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Summary.—The field of flow round a flat aerofoil at incidence can be regarded in linearised theory as the result
of both bound and trailing vortices for supersonic as well as for low-speed flight. This leads to a convenient method,
given the lift distribution over an aerofoil, for calculating the flow round it at supersonic speeds.

As an application of the results the downwash is calculated in the wake of a delta wing lying within the Mach
cone emanating from its apex. The downwash is found to be least just aft the trailing edge and is everywhere less
than the downflow at the aerofoil. It increases steadily to a limiting value which is attained virtually within two
chord lengths of the trailing edge. The ratio of the downwash at any point in the wake to the downflow at the
aerofoil decreases with increasing Mach number and apex angle.

1. Introduction.—In the first paper on three-dimensional supersonic aerofoil theory, written
by Schlichting in 1936, the idea of a supersonic horseshoe vortex was used as an auxiliary
concept. However, the Prandtl-Lanchester vortex approach, which is of such fundamental
importance in low-speed aerofoil theory, has been almost entirely abandoned in the subsequent
treatment of the matter. This, of course, is no accident, for it appears that the alternative
methods of the supersonic theory lend themselves more readily to the solution of the main prob-
lem of finding the pressure distribution over an aerofoil of given shape and incidence ; furthermore
there exists no supersonic counterpart to the lifting-line theory to which is due the remarkable
suiess of Prandtl’s approach. The purpose of this paper is to show that once the lift distribution
is known, the vortex approach can still be of use in determining the flow round an aerofoil.

The general linearised theory of a field of flow due to an arbitrary distribution of vorticity
under steady supersonic conditions is developed in the College of Aeronautics Report No. 9,
1947, and is applied in the present paper to aerofoil problems ; in particular the downwash
along the continuation of the centre line of a delta wing is calculated for the quasi-subsonic
case (apex semi-angle smaller than the Mach angle).

Other methods of determining the field of flow from the pressure distribution, such as first
deriving the “‘acceleration potential”” due to an equivalent doublet distribution, at least in some
cases, lead to considerably more complicated calculations than those involved in the method
adopted here.

*College of Aeronautics Report No.Meceived 20th February, 1948.
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2. Results.—The downwash, w, along the continuation of the centre-line of a delta wing moving
at a supersonic speed such that it lies entirely within the Mach cone emanating from its apex,

is given by :—
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where K, E and E’ are the well-known complete elliptic integrals

V= the velocity

o« = the incidence

¢ = maximum wing chord

d = distance aft of the trailing edge

# = Mach angle . N
y = wing apex semi-angle ‘ /7
i = cotutany QJ»/J A

The condition 4 < Ac¢ indicates that the point in Question is outside the Mach cones emanating
from the wing tips, and vice versa (see Fig. 4),

The corresponding spanwise lift distribution over the aerofoil as given in R A.E. Report No.
Aero. 2151 (A.R.C. 10222)® is:—

2p V72 ) , . :
Z(y)zE,—m\/(c tan®y — y%), .. .. .. . . o (2)
where p = air density y = spanwise co-ordinate

As d tends to infinity in (1, é¢), w/V« tends to 1/E’(2), which is exactly the same result as
obtained for the downwash in incompressible flow far behind the trailing edge of an aerofoil
with spanwise lift given by (2). This is a special casg of a more general result stated in Ref. 3,
according to which, for a given spanwise lift distribution, the trailing vortex field tends in
regions far behind the aerofoil, where the chordwise co-ordinate is large compared to the other
co-ordinates, to the same limit in supersonic as in subsonic flows

In Fig. 1 the downwash is plotted against the distance from the trailing edge for various
values of the parameter 1. It will be noted that for 2 = 0, that is for very small aspect ratios
or at speeds very near that of sound, the downwash becomes equal to the donwflow at the

aerofoil (w/Ve = 1).

