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Summary

General equations arc derived for the conservation of
mass, momentum &nd any other conserved proverty, and their
solution is made possible by means of: (&) introduction of
three-parameter profiles, (b) a hypothesis about entrain-
ment from the mainstream into the boundary layer. Applic-
ations are made to the following plane uniform-property
flows along smooth walls: the impermeable flat plate; the
impermeable wall in the presence of an adverse pressure
gradient; the flat plate with mass transfer; the wall jet
in stagnant surroundings; and heat transfer in the absence
of mass transfer. The agsumptions eppcar to be sufficiently
realistic and flexible to provide a simple single calculation
method for the above processes, even when these operate
sinmultaneously and in conjunctiocn with roughness, fhree—
dimensional, flow reversal, and variable-property effects.
The main barrier to further progress is uncertainty about

the way in which entrainment is influenced by density

variations.

¥ Professor of Heat Transfer. :
Replaces A.R.C. 25. 925,
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1. Introduction.

7.7 The problem considsred.

Fig. 1 illustrates a porous solid surface exposed to
a steady stream of fluid of large extant. At the upstream
edge of the surface a narrower stream of a second fluid
also enters, having a component of vclocity in the same
direction as that of the main stream. Through the pores
in the surface yet another fluid may flow to Jjoin the
previous two; alternatively, fluid may flow through the
pores in the opposite direction. The flow in the region
near the wall is turbulent. Large property variations may
exist in this region as 2 result of one or more of the
following influences; temperature differences existing
between the surface, the main stream and the secondary
stream; composition differences between the various fluids;
frictional effects, i.e. "kinetic hecating"; and chemical
reactions between oné or more of the fluids. The velocity
of the main stream may be non-uniforn,

The flow represented in Fig. 1 contains features which
are present, though not usually simultaneously, in a great
many circumstances of-practical importance. If only one
fluid is present (no injection through slet or porous
surface), the situation is the familiar one of boundary-
layer flow along an impermeable wall; it arises in diffusers,
compressors and turbines, on aircraft wings, and in
numerous other engineering devices. Injection of fluid
through a slot is often provided so es to lower the temp-
erature of the wall downstream of the slot (film-cooling);
it may also be resorted to as a means of preventing
boundary-layer separation. Injection of fluid through a
porous surface occurs in transpiration cooling; and
hydrodynamically similar effects are produced by such

mass-transfer processes as suvblimation, vaporisation and

combustion.
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The ultimate aim of the work reported in the present
pzper is the provision of a theory for the predictions of
the shear stress and the rates of heat and mass transfer at
the wall, in situations such as those of Fig.

1.2 The need for a new theory.

Present knowledge of turbulent boundory layers is
summarised in several modern text books, for example those
of :- Schlichting 41, Lia [24], Thwaites [67], Hinze [19],
and Kutateladze and Leont'ev [2{]. Although much useful
information is to be found in these works, it is not
possible to extract from them a theory of the comprehensive-
ness that is desired.

Even when restrictecd to the boundary layer without
injection, which has been most thoroughly studied, exist-
ing theories are unsatisfactory.in several respects. One
of the most serious of these, made manifest by the thorough
survey by Thompson [51], is that the majority of methods
of predicting boundary-layer growth in an adverse pressure
gradient are decidedly unrcliable; only the method of
Head fﬁﬂ, which will be referred to again below, weas
found by Thompson to be reasonably successful over the
whole range of conditions that have been explorsd experi-
mentally. Another shortcoming is that even the best of
existing theories accounting for the effect of compress-
ibility on flat-plate drag e.g.[éd turn out to involve
implications about the velocity profiles which are not
borne out by examination of the experimental data Exﬂ;

(see section 8.5); and in any case these theories have not
been extended to deal with ¢ varying main-stream velocity.

Although several papers have recently been published
concerning the so-called wall jet, i.e. the flow down-
stream of an injection slot such as that of Fig. 1,
little success has been achieved in rationalising the

experimental data. As an illustration of this point,
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Fig. 2 shows the shear stress versus the Reynolds number
for the uniform-density case with zero main-stream velocity.
The theoretical line was deduced by Glauert [15], wino
started from the plausible assumption that the velocity
profile near the wall has the well-known "universal" form
up to the point of maximum velocity; the experimental points,
from Sigalla [48] and Bradshaw and Gee [3], exhibit
appreciably greater shear stresses than are calculated by
Glauert*, Even more disconcerting is that Bradshaw and
Gee found the shear stress to have a finite magnitude at
the point of zero velocity gradient; none of the hypotheses
on which it is usual to base theories of turbulent flow
can be reconciled with this surprising fact.

Current knowledge of the influence of mass transfer
through the wall is almost entirely restricted to circum-
stances of uniform main-stream velocity, without injection
from a slot. Efforts to fit all the available experimental
data into a single theoretical framework have met with meagre
success [5@ . Moreover there exist some major qualitative
disagreements between theory and experiment; for example,
Pappas and Okuno BEJ have reported that the heat-transfer
coefficient is affected less by mass transfer at high Mach
numbers than it is at low Mach numbers; all theories of
the process imply the opposite tendency.

Quite apart from these and other individual failures
of currently available theories, the fragmentariness of
the existing methods of prediction is both practically
disadvantageous and aecsthetically displeasing. The engin-
eer seeks a single set of general equations which can be
particularised merely by striking out irrelevant terms;
the scientist secks a single set of physical hypotheses
which retain their validity over the whole range of

turbulent flows near walls. Even the comprehensive work

*See section 6.2 below.



4,
of Kutateladze and Leont'ev [21], which is so far the
most ambitious attempt to treat all boundary-layer phenomena
from a unified point of view, omits wall-jet and three-
dimensional effects. The neced for a new and complete
theory is evident.

1.3 Outline of the present theory.

The present papecr describes some aspects of a new
theory which is being developcd to meet the need Jjust
described. This theory has resulted from the interplay of
two preoccupations.of the author and his colleagues: an
interest in turbulent mixing and cntrainment phenomena in
the absence of walls-[ﬁO, 5@ ; and an interest in friction,
heat transfer and mass transfcer in boundary layers [51, 52,
53, 54]. Thesc two strcams of study were caused to impinge
by an attcmpt to rationalise the now numerous experimental
data on film-cooling (67, 7, 8, 16, 17, 33, 44, 45, 46,
47]; some of these data could be reconciled by postulating
that the flow pehaved like a turbulent jet in the absence
of a wall, while others wer:s more in accord with the view
that the flow near the wall obeyed the usual laws of the
boundary lgyer, without any special effects of the jet
[56] -

The new theory rests on two main postulates. The
first is that the velocity, temperature and concentration
profiles can be described by formulae having two main
components, one accounting for effects of momentum, heat
and mass transfer to the wall, ahd the other acccunting
for interactions with the main stream; thus bhe general
profiles have both "boundary-layer" and "jet" components.
The second is that fluid is entraiucd into the wall layer
in the same manncr as it is into a turbulent jet and in
accordance with similar quantitative laws. These assunp-
tions, when adequately expresscd in mathematical form,

prove'to be strong enough to support a tizory covering all
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the phenomena which we have discussed so far. What is
particularly interesting is that an attempt to extend the
applicability of boundary-layer theory to & new set of
phenomena, namely the wall-jct, appears to be throwing
new light on classical problems of the turbulent boundary
layer. 3

Once the "new" theory had been conceived, it soon

became apparent that its elements werz not new at all.

Thus the formulae for the velocity profiles turned out

to be similar to thosc put forward by Ross and Robertson
[57], Rotta [58] and Coles Bﬂ as a means of systematising
the dcscription of experimental findings; these authors had
however not been able to exploit their discovery because
they lacked a hypothesis about why any particular profile
should exist in any particular circumstances.

Further, a form of entrainment hypothesis.turned out
to have been put forward, in a highly significant contribut-
ion to boundary-layer theory, by Head Eﬂﬁ . This author
supposced that the ratc of entrainment was a function of
the shape factor, and obtained an approximate form of the
function empirically. As has alrecady been mentioned,

Head's theory has proved to be more successful than any
other in predicting boundary-laycr growth. However, his
entrainment hypothesis was not linked to any particular
postulate about thce velocity profiles; although this
freedom from detailed commitments would have been
advantageous if experimental data had been more numarous
and reliable, the abscnce of a profile assumption left the
author with no guide as to how to extrapolate or refine his
empirical entrainment function.

It may therefore be helpful (though historically
inaccurate) to regard the present theory as a putting
together of the profile assumptions of Ross and Robertson,

Rotta and Coles with the entrainment hypothesis of Heed,
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followed by an extension to flows with heat and mass
transfer and injection from slots, and carrying the promise
of further extensions to flows with three-dimensional and
varying-property effects. Further, the handling of the
entrainment hypothesis has been influenced by studies of
some turbulence phenomena of meteorology by Batchelor[?g],
Morton, Taylor and Turner [74}, and Morton [75, 7@].

1.4 Restrictions of the present paper.

The dcvelopment of the new- tneory is of course a
major undertaking, which will teake some time to comblete.
For this reasoﬁ, and so as to exhibit more clearly the
main elements and implications of the theory, the flows
dealt with in the present paper are subject to the follow-
ing restrictions:-

(1) The density, viscosity, specific heat and
thermal conductivity of the fluid are uniform throughout
the stream.

(ii) The wall is hydrodynamically smooth.

(iii) The velocity vectors through all points on a
given normal to the wall lie in a single plane.

It should be understood that these restrictions are
not necessary. One of the main attractions of the present
theory is that it can accommodate variable-property,
roughness and three-dimcnsional effects without requiring
radically new hypotheses, A brief discussion of these

matters will be found in section 8 below.

2. Mathematical theory.

1
2.1 Definitions and differential equations'.

Some of the notation* which will be used is illustrated

1

T Note to printer: Underlines denote italics. They have
however been omitted from cquations, wherein all letters
should be italicised except d, 1ln, cos, sin, exp.

*Footnote: A full list of notation and its significance
will be found in section 10 below.
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in Fig. 3, showing profiles of the non-dimensional
velocity 2z and of a conserved property @, plotted
against the non-dimensional distance from the wall &.
The subscript G denotes the main-stream state while sub-
script S denotes that of the fluid adjacent to the wall.
The distance e is the "thickness of the boundary layer",
a quantity which is only rendered significant by nath--
ematical specification of the shape of the profiles
(section 2.2 below); for 7 > yg the velocity, temperature
and composition of the fluid are regarded as uniform. The
quantity @ may stand for the composition of some chemically
inert component of the mixture, for the stagnation enthalpy,
or for any other mixture propverty which is subject to a
conservation law.

We shall be concerned with three important integral
properties of the z and @ profiles: Iqs 12 and ;¢. These

are defined Dby:

/]

I/]E SO (p/pG) Zdﬁ o-ooo-(2o/]-/\)
1

I,= SC (p/pG) zedﬁ ceseee(2:.1=2)
1 ‘

Ty= XO (8 - 85) (p/pg) 2 AE veeeen(2.1-3)

Of course, for uniform density, the term p/pG may be
omitted; however, the definitions and equations in the
present section (i.e. 2.1) will be expressed in a form
valid also for varying density, since it is easy Lo do this.
We remark in passing that the quantities 11 and 12
are related to three familiar concepts of boundary-layer
theory, the displacement thickness 61, the momentum thick-
ness 62 and the shape factor I, by:

6/]/37(}:/] _I/l ooooo;(2o/]—q')

i

62/yG I/l"Ig 0000.0(201"5)

H= 6,‘/62=(’1-I,])/(I,,-I2) cooees(2.1=6)
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Five differcent definitions of Reynolds number will be
used at various points in the analysis. The first four
relate to a single section through the boundary layer,

while the fifth (BX) relates to the distance along the
wall. They are:~

Ry = pg g Yo/ eeee(2.1-7)

Ry = pg ug 52AMG= <I1"12)RG ceeeo(2.1-8)
TG

RmESO (/Pglay = IRy eee.(2.1-9)

RpaxS PG Ymax Ymax’MG ceese(2.1-10)

x
R.= SO ( Pg uG/)AG)dx ceees(2.1-11)

Thrce conservation equations can now be written, each
having the form of a first-order ordinary differential
equation. The first exprcsses the law of conservation of

mass:

ARy 5 a(lnw)

- 4 ) —————e————— = =10

dRX dRX

G’+ m -0000(2.1—/]2)

Here m is the non-dimensional rate of mass transfer into

the boundary layer through the wall, defined by:-

m= ﬁ"/(pGuG) ceeee(2.1-13)

The quantity m. is so defined that-—gGis the rate of
entrainment of mass from the main stream into the boundary
layer, divided by Pg Ygs it may be regarded as being
defined by equation (2.1-12).
The quantity w is the distance between adjacent stream-
lines in the direction parallel to the surface and normal
to the flow. TFor two-dimensional flows, w is constant so
that d(Lnﬂ)/dgx vanishes., For exially-symmetrical flows
w is proportional to the distance from the axis of symmetry.
The second differential equation represents the law

of conservation of momentum applied to the boundary layer.



It is:
d R, d(lnuG) d(ln w)
— 4+ (1 + H)ZR2-———-——-— +Ry ==————— =5 + ceeo (2.1-4)
<in | dESL (iﬁx
Here s is defined by:
s= T /(pGﬂﬁf) cesse(2.7-15)

(A more usual, but more clumsy, symbol for s would be
cp/2; the significance of s may be remembered by notiné
the fact that s is the initial letter of "shear"). The
quantity <t 1is the shear stress at the wall., The momentum
equation has been expressed in a form which is sufficiently
close to the usual one for it to be recognised; however,
we shall Shortly replace 32 and H by Em and appropriate
functions of I, and I..

The last differential equation expreSSOS\the law of

eonservation of the property #. It is:

—_— (-- Rm> v LR oy - By | -.-(2.1-16)
dRX Iq 11 df%x

This equation has been written directly in terms of Bm and
the 1's, since there are no conventionally-used counter-
parts to R, and H. The subscript T stands for "the trans-
ferred-substance state", a concept which is explained, if
explanation be needed, in [ﬁﬂ ; thus é"%T is the flow rate
of the entity @ brought about by the fluges at the wall.

Equations (2.1-12), (2.1-=14) and (2,1-16) have to be
solved if predictions of friction, heat transfer and mass
transfer are to be made. However a simple counting of the
number of unknowns shows that solution will not be possible
unless several more relations between these quantities can
be found. We shall consider these in the following
scctions,

2.2 Veloecity profile and drag law (uniform density).

It will be assumed that the velocity profile, under

uniform-density‘conditions, may be represented with



10.
sufficient accuracy by the relation:

Z = s%u++ (’l—zE)(:’I—cosnF,)/Z veee.(2.2-1)

Here 2y is a parameter which will assumes great importance
later, and u” is a function of y", the non-dimensional
distance from the wall defined by:

vt = yre )i : .. (2.2-2)

The function u*(y") is obtained by study of the flow
region immediately adjacent to the wall, either by experi-
ment or by semi-thcoretical énalysis. Thus, in the absence
of mass transfer we shall assume, in accordance with
well-known experimental findings and idealisations [41]:

m=0: u't=2.51nEy") ceeea(2.2-3)

where E is a constant*.
When mass transfer is present, we shall presume that
the more general "bi-logarithmic" law of Black and

Sarnecki [1] holds. This is:

ut = 2.5 {ln(E'y") +~1-.-‘-;—S—{ [nce'y*y] 2} ...(2.2-4)

Here E' is expected to be a function of m, or rather of
g/g%; E' must equal B, when m equals zero.

By combining equations (2.2-1), (2.2-4), (2.2-2) and
2.1-7), we obtain the expression for the velocity profile
in a sufficiently general form for the present purposes,

It is:
7= 2.5s% 1n(E" RGS% £) + 1.5625m [1n(E! RG's%g ) ] 2,
" (']-zE)('l-cos n &)/ 2 eessa(2.2-5)

This relation clearly takes account of the fact that mass
transfer modifies the stress variation along a normal to

the wall.

