V0~ x0 t an"  y w h e r e  Z = fl t a n  y 
u* ---=~ E,(,Xi- V/(x,, 2 t a n "  r - -  Y,,") ' 

. .  (41) 

V ~  
h e n c e  ~7 --  

E '(Z) 
~/(x, ," t a n  ~ r - -Y, ,=)  , 

a~7 Vc~ yo 
a n d  

H e r e  ~ is in  f a c t  i d e n t i c a l  w i t h  t h e  i n d u c e d  v e l o c i t y  p o t e n t i a l  of  t h e  ae rofo i l  a n d  c a n  be  o b t a i n e d  
d i r ec t l y .  

T h e  d o w n w a s h ,  w .... w '  + w ", a t  t h e  c e n t r e  l ine of t h e  w a k e  c a n  n o w  be  f o u n d  d i r e c t l y  f r o m  
e q u a t i o n  (34) b y  s u b s t i t u t i o n  a n d  i n t e g r a t i o n .  

W e  h a v e  , , v ~  f 1 a V { ( *  - ~o) = - -  ~=yo ~} 
v' = - -  E'(~.) J.s, V(x( ,  2 t a n  2 y - -  - -  dxo gY° = - -  y , / )  ax x Xo 

_ V ( x ~ Y  o V! 
- -  Xo] i 

- v '  [1 { ~yo V ~ I  
- j 

dxo dyo 
(x - -  x .  ~ / ( X o " t a n  ~ 7 - -  Yo") " 

. .  (42) 

I n  S '  t h e  l im i t s  of  i n t e g r a t i o n  w i t h  r e s p e c t  to  yo h a v e  to  be  s u c h  t h a t  t h e  i n t e g r a n d  is rea l  ; 

1 (x .... Xo), w h i c h e v e r  is n u m e r i c a l l y  t h e  less. T h e  l imi t s  a re  ± Xo t a n  r they; a re  ± xo t a n  ~ o r  :k  

if Zx,,/(x - -  Xo) < 1 ,wh ich  is a l w a y s  t h e  case  if d --  x - -  c > ~c.. 

C o n s i d e r  _ a x N ,  < 1, i.e. xo < x 
X - - X o  l + a  

P u t  y .  tXo t a n  ~ a n d  k Zx0 =: - -  - - ,  so t h a t  
X - -  X, o 

V~ f + i  ~,, ~ E , ( ~ i f  I 1 k2,2)} = - - -  _ / ~ / ( 1 - k 2 r )  - V  ( 1 -  

_ 2 v ~  ~ K ( k )  - -  E ( k )  
- -  - -  ~ E ' ( z i  J X - -  Xo clxo , 

2Vo~ f K ( k )  - E (k )  
~ E ' ( Z )  ~ + k d k .  

dxo dt  

(x - .0) x / ( 1  - t") 
. .  (4a) 

. .  (44)  
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~Xo X 
Consider  now - - - -  > 1, i.e. Xo > - - -  

x - - X o  1 + ~  

P u t  ¢~yo = t (x  - -  xo) a n d  k x .-- Xo --  2 x ~  ' so t h a t  

w ' -  v~ i ' i  +' , ~ ]. dXodt . .  (45)  ~E'(; t)  _, i V' (1 t 2) V (1 - - t  2) , - -  ~Xo V (~ - ~ " c )  

2Vc~ ~"- i ax~ ~ E ' ( t )  f ,K(k)  - -  E(k) - -  (1 - -~2)  K(k)!_ dxo 

2Vc~ I K(k)  - -  E(k)  . .  (46) 

N o w  the  range  of i n t eg ra t i on  w i th  respect  to Xo is 0 to c, so t h a t  when  d < i c we mus t  split  
x x 

the  range  in to  two par t s  - -  0 to ~ - ) ~  and  ~ t o  c. Fo r  the  first  par t ,  in tegra l  (42) reduces  

to (44), for wh ich  the  range  of i n t eg ra t i on  w i th  respect  to k is 0 to 1, a n d  for the second it reduces  
to (46), for wh ich  the  range  of i n t eg ra t i on  w i th  respect  to k is 1 to d/1c. 

Therefore  for d < ac we have  

f2 i 1 } w ' =  2Vo~ I K - -  E dk ÷ 
- -  nE'(-----~ t .. ~ + k . ~  h2(1 + 1k) dk . . . . . .  (47, i) 

W h e n  d > Zc the  full r ange  of x = 0 to c is covered  b y  k = 0 to Xc/d in the  in tegra l  (44). 

Therefore  for d > ,~c we have  

w '  -- 2Vc¢ t'~I'~ K - -  E dk. (47, ii) 
~ E ' ( ~ )  .o' ~ + k . . . . . . . . . . . . . .  

\,Ve also der ive  f rom equa t ion  (34) the  fol lowing express ion for w ": ...... 

,, v ~  L" v / ( x  - ~)~ - ~'~y,,~ @ o  
w - ~E ' (Z)  ,.~c' (x - -  c) V/(c 2 t a n  2 ~, - - y ) o "  . . . .  

(48 )  

As before,  the  l imits  of in t eg ra t ion  have  to be such t h a t  the i n t e g r a n d  is r e a l ;  t h e y  are 
::k c t a n  y if d > ~c, o therwise  ± d / ~ .  

Consider  d > ,~c a n d  pu t  Yo = tc t an  y a n d  k --  
2c 2c 

x - - c  d 
, so t ha t  

w " - -  V~ i +~ /(1-7__k2_t_~,~ 2 v ~  
~ E ~ 2 )  } tV" \ 1 - - t  2 /  d r - -  ~E'(2) E(k) . . . . . . . .  (49) 
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Consider  n o w d  ~ ,tc and  p u t  fly,, = t (x--c)  andk = x - 7 -  c = d 
,lc ~.c ' so t h a t  

t t  [/-0~ 

i ) ,,v _ >) 

There fo re  for d <:. 2c we have  
. .  (5o) 

2Vc~ ;tc I E d 1 - K 
. .  (51, i) 

And f o r d  :- Xc 

~ " - =  - = ~ ' ( a )  u . . . . . . .  

I t  will be  n o t e d  t h a t  w '  and  w"  are  c o n t i n u o u s  at  d )lc. 
l oga r i thmic  s ingu la r i ty  a t  this  point .  

. . . . . . . .  (51, ii) 

The  g rad i en t  of w, howeve r ,  has  a 

The  c o m p o n e n t  w "  r ep resen t s  the  d o w n w a s h  t h a t  w o u l d  be  o b t a i n e d  if the  en t i re  lift were  
c o n c e n t r a t e d  a t  the  t ra i l ing edge for the  s a m e  spanwise  lift d i s t r i bu t i on  ; w " / V a  is p l o t t e d  in 
Fig.  2 ve r sus  d/c for ,~ .... 0 -4 .  

The  t o t a l  d o w n w a s h ,  w == w '  + w " ,  is t he re fo re  g iven by :  ..... 
where  d < ,1c, 

• 1 ,1  

+ K(k) E(k) gk 4- 
0 . / d / ~ c  . 

and  where  d 3> ,~c, 

(52, i) 

,';tcld 

0 
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