Fig. 2 shows what the downwash would be if the entire lift were regarded as being concentrated
at the trailing edge for the given value of 0-4 for A.

To assist in applying the results given in Fig. 1 to particular cases, the values of 4 for specified
values of aspect ratio and Mach number can be found from Fig. 3.

3. Vortex Plane Theory for Supersonic Conditions.—Consider a flat aerofoil placed approxi-
mately in the xy-plane at a small incidence in an airstream of velocity V, greater than that of
sound, in the positive x-direction. Then according to linearised theory we have :—

The equation of continuity—
et @ o’ P

___ﬁZ ax2+ay2+azzzo, .o .. . .. . .. .. .. (3)
where g = M* — 1 ¢ = velocity potential.
The Eulerian equations—
_Lop_ oy om
p ox ox
1 3p 3
—— =V = . . o . . . . .
1o _yow
p 0% 0x |
where p = pressure u, v, w = velocity components. :
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It is assumed as in subsonic lifting plane theory that the kinematic boundary conditions must
be fulfilled at the normal projection of the aerofoil on the xy-plane rather than at the aerofoil
itself, and that @ is continuous everywhere in the fluid except across the wake. The latter is
~ taken to be the strip lying in the xy-plane subtended downstream by the aerofoil. Finally it
is assumed that the pressure is continuous across the wake. The exact or approximate validity
of these assumptions under supersonic conditions is, in the last resort, a matter for experimental
verification.

Since the flow is assumed to be irrotational, dv/dx and ow/éx may be replaced in equations
(4) by ou/éy and 9u/dz respectively. Integrating these we obtain the linearised form of
Bernoulli’'s Equation :— :

p .
Vau +;:const., .. .. .. .. .. .. .. (5

where the constant is the same throughout space, that is both sides of the wake. It follows that
u, like the pressure $, is continuous across the wake.
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Fic. 2. Downwash on the assumption that lift is concentrated at the trailing edge.

Furthermore the normal velocity, w, is continuous at the aerofeil, because it is assumed to
be flat, and similarly across the wake, since a discontinuity would indicate the presence of
sources contrary to the condition of continuity.

This also follows from the boundary conditions which require @ — Vx to be anti-symmetrical
with respect to the xy-plane, so that ®(x,y, — 2) = — ®(x, vy, — 2).
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Hence we have :—

At the aerofoil,  «(x, v,+0) — V = — [u(x,y, — 0) — V]
vix,y, +0) = —ouxy —0) . .. .. (6)
wx,y, +0) =+ wix,y —O0)
and at the wake, w(x, vy, + 0) = Juxy —0 =+ V
vix,y, +0) = —oxy —O0) .. . .. (7
wx,y, +0 = +4wkxy —0)

These equations show that we may regard the area comprising the aerofoil and its wake a
a vortex sheet with a surface distribution o (x, y) of vortices given by

= (— (o4 — v, (0 — 0, 0) = (— 2, 2 — ¥),0).. .. .. (8

|8

and, in particular, in the wake,

= (— 2v,,0,0), where u, = u(x, y, + 0) etc. .. .. o 9

(e

Now, since the flow is irrotational, we have

v, _ ouy
595_ 537—0,, .. .. .. .. .. .. .. (10)
’ ov_ o _ - :
and E‘“—yzo . .. . .. .o . . (11)
Hence, at the aerofoil
v, —v) ou, —u)
Py — 5 =0, .. .. .. .. .o (12)

and at the wake, taking into account equation (7),

vy —v.) v, '
— o = 0. . .. .. .. .. .. (13)
Equations (12) and (13) show that div w = 0, as required for a vorticity vector.

To find the field of flow due to this vorticity distribution we apply formula (60) of Ref. 2,
which states that the velocity vector (#, v, w) due to vorticity (&, 5, ¢) is given by :(—

(#, v, w) = curlh ¥+ (V,0,0)

1 * dx dvy dz
?’(x,y,z)zﬂs (&, 9, o) yaz o, .. .. .. .. .. (14)
R,

S

where (a) s = &/ {(x —%)* — B* [(y — 0)" + (2 — 2)°]}
(b) R’ is the subdomain of the region concerned for which s is real and x, < x.