*Footnote. E is often taken as equal to 9.025. We shall
however remain uncommitted to any particular number at the’
present stage, and shall determine E later in a way which

gives the best fit with experimental drag data.
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The corresponding effect of pressure gradient is for
the time being neglected, since it is relatively small.
Thg apparent inconsistency is justified by the facts that
the mass-transfer effect is proportional to the velocity,
while the pressure-gradient effect is proportional to the
distance; and thc velocity rises more rapidly than distance
near the wall, The experimental velocity profiles of
Indwieg and Tillmann [?5] can be cited in support of the
neglect of the pressure-gradient effect. IThis matter is
discussed further in section 4,

Equation (2.2-5) yields the local drag law, when z

and & are both given their values at the outer limit of
the boundary layer, namely uaity. A convenient form of the

resulting equation is:

R 2
(O.Ll' -1‘:'- - 00625 ml) ltc.o(2.2_6)

i
iRt

wherein we have uscd the abbreviation:

1= ln(E'RGs%) cee.(2.2-7)

Equation (2.2-6) can be re-introduced into (2.2-5)
to rendcer the labtter somewhat more transparent, There
results:

a
z = (2.552 + 3.125ml) InZ + 1.5625m(1nE)° +
w2y + (1-25)(1-eos nE)/2 ... (2.2-8)

For the purpose of evaluating the I-integrals, equation

(2.2~8) is unnccessarily elaborate. With little loss of

accuracy we can drop the (ln & )2 term and so obtain:
z=DIng + zg + (’l—zE)(’I-cosnz)/E ce...(2.2-9)
where:

= 2.58% + 3.125ml

.ZE
- + 1.5625ml

2.5(s-+1an)% eeee.(2.2-10)
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Possibly the last of these alternative forms for D is
the most informative; it ilmplies that the shear'stress
governing the logarithmic portion of the velocity profile
is not the wall stress s, but that quantity augmented by
the stress mz; which is necessary to raise the injected
mass to the (non-dimensional) velocity Zpe

Inspection of equation (2.2-8) reveals that this
equation reprcsents a three-parametsr family of profiles;;
the parameters might be zp, R, and @, OT zZg, S and m/s.
The approximate profile family represented by equation
(2.2-9), on the other hend, is a two-parameter family; 25
and D are the obvious parameters to choose.

2.3 The @-profile and flux law (uniform density)

It will be assumed that the variztion of the conserved

property @ through the boundary layer can be represented by:

Qj“gG = (gs'gs_)*'—m’?t' (gs"ﬂri\) t++

S

+ 5 (B, -85)(1 - coswE) ceeea(2.3-1)

where §+ is a function of Z+’ obtcinéd by carrying out a
Couette~flow analysis similar to that relating'g+’to Z+’
Since_the'E+ function appears less often in the literature
than the E+ function, we shall here indicate how it is
derived. The analysis can be regarded as an extension to
finite mass-transfer rates of that made by Spalding and
Jayatillaka for vanishingly small transfer rates [55].

In a Couette flow, by definition, the only terms
entering tac conservation laws represent fluxes normal to
the wall. Thus the momentum equation and the @-conservation
equation'are:—

T + 1m"u = M du/dy ceese(2.3=2)

ﬁl"(@‘@fﬂ) = Ptd@/‘dy 3'000(2.5"5>
where

7#% is the "total" (i.e. laminar plus turbulent)
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viscogsity and r% is the corresponding exchange coefficient,
i.e. diffusion coefficient times density or thermal conduct-
ivity divided by specific heat, according to which is
appropriate to the property £Z.
Division of corresponding terms in equations (2.3-2)

and (2.%-3) leads to:

ag "~ du
—— U%-—-———T-— ceese(2.3=4)
@—@T u+ /m"
where
U%:_—: ,ut/["‘t eeese(2.3=5)

Let us now suppose that T which has the significance
of a "total" Prandtl or Schmidt number, has the value 9%
throughout the flow apart from a thih region close to the
wall, the so-called laminar sub-layer. Then we can write

equation (2.3-4) as:

g - ¢ <
~——2 . (1 4+ uh) Oexp(—nit % P) -1 ...(2.3-6)
S

gs— gT S
where
oo o, . T +
P»—E— S tr__m O du_% " 10001(203—7)
0 0 1 + ms ¢u

Hence, if t* is defined as (%-—ﬁs)(1:p)%/{é"(ﬁs-ﬂr%

evaluated for a Couette flow, we have:

I
0 m
1+ 5 uf) oxp(—;— &z P) -1
£t = ( : S

S

...(2.3-8)

I\IH

m/s

The quantity P is & function of the laminar Prandtl or
Schmidt number, and of the mass-transfer quantity g/g%;
it measures the extra resistance of the laminar sub-layer.
It must be admitted however that absolutely no knowledge
currently exists sbout the influence of g/g% on P.

In equation (2.3-1), QE has the significance of the
value of @ evaluatzd from the Couette-flow expression when

£ is put equal to unity, 2 condition for which g+ is equal

to gE/g%. Thus:



(;i’
Py - B g 00
R 1 +-—§—-) exph~i-<3b P> - 1] «..(2.3-9)
@ @ 52
B T

This expression m2y be regarded as the flux law conaecting
the "“drivingforce for mass transfer in terms of @ ",with the
nass-transfer rate m and other quantiticss, Its significance
will become clearer when particular cases are considered,

as will be done shortly.

Equation (2.3-1), coupled as it must be with equations
(2.3-8) and (2.3-9), has a rather inconvenicnt form for
insertion in the integral lg- We therefore introduce the
approximate form:

B - By Dy Ink + (B - B){1- 5 (1-cosmE)}

eeess(2,3-10)
where the quantity Qﬂ is chosen so as to cause the approx-
imate cxpression to agree with the exact one in the neigh-
bourhood of the point € = 1. It may be verified by differ-

entiation that a suitable expression for 2¢ is:

Dy = 2.5, (fg - 8) m veee.(2.3-11)
(s + mZE)%,

Since these general relutions are novel, it is
desirable to exhibit the forms to which they rcduce in
cases of particular simplicity. First we consider the
case of vanishingly small mass transfer, and suppose P
to stand for enthalpy. Then equation (2.3-8) reduces to
the familiar form [55]:

t7 = oy (P + ut) ceera(2.3-12)

With the specific enthalpy h in place of @ and the heat

flux éé'replacing é"(@s-ﬁT), equation (2.3-9) becomes:

hy -hg = 359 ("8 P ) ceni(2.3-13)

+
Pug s o3

If desired, s can of course be eliminated from this

equation in favour of 1 by reference to the drag law,



15.

equation (2.2-6), with m placed egqual to zero. Equation
a
2,3-13) is the local heat-transfer law; it has/readily

understandable form. Finally we note that, in this part-
icular case, equation (2.3-11) reduces to:
D, = 250 4
T
(rp)®

The second particular case is that in which o is

ceeee(243-14)

equal to unity throughout. Then P cquals zero, and we
find:

equation (2.3-8) — tt = ut eee..(2.3=-15)
gE—gﬂ mZE

p . = =3 ceees(2.3-16)
S—'

equation (2.3=9) —

equation (2.%-11) —> DQ =_£f§£:j%§z. D vu..(2.3-17)
This corresponds to the validity of the Reynolds analogy
between friction and @-transport over the Couette-flow
portion of the layer, for which the relevant @ difference
is @5 - #5 and the relevant velocity difference is zpus.

The quantity n, appearing in equations (2.3%-1) and
(2.3-10), is a number lying betwcen O and 1., The signif-
icance will be explained below (section 6.4).

2.4 The integral expressions.

Equation (2.2-9), on insertion into equation (2.2-1)
and (2.1-2), yiclds:
I, = (1 +\ZE) -D oo (244=1)
and
<3+ Rag+ Bz - D(0.A1T+1.589 zg) + 2D°
’ eeee(2.4=2)
Related useful expressions are:
Iy-Tp= 5 (1= 25) (14 325) + D(1.5892 - 0.589) ~ 2D°
‘ ceeeo(2.4=3)
1 - 11 = %(1-—2E)-+D ceeeo(2.4-4)

and
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1=, = 2(1=2,0(5+%32.) + D(0.411 +1.589 z_) - 2D°
2 =8 i t B + . + e DO B <
cooa-(204“5)
Insertion -of equations (2.2-9) and (2.3-10) into the
definition (2.1-3) yields:
Ig= (By-0y) [3(1 + 25) -8 (3+2;)-D(1-0.2055n)] -
- D¢(0.2055-+0.7945%3)+ 2DD¢ ... (2.4=58)

These equations permit the I-integrals to be

expressed, through equations (2.2-10) and (2.3-11), in

terms of the variables: Zg ﬂE-ﬁG, 1, m, and ﬁE"gT'

2.5 A preliminary centrainment law.

In order to obtain a reclation betwsen the dimension-
less entrainment rate My and other propertics, we first
turn to information about the plane frce turbulent mixing
laycr which is formzd at the boundary of a large stream
entering a stagnant fluid (Fig. 4). The velocity profiles
have boen measursd by Reichardt [}4] and by Liepmann and
Laufer I?ﬁ] . They can be approximately represented by
the formula:

z = (1 - coswE) veeea(2.5-1)
where now, in the dcfinitions of z and & Us is the
velocity of the entering stream, y is the distance normal
to the stream from the zero-velocity boundary and Yo is
correspondingly the total width of the layer. The data of
Reichardt }}%] imply that ZG/§ is approximately equdi to
0.21, whils thosc of Liepmann and Laufer [Qj] imply the
value of 0.26. Of course, sincc there are many ways of
fitting the cosine profile to the cxperimental data, there
is a certain arbitrariness about cach of these numbers.

Application of the squations of continuity and
momentum implics that, if-gGstill stands for the non-
dimensional entrainment rat. into the mixing region from
the stream hoving velocity Ug *

g (y¢/%) veea.(2.5-2)

)

0.0787 or 0.0974

il
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according to which of the two vad.ues for ZG/5 is taken.,

Sabin [40] has carried out measurements on the
more general mixihg layer which results when the stream
with velocity U, issues into a stream with velocity
ZpYg. He reports that the mixing-layer thickness is
proportional to (1-—30)/(14-50). The profile shapes
reported by Sabin can be fitted quite well by the
formula:

z = % {(1 v 25) = (1 = 24) cosn:i} veees(2.5-3)

In this cas¢, the continuity and momentum equations imply:

3 + z, Yo

- =
G
8 X

corse(2.5-4)

Hence, in view of the variation of y./x with z,, we can

write:
-m, =C (1-20)(1+-§zo)

(1 + ZO)

eeees(2.5-5)

where C stands for either 0.0787 or 0.0974 according to
whether Reichardt's or Liepmann and Laufer's constant is
teken. Sabin's data, incidentally, lend support to the
second of the two figures.

It should be noted that the non-dimensional entrain-
ment rate from the lower-velocity strecam, which we shall
call my, is also determinable from the continuity and

momentum e¢quations. The relation is:

my = C (1 - zo)(} + zo)

(1 + z4)

eere.(2.5-6)

Obviously the entrainment rates are numerically

equal when go equals unity;. when go,equals zero, m, has

an absolute magnitude only one third as great as Dse
Equations (2.5-5) and (2.5-6) were baosed on Sabin's

findings about the width of the mixing layer, which were

obtained in experiments in which 24 lay between O and 1.

However, formulae valid for the casc in which Zq is
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greater than unity can be obtained simply by a change of
notation. Thus o5 becomes-—gG/Eo; - I becomes go/go;

and z, must be replaced by 1/z5. There result the

formulee:
z~ 3 1: -m,=C (z2,-1)1+32,) T
0 G 0 0 veena(2.5-7).
and (q+fZO>
zo$’l: my=.C (ZO—’I)(«}+ zo)

ceeee(2.5-8)
(1 + 24)

Once again, these formulase imply that m, and m, are

close =0 =G
nunericaily equal when 24 is /to unity; but when 25
tends to infinity, m, has three times the numerical
magnitude of m..

It is tempting to identify the quuntity z, for the

0
frce mixing layer with the quantity 2g for the boundary
layer. With this identification and with C taken as, say,
the arithmetic mean of 0.0787 and 0.0974, equations (2.5-5)
and (2.5-7) would furnish thelrequired law of entrainment
into a boundary layer., We shall however defer judgment

on this metter, since there are ob;ious differences
betwecn the‘twojsituations. For sxample, in the free
mixing la&§r? the plane of maximum sheér stress co-
incides with the plane at which glis approximately equal
to (14—30)/2; in the boundary laygr, on the other hand,

it may lie ncarer to the plane where z equals Zy This
matter is discussed again ‘in section 3.3, where empirical
information’about entrainment into boundary layers is used
to guide the choice of entrainment law.

2.6 Appreciaticn of the mathematical problem of predicting

boundary-layer development.

Let us now enumerate cquations and unknowns, so as
to establish the conditions under which the mathematical
problem can be solved. In the first instance we shall

suppose that the maoinstream velocity Uss the stream width
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W and the injection rete m are prescribed at all values of
the length co-ordinate x. The last condition ensures that
the hydrodynamic problem can be solved separately from and
prior to the thermal or concentration problem.

The hydrodyncmic problem is constituted by two differ-
ential equations and several algebraic equations. The
first differential equation is (2.1-12). The second may

be derived from (2.1-14) by the use of (2.1-12) and (2.1-6);

it is:
(1~ 12) Rm ii_-(_]._*itigz - (I,, -12) mg -I2m- I,]s
Rm dzE - N de
de 312 ) I2 aI2
aZE I1 aZE ooo.o(2o6"1)

The quantities I,/9z; ond oL,/ dz; may be obtained
from equations (2.4-1) and (2.4-2), coupled with equation
(2.2-10) for D. In the latter connexion, it is preferable
to use the second of the three possible right-hand sides,
and convenient to rcgard 1 as a constant; the latter step
leads to negligible errors in practice, because the
variation of 1 is always extremely slow.

The main dependent variables are thus z, and R, the
latter being somewhat preferable to 32 since it is always
positive. The other quantities appearing in equations
(2.1-12) and (2.6-1) may be related to Zp and R, or to
known quantities by mcans of the following equations:-

(2.4-1), (2.4-2) and (2.2-10) which relate the I's
to zp, 1, and m;

(2.2-6) which relates s to zp, 1 and m; and (2.2-7),
which can conveniently be written in terms of Bm’ Zgs 1

and m.
- a

.At this point it is appropriate to make/provisional
decision concerning the quantity E' which appears in
equation (2.2-7). The argument of the logarithm can be

- -1 . .
expressed as ZG/{;LCrp ) %(El) } . The quantity in
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curly brackets has the dimensions of length; in physical
terms it measures the length scale of the turbulence, i.e.
the "eddy sigze", as influcnced by shear and viscous
effects in the laminar sub-layer. Now when mass trénsfer
is present, the shear stress in the laminar sub-layer
differs from that at the wall; it would therefore be
inappropriate to insert /u,(rp)-%E-/I in the curly bracket,
leaving E at the value which prevails for m =‘O. Clearly
we should choose E' so that r%g' is equal to (?)%E
where 7T is some suitable average value. How can T be
determined? It must certainly lie between <t and
T + é"gG, the former being the stress at the wall and
the latter the greatest possible stress in the boundary
layer. Accordingly, we shall presume that 7 equals
(1 + gggE/g), at least until further evidence is forth-
coming; we can expect this to be too large rather than
too small & value, since the location where z equals zp
usually lies outside the viscous region.
With this assumption, and with thc help of equations
(2.1=- 9) and (2.2-10), equation (2.2-7) becomes:
1-1nlgp fu 0.4 (_Z_,p_ ¢ 1.5625 n1 >} ern.(2.6-2)
I, 1
Of course, since 1 appears within the argument of the
logarithm as well as being equal to the logarithm, equation
(2,6-2) does not yield 1 as an explicit function of R
z; and m; nevertheless, the value of 1 is so little
influenced by small variations in the argument, that (2.6-2)
may:be used as a rapidly convergent iteration formula.
The question of the value to bs given to the constant E
will be deferred until later.
It has now been established that we have sufficient
equations to allow the determination of the unknowns
(Bm, Zps S 1) at all points along the surface, when Uss

m and w are specified as functions of the lonhgitudinal
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We insert at this point another test, albeit a weank
oneé, of the suitability of the velocity-profile family.
Clauser [4] devoted considerable experimental attention to
three different boundary layers and has reported values of
G, defined in equation (3.3-2) cbove, and (1"lq)§_%’ the
latter being denoted by A/6 in Clauser's paper. The values
for G were 6.1 (also reporfed as 6.8 in Clauser [4ag] ),
10.1 and 19.3; the values of (1-—Iq)§'% were 3.6, 6.4 and
12.0 respectively. Now bthe present velocity-profile

assumption implies, as already scen:

o . AA4 3.9725 4 12,5
e (Ba1-2)
A + 2.5
and:
(1 - 11)8-% = ZA + 2.5 ceee(4.1-3)

Fig. 9 contains a plot of (1-—;1)§-%versus G. The
full line represcnts equations (4.1-2) and (4.1-3%), and
the circles represent Clauser's data. Evidentally the
crossés lie near to the curve. Once again however, it
would have been surprising not to find good agrecment, for
the relationship between the ordinate and abscissa is not
greatly dependent on the shape of profile, as is indicated
by the nearnc¢ss of the broken curve valid for the profile
of Ross and Robertson [37] and Rotta [38] which, in present
notation can be expressed as:

z = 2z + DInk& + (1 - zE)E cenee e (Ha1-4)
Of course, Fig. 9 provides no test at all of the accuracy
of the shear-stress precdiction, since the curve cuts any

straight line through the origin too obliquely.