(c) curlh is the hyperbolic curl and *f Hadamard’s “finite part of an infinite
integral” as defined in Ref. 2.
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In our case the vortex layer becomes infinitely thin, while the product (5,‘17, o)dz, remain
finite and equal to . We obtain

1 =*

adxy Ay

¥ o T where now z, = 0 ins. .. .. .. (19)

The vorticity distribution over the aerofoil will be called the bound vorticity and that in the
wake the trailing vorticity. The latter consists of straight vortex lines of constant strength
extending from the trailing edge to infinity in the negative x-direction.

If we write u* = %, - V and v* = v, equation (15) becomes
. 1 ax, dv,
_t,z_l_ — = JR' (_ vE u* () .,,-,E’g,e, . (16)
By equations (7) and (13) we have in the wake
u* = 0, . .. .. .. . .. (17
ov*
r%—:(). .. . .. . . .. .. (18)

Also, by equation (5), #* is connected with the pressure difference, &Ap = p. - p_, between
the top and bottom aerofoil surfaces by the relation

Ap

* — e

W= oy, .. . .. . .. .. .. (19)
Hence, if the lift distribution is known, so is #* and vice versa. Equation (18) shows that

v* is independent of x in the wake, so that to evaluate the integral (16) over the wake it is

sufficient to know the variation of v* along the trailing edge only. It will be shown that at the

trailing edge, as well as elsewhere on the aerofoil,

v¥F = 8% 5 w*dx, where the integral is taken along a chord from the leading edge.

Consider a circuit ABCDD'C'B’A’A, where AB,CD are parallel to the x-axis and AD,BC
to the y-axis, so that AB and CD are separated by a small distance év ; A B,C,D, are just above
the xy-plane and A’,B’,C’,D’ form their image just below it; A,A’,D,D’ are points ahead of
the aerofoil (see Fig. 4). Applying Stokes’ theorem to the flow round this circuit we obtain :—

B d C d D d C’ d B’ A’
L ", x+fn v, y+jc ", x+L), u_ x+fc'v_dy+ L'u, dx = 0. .. .o (20)

This may be written
C

B
J (M+Hu_)dx——J (, —wu)dr+ (v, —v_)dy =0. e .. .2
A

D

Hence, as dy tends to zero,

o (B . .
(vy —o_) == 5 S (#, — u_)dx, since u, == u_, as far as the aerofoil. .. .o (22)
A



Now . — u_ = 2u¥) )
- at the aerofoil, so that

v, — v_ = 2v%|
a -
L * 9
v¥ = ayJ w*dx, as asserted. .. .. .. .. .. R )]

This relation might have been derived directly from equation (12), which can be written as
L & % &
%_ — % = 0, but for the possible irregularities of ou* and %% at the leading edge and at
the envelope of the Mach cones emanating from it. What . 4« o \: l’ ot mj 3
v el Cow@ _
o1t

Define 4 = | u*dx with the condition # = 0 at the leading edge. Then v* = 2=, It will
g edg 3y

f

be seen from equation (19) that 4 is proportional to the excess pressure integral from the leading
edge to the point in question. ,

Divide R’ into two subdomains S’ and ', belonging to the normal projection on to the xy-plane
of -the aerofoil, S, and the wake, W, respectively.

"~ Then

T:—I'S‘ [ a0 | dx,dy, 1 dx, dy,
T

P_emoa gl dmdy, 1| [ }

L ax’O; s g SW' ( 6_y 0,0 s (24)
AN ot iy , '

where <@>t is the value of 3y at the trailing edge for given y,.

.

i (x — x,) dx, dyq’

% s S s

o % o dxy dy, _ S ﬂdsyo
c

S’ Jse

L%

by integration by parts, where C’ is that segment of the trailing edge included in R’.

We can now represent ¥ as the sum of two vectors,
V= (P, ¥, ¥,/ )and ¥ = (¥,", ¥,", ¥,"), where

W — — lvs od dx, 4y,

T s 8y S
2 7; Js’ 83
v, = 0
and R & oy o By,

7 oy , s

v 4 L 7 Do - (26)
7 $

o
y’]all —_ O

- .
W e y 1 ER



It will be seen that ¥ conincides with ¥" if we imagine that the whole bound vorticity, for
any given span posmon is concentrated at the ir ailing edge.

It will be observed that, if the aerofoil is assumed to be symmetrical with respect to the
zx-plane and to have a stralght tralhng edge, ¥ " 'may be regarded as being due to the sum of

a set of horse-shoe vortices of strength — 2 <f> whose spanwise segments extend from —y, to

+ v, (see Ref. 2, section 6. (64) ). To find the velocity components (#”,v”,w"”) due to this
combination it is necessary to integrate the expression given in equation (68) of Ref. 2 from the
midpoint of the trailing edge to the positive endpoint with respect to y,, thus:—

TR — i S (¥ — vo)z . dy,
R T (R O R Y (e N R (L R
. 5 9% (¥ + yo)z. dy, ‘; .
8_’}/0 [(x——-x(,) _ﬁz \/{x—xo wﬁz[(y+y0)2 +z2]})’ .. .

where the integrals extend over those segments of the trailing edge for which v, is positive and
. L 0% . . .
the integrands are real. From the above assumption it follows that v* = gf is anti-symmetrical

with respect to the zx-plane, so that the second integral in (27) is equal to but opposite in sign
to the first taken over the remainder of the path of integration, C".

’ B o (Y — )z . dy,
Hence u ;S 5y, (@ — 7 — ] s .. .. .. .. (28)
. v 1 ot (& — %0)2, AV,
Similarly v = - S e () — 9 + 2] 5° .. .. . o (29)
and w" = 1_ 0 (¥ — %) (¥ — ¥o) {(¥ — %0)* — B* [(¥ — 30)® + 22°] dyo}_
@ Yo 3o [ —x)* — 8% [(y — 20)* + 2°] . s

(30)
In calculating (2", v", w"), x, will take the value of x at the trailing edge.

To calculate the field of flow due to ¥’ behind the aerofoil on the assumption that it is sym-

metrical with respect to the zx-plane and that it has a straight trailing edge, or more precisely
one that is not so curved that it meets a line parallel to the y-axis in more than two points, we
rewrite equation (25) in the form :—

Tl':le(xU)dxo; Tg':JXz(xo)dxo; ¥, =0, N 1))
where
e 1 | ol dyo . _ 1 * 7/—L~(x""x0)dyo
Xl—“;\‘a}*f,_s"XZ“_;s e L @Y



It will be observed that, for a given x,, X, is obtained from ¥,” by differentiating it with

. o 0% .
respect to x and putting { —)} = -——, since
P P § (a_'y)t o
ow," 13 j )dxodyou 4 l*j g@) (x — x)dx, dy
ox 7w 0X ay Ky - 7w Jw ay f s3

= — = 5 8y> S (5})t being independent of x,.
Similarly we may derive X, from ¥,”. It will be noted that, though the limits of integration
may be dependent on x, we are ]ustlfled in differentiating under the integral sign of the finite
part of an infinite 1ntegral as demonstrated in section 2 of Ref. 2.