4,2 The stationary-state boundary layer with an adverse

prcssure gradient.

Results of much greater significance are obtained by
considering the implications of equation (2.7-1). With

m, Substituted from equation (3.3-5), m placed cqual to



1 m m 5
ar, \I, %/ 1, AR,
m (ghx - gS) . (2;6"3
+ &
1+ mz m
( -—-—E—-> exp (——_L- o P>~ 1
s 52 g

<

This is the equation which has to be integrated, ¢E
being ths unxnown dependent variable;

Finally we must note that, in problems involving
vaporization, condensation, etc., m is not specified in
the data. In such cascs, all three differential eguations
(i.e. those for R, 2y and @E) must be solved simultaneously.
Sometimes two @-equations must pe dcalt with, for example
when the surface conditions aretgirectly specified [4?};
in one, ¥ might stand for enthalpy, in the other for
concentration, and a surface-equilibrium condition would
be needed to link the two preperties. dHdowever, the problem
recmains well within the scope of quite modest computational
facilities.

Now that it has been established that a complete
mathematical structure has been erected, further discussion
of the general mathematical problem can be dispenszd with.

2.7 The stationary-statse boundary lsyoer.

In somc circumstances, the terms appearing in the
numerator of the right-hand side of equation (2.6-1) may
be of such size and sign that two of them dominate the
equation. Then the term involving dgE/BX may be neglected,
with only small error.

We shall call a flow for which equation (2.6-1) shows

dgE/dEX to be precisely zcero a_stationary-state boundary

layer, by analogy with similar phenomena in physics and
chemistry (c.f. Bodcnstein's "stationary-state" hypothesis
for certain classes of chain reactions [2] ). When we

neglect dgE/dgx, even though it may not gqual zero
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precisely, the consequent theory will be termed "quasi-
stationary".* The foundation of the quasi-stationary

theory is therefore the degenerate form of equation (2.6-1),

namely:

dz (1-I,) R. d(lnu.)
—E -0 e’ m G0 . (Iq-Ig)mG-Iam-Iqs= 0
de 4 RX

ceeea(2.7-1)

The use of this equation brings of course the great
advantage of eliminating one of the two differential equations
which govern the hydrodynamics of the wall layer. Moreover,
it permits many local properties of the layer, for example
the local drag law connecting s and R,, to be expressed
without reference to z, and without solution of a differ-
ential equation. Much of the discussion contained in the
remainder of the paper will be conducted with the aid of
the quasi-stationary theory, since this permits a swift

insight into many implications of the full equations.

%. The turbulent flat-plate boundary layer

3.1 The nature of the problem

We first consider the flow which has been studied with
more attention than any other, that on a smooth plane
(::) impermeable surface immersed in a stream of uniform velocity,
without the presence of injection from slots. The situation

may be characterised mathematically by the conditions:

m=20
d(lnuy)/dR, = O veeea(3.1-7)
= 0

ad(lnw)/d R

Because of the large number of experimental data which

exist for this flow, we can not only confirm that the

*Pootnote: The stationary-state boundary layer is not quite
the same as the "equilibrium boundery layer" of Clauser B@.
For the stationary-state, 1 -z, is independent of R ; for

Clauser's equilibrium layer, it may be shown, (1-5E)s is
independent of R._.
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present theory has the right form, but can also fix some
of the unknown constants (E, C) so as to give good agree-
ment with the data.

We shall use the quasi-stationary theory, subsequently
Justifying it .use for the flat-plate flow.
3.2 Equations.

In the present circumstances, the general hydrodynamic

equations.reduce to:

(2.1-12) —> dR /AR, = -mg ceen.(3.2-1)
(2.2-6) —> s = (0.4 zE/l)2 e (3.2-2)
(2.2-10) —= D = z/1 ceene(3.2-3)
(2.4-1) —> I, =%+ zE(%-I) ceees(3.2=4)
0.411 2,3 1.589 2
(2.4—2) -—>12 = 8+ ZE('EC—'—"I—— + R (g“ 1 + 'l'z)
’ cer..(3.2-5)
(2.7-1) — -my =115 veree(3.2-6)
-1

Let us now nobe that we can reasonavly guess that Zp
is close to unity in this case; for, after all, conventional
theories implying that Zp is equal to unity are fairly
successful for the flat plate. Let us also note that the
provisional entrainment law (2.5-5) implies that-—gG is
likely to be proportional to (1-—gE) (if (1-5E) is itself
proportional to (1-go)); morcover cquation (2.4-3) makes
it likely that (;1-;2) is also proportional to (1-—§E);
meanwnile, lq is approximately unity when Zg is near 1.
These considerations, taken together with equation (3.2-6)
make it probable that s is proportional to (1-EE)2. To
aid investigation of this question, we define the quantity
A, by:

4oy = veeea(3.2-7)

It is interesting to note thét, if the equations indeed

imply that A is a constant for an equilibrium flat-plate
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boundary layer, the present theory will have scored its

first success; for equation (3.2-7) can be re-arranged as:

_EQ_:_E%. = A cee..(3.2-8)
(t /p)

The left-hand side measures the deviation of the actual
velocity profile from the logarithmic profile, at the
outer edge of the boundary layer; and it was established
by Schultz-Grunow [43] that this difference has a constant

value of around 2.3 for flat-plate boundary layers.

3.5 Deductions from experimental data for H.

Substitution of equation (3.2-7), into ecquations (3.2-4)
and (3.2-5), together with the use of (3.2-2), (3.2-3) and
(2.1-6) leads to the interesting equation:

/'

5, 5

[4 - (§A%+ 3.97254 + 12.5) ,}}
S
(30 + 2.5)

ceeeo(3.3-1)

H =

Now Hama [15] has observed that the shape factor of measured
flat-plate velocity profiles can be related to the drag
coefficient by an equation of the form:

H = 1/(1 - 6s?) cenai(3.3-2)
where G is a constant. Fig. 5 illustrates the data collected
by Hama, together with curves drawn for G = 5.5, 6.0, 6.5
and 7.0. Hama recommended that the value of G should be
taken as 6.1. Clauser [4] considered the same data and
recommended variously 6.1 and 6.8. Earlier, Coles [5] had
suggested a value of 7.1, after a less extensive examination
of the experimental literature. The value 6.4 is implied
by the velocity profile of Schultz-Grunow [43].

In the present paper wc adopt the value of 6.5 for G.
Since comparison of ecquations (3.3-1) and (3.3-2) shows
that the function of A appearing in the former is equal to
G, we can now deduce the corresponding value of A; it is
2.342, We thercfore decduce that, in the absence of mass

transfer and pressure gradient:
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Ue ~ Yg 1

- (1-2z5) s

(r/p)

= 2,342 eeees(3.3-3)

This result ig in excellent agreement with that of Schultz-
Grunow mcntioned at the end of the last section. Inde:zd,
the whole velocity profile which results from insertion of
(B.B—B)Iinto (2.2-1) is in good agrecment with that author's
data, as Fig. 6 shows. Of course, these facts merely
signify that the family of profiles which has been postulated,
i.e, that described by equation (2.2-1), fits the mezsured
profiles reasonably wcll,

Let us now examine more closcly the conformity of
the constancy of A with our entrainment hypothesis. Suppose
that -ms, is equal to a constant times (1-—§E) in the region
in question; then equations (3.2-2), (3.2-3), (3.2-4),
(3.2-5), (3.2-6) and (3.2-7) imply:

1
- mg 1 o1 - (4 + 2.5) 8"
1- 2y A(ZA + 2.5) 1 - gs?
= ¢', s3ay e (3.3-4)

With A = 2.342 and G = 6;5, we deduce that C' is equal to
O.1165(1-—5.671§%),/(1-6.55%); Since g% lies between

0.1 and 0.0%5 in all the experiments wnich are hers under
review, it is clear that a constant value of C', equal to
about 0.14 would fit the data quite adequabtely. So an
entrainment law giving -m, proportional to (1-—5E) conforms
with; and may even be thought to explain, the observations
of Schultz~Grunow and Hama.

This is an apprépriate point at which to make a firmer
recommendation for the entrainment law, valid when zp is
less than unity. In section 2.5, identification of Zg with
2y would have led to a value of C' equal to about
0.088 x (4/3) +2, i.e. 0.059, a 1little less than half of the
value just obtained directly from consideration of boundary

layers. Possibly we should identify (1-—53) with approx-
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imately one half of (1-—30), on the grounds that the mixing
region of the boundary layer is like Jjust one half of the
free mixing layer. On the other hand, when 2y is close to
zero, it becomes much more rcasonable to regard it as having .
the same significance as Zo5 for now both the boundary-layer
mixing region and the free mixing laycer have the plane of
maximum shear stress roughly in the middle. We can devise
an entrainment formula which approximately fits both these

requirements; it is:

Zp L1 -mg = 01(1-ZE) (1 +-§ZE) veoes(3.3=5)

If now we require that equation (%.3-4) is satisfied when
8 has the typical value of 0.0015, with G equal to 6.5 and
A to 2.342, we deduce that ¢, has the value of 0.1023,
Equation (3.3-5), with C, equal to 0.1023, will be
used as the entrainment law for gEciﬂ, in the remainder of
the paper. Of course this practice will require refinement
when a closer study of all available data has been made;
ultimately it may be necessory to introducc other quantities
than z, (for example R and s) into the gé function. However,
the prescnt hypothesis is a simple and plausible onz, which
is worth testing further., It involves the followng partic-

ular values of m.:. ‘

{

ceess(3.3-6)

%3—91 : - mg —> 0.1%363 (1 - QE)

zg = 0 ¢ - By L 0,1023

3.4 Derivation of a local drag law for the flat plste.

Combination of equation (3.2-7) with equation (2.2-6)
leads, for m = O and with 32 introduced via (2.1-8), to:

O.4A N] 2
s = lo.g [1n) EE R (, veeea(3.4=1)

L (34+2.5)(1-Gs?)]

We can now fix the constant E by reference to cxperimental

data for drag. By teking as typical the pair of values
s = 0.0015 and 32 = 5030, extracted from the "best-fit" table
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of Spalding and Chi [57], and with the values of A and G
derived above, we deduce that E equals 6.542. To this there
corresponds the following local drag law for quesi-station-

ary flow on a smooth impermcable flat plate:

s = [0.4 /1n{s.558,/ (1-6.582 )}]2 ceeea(3.4-2)

This relation appears to fit the experimental data just as
well as the curve fitted by Spalding and Chi [57], as
Fig. 77 shows. |

The value of 6.542. for E can be regarded as surpris-
ingly low in view of the fact that examination of velocity
-profile data show that a value of 9.025 is more appropriate
to the region near the wall. The discrepancy may arise
from the fact that the velocity profile (2.2-1) does not
fit the experimental data in all respects; but probably
some error is attributable to the use of the quasi-station-
ary hypothesis. At a later stage in the development of-
the theory, it will be necessary to re-adjust all the
empirically determined constants by refercence to exact
integrations of both the differential equations.

3.5 The validity of the stationary-stale hypothesis.

It is necessary, now that a stationary-state theory
has becn developed for the flat-plate boundary layer, to
re-examine the general équations>to see 1if the hypothesis
has a satisfactory foundation.

In the precsent circumstances, equa%ion (2.6=1) can
. be written: | ‘

R, a(I,/1,) -mg (I5-15)

B = = -2t . g ceee(3.5-1)
aR I,

Now it follows from the quasi-stationary hypothesis that:

I, =1 - (34 + 2.5)s? ceree(3.5-2)

i

T2 - (h+5) 57+ (34+2.5)Gs .. (3.5-3)

2:

Since we know that §% is considerably less than unity in
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the situation in question, we can write:

I
2 1 - (34 + 2.5) S% ceeea(3.5-4)
I
I.R R
1 %2 2
R & ——— e esssel(B:5~-
.o -1, (34 + 2.5) 8% N
and so:
R a(I,/I,) R ds
m 271 =___2_ — eoees(3.5-6)
dR, 2s de

Since the g-% term inside the argument of the logarithm
of equation (3.4-2) has little influence, we can obtain by

differentiation of this equation:

-1 ds 2.5 dR, '
. P~ eeeee(3.5=7)
253/2 dR, R, dR,

Since further the momentum equation for the flat plate shows
that dgz/dgX simply eqguals s, equations (3.5-6) and
(3.5-7) imply that the left-hand side of (3.5-1) can be

approximately re-written as follows:

Re AT/L) a5 532

m
dR

ee...(3.5-8)

We can now pronounce on the validity of the quasi-
stationary hypothesis; for the two terms on the right of
equation (3.5-1) are obviously of the order of magnitude of
8, while the left-hand side is only 2.5§3/2, i.e. around
0.1 times as great. It follows that the quasi-stationary
asgsumption is justified; but only as a first approximation.
Thus, if the left-hand side of the equation had not been
neglected, the value of C, might have been chosen about
10% larger than that obtained in section 3.3.

We conclude that the quasi-stationary hypothesis is
useful for exploratory investigations such as are being

conducted in the present paper; but more exact analysis

will necessitate the retention of the dgE/dgx term.



300

4, The smooth impermeable wall; influence of pressure

gradient.

4,1 Comparison with the drag law of Ludwiég and” Tillmann.

Ludwieg and Tillmann [25] measured the drag exerted
by a boundary layer subjected to an adverse pressure grad-
ient. As a result of their studies, they propounded the

following approximate law of local skin friction:

s = 0,123 x 1070-6788 p-0.268 | (4.1-1)
Their experiments covered a range of 32 from about

107 %o about &4 x1o4, and 2 range of H from about 1.2 up
H - oD

to 1.8; the larger/values mainly occurred at the higher
Reynolds numbers.

A reclation between s, R, and H can be derivéd solely
from the velocity-profile 2ssumption of the present theory;
for H may be expressed-via equations (2.1-6), (2.4-1) and
(2.4~2) in terms of Zg» and D; D can be expressed in terms-
of zp and 1 via (2.2-10) with m = O; 1 is connected with.
R, and zn via (2.6-2); and s is given by (2.2-6). Comput-
ations have been carried out using these equations together
with the value 6.542 derived for E in section 3,4, The
results are plotted as full curves in Figz. &; the broken
straight lines represent the Ludwieg-Tillmann formula
(4.1-1), their extent covering roughly the arca appropriate.
to the experimental conditions explored by those authors.

The agreement between the present theéory and the
Ludwieg~Tillmann formula may be regardcd as rather
satisfactory, particularly in view of the fact that the
latter is itself only approximatel However, it would have
been surprising if poor agreement had been obtained, for
care has been taken to ensure that the postulated family
of velocity profiles fits the experimental data fairly well;
and even a poor fit of the velocity-profile data will §till
give a fairly good agreement with the experimental drag

dat=a,
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We insert at this point another test, albeit a weank
oneé, of the suitability of the velocity-profile family.
Clauser [4] devoted considerable experimental attention to
three different boundary layers and has reported values of
G, defined in equation (3.3-2) cbove, and (1"lq)§_%’ the
latter being denoted by A/6 in Clauser's paper. The values
for G were 6.1 (also reporfed as 6.8 in Clauser [4ag] ),
10.1 and 19.3; the values of (1-—Iq)§'% were 3.6, 6.4 and
12.0 respectively. Now bthe present velocity-profile

assumption implies, as already scen:

o . AA4 3.9725 4 12,5
e (Ba1-2)
A + 2.5
and:
(1 - 11)8-% = ZA + 2.5 ceee(4.1-3)

Fig. 9 contains a plot of (1-—;1)§-%versus G. The
full line represcnts equations (4.1-2) and (4.1-3%), and
the circles represent Clauser's data. Evidentally the
crossés lie near to the curve. Once again however, it
would have been surprising not to find good agrecment, for
the relationship between the ordinate and abscissa is not
greatly dependent on the shape of profile, as is indicated
by the nearnc¢ss of the broken curve valid for the profile
of Ross and Robertson [37] and Rotta [38] which, in present
notation can be expressed as:

z = 2z + DInk& + (1 - zE)E cenee e (Ha1-4)
Of course, Fig. 9 provides no test at all of the accuracy
of the shear-stress precdiction, since the curve cuts any

straight line through the origin too obliquely.

4,2 The stationary-state boundary layer with an adverse

prcssure gradient.

Results of much greater significance are obtained by
considering the implications of equation (2.7-1). With

m, Substituted from equation (3.3-5), m placed cqual to
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zero because mass transfer is absent, and & new symbol for

the non-dimensional pressure gradient, namely: - -

Fro= Ry d (lnuG) 65 dug

<in Us dx

there results:
F, (I.-I.)s . ‘ (I,-1.)°
2 = 1 27° < 0.,1023 (1 - ZE)(’I + ;J;ZE) g 2

reeee (B.2-2)
Equation (4.2-2) can be used, in conjunction with those
mentioned in the previous section, for the computation of
values of F, for various velues of H and R,. The resultg
of such computations are displayed in Fig. 10; lines of
constant z, are also shown.

F5 has been chosen as the measure of the pressure
gradient partly because Kutateladze and Leont'ev [?ﬂ R
among others, have suggested that this quantity exerts a
dominant influencej; in particular, these authors argue,
boundary-layer separation always o¢égrs when -Ea cxceeds
0.01, the corresponding value of H being around 1.9. We
shall now show tnat EZ plays an important role in the
present theory also, although the critical value which
emerges is appreciably lower than that of Kutate;adze
and Leont'e\f.~ |

First it must be ecmphasised that Fig. 10 is strictly
valid for only the statidnary-state boundary layer, i.e.
the layer with P independent of x; such boundary layers
can be contrived'in the laboratory by ensuring that the
pressure gradient changes with Reynolds number in accordance
with one of the constant-z, lines of Fig. 10. - Obviously
H will vary slightly with downstream distance in such a
boundary layer, and of course s will eventually vanishj
tﬁe preésure-gradient parameter Eg/i chosen by .some authors

(e.g. Clauser 4] ), will thercfore vary widely.
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The main conclusions to be drawn from inspection of
Fig. 10 are as follows:

(i) At any particular momentum-thickness Reynolds
number 32, there are in general two possible values of H
which correspond to the stationary state for a given non-
dimensional pressure gradient F,.

(ii) At low values of -F5 (mildly adverse pressure
gradients) only one value of H exists for which 2p lies
between zero and unity. Probebly another one exiscs for
negative Zp but boundary layers with reverse-flow regions
will not be discussed in the present report, although they
can, in principle at least, be fitted into the framcwork
of the theory.

(1ii) At somewhat higher values of -F,, two values
of H can satisfy cquation (4.,2-2) at a fixed value of 32
without involving reverse flow (gE < 0).

(iv) When however -F, exceeds a given value, which is
near 0,006 but which varies somewhat with Reynolds number,
no real stationary-state boundary layer exists. It follows
that, for such high values of -E,, dgE/dgx is bound to be
finite; re-examination of equatiop (2.6-1) shows that
this quantity must indeed be negative. 8o for -Fs in
cxcess of about 0,006, Zp will fall and the boundary layer
will separate. This is a striking prcdiction, of the same
character as that of Kutateladze and Leont'ev [21], but
involving a lower value of —32 and also based on quite
different considerations. It will be interesting to make
a comparison with experimental data.

4,3 Comparison with experimental F,~H data.

Fig. 11 contains the same curves as are shown on
Fig. 10. ~In addition it contains curves deduced from
several experimental investigations. Each curve is marked
with an arrow indicating the direction in which R increased

in the experiments; points at which 32 equalled 5X’IO5



34,
and 104 are indicated by circles and squares. It must be
remembered that, with the possible exception of the
experiments of Clauser E#], the experimental boundary .
layers were not in or near the quasi-stationary state;
indeed the variation in their velocity profiles along the
surface was so extreme that boundary-layer breakaway
eventually occurred in three of the five cases. Therefore
we do not expect the experimental curves to lie near the
theorestical ones except in regions in which the pressure
gradient changes slowly.

The experimental data of Clauser [4] provide two
curves. The lower one on Fig. 11 is short. It lics well
within the band of stationary-state curves; although the
point where 32 is 104 does not lie in exactly the predicted
position for a stationary-state layer. The second and
higher curve is considerably longer; although this inter-
sects the stationary-state curves, the upstream state of
the boundary layer has a surprisingly high value of H.
Possibly however the F,-values, which have been deduced
from a differcntiation of the main—stream'velocity variation,
are somewhat in error. In any case it appears that the
boundary layer chaonges so as eventually to conform
fairly closely with the stationary state,

The data of ven Doenhoff and Tetervin [1Q] were
obtained for an aeccofoil (KACA 65(216)-222 (approx.) at
an incidence of 100). The curve on Fig. 11 representing
these data runs fairly close to the stationary-state
curves in the upstream region; however, when _EE has just
exceeded 0,004, the curve suddenly bends Dback so that H
increases and -32 falls. According to the quasi-stationary
theory the value of zp would be about 0.52 where the
departure occurs.

The data of Newman [29] , also obtained for an aero-

foil, and those of Schubauer and Klebanoff [42], which
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relate to a specially constructed surface, show very
similar behaviour., In both cases the upstrsam region
conforms fairly closely to the stationary-state curves;
and when 'Eg reaches sbout 0.0037, bthe experimental curves
rise and btend over.

Consideration of Fig. 11 and its implications seems
to justify the following conclusions:-

(i) Whercas the sfétiopary-étate hypothesis implies
that turbulent boundary laycrs are capable of withstanding
adverse pressure gradients for which "EE is &s great as
0.006, the experiments citced suggest that values only
© two-thirds as grcat will suffice to cause boundary-layer
separation; for the upper branches of the curves.of
Doenhoff/Tetervin, Ncwman and Schubauer/Klebanoff are
all associated with the latter phenomenon. Thus both
the argument of section 4.2 and tho theory of Kutateladze
and Leont'ev (for which -Fs = 0.01 at separation) over-
estimate the pressure gradient that can be sustained.

However, Pig. 11 provides support for the view
that EE is indeced the dimensionless qusantity which governs
boundary-layer separction. Morecover, it may be judged
that the positions of the lower branches of the experiment-
al curves add plausibility to the present theory.

(ii) For purposes of the design of engineering systems,
in which boundary-layer separation is a phenomenon to be
avoided, it would probably be sufficient to conclude
that the present theory may be used when ‘Eg is less than,
say, 0,0035, and that boundary-layer separation is to be
expected therecafter. However the reason for the lowness
of the critical value of ~F, also needs to be established.

The following cxplanation seems plausible. We have
neglected the influence of the pressure gradient on the
form of the velocity profile close to the wall, on the

strength of the obscrvations of Ludwieg and Tillmann [?ﬂ
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(see section 2.2). However, the experimental and theoreti-
cal work of Stratford [59] has shown that, at high adverse
pressure gradients, this neglect is unjustified; in partic-
ular, when the pressure gradient is sufficiently high, the
shear stress at the wall falls to zero and ths velocity
profile. in the immed;ate vicinity of the wall obeys the

law:
, =1
u = -‘2-_ -:]-“ -d‘lzyz .oua-(qog_ll)

where K is a mixing-leongth constant.
It follows that, for zero wall stress, the pressure-
gradient 22, has the value ED“O given by:
0

-Fr o = (6/2)° 2,2 (T4 =Tp)  oeeen(4.3-2)

Now if -F, were to exceecd —32,0 this could only be

as a result of a departurc of the velocity profile from
the form postulated in gection 2.2; for no solution of
the Couette~flow differential equation exists for such high
pressure gradicnts. We must therefore expect that the
curves presented in Fig. 10 can represcent stationary-state
performance only for values of -F, which are less than
=2,0°

(iii) The actual valus of -I5 o is obviously around
0.004, according to the experimentsl data collected on’
Fig., 11 and the value of zp 3t which it occurs is around
0.55. The value of (lq"lg> varies of course with 32,
but, in this range, it is around 0.16,., Substitution of
thess values in equation (4.3-2) yields: K = 0.575. Since,
in more conventional boundary-layer circumstances K is
taken as equal to 0.4 (and has been so taken throughout
the present paper), so high & value may seem surprising.
However, Townsend [@5] has argucd that X should have a
larger-than-usual value in gzero-wall-stress layers, and '
indeed suggests: K = 0.5 £ 0.05; the value which we have

deduced lies only just outside this ronge.
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Fig. 12 provides further evidence that the prcsent
theory needs to-be modified so as to take account of the
influence of pressure gradient on the E*Ny41 relationshipg
it represents a plot of 52 versus. £ , is based on experi-
mental results for zero wall stress obbtoined by Stratford

{5?], aﬁd is extracted from the paper by Townsend ESBJ.
The curve represents equation (2.2-1), with however g*
equal to EEEQ;E%, in accordance with equation (4.3-1), and
Zp equal to 0,663, Evidently the conception underlying the
present argument is fairly realistic.

In later developments of the unified theory of
boundary layers and wall jets, it will clearly be desirable.
to modify the u'~y" relation so as to take full account
of the effects of pressure gradient. Mecanwhile we merely
present Fig. 13, which contains the constant -32 curves
of Fig. 10 once more, but also has lines of constant
~F5 /{;Qéa(lq - 222} drawn on it. Equation (4.3-2),
with K = 0.575, implies that the curves of Fig. 10 can
be regarded as valid for 'Eg/-{éég(lq“lg)} less than
0.0827, a limit which is marked on Fig. 13.

(iv) The foregoing discussion may be held to explain
why Kutateladze and Leont'ev [21] predicted too high a
critical value of ‘Egi for their theory implies (among
other things) 2 unity value of 2z In other words the
boundary layer of these authors contains only the wall-
law component, not the "mixing-layer" or "wake" component.

(v) Finally, it is interesting to compare the degree
of success achieved by the present theory in predicting
experiﬁéntal behaviour with that of other theories. A
rough comparison can be made by inspection of Fig. 13a,
which contains. the curves of Fig., 10 yet again, and also a
set of curves extracted from the valuable review paper by
Rotta [77]; the latter are based on the theories of the

authors whose names appear on the'diagram, and hold for



o))

33.
equilibrium boundary layers with 32 equal to 104. It is
interesting to note that few of them bear much relation
to the experimental data represented .on Fig. 12;
curiously enough, the least unrcalistic prediction is
the earliest of all, namely that of Buri Eﬁﬂ.

4,4 Comparison with Head's entrainment law.

As mentioned in section 1.2, the idea of entrainment
has been introduced into boundary-layer theory by Head
(18] , who used the measurcments reported by Schubauer and
Klebanoff [42], and by Newman [29:; , for the empirical
deduction of an entraimment law. Head presented his
results in the form of two diagrams, reproduced here in-
Figs. 14 and 15. The first plots gq‘versus H, where Eq
is defined in the present notation by:

By= (e~ 84)/8;

= T,/(1,-1,) ool (Baa-1)

The sccond plots-—gG versus Eq° The circles represent
data from Newman EQ]; the crosscs represent data from
Schubauer and Klcbanoff [Ag].

Also drawn on Figs. 14 and 15 are curves representing
the prediction of the present theory, 32 being the parameter.
Those on Fig. 14 represent solely the implications of the
family of velocity profilcs; thosc on Fig. 15 in addition
represent the implications of the assumed entrainment
function. The following conclusions appear to be
Justified:-

(i) The scatter of the points on Fig. 14 is probably
mainly due to the difficulty of deciding, from inspection
of velocity profiles, which location shall be adopted for
the outer edge of the boundary. However, the "theoretical"
curves on Fig. 14 show that the cxperimental points are
not to be cxpected to lic on a singlc curve; there is a

significant Reynolds-number influence. Then these two
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'facts are taken into account, it can be said that Fig. 14
provides no recason for doubting the suitability of the
assumed family of velocity profiles, this being the only
matter under test.

(ii) The uncertainty in the evaluation of H, applies
Yo Fig. 15 also; here too one must expect a band of points,
32 being the paramcter, rather than a single curve.
However, even when these facts are taken into account,
Fig. 15 definitidly suggests cither that the presumed
entrainment law over-estimates the rate at which mass
can be drawvn into the boundary layer, or that the predicted
values of H, are too small.

The author's present view is that the latter explana-
tion is the more probable, the cause being again the
neglect of thé influence of pressure gradient on the
wall law. It must be the aim of future work to procure
closer agrcement between the measured and presumed
entrainment laws. Howcver, since the latter is regarded
entirely as an empirical input to the theory, therc
should be no serious difficulty in doing this.

(iii) As already mentioned, Head's theory of boundary
layer devclopment, which rests on the postulate that
unique relations exist between -mg, H and H,, is more
successful than any other [61]. Since the influence of
32 on these functions is recognised in the present theory,
it should be possible to develop a calculation procedure

whicgh is even more successful than that of Head.

5. Mass transfer in the absence of pressurc gradient;

guasi-stationary theory.

5.1 Prediction of the local drag law.

Mickley and Davis [7] have made an extensive
experimental study of the boundary layer on a smooth

flat plate through which air is injected towards the
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main air stream. Their measurements afford a useful
check of the present theory.

The relevant cquations .are:-~ the drag law (2.2-6)
with 1 given by equation (2.6-2); thc definition of the
I's, with D obtained from (2.2-10); the entrainment law
(3.3-5); and the differcntial ecquations (2.1-12) and (2.6-1).
However, encouraged by our success with the flat plate
in the .abscnce of mass transfer (scction 3), we shall
here make use of the staticnary-state assumpiion, and so
replace the two diffecrential equations by a single

algcbraic equation, namely (2.7-1), which here reduces to:

vooes(5.1-1)

The results of computations using these equations are
displayed in Fig. 16, in the form of a plot of s versus
R, for various values of m. It is cvident that the agrce-
ment between prcdiction and expcriment is very satisfactory;
certainly, what little systematic error oxists is not
sufficient to Jjustify a modification to the argumcnt
leading to cquation (2.6-2) for example,

The agrccment between theory and cexpceriment, though

gratifying, is not a complete vindication of the assumptions
underlying the present theory; for it has to be admitted
that Mickley and Davis themselves showed that the theory
of Rubesin l}9] agreed satisfactorily with the data when
the two empirical constants werc appropriately chosen.
The theory of Rubesin might be characterised as differing
from the present onc in implying that Zp equals unity
throughout; in other words, likc'the majority of authors
until recently, Rubesin thought only of the wall layer
and neglected the outer or "wake" rééion.

Fig. 17 contains a plot of the shape factor H

versus R, for various m; the points represcnt the
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experimental data of Mickley and Davis, while the curves
correspond to the present theory. The agreement between
theory and experiment is less satisfactory in this case.
However, this may imply no more than that the Mickley--
Davis boundary layers are not as close to the stationary
state as might have been expeéted; for the disagreement
betwéen theory and experiment is as great for m = O as
for finite m, and we know that the theoretical curve fits
the majority of data in this case because it has been
adjusted to do so (section 3).

Clearly, any further deductions from the Mickley-
Davis data must be based on the full differential equations,
and not on the stationary-state hypothesis.

5.2 The entrainment law.

Values of H, versus H and of -m, versus. H,, according
to the quasi~stationary theory for the flat plate with
mass transfer, are plotted on Figs. 14 and 15, in order
that they can be compared with the calculated curves for
impermeable plates with pressure gradient. It is interest-
ing té note that the new curves arc not identical to the
previous ones. This may explain why Head [38] could not
reconcile the Mickley/Davis data with those which he
deducted from impermeable-wall experiments; we see that
unique H~H, or -m,~ H, relations are not to be expected.
This is not to say, however, that the choice of entrain-
ment function made in the present paper is correct.

Of course, if the relations between H, §1 and ~Ig
are desired in the most compact form, it is inconvenient
to allow R, to enter; for each of these quantities can be
expressed in terms of at most two quantities, e.g. 2z and
(E*'EEE)%; This fact may be recognised by examining the

definitions of I, and I, and equation (2.2-10) for D.
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5.3 An analytical theory for the effect of mass transfer

on_drag.

The effect of mass transfer on drag has been expressed
in a particularly convenient formula by Kutateladze and

Leont'ev [21]; these authors deduce:

(__S__)? = 1 - 7}_ ..IP... 00000(5'5‘1)

S Sy
Here 59 is a function of 32; specifically it is ths value
of s appropriate to the momentuﬁ-thickness Reynolds number
for a smooth wall in the absence of mass transfer and
pressure gradient. We shall derive a comparable formula
from the present set of equations.

Let s* and zz* be the values of s and z, which are

valid, for a fixed wvalu¢ of 1, for the smooth-wall boundary
layer with m and F, equal to zero. Then, from equation ’

(2.2-6) with m = O:

We now show that s* has practically the same . -
significance as T by demonstrating that 1 varies little
with m at fixed R,. We write equation (2.6-2), by simple

substitutions, as:

/2

ceeei(5.3-4)

1=1n {ERa (s + sz)%
(11'12)
Now we can expect, after re;capitulating the arguments
of sections 5.2} 3.3 and 3.5, thét a stationary-state
boundary layer with mésé transfer but no pressure 4

gradient will aporoximately obey the relation:

a
Ip-1I, % 3.671 (s + mag)? ceses(5.3-5)
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It follows that the argument of the logarithm varies
little with m and therefore 1 itself varies still less.
Exact computations bear this out. Therefore we may
equate 80 to s* approximately; and gﬁ‘ may be replaced
by 25,0 which signifies the value of Zy which prevails,
at the given 52, in the absence of mass transfer. Thus

the counterpart of the Kutateladze/Leont'ev formula

(50 5"1) iS:

3z
( S >:5 g0} -2 B 5 o eeeee(5.3-6)
g ’

A study of equations (5.3-1) and (5.3%-6) permits
the following conclusions to be drawn:-

(1) The two equations are identical when both Zg
and EE,O are unity. Thig occurs at the limit of infinite
Reynolds number. However Zp is fairly close to unity for
moderate Ez's; for example, the points computed on Fig. 16
all have gE-values between 0.8 and 0.95. It is
therefore not surprising that Kutateladze and Leont'ev
[2{] find good agreement between the predictions of
equation (5.3—1) and experimental data.

(ii) Equation (5.3-6) implies that mass transfer
may influence drag in two ways, corresponding to the two
terms on the right-hand side. The second term expresses
an influence which manifests itself in equation (5.3-1)
also, that of the u'~y" relation; as in respect of
pressure-gradient effects, this is the aspect of
boundary-layer flows which has received.most attention
from earlier authors. The first term might be regarded
as the specific contribution of the prcesent theory; it
implies that s will be decrecased if mass transfer should
cause a reduction in Zpy 88 indeed the stationary-state
assumption implies, through equation (2.7-1), that it

does.
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Fig. 18 emphasises the last-mentioned interaction.

It contains a plot of z, versus m based on equation (5.1-1)

B
with s placed equal to zero; D has also been put equal to
zero in evaluation of the guantities I, and I,. This curve
expresses the influence of the entrainment hypothesis,
the continuity and momentum equations, and the stationary-
state requirement; however the law of the wall is disregarded.
The important point to note is that zp becomes zero when
m attains a finite value (0.0341). Although not all
points on the curve arc physically attainable (becauéé of
the neglect of the wall law), the point of zero Zg has
physical significance, since both s and D arc truly equal
to zero when 2z, is zero.

(iii) The recognition of the role of the changing
mixing-layer component of the boundary layer may
ultimately provide an explanation for the fact that existing
theories do not correctly predict the influence of mass
transfer on drag at high Mach number. Specifically;
theories which consider the g+ﬁvz+ relation alone predict
that §/§O has a smaller value, 3t a3 given value of g/go,
at high Mach number thon at low; the reverse is found in
practice. This effect would be explained if it turned oﬁt
that EE,O were very much lower for high Much numbers then
for low, as would be the case if the low density of the
high-Mach-number mixing layér inhibited entrainment. How-
ever, the deteiled study of this question lies beyond the
scope of the present paper. .

(iv) The observation, made in (ii) above, that z, falls

B
to zero when m = 0.0341 prompts the reflection that this
condition is different from the condition of zero wall
stress. The latter, equation (5.3-6) implies, occurs when:

s =0: m f::/-l—so é’E/ZEE,O ceeea(5.3=7)
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Since EE/EEiO is of the order of unity, and a typical
value of s, is 0.0015, the value of m for zero shear
stress is of the order of 0.006, i.e., considerably less
than 0.0341.

In this connexion it is interesting to recall the
experiments of Hacker Eﬂﬂ, who measured the blowing
rates which caused complete scparation of the turbulent
boundary layer from the wall. Hc found that thg values
of m eppropriate to this phenomenon lay between 0.02
and 0.04, The value 0.0341 lies in this range, which is
admittedly rather large. Values in excess of 0.0341 can
be explained by invqking the fact that Hacker's boundary
layers were certainly not in the stationary state. Values
below 0.0341 can be partly explained by observing that 5ur
entrainment law gives a rather higher value of ~Bs at
Zp = O than is Jjustified by the experiments of Reichardt
[34J and Liepmann and Laufer [éil (section 2.5); if the
former's wvaluc of ZG/E were taken, the value of m for
Zero zp would be one-third of 0.0787, i.e, 0.0266. This

still does not reach the lower limit of Hacker's range,

but goes some way towards it.

6. The wall jet in stagnant surroundings.

6.1 Velocity profiles.

We here consider the situation in which a fluid
is injected through a slot along a wall, this being
immersed in a large reservoir of fluid which is at rest.
This is the "wall-jet" situation studied theoretically by
Glauert [ﬁj] and experimentally by Sigalla [AS], Bradshaw
and Gee [3], Myers, Schauer and Eustis [28], Stratford,
Jawar and Golesworthy [BO] and others. The wall is
supposed impermeable, and there is of course no pressure

gradient.
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The equations which are relevant to this situation
are the general ones, with however Zg tending to infinity.
Thus we deduce:

FProm equations (2.2-9) and (2.2-10):

(A

o %{’] + COS ('IIC)} + d_ Ing veeee(8.,1-1)
Zg 1

From equation (2.2-56):

82 = 0.2,16 co.o.(6.1-2)
2 o

1 1 |
= 3 - - venea(6.1-3)
ZE 1
and
e _D5 - 2.289 2 (6.1-4)
z:EZ— g 1 1°

From equations (2.2-10) and (2.4-6):

I

4] n 1 .

—in = ( . _g ) B T f_o‘205’:n) -
P G [2 7 (' 2 }

Zgy 8

- Dy (0.7945 - 2/1) eeeo(6.1-5)

In these eguations, Zn has been transferred to the left-

hand side in order that all the terms should be finite.
Bquation (6.1-1) implies that z passes through a

maximum value, here ¥ equals E max? these

Zpaxr W
quantities being reclated to 1 by:

TE ax sin(nz;max) = 2/1 ceees(6.1-6)
and
2
max 7
—_—2t %{’l + cos(nz;max)j +-]:- :Ln&max
v
loc.'(6./|_7)
Since Zimax is always much smaller than unity, the sine
of ¥ _ _ is approximately egqual to its argument. It

follows from equation (6.1-6) that:
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Emaxz—-:-t- (—i—-)g cee..(6.1-8)

An even closer approximation, obtained by taking one
further term in the power-series expansion of the sine

function, is:

-3
€ pax (“f‘)% -+ (‘f")%} e (619)
Fig. 19 presents a plot of the velocity profile

according to equation (6.1-1), with 1 having the value

of 9.94 (& = 0.145, 2

max —max
and abscissa are z/z,.. and £ . Also shown on Fig. 19

/5E==O.7544); the ordinate.

are experimental measurements made by Bradshaw and

Gee [5] and originally reported in terms of z/z .. versus
E/E 3 where E% is the value of & at which E/Emax equals
%4; in plotting these data z;% has been taken as 0.54,
which corresponds to 1 = 9.94., It will be observed that
the agreement is good, but not perfect.

Fig. 20 represents the same velocity-profile data,
represented in the "wall-law" co-ordinate system: g/(r/p)%
versus Z(be)%AH- Similar remarks can be made. It is
interesting to note that the deviations from the law:
u/(t/p )%= é.Sln{_}:(T p)%//u} +canst are very great.

6.2 The local drag law.

It was mentioned already in section 1.2 that the
theory of Glauert ﬁj], which rested on the supposition
that the usual wall law prevailed in the region between
the wall and the velocity maximum, fails to predict the
drag correctly. Examination of Fig. 20 shows why. ILet

us now see¢ whether the present theory is any better.

2

nax) versus R

Fig. 21 shows a plot of 1 /(pu nax?
i.e. (pgmaxyC-Emax/}‘)’ calculated by means of the
present equations. Also shown are curves representing

the theory of Glauert (13| and the experiments of
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Sigalla Eﬁﬂ, together with points representing the
experiments of Bradshaw and Gee [}]. Evidently the agree-
ment between experlmental data and the present tneory is
eXtremely satlsfactory, even thouOP, as FPig. 19 shows,
the locatlon of the velocity maximum is not predlcted
very accurately.

‘Weé may conclude that, although it would probably be
possible to find a better function than the cosiné to
represent the mixing-layer component of the velocity
profile, the present theory predicts-the local drag law
satisfactorily. It should however be mentioned that
Myers, Schauer and Bustis [28] report mgasurements of drag
which are about 15% higher than those of Sigalla; evidently,
precise meésurements are not easy in wall-jet circumstances,

6.5 Variations in the x-direction: deduction of the

entrainment constant.

The differential equations which govern the growth
of the wall-jet flow in the x-direction are equations
(2.1-12) &nd (2.6-1); n, d(lny)/d.'gx anq d(ln_lgG)/dlix
are all to be placed equal to ZEro. Wg shgll presume,
guided by equation (2.5-7), that the entrainment law is
given by:

4

_E—->C70: -mG= CgZE - . 00000(6-5-1)

The differential equations then become:

dRm )
rem——— = 02 ) ‘ olnoc(6.5"2)
zE dRX
and _
En% fzg 0 -3 G s
- a5, T

'.‘00(605-5)
1l and é/géz vary slighﬁly with EX. However, since
the second term in equation (6.3%-3) will prove to be

considerably smaller than the first, we here treat these
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quantities as constants having -the values appropriate to

4

Ryay = 1-085 x10%, namely 1=9.9%, s/z° = 1.8 1072, Then

m
equation (6.%-3) becomes:

R_4dz
m - °B
;‘?ﬁ"“ = - 02 - Oo 00505
B X
= -0y (1+8), say .....(6,3=4)
To solve equations (6.3%-2) and (6.3-4), we first

eliminate dR . Integration then yields:
-(1+€)

...f.(6.5-5)

where a is an integration constant. Substitution of
(6.3-5) into (6.3-2). now yields:
1/(2+€)
R = {@+€)0,2aR } .. (6.3-6)

Finally, substitution in (6.3-5) yields:

2/ a = {(2+ E)ceazex}‘m*&)/(‘g*e)
cere (6.3-7)
It is interesting to know the rate of spread of the
jet. The above equations, together with the definition of
Em and the continued use of the assumption 1 = 9.94,
lead to:
yG/x = 2,502 (24—6)02 veess(6.3-8)

As we shall shortly see, the quantity &€ is of the
order of 0.1. It is therefore convenient temporarily to
neglect it altogether. In physical terms, this amounts
to neglecting the influence of wall shear on the momentum

flux. The above equations then reduce to:

R = (2,aR)? e (6.3-9)
zp/a = (20, aRx)'% eees.(6.3-10)
Yo% = 5C; ceee o (6.3-11)

These equations are probably sufficiently precise for the

preliminary evaluation of 92 from experimental data.
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Most experimenters have reported their results in
terms of Z%/E and .. /U, versus x/y,, where £ is the
distance from the wall at which u equals %Emax’ uo is
the velocity of the fluid emerging from the slot, and I
is the width of the slot. We may take Z% as approximately
equal to Oﬁ%+ZG,this result being precise for 1=9.94;
similarly, oy B3 be teken as 0.754459E. In order to
introduce Ea;and Ic into the relations however, it is
necessary to make still more use¢ of the assumption that
the shear stress at the wall is small. If this shear

stress is neglected, we can equate the momentum flux

at any section to the momentum flux at the jet, so

obtaining:
2
u R I p U ¥
G _“""Ir'l"'"'g— = —"9—-""9'— T e 000 (6. 3"12)
I,I Vaos
. o . o _ _ _ 2
With 1 = 9.94 again, und so ;1 = O.AEE and ;2-0.2361£E,
we deduce: :
& _1.e9 PY Yo veee.(5.3-13)
A
U/ g 4

wherein U, needs to be¢ retaoined, even though it tends to
zero in the case in question, because, like Zgo
to infinity., Substitution of (6.3-13) into (6.3-9) and

8 tends

(6.3-10) now yields:

o %
m %1.857 <02 —-—X——- ¢.~.o¢(6.5_14)
P Ug Yg jx e
and, with u . = 0.7544u, :
. ]
4 . -~z
_\_gi‘l__}_i__ e 0.695 (02 —}—{— o.cc-(603_,]5)
Uy . Ia

Equations (6.3-11) and (5.3-15) provide convenient avenues
for the approximate determination of g2 from experimental
data. The former can be re-writton as:

C, & 0.37 (y%/x)\ verni (623169
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while the latter becomes:
-2
u x % .
Cp = 0.4825{ max ( ) } ceee (6.3-17)
Y ¢

The experimental data of Sigalla [48], Bradshaw and
Gee [3], Myers, Schauer and Eustis [28], and Stratford,
Jawar and Golesworthy [60] exhibit considerable scatter.
They may however be roughly summarised by the first two

columns of Table I.

Table I. C, deduced from experimental date

Author y%/x Csy -EEEE_Gi)% 02
—PF Ye Vg
Sigalla 0.065 |0.0241 || 3.45 or 2.8[0.0405 or 0.0615
Bradshaw et al [|0.07 [0.0259 2.8 0.0615
Myers et al 0.08 |0,0296 3,45 0.0405
Stratfordet al |0.064 0.0237‘ 3.6 0.03%72

It is noticeable that the C, values deduced in the
second column exceed those in the first column. This may
be explained by the fact that the wall friction is not
entirely negligible; so the reduction in Uax is due to
loss of momentum as well as to entrainment. and the rate
of the latter is over-cstimated. We shall thersfore regard
the values in the first column as‘more peliable, but shall

adopt a value somewhat above their arithmetic mean,

namely 0.03.

Two further facts may be considered before a final
value of 92 is chosen. The first is that Stratford, Jawar
and Golesworthy [?Q] attempted to make direct measurements
of the rate - of entrainment; they report that the "entrain-
ment velocity" is about 0.04 times the peak velocity in
the jet. Since (for 1 = 9.94) z .. /2, is about %, this
implies an entrainment constant C, of 0.03., Equation

(2.5-7) for the free mixing layer, with z, tending to
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infinity end C having the arithmetic mean of the values
0.0787 and 0.0974, would imply: pite 0.0é95§o; since
Z, can reasonably be identificd with Zpo the choice of
0.05 for G, is further confirmed.

Before leaving this topic, it is important to note
that both Bradshaw and Gee [5] and Stratford, Jewar and
Golesworthy ESOE have shown that the entrainment rate is
greater when the surfzace over which the jet flows is
convex than it is when the wall is plane. Undoubtcdly

the centrifugal-force ficld is responsible for this fact,

.1t scems highly probable that the cffect will be present,

albeit with reversed sign, when Zp is less than unity,
i.e. in conventional btoundary-lay<er flows. "Ultimately
therefore it will be necessary to work with an gG—functioh
having y. — (radius of curvature) =s one of its arguments,
In the meantime however, we will take the following

form for the entrainment function, being gﬁided‘by the

foregoing analysis and the discussion of section 2.5:-

2> 1 -m, = 0.09 (2. -1+ 32.)
E G =l ZE -o-.-(6a5"‘18)
(1 + 2p)
Of course this has not yet been tested in the vicinity of
EEz/IQ

6.4 The adiabatic wall temperature.

It is convenient at the present Jjuncturc to make a
preliminary exaemination of the implications of the fore-~
going equations for film cooling. In particular, we
consider the casc in which ¢ stands for enthelpy, and the
wall is adiabatic. The latter cohdition implies that Qg
equals zero (sce equation (2.3-14)), and that QE4=§S
(sce equation (2.3=13)); togcther with equation (6.1-5),
these results imply: |
s~ fg = i

- T (1 - 0.20557)

...;..(6.4—1)
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Now equation (2.6-3) rcduccs simply to:

Iﬁ
-9 (__,,_ Rm> - 0 ceee.(6.4-2)
de 1

On integration we have:

=
14

0 = const

[i]

(hC - hG)pl%)ycﬁx cene.(B.4-3)
the latter term representing of course the enthalpy flux
through the injection slot. Combination of equations
(6.4-3), (6.4-1) and (6.1-3) then yields a useful relation

for the dimensionless adiabatic-wall enthalpy:

1 1
Bs-Bg _ PUcIg M T T
hy - hg Ry %, -5 - —1— (1 - 0.2055n)

00000(604-4)
Let us now use¢ the approximations and insert the
numbers used in section 6.3, namely 1 = 9.94, g2 = 0,03%.
Then, from equations (6.3-14) and (6.4-4), we have:
- n %

s Tl 3. <y0> ce . (6.4-5)
hy = hy 1 - 0.251n X

Now n is a quantity which has been inserted into the
assumed @-profile expression (equation (2.%-1)) in order
to account for the fact that, as many e¢xperiments have
shown, heat and matter are transfcrred more rapidly than
momentum in free turbulent flows. If n were equal to
unity, the rates of sprcad would be equal; with n = O,
the rate of @ transfer is very fast indeed; we expect n
to lie between zero and unity. Consequently, equation
(6.4-5) implies that the quantity (QS-_QG)/(QC-QG),

usually known as the effectivsness of film cooling,is

) ) o
equal to a constant times (Zc/g)ﬁ, the value of this

constant lying between %.74 and 4.2. It is therefore



54,
satisfactory to note that Seban and Back [}5] report
experimental data for which the constant is about 3.6;
this corresponds to an n-value of about O0.51 in equation
(6.,4-5). The experimental data are not accurate enough,
nor has our argument bsen sufficiently rigorous, for this

to be regarded as a determination of n, but it is gratifying

to note that this is the order of magnitude which is expected.
We therefore use this opportunity for introduéing a discuss-
ion of what n-value is appropriate.

We consider two cases of free turbulent flows, in
which the velocity and @-profiles may be dcscribzd by
equations (2.2-9) and (2.3-10), with D and Dﬂ placed equal
to zero. Thus we have:

g - Zp = (1 - ZE)(1 - COSTE) .«..(6.4-6)

and .

0-8, = (-5 {1-.5-(1-cosuz,)} vev o (Bul=7)

It is easy to see that the value of & for which z has the
arithmetic mean of its moximum and minimum values is 3;

© on the other hand is equal bto (QE4;¢G)/2 when wE

equals cos™] {(g-—ﬂ)/g} . The "ratio of the half-widths"
for the two profilcs is therefors (2/7w) cos™ {(g-—ﬂ)/g} .
‘ Schlichting [ﬁﬂ] rcports measurements by Reichardf [54]
of the temperature and\velocity distributions for a two-
dimensional jet issuing into stagnant surroundings. These
show that the temperature profile is broader than the velocity
profile, the "ratio of the half-widths" being about 1.42..
Hinze ﬁ9] reports measurements by Townsend [54] and Fage

and Falkner ﬁé] for. the velocity and temperature distrib-
utions in the wake of & heated cylinder held normal to

the stream; once'again the temperature profile is wider

than the velocity profile, the "ratio of the ha;f—widths”,
being about 1.4, in good agrecment with the data for jets.

The corresponding value of n is 0.63; we shall use this
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in subsequent work.

Fig. 22 shows the relations which we thus presume to
obtain between the mixing-layer componcnts of all our
boundary layers; the experimental data just cited are also
included. It is true of course that the @-profile is
rather unrealistic at the outer boundary; its form has
been chosen so as to permit easy integration. However,
there is no reason to supposc that the existence of the
"corner" in the presumcd @-profile will introduce any

great error in calculation c¢f the transfer through the wall.

7. Heat transfer in the absence of mags transfer.

7.7 Eguations.

We now consider some of the implications of the
differential equations involving the conserved property @.
Since our‘purpose is moinly to show that the present theory,
in addition to being general in application, is in conform-
ance with modcrn knowlodge,‘attention is here restricted
to the process which has becn most intensively studied,
namely heat transfecr between a fluid and a smooth imperm-
eable wall. In the present section thereféra,we replace
@ by the specific enthalpy h.

The fluid-dynamic equations which are relevant are
equations (3.2-2), (3.2-3), (3.2-4) and (3.2-5) and the
differential equations (2.1-14), The latter is here

preferred to its alternative (2.6—1),‘since it is not
proposed to consider numerical integrations of the equations,
but rather their general implications. XKquation (2.1-14)

may be written, with m = O, as:

@ R (I,-1I,) d(lnun) d(lnw)
15611 - 1)) + (1-I,) Ry —& (I, - 1) Ry —————
R, 4R, 4R,

= 8 ceeso(749-1)

with (I,-1I,) and (1-1I,) expressible as:
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and

o Lpe gy (G- S 2G- 19202 Lo

The quantity 1, from squation (2.6-2), becomes:
l = ln(206,l68 RG ZE/l) oon-o(?.q-q')

The eguations governing the specific enthalpy and
the heat transfer are: (2.3-1%), (2.3-14), (2.4-6) and
'(2.6—3), the right-hand side of the latter reducing simply
to —é%/(ng). The writing ocut of these equations,is
facilitated by introduction of some new symbols. The

first is QE, defined by analogy to 2p as:

h, - h
Cpg=_B"'8 veeae(7.1-5)
hg - By

The second is the Stanton number S, defined as:
] -
q'y/ (hg - hg)

P Ug

S

fi

ceee.(7.1-6)

The above equations then imply:

Ty Rk
—h (’!-Z;E)_{% - %n) + ZE(% - % - % +O.2055%)} +
hg - hg

: 2
+ CE (0.2055+ 00794‘5 ZE- _EE> --(7'1_7>
1 + 0.4P : 1
C
= B 000-0(7-1—8)
s crOzE(1-+O.4P/l) )
and
a(I, R,) ]
—_h q-*-IhRG_1y;§Lﬂl = (hG-hS)S eveee(7.1=-9)
de de :

The. quantity P, which measures the extra resistance
to heat transfer exerted by the laminar sub-layer, may be
evaluated from the formula recommended by Spalding and

Jayatillaka [55], namely:
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P = 9.24{(0‘/0‘0)1}; - ’I} {’I + 0,28 exp(—0.00’?o'/cro)}
00.10(7.1‘-10)
where 0, is equal to 0.9, and o is the laminar Prandtl

number,

7.2 The isothermal flat plate.

The situation covered by the title is characterised

by:
d(lnuG)

—— = ()

dRX

_dnw) _ _ 4 ' ereed(7.2-7)
dR, /

dR
X

1

We shall consider the implications of the equations with
these substitutions in two casss. ¥First is considered the
case in which the laminar and turbulent Prandtl numbers
are both equal to unity; here we expect to be able to
derive the "Reynolds-analogy" relation. The sccond case
is the general one; a slight approximation is made so as
to easc the discussion.
Case (i): oy = 9 = 1 (Reynolds analogy)

In the present case the quantity P is equal to zero
and the quantity n must be putbt equal to unity. Then

equation (7.1-8) reduces to:

5. fE veena(7.2-2)
S 25,

Thus the Stanton number is not equal to one half the drag
coefficient unless g is equal to zp (N.B. s Eagf/E).

The differential equations (7.1-1) and (7.1-9) may
be written as:

d 1 1 _0.589 2,3 1.589 2
_EE;—{RG [8‘ v o (g - 222) - o5 (8- TR Iz}} =S

cesea(7.2-3)
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_.i__.{RG [_"8_ N ZE(_g__ 07942y _ %(" - 9.2053y _

dRX

R L )| ETCRY

Substitution shows that, by reason of equation (7.2-2),
equations. (7.2-3) and (7.2-4) are identical when 2 and CE

are equal. We conclude that and CE are equal, i.e. that

2,
thepe is complete similarity between the velocity and the
enthalpy distributions. The equations arc therefore in
agreement with expectations.
Case (ii): oL # op# 13 P#0; n#1

It has already been shown in section 3 that 25 and 1
vary very slowly with distance, Ex; we may expect the same
to be true of CE also., It is therefore permissible to
treat the quantities (;1-22) and I, as constants in
equations (7.1-4) and (7.1-9), so that they may be moved
to the left oflthe differential operators. Division and
introduction of (5.1—8) then yields:

CE Ih/(hG"hS)

—— - vern(7.225)
O’O ZE (/I+Oa {‘P/l) I/I—Ig

It is possible to exprecss the right-hand side of phis
equation in terms of Zons CEP l, n, and P by means of
equations (7.1¥2) and (7.1-7); the resulting equation can
be re—arrénged to yield ;E explicitly in terms of the other
quantities. Thereafter the Stanton number S can be evalu-
ated by way of equation (7.1-8). It should here be noted
that, for the flat plate, equation (3.2-7) holds with A
equal to 2.342 (see scction 3.3); with its aid, 1 can be
expressed in terms of s via (3.2-2) as:

1= 0.4 s_%- 0.9368 ceees(742-6)

It follows that the equations of the present section can

be re-arranged to yiecld § in terms of s, n, 95 and o

alone.
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As a test of the theory, the cquations will be used
for the prediction of the temperature profile on a smooth
isothermal flat plats. The conditions chosen are:
gx==9.8><105, s = 0.0018, o = 0.7, so as to conform to
one of bthe tests for which Reynolds, Keys and Kline [35]
report temperature profiles. Thc prediction according
to the present theory, with oy = 0.9 and n = 0.63 as
recommended above, is shown in Fig. £3 by a full line,
while the experimental data points are shown as triangles.
It is e&ident that very satisfactory agreement is exhibited
between the predictions and the experiments. In order that
the significance of this agrecment can be better appreciated,
a broken line with ordinzte (2.51n {Zﬂ'rp)%éu} + 5.5)
is also sho@n; this is the line which would be predicted.
as the temperature orofile by a Couette-flow analysis
employing the Reynolds analogy.

Fig. 24 shows further predictions made by means of
the present theory in the form of Stanton number versus
BX for the flat plate with various Prandtl numbers of the
fluid. 1In connecting s with R,y the table of Spalding and
Chi [57] has been used. The curves exhibit the effects of
Reynolds number and Prandtl number which are familiar
to heat-transfers workers.

7.3 Adiabatic-wall temperature downstream of a local

heat siunk.

In scction 6.4 was considered one extreme case of
film cooling, that in which the flow in the region near
the wall is entirely dominated4by the momentum of the
fluid entering through the slot. Now the opposite
extreme will be considered, that in which the fluid inject-
ed throuéh the slot makes negligible contribution to the
mass and momentum fluxes; we thus consider the wall temp~
erature distribution on an insulated wzall downstrecam of a

narrow heat sink of strength gq', measured in heat units
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pcr unit time and width of plate. The stream velocity
will again be regarded as uniform, as will also the stream
width w. Fig. 25 illustrates the situation.
Downstream of the heat. sink, both the second and
third terms of equation (7.1-9) are zsro; the equation
therefore may be integrated immediately with the result:

IhRG = constant

[t

- % oo (7.3-1)

The enthalpy of the fluid adjacent to the wall is then
obtained from this equation and (7.1-7), with the sub-

stitution §}3= O since the heat flux is zero. We have:

1 1 0.589 2,3 1.589 2
(B -hg) _‘|'8'+ 2pla- T ) - (G-—T + 12
———— DT
q' /1 | (5-8n) + 25(z-§-1 + 0.20559)

veees(7.3-2)

Here 32/(Iq-12) has been inserted in place of BG’ since
Ry is more directly calculable and is sometimes reported
by experimenters.

The expression on the right-hand side of (7.3-2)
has a value which varies somewhat with R,. We can evaluate
it, in the absence of pressure gradient, by the use of
equations (3.4-2), (3.2-7) and (7.2-6).

In order to establish a relation between EG"ES and
the distance along the wall downstream of the heat sink,
it is necessary to relate R, to R . This can be done by
integrétion of the momentum and mass-conservation equations;
however it suffices for present purposes to make use of
the momentum equétion together with the well-known

approximate drag law for the flat plate, namely:

-002

ng/dRX =8 = O.O296RX eee(7.3=3)

Integration yields:

8

R2 = 0.057 RXO. 0000'(705—4)
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The final expression for the adiabatic-wall enthalpy is

therefore:
1 1 . 589 2,5 1,58 2
hg - by {'8 +zg(g-—1) - 25 (g~ =1+ '2)}
-0.8 1
—t—— =27.02R, T 3 T 1 ] n
Q' (5-gn) + ZE(§-'8"-I+O-20551')

ceee(7.3-5)
Finally we make connexion once more witp film-cooling
terminology, noting that the "heat sink" is then a slot
which introduces fluid of enthalpy less than that of the
mainstream. Then é' must be replaced by QJEC(QG"EC)ZC
where I is the slot width and the subscript C relates
to conditions in the film-cooling stream. We find that

the enthalpy ratio known as the effectiveness is:

1 1 0.589 2,3 1,589 2

EQ - hS 20 (pC Us yco/éu.) 8 /]E ;I T /' E,] 8 1 “12
¢ . n n
hg - hg Ry | (z-gn+2g(z-g-1+0.20557)

veees(7.3-6)
Here the origin of x will not ordinarily be the slot
itself, since the momentum thickness will usually be
finite there, as a result of the boundary layer which
flows from upstream of the slot, and because of the
momentum deficit (or excess) of the injected fluid.
Theories of film cooling which imply that the

e : -0.8
effectiveness is proportional to (p0133204**)3x

have
been presented by several authors Iﬁé, 78, 46, 56] s
various values being given for the proportionality
constant. Equation (7.3%-5) and the fore-
going discussion show the limitations of these theories.
Provided that the quantity in the square bracket does not
change much, and provided that the injected fluid does not
greatly change the momentum flux, the theories give fairly
good predictions (£ 50%); there are however many practical
circumstances in which ncither coundition is fulfilled, as

for example in the wall jet of section 6.4.
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Since equation (7.3-2) is more reliable than (7.3-6),
we test the former, using the measurements of (QG—_S)/(QC-QS)
and 6, reported by Seban and Back [4§]. Those measure-
ments are selected for comparison which relate to the larg-
est values of Z/ZC so that disturbances caused by the slotb
have had an opportunity to die down and so that zp and 1
are likely to have values appropriate to equilibriuﬁ Bounds
ary layers on flat plates. The measurements were made in
air about one foot downstream of a slot of 1/16 inch
width. The value of R, in the measuremént region was
about 30CC to which corrcspond, it may be shown, the
values: zy, = 0.903, 1= 3.77; with n = C.65 as before,
the quantity in the square bracket in equation (7.3-2)
then becomes equal to 0.210.

Fig. 26 shows the measured §élues as‘circles; the
prediction of equation (7.3-2), with n = 0.63, is shown
aga.fullstraight line. The agreement is quite good.

Also dravn are the broken straight lines which correspond
to the insertion in equation (7.%3-2) of the n - values of
O and 1.C respcctively. It is clear that neither of
these values would be acceptable, although 0.63 may not
be quite the best that could be chosen.

It would be possible to check egquetion (7.3-6)
against the sare data, with however some doubt about the
appropriate origin of the distance X. Exanination of
Seban and Back's mcasurcments reveals that their values
of the momentum thickness were about 40% greater than
wonld correspond to equation (7.3-4) with B meagured
from the slot; we can therefore immediately conclude
that equation (7.3-6), if R were interpreted in this
fashion, would yield values of the effectiveness about

40°% in excess of those measured. Since it is not in-



tended to provide numerical golutions of the differential
equations in the present paper, there is no point in con-
tinuing the comparison further here.

In section 6.4 it was sheown that the film-cooling

=
&

; equation. (7.3~6)

. . . -8
predicted that it was proportional to x O . In the

effectiveness was proportional to x

first case, the injection velocity was much larger than
the main stream; in the second, the momentum of the in-~
jJected fluid was neglected; both these cases therefore
represent extremes. It may therefore be worth mentioning,
before leaving this topic, thét wnany practical situations
'may be expected to exhibit both the above tendencies.
Fig. 27 is a sketch illustrating this; it shows the var-
iation of effectiveness versus downstream distance which
is to be expected when fluid is injected through the slotb
at a velocity appreciably greater than that of the main
stream. At moderate values of g/zc the curve has the
slope of -1/2, in accordance with the findings of section
6.4; at larger g/zc however the wall-jet behaviour dis-
appears and the flow has a more conventional boundary-
layer character, the slone therefore changing over to
- 0.8, The corresponding variation of Zao which is also
sketched, may make these trends easier to understand.
Cf course, it is necessary to solve the differential
equations (2.1-12) and (2.6~3) numerically if the two
curves are to be plotted accuravely. This will not be
done here.

Although, in the foregoing sections, heat transfer
has only been considered in flows from which pressure-
gradient and mass-transfer effects are absent, it should

be clear that the differential and auxiliary equations
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are sufficiently flexible to cover the general case-also.
Although it will be necessary to carry out an extensive
programme of tests of the predictions against experiment-
=al findings, probably coupled with adjustment of the
empirical constants and functions (e.g. profile shapes,
value of n, entrainment function), it should by now be
clear that the predictions of the theory are already
qualitatively correct and, in the cases tested, also quite

good quantitatively.

8. Discussion of pcssible further developments

8.1 Plane vniform~property flows

Although the present paper has been restricted to
plane flows of a fluid of uniform properties, it has not
been possible to do more than indicate the main features
and implications of the unified theory. All the topics
which have becen discussed will reguire further study;
in particular it will be necessary to rely solely on
exact numerical integratioas of the differcntial equag-
~ions and to dispense with approximations such as the
stationary~state hypothesis. lioreover, the cextensive
experimental literature needs to be examined systematic—
ally, so that firmer conclusions can be drawn and so that
the best possible entrainment law can be derived.

As indicated in section 4.3, it scems quite certain

that modifications can usefully be made to the W~y
relation to account for pressurc gradient. Vnat are

needed are a velocity profile and corresponding drag law
which accord with those above when [, is zero, and which
exhibit a smooth transition to the zero-wall-stress
linit of Stratford [59] as -I, increases; it will be
desirable to take simultaneous account of mass transfer.

Although the development of such modifications will
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certainly raise new questions (e.g.: Should 7, referred
to in section 2.6, now include some contribution from
the pressurc gradient?), a judicious combination of spec-
~ulation and appeal to experiment should make this one
of the easier eoxtcnsions to the theory.

The entrainment law in its present form, though some-
what more sophisticated than that of Mead {}8] , is prob-
-ably still far too crude to do Jjustice to rcal flows.

It has been mentioned (scction 6.3), that thc cffect of
radius of cucrvature may be large and requires gquantitative
study; quite protably buoyancy and other body forces
need to be accounted for as well, In addition, it is

possible that kY depends on rates of change of local

propertics (e.g. dgG/dg) as well as on the local pro-
rerties themselves., If such influences are detected
and quantified, they can be built into the computer pro-
gramme embodying the diiferential equations; the frame-
work of the theory is strong enough to support many such
claborations.

There are two main methods by which the entrainment
law can be refined: by the performance and analysis of
specially contrived expceriments; and by the formulation
of hypotheses concerning the mechanism of entrainment.

In the latber comnexion it will be interesting to examine
whether existing theories of turbulencs can throw any

light on how b is affccted by the various properties

of the boundary layer. Thus, one might explore the
implications for the m, function of Truckenbrodt's [bﬁ]

use of the integral cnergy egquation combined with Clauser's
E4] observation, recently claborated by Mellor and

Gibson [26] , that the effcctive kinematic viscosity in

the outer part of the boundary layer is equal to a
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constant (around 0.C16) times the product of the stream
velocity and the displacement thickness.

In-the present work, no attenticn has been given
to situations in which some of the fluid flows upstream,
as occurs after boundary-layer separatcion. Such flows
can certainly be described and computed by the present
set of equations (with obvious modifications here and
there), simply by allowing Zm to take negative values.
whether the equations will accurately describe reverse
flows will require detailed study; probably a more
general family of velocity profiles will need to be
invented.

The drag laws and all the examples in the present
paper have related to smooth walls. However, a con-
siderable amount of informatbion is already available
about the way in which roushness influences both the
ut~y* and the t*~u’ relations[81,9,%1,30,22]: it
appears that roughness has no direct influence on the
outer portion of the bhoundary layer, i.e. the "mixing-
layer" region. It should be a fairly casy natter to
combine this information with the present general
equations; certainly this must be done if the theory
is truly to justify the ambitious adjective "unified".

Buoyancy has been mentioned as an influence on the
entrainment function. It has of course a more obvious
effect, whenever the body forces (e.g. gravity) have a
component along the wall, in providing an additional
term in the momentum equation. It will therefore be
of interest to re-examine such phenomena as turbulent
natural convection from a heated wall in the light of
the present theory. Several further problems suggest

themselves as likely to provide useful tests, for
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example the "natural-convection wall jet" (Fig.28).
This would consist of a linear source of hot gas,
e.g. a long horizontal flame, at the base of a vertical
adiabatic or cooled wall; from measurements of the gas
concentration at the wall, the entrainment rates could
be deduced.

As a last suggestion under the present heading, we
mention the industrially important flow configurations
in which an axi-symmetrical or two-dimensional jet im-
pinges on a surface inclined to it at an angle, thereby
causing heat and mass trounsfer. several experimental
and theoretical investigations of such systems have by
now been nade [@8,69,70,71];it is necessary to examine
these to see firstly whether the present theory fits
the reported data and secondly to see whethcr the theory
can predict the behaviour of such systems under con-

ditions not yet investigated.

8.2 Three-dimengional flows

Although most research is carried out on plane
flows, in engineering practice therc are nearly always
three-dimensional effects. In axial-flow compressors,
air flows radially inwards in the boundary layers;
swept-back wings introduce unavoidable three-dimensional
effects on aircraft; indeed, as all scrupulous boundary-
layer researchers have discovered, it is very difficult
to contrive a flow which is truly plane. It is there-
fore of importance to note that the present theory is
easily extensible to flows in which the fluid in the
boundary layer, for example, moves in a different direc-
tion from that in the main stream.

That a "skewed-wake" component of the velocity

profile might be uscd in the description of these




683.
flows was clearly stated by Coles E6] ; however, no
use has been made of the suggestion, so far as the
present author knows, because no hypothesis about the
properties of such a "skewedwake" boundary layer was
provided. It is however easy to invent an cntrainment
hypothesis which is plausible and which completes the
set of equations needed for computation of boundary-
layer development. Cf course the velocity Up now has
to be described by two components; however the obvious
entrainment hypothesis is that the entrainment rate is
dependent on (say, proportional to) the absolute magni-
tude of the vector Un minus the vector Up. Then the
nass-conservation equation and the two momentum equa-
tions (for two directions along the wall) suffice to
define the flow.

The hypothesis just described need not be relied
on for long. Once its relevance to three-dimensional
boundary layers is recognised, surely experimental veri-
fications will be forthcoming; and these will as cer-
tainly lead to betlter descriptions of entrainment in
such circumstances. If it is indeed true, as seems to
be the case, that no study has yet been made of a jet
nixing with a stream which has a velocity component
along the slot, this omission cen quickly be made good.

There is no need to start with three-dimensional
flows of great complexity. One that has been studied
in much detail is that near a rotating disc [11] .

It should prove ingtructive to begin by testing the
entrainment hypothesis against the facts which have

already been ascertained.

8.3 The influcnce of property variations

How can the unified theory be extended to situa-
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tions in which the density and other propertiszs vary
through the boundary layer? In part the modification
is easy; in part the now theory posscesses difficulties
which it shares with old oncg; but also it throws up
new questions to which we do not at present koow the
answers.

The casy part concerns the differential equations
and the I - integrals appearing thercin. The former
remain valid without changc; bthe latter can be evalu-
atced without essential difficulty. In all the I's
there appcars p, which can be related to other proper-
ties (e.g. enthalpy and composition) by refcrence to
thermodynamic information; and we already possess means
(the differential equations end profile assumptions)
for establishing the distributions of these properties.
Morcover, as is shown by Fig.23, for. example, these
means are extremcly satisfactory; certainly they are a
great improvement on the "Reynolds-analogy assumption"
which is so often uscd in this connexion [seo Cofs 58].
Admittedly thc nccessiby to evaluate the 1's by numer-
ical quadraturc rather than from algebraic formulac
will increase the time and expense of computation;
however, the incrcasing capacity and availability of
digital computers alleviates this disadvantage.

The difficultics shared with cxisting theories
relate to the g+'* 1+ relation or "law of the wall';
one manifestation is uncertainty about thc constant E
which appears ultimately in the drag law, as is clear
from the review by Spalding and Chi [5?] . However,
in one respect the viewpoint of the unified theory
nay prove adventageous; for previous authors, suppos-

ing the "law of the wall" to dominate the whole
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boundary layer and wishing to provide a rcliable drag
law, have Pteen forced to unacceptable conclusions. .
Thus, the theory of Van Dricst [66] is shown by Spalding
and Chi [57] to be almost the best in its predictions
of drag; this theory is built on the assumption that

the whole Dboundary laycr profile is described by the law:

u
e/ Lo/ o5y~ 2.5 10 (7o) /ug) + 5.5
ves (8.3 - 1)

where p is releted to u by the Reynolds-Analogy assump-
tion.  Yet Fig.29, trom thc work of Hfigel [20] ,
shows how remote from rcality this assumption is; it
displays velocity profiles reportcd by various workers
for the supersonic flow of air clong an adiabatic wall,
plotted in a manncr, which if equation (8.3%-1) were
valid would reducc to a singlc straight linc outside
the sub-layer region. In extending the present uni-
fied theory, however, the assumptions about the laminar
sub-layer "constont" I can be devised so as to fit the
velocity-profile data in the low -X+ region; the
nixing-layer rcgion, which contributes largely. to the
momentum thicknecss and so to the local drag law, can
then be subjected to separate study.

However it is preciscly in attempbting to extend
our existing cntrainment hypothegis to cover this
nixing-layer region that the extent of current ignor-
ance becomes clear. Fig.29 suggests thet the "mixing-
layer" component of the velocity profile is at least as
important in variable-property boundary layers as in
unifrom property ones; but there have simply not been
sufficient experimental studics for the procedurc of

sections 3.3, by which the entrainment constant for
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low-speced flow was deduced, to be carried out at Mach
numbers apprcciably in excess of zero. Nor, for that
matter, have free-mixing-layer measurements, such as
were used for guidance in section 2.5,been carried out
under conditions of large density difference. It
secms certain that entrainment of high-density fluid by
low-density fluid docs not procced so rapidly (in termg
of entrainment velocity divided by imposed velocity
difference) as when the densities are uniform; but it
is not yect possible to express the effect quantitatively.

The author's opinion is therefore that the cexten-
sién of the present tlheory to varying-density flows
will not be achieved without a considerable amount of
experimentcal study. Wevertheless, the theory does
seem to offer a meoms of escape from the inadequacies
which characterise all the theories which have been
formulated so far; its further development therefore

seems to be worthvhile.
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10. Nomenclature

Symbol Meaning Typical Equation
units of first
mention
A A constant connected with the - (3.2 - 7)
velbcity profile
a Intogration constont - (6.3 = 5)
c Constant in entrainment law - (2.5 - 5)
c! Constant in entrainment law - (3.3 - 4)
(o Constant in entrainment law - (3.5 - 5)
C, Constant in entrainment law - (4.2 - 1)
c Specific heut at constant (Btu/1b degF) ( )
pressure
Ce Friction factor - ( )
D Constant in approximate velocity-
profile formula - (2.2 - 9)
Qg Constant in approximate
@-profile formula Various (2.3 -10)
E Constant in g+-z+ relation - (2.2 - 3)
B Constant in u*~y"* relation - (2.2 - 4)
z, Pressure-gradient parcmeter ¢ - (4.2 - 1)
22,0 Value of @2 causing zero w?ll
shear stress - (4.3 - 2)
G A congtant ccnnected with the
-~ velocity profile - (3.3 - 2)
H Shape factor - (2.l~- 6)
H, Head's shape factor - (4.5 - 1)
h Specific enthalpy (Btu/lb) (2.3 =13%)
11,12 Intcgral quantities associated
with the velocity and density
profiles - (2.1-1,2)
Ig Integral quantity associated
with the velocity, density and
@-profiles Various (2.1 - 3)
K Mixing-length constant - (4.3 = 1)
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Symbol Meaning Typiceal Equation
units of first
mention

P Abbreviation for a logarithm - (2.2 - 6)
n Dimensionlecss rate of mass

transfer through the wall. - (2.1 =12)
s Negative of dimensionless rate

of entrainment from mainstream - (2.1 -12)
o, Rate of entrainment from low-

velocity stream in free mixing

layer= ﬁg'b/pGl_l_G - (2.5 - 6)
m"  Rate of mass transfer from wall

into main stream (1b/ft° k) (2.1 -13)
n Constant in the @-profile

formula - (2.3 = 1)
P Dimensionless measure of the

additional resistance to ¥ -transfer

caused by the fact that the laminar

Prandtl/Schmidt number differs from

that of the turbulent fluid. - (2.3 - 6)
p Fluid pressure times constant in

Newbon's Second Law of Motion  (1b/ft h°) (4.3 - 1)
é' Heat extrected from boundary layer

per unit width of stream (Btu/fth). (7.3 -1)
Qg Heat flux towards wall through

control volume in fluid adjacent

to wall (Btu/£5° h) (2.3 -13)
-BG Reynolds number based on boundary-

layer thickness - (2.1 - 7)
32 Reynolds number based on momentum

thickness - (2.1 - 8)
Bm Reynolds number based on flow rate

in the boundary layer - (2.1 - 9)
Bmax Reynolds number based on maximum

velocity in the boundary layer and
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Symbol Meaning Tvypical  Equation
units of first
mention

the distance of the location of

the maximum from the wall - (2.1 - 10)
R, Peynolds number based on distance

along the wall - (2.1 - 11)
S Stanton number - (7.1 6)
S Dimensionless shear stress (sgf/E) - (2.1 - 14)
So Value of s which would exist, at

the prescribed 32, if mass transfer

were absent - (5.3 = 1)
s* Value of s which would exist at

the prescribed 1, if mass transfer

were absent - (5.3 - 2)
gt Dimensionless measure ofd in

Couette-flow analysis - (2.3 - 1)
u Velocity in main-stream direction (£5/h) (2.1 7)
gf Dimensionless measure of velocity

in Couette~flow analysis - (2.2 - 1)
W Width of stream (£t) (2.1 - 12)
X Distance along wall in main-

stream direction (ft) (2.1 11)
J Distance normal to the wall (ft) (2.1 - 4)
z+ Non-dimensional form of y appearing

in Couette-flow analysis - (2.2 - 2)
2z Non-dimensional velocity'Cag/EG) - (2.1 - 1)
D Parameter in velocity profile.

(l—gE) measures the relative magni-

tude of the free-mixing-layer com-

ponent of the velocity profile - (2.2 = 1)
25,0 Value of zp at the same 32 in the

absence of mass transfer - (5.3 - 6)
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Symbol Meaning Typical Equation
units of first
mention
T Value of z, at the same 1
in the absence of mass transfer - (5.3 = 2)
24 Veloclity of other stream divided
by velocity of main stream (EG)
in free mixing layer - (2.5 - 3)
O "Total"(i.e.turbulent plus laminar)
exchange coefficient (z diffusion
coeflficient times density, or
thermal conductivity divided by
specific heat &t constant pressure).
(+o/ft h) (2.3 - 3)
61 Displacement thickness (£t) (2.1 - 4)
62 Momentum thickness (£t) (2.1 = 5)
€ A smell quantity - (6.3 - 4)
CE Parometer such that (l—CE)
meagures the relative magritude
of the free-mixing~layer com-
ponent of the @-profile - (7.1 - 5)
o Viscosity of fluid (laminax) Av/ft h) (2.1 = 7)
Mot "Total” (i.e. turbulent plus
laminar) viscosity of fluid (1b/ft h) (2.3 - 2)
4 Dimensionless distance from
wall (EX/IG) - (2.1 - 1)
0 Fluid density (1b/£67) (2.1 - 1)
o~ Prandtl or Schmidt nunber,
' laminar - (2.3 - 4)
St "otal® Prandtl or Schmidt
number - (2.3 - 4)
c:r”o Value of o1 valid for the fully
turbulent region - (2.3 - 6)
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Symbol Meaning Typical Bquation
units of first
mention

T Shear stress exerted by the fluid

on the wall, times the constant

in Newton's Second Law of Motion  (1b/ft h2) (2.1 -15)
@ A conserved property (various) (2.1 - 3)
Subscripts
B State which would exist at the wall if the free-mixing
layer component of the boundary layer existed by
itseclf.
G Main-strecam state
S State of fluid adjacent the wall.
T State of transferred substance.
max Where the velocity profile exhibits
a maximum.,
Y Where u - 4, has one half of its mexinmum

value.
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A unified theory of friction, heat transfer and mass

transfer in the turbulent boundary layer and wall jet

APPENDIX: Additional notes (November, 1964)

(:) Professor Glauert has pointed out that the "theoretical
line" and the "plausible assumption'" should not be attribut-
ed to him. The practice which he really recommended

(the use of an eddy-viscosity distrioution appropriate

to the universal velocity profile) gives better agreement

with experiment.

(:) The viscosity of the mainstream at the section in
question, Mo has bpeen used in the definitions of the
Reynolds numbers; this practice is unwise; it requires
that a, should be independent of x if equation (2.1-12),
for example, is to be strictly valid. The simple way
out of this difficulty is to replace G by Mpepr Some
reference viscosity which is a constant for the whole
flow; one might adopt for )*ref the viscosity of the

main stream at entry to the region in question,

<:> The two terms on the right-hand side of equation

(2.2-1) can be associated with the "law of the wall" and
the "law of the wake" respectively; the terminoiogy here
is that of Coles [6]. 1If z; is equal to unity, only the
first term is finite: the velocity distribution is then
that appropriate to a Couette flow, If the shear stress
is zero, only the second term is finite; the veloclty
distribution then has a sinusoidal form.

Ross and Robertson [}7] and Rotta [?S] introduced
two-term velocity profiles in which the second term would
be written, in present notation, as (1-EE)5 ; in other

words, they employed linear wake laws. Coles Eﬂ deduced



A-2

the form of the wake law from his examination of many
experimental velocity profiles; he expressed his recommend-
ed profile by means of a table of numbers; but
(1=-cosmE)/2, the function of Z appearing in equation
(2.,2-1), differs very little from his recommendation.

Equation (2.2-1) can thus be regarded as an obvious
generalisation of already well-established idess. The
Couette flow term is generalised, in that we include
the influence of mass transfer; the wake-law term is
generalised, in that Zg is regarded as capable of having
values in excess of unity (jet-like flow), or less than
zero (separated flow).

Figs. A-1 and A-2 provide graphical expressions
of equations (2.2-1), (2.2-3) and (2.2-4). The first
shows the velocity z plotted against the distance from
the wall & , for several values of Zg» including some
negative ones and some in excess of -unity; the graphs
happen to be drawn for E = 7.7 and 3G§%==1OOO. The
curve for Zp = 1 may be regarded as typical of a boundary
layer in an accelerating flow while those for O X zp L
are to be found in boundary layers with adverse pressure
gradients. Profiles with Zm greater than unity arise
downstream of wall jets, while those with negative Zg
are typical of boundary layers exhibiting reverse flow,

Fig., A-2 represents the same profiles as appear in
Fig. A-1, but in the semi-logarithmic co-ordinate system
conventionally used for demonstrating the universality
of the velocity profiles (for smooth impermeable walls)
close to the wall. It is clear that, for z=1, the
velocity profile possesses the well-known logarithmic
form.

Throughout the text, and so in Figs. A-1 and A-2

also, I have used the value 0.4 for the "mixing-length"
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constant k which appears in the differential equation
from which equations (2.2-3) and (2.2—45.may be derived,
namely:~

shear stress = k gp)lg(lau/Byl)g
Thus 2.5 is 1/0.4, 1.6 is 4 X 0.4, 1.5625 is 2.5+ (4x C.4),
0.625 is 1+ (4% O.4), etc. The choice: k = O.4, has
been used by many workers in -the past and has been
specifically recommended by 'Coles [6], along with the
value 7.7 for I.

In a later paper however [”The Turbulent Boundary
Layer in a Compressible Fluid", Project Rand Report
R-40%-PR, September 1962], Coles recommends: k = C.41,

E = 7.7. The incorporation of this new value of k

would reduce the disagreement between prediction and
experiment referred to in notes @ and below. The
difficulty of deciding what values should be adopted

for these constants is very great, largely because of

the prevalence in the published literature of conflicting
experimental data, and because the manner in which the
data are reported (e.g.xon small-scale graphs, with
inadequate suﬁplementarj data) immensely increases.the
difficulty of a comprehensive sifting operation. Coles'
work in this field is the best avallable; but lLie has
reported the conclusions of his work without making the

basgic data appreciably more accessible to other workers.

(:) The case of 2,< 0 needs more careful treatment than
it is accorded in the text. It would be more appropriate,
and in accordance with the derivation from Prandtl's
mixing-length hypothesis, to write equation (2.2-3) as:

u +

0: — 2.51 {EqupD%
m = . = - ° n
('T/pl)1 }L oo...(2.2"53)

while the more general equation (2.2-4) correspondingly

becomes:



u 'l 5{1 E'y(rph? m qu(f])’} . E'y(wo)?]?
= . n ) e ——————
(</oD? - A m

eeeee(2.2-48)

The negative sign is to be taken when Zg is negative, the
positive sign when Zp is positive. |

It is therefore proper to accept equation (2.2-5) as

valid for Zp S O only; for gE<;O we have, instead:
1
2=-{2.553(1+1ng) + 1.5625 m(1 + 1ng)°} +
+(1-ZE)(1-cosn§L/é vees.(2.2-5a)
Here we have generalised the definition (2.1-15) to read:

___’f__z_ cee..(2.1-15a)

Pg Yg

S=

Insertion of ¥= 1 into (2.2-5a) yields the drag law valid
for zp <0, namely:
S% =(‘_OOLI"ZE/1>— OO 625 ml o e 0 e (2.2"'6&)
Equations (2.2-8), (2.2-9) and (2.2-10) then take
the following forms, valid for EE<:O‘
zZ = -(2.53%+-5.125nﬂJ1115 - 1.5625m(1n§)2 +

z"~/ -D1Iné& + Zp + (1 - zE)(’I—cos nZ)/E ‘ cee..(2.2-9a)

a1

D= 2.552 + 3.125ml
= -—ZE/l + 1.5525 ml ceee.(2.2-108)
1

= 2.5(8-H1ZE)2

‘(::) I now regard it as preferable to employ the quantity
1' in place of D. This i3 defined by:

1'= IZE/D|

so that the approximate profile becomes:

2z (1 4 -1-%5) b (1 -gy) Lo gosmE)  (2.2.9p)



A-5

Equation system (2.2-10) then takes the form:

= 2.58% + 3.125ml

Do

+ 1.5625ml «eee.(2.2-10b)

%
[URY)

2.5(s + m!zE[)%

For an impermeable wall, 1' is identical with 1. It
varizs but little in the turbulent boundaries which arise
in practice; its value lies usually between 7 and 12.

D, by contrast, covers a wider range; and it changes

sign with z;.

- <ED Equation (2.3-1) requires, for its ready understanding,
much more explanation than is supplied in the text. I

will try now to disentangle the strands from which it is
woven.

(i) Xnowledse of the ncer-analogy which exists
between the friction, heat-transfer and mass-transfer
processes, suggests that the ﬂ-profile expression should
echo the velocity-profile expression (2.2-1); at least it
should have two main terms, corresponding respectively to
the "wall law" and the "wake law". Equation (2.3-1)
couforms with this suggestion, as may te seen bty re-writ-
ing the equation thus:

B - By = (fs-BImt 6% o (Bg = #)3(1 - cosnd)

~_—
wall component wake component

eeesa(2.3-1a)
(ii) To tackle the szcond term first, we notice that
it equals zero when E ecquals zeroj; it equals (¢G-¢E)E
when E= 1. (ﬂG-ﬂE) corresponds to 1-zn; it is the
magnitude of the wake component of the @ profile, Jjust as
1-—§E is that of the velocity profile. What however is
the significance of n? This is explained in the text in

section 6.4 (pages 53, 54 and 55). If the equations of



A-6
P-transfer were the same as those of momentum transfer,
it would be reasonable to take n as unicy; since however
i1t is known that heat, and concentration are transferred
more rapidly than momentum in free turbulent mixing
processes, we may expect differences to exist between
the velocity and @ profiles; these can take the form of
a non-unity n.

(iii) The first term on the right ¢f equation (2.3-1a)
can be writcen as {ﬁs- QD) é”}§+/(mﬁb%. Here, the
quantity in curly brackets significs: the rate of transfer
of @ (by convection and by molecular procesées) across the
interface into the fluid from the neignbouring phase.

The subscript T denotes the "transferred-substance" state,
explained in detail elsewhere [49] .

It should be noted that the guantity in the curly
bracket does not vanish with é" as a rule. The most
important illustration of this is the case of heat transfer
at rate{é% from the fluid to an impermeable (é": 0) wall;
then @ stands for enthalpy and (ﬁse-ﬁT)éy'simply equals
-1é%. It is rather unfortunate that it is just the case
of greatest practical importance which proves to
necessitate special interpretation; this sacrifice of
convenience has been made on the altar of generality,
perhaps unwisely.

(iv) what is thc significance of subscript E, and
so of ¢E? The definition at the foot of page 1%
ought to have been introduced earlier, and could have
been put more clearly. An equivalent definition is that,
when §+ is given the value appropriate to the outer
quantity {((Z)S - 8q) é”}i?f/('rp)%
is equal to ﬁE-fﬁs; S0 QE-ﬂs is the @ increase which

boundary, where £ = 1, th

Q

would exist scross a Couette flow having the same
values of é", Ty Py ¢S’ gT, yG,‘fLand [Y  as arc possess-

ed by the boundary layer. An impbrtant consequence, made
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manifest by equation (2.%-9), is that QE is equal to ¢S
whenever (ﬁs-ﬁT)é" is equal to zero.
(v) Let us now return to consideration of the second
term of equation (2.3-1a). If QE equals ﬁs when (ﬁs-ﬁT)é"
equals zero, as just stated, we can conclude from equation

(2.3-1a), by putting £ = 1, that:

£=1, (Bg=0p)n"=0: @-Pg= (Fo-F)n .....(2.3-1b)

Now for & >1, i.e. at points in the mainstrcam, we
know that @ equals ﬂG. It follows that, if n is not egqual
to unity, the @ profile must exhibit a discontinuity a2t

¥ = 1. This is displayed by Fig. 22 for example.

We know that such discontinuities do not arise in
practice. Why therefore adopt a profile which is qualitat-
ively in conflict with experimental observations? The
answer is that the formula adopted for the wake component
in equation (2.3%-1) permits easy integration, and contains
sufficient flexibility for the purposes of‘preliminary work
such as that in the present paper. However the assumption -
is no more than 2 temporary convenience, to be discarded
at the earliest opportunity. It seems probable that a less
objectionable profile can be devised.which is expressed
by a polynomial in E&.

(vi) The quantity t*, which also appears in the wall-
law expression, can be regﬁrded as a generalisation of
the "friction temperature" introduced into heat-transfer
analysis by H. B. Squire ("General discussion on heat
transfer", I.Mech. BE., A.S.NMN.E., London, 1951, page 185).
Generalisation is involved because we are dealing with a
general fluid property @, and allowing mass transfer to
exist.

(vii) Pigs. A-3 and A-4 display some implications of
equatibn (2.3-1) for the particular case of: heat transfer
(4=h, the specific enthalpy), low velocities, a smooth

wall, no mass transfer (m = 0), n = 0.53, and the Prandtl
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number taken as 0.7 in the laminar region and 0.9 in
the turbulent region. The parameter is GE’ the counterpart
to zp, defined later in the paper (section 7.1) as
(Qﬂw-gs)/(QG-QS). The two diagroms. may be compared
with Figs. A-1 aﬁd A-2; the differences represent the
allowance which is made, in the present theory, for depart-
ures from the Reynolds Analogy.

(viii) Only slight modifications need be made to the
equations when Zg is negative: it suffices to rezard §+,

s and §% as being invariably positive.

(::) In equations (2.4~2) and (2.4-3) appears the quantity
0.589 (and 1+ and 1- this quantity). It is the numerical

value of:

/'
——j Inf cosmé& 4E
0

and has been evaluated Ly numerical quadrature.

Fig. A-5 represents the values of the quantities
i4-1, and 1-1,, as influenced by z; and 1'; E has been

taken as 7.7 and k as 0.4 in the computations.

(::} Further information, both theoretical and experimental,
may be found in the book by G. N. Abramovich: "Theory of

turbulent jets", M.I.T. Press, 1963.

I nowthink that it would be wiser to adopt the term
"equilibrium" to describe layers for which dgE/dg equals
zero, i.e. to disregard the difference between this
defining condition and that employed by Clauser. Certainly
no experimental boundary layers have so far been studied
which satisfy either condition with a precision of the

order of the difference between the two conditions.
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(EE) Part of this section is concerned with boundary
layers on rough plates also; indeced it is only in
section 3.4, where the value of E is derived, that the

condition of smoothness is inbtroduced.

CE& I now regard the procedure adopted in this section
for the determination of the entrzcinment constant and of

E as giving results which are rather too dependent on the
uncertainties in the flat-plate experimental data., It
therefore scems preferable to base the value of E on
experimental data for the velocity ﬁrofile (7.7 is the
value implicitly recommended by Coles [5], as a consequence
of such a study); the entrainment constant is best determ
mined from direct study of the rate of increase of flow in
the boundary layer. Such a direct study shows that
equation (3.3-5), with C,=0.1023 considerably over-
estimates the entrainment rates; the experimental data
would support a simpler rclation giving lower values,

such as:

ZE /<’I : - mG = 0,06 (1 -ZE) 00000(505"5&)

The use of E = 7.7 rother then E = 6.542, referred
to in note (::) , actually makes the agreement less good
(But see the second pdrt of note<::> ). Since the drag
law is a direct consequence of the velocity-profile
assumption, and since our only arbltrary input has been
the cosine wake law, which fits the velocity profiles
quite well, it appears that there exists a certain
conflict between the drag law recommended by Ludwieg
and Tillmann, itself based on velocity-profile data, and
the recommendations of Coles [6].

The morc one sifts through the reported and processed

experimental data for velocity profiles and drag, the
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more anomalies one finds. There is an urgent necd for

a further, perhaps final, study of the available data -
which will identify the sources of the anomalies. The
maiﬁ question is: Are they experimental inaccuracies or
systematic expressions of a factor not yet accounted for
in velocity-profile expressions? Such a factor might be
the pressure-gradient effect referred to at the foot of
page 35. However, there also exist-'serious disagreements
in the data which have been reported for flows without

pressure gradients.

(:) Some minor errors were made in processing the data
of reference [ﬁd} and plotting them on Fig. 11. However,
since the qualitative conclusions would not be different
for the correctly processed data, Fig. 11 has not been

amended.

(:) A still more plausible explanation is that the
entrainment rqtés are lower than equation (3.3%-5) predicts.
The use of equation (3.3-5a) (see note <:> ), gives
appreciably closer agreement between the predicted and
experimental vslues of the pressure gradient which

causes boundary-layer separation. This 1s however not

to say that the direct influence of the pressure gradient

on the wall law can be ignored.

<£§) Exact integrations of the differential equations

have now been performed (by W. B. Nicoll); the results
agree closely with those of the quasirstationary theory.
The shape-factor anomaly remains unexplained; reasonable
modifications to the value of E and to the entrainment law
do not remove them. Uncertainty about the two-dimension-
ality and the closeness to zero of the pressure gradient
in the experiments discourage further attempts to find

explanations.
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This is a suitable point at which to mention
enother respect in which the Mickley/Davis data do
accord with the present theory, and also to make connexion
with two further publications; that of H. S. Mickley and
K. A. Smith "Velocity Defect Law for a Transpired
Turbulent Boundary Layer", A.