Thus (%', v’, w')is obtained from (¢ ", v”, w") by differentiation with respect to x and subsequent
integration with respect to ¥, across the aerofoil. Hence

p o B o B (y — 302

w = — L’@O @{[(x_xo) 2T }dxodyo R )
o 1 * di 0 (% — %o)z

vE T fsfgﬂ ox {[(y——yo)"’-i—zz].s} %o &yo

e LEc9a 2 ([ — %) (¥ — Yo) {(* — %)® — B[ (¥ — o)’ +2zz]}| '
o= =3 | mwm (R e e N (R o P R

It will be seen that these latter equations involve the representation of a vortex sheet by a
system of line vortices. Hence, in accordance with a remark at the end of Ref. 2, they are not
valid everywhere, but can be shown to be so inside the envelope of the Mach cones emanating
from the trailing edge. In partlculal the formulae are valid in the region of the wake. Thus
for the downwash, w = w' + w”, we have in the wake, where z = 0, by equations (30) and (33) :—

R s T
L o [V e e % T SRR
le.
==L Ry
+ . %‘— R \/{(‘f(f ;ﬁ"’l = dyr):-. ... (35)

Before applying our results to calculating the downwash in the wake of a delta wing, it is
instructive to consider the case of two-dimensional flow.
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2 \\x\\
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Fic. 8. Value of A for varying aspect ratio and Mach number for delta wings.

In two-dimensional flow- parallel to the zx-plane v* = 0, so by equation (16) ¥ is given by
l[ll — W:; = (), and =

BU2 _ l J ' dxo dyn‘) ’ (36)
T S s
which we can integrate directly with respect to y, since #* is independent of y,. Hence
| ( | By — vo) ] v2) .
J — = * | . O I .. - 37
i fe ] RV (s cpmy 2 I R (87)
where v, and y, are the roots of s> = . Therefore
wz—:%ju*m, e 38
where the integral is taken from the leading edge to xy = x — 8 | z |, or to the trailing edge,

whichever is the smaller.

In particular, if #* is constant and the leading edge coincides with x, = 0 and the trailing edge
with x, = ¢, then :(—
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1 . 1
‘Pz__z—u*(x—ﬁlz]),or—ﬁu*c .. . .. . .o (39)

The components, # — V and w, are given by the hyperbolic curl of ¥, which in this case is

Y, , 0%, _
— —55—,0,-—;9 ax)' Hence :—
u = V 4 u*
}ifx—ﬁ|z|<c .. .. . . .. .. (40)
w = — fu* '
u =V

and

w

0

}ifx—ﬁ|z!>c,

which is in agreement with Ackeret’s theory. On the other hand formulae (33), while providing
the right answer forx — g | z | > ¢, fail forx — g | z | < ¢ for the reasons mentioned previously.

4. The Downwash in the Wake of a Delta Wing.—Consider a delta wing at a small angle of
incidence «,in a uniform airstream of supersonic velocity so that the apex semi-angle, , is less
The apex is at the origin, and x = ¢ at the trailing edge, such that the
wing is approximately in the xy-plane with its axis along the x-direction.

than the Mach angle.

¥
\\
\X'*‘ﬁy =O
\
\
\
\
- \
i A\
(x-9+gy= - c &
// \
// ) \
- - \
X ! : — P
\ I ot
\\ -~
(x=c) -py=0", g
A -~
it
// -
//
X-8y=0
F 4
Ac C N
d N

F1G. 4. Diagram of delta wing
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Under these conditions according to Ref. 3 we have

. Va X tan® y
PR - Pe ; l == .. .. .«
o EG) vt tanty — g8 where g tan y (41)
. = Va 2 2. a2
hence i = ) V(%% tan® y — 9,3,
ot . VO(. Vo )
wnd T T Vimt s Sy

Here i is in fact identical with the induced velocity potential of the aerofoil and can be obtained
directly.

The downwash, w — w’ 4 w”, at the centre line of the wake can now be found directly from
equation (34) by substitution and integration.

. _ L Va 1 2 4/ {{x — %)% — B,"}
Wehave: ' = — ot | frtanty =509 & —x e

V. [ 1 B 1

o ( Yo 2)

- — —— ~\1 J— R I8

£ j ({ _ Byo V1 — V| X — %
n E'(2) 51(1 \/m)} (( o)>1J
dxe dye

(x — Xy ’\/ (x()ztanz v o y(]z) ) (42)

In S’ the limits of integration with respect to y, have to be such that the integrand is real ;
they are - x, tan y or - % (x — x), whichever is numerically the less. The limits are 4 x, tan y

if x,/(x — x,) << 1,which is always the case if d = x — ¢ > Aic..

Consider M <1l xy < 2.
X — Xp 1+ 2
}..X()
Put Yo = tx, tan y and & = , so that
X — X,
oo Va +1 _’_ 1 249 dxodt
w = E'(A)J I via—my V=) oy aTy - W

_ oVa [ K(k) — E(k
M——nE'(l)S % — % )dx"’

2 K(k) — E(B)
~_%E,°(‘l)j k. O 70
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Consider now 2 > 1,1 % > ———=

X - Xy 1 + 2
Put Bye = bx — .xu) and £ =% ;Oxo, so that
o= ) | o Vool e
. anVa)j K(F) — E(F) — (1132_ ) K(E)}_ fi—;
:+f§@ﬂ§§fi}%@da L s

Now the range of integration with respect to x, is 0 to ¢, so that when 4 <Zi¢ we must split

the range into two parts — 0 to 1—_?1 and —l—j_—z'to ¢. For the first part, integral (42) reduces
to (44), for which the range of integration with respect to % is 0 to 1, and for the second it reduces
to (46), for which the range of integration with respect to & is 1 to d/ic.

Therefore for 4 < ic we have

3

W = —

2 | ('K —E " K-
E'(4 |

S0 Jdike

When d > ic the full range of ¥ = 0 to ¢ is covered by £ = 0 to Ac/d in the integral (44).

Therefore for d = Ac we have

“held .
, ZVM)S E—F g . . Wi

= T ZE'(A AT+ E

We also derive from equation (34) the following expression for w”:----

" Va | V@ —c — B3 dy,
wo o= - JtE’(2.> \C, (x T C) '\/(62 tan2’}’ _4y)0§ c . . .. . .. (48)

o

As before, the limits of integration have to be such that the integrand is real; they are
+ ¢ tan y if 4 > 2c, otherwise + 4/g .

A
Consider 4 > ic and put y, = fc tan y and 2 = xéﬁ? = EC“ , so that
. Ve |7 /1 — ke 2Va
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Consider now d < Ac and put py, = ¢{x — ¢) and & = x }: ¢ = % s0 that
. Ve oV /<L;_ﬁ> pn 2V E(R) — (1 —F) K()
YT RET \ VARN IS T aE'(d) %
-1
(50)
Therefore for d <. ic we have
v 2V A d dN\2 AN .
weoo= 2 E'(2) T 4E<lc> : [1 <ﬂ>] K <AZ‘>/ R .. .. (81, 1)
And ford - ic
v 2V rke B
W= T RE(2) L <E> . . .. . o . .. (51, ii)

It will be noted that w’ and w” are continuous at 4 ° ic. The gradient of w, however, has a
logarithmic singularity at this point.

The component w” represents the downwash that would be obtained if the entire lift were

concentrated at the trailing edge for the same spanwise lift distribution : w”/Va is plotted in
Fig. 2 versus d/c for 1 = (-4.

The total downwash, w = w’ + w”, is therefore given by:-
where d < Ac,

Va :772‘(,1) 115 HOE G ()]

-}
K(k) — E(k K(k) — E(k ) .
+ (k) — E&) 4 \ K(k) — E(R) ) 2
b+ A Bl + Ak) j
0 v djke :
and where d > ic,
2 (. KR — ER) )
w - ; — L ; ..
I =y ( "> r KiR) - E(R) 4! (52
Va n E'(3) | d k4 2 ;
¢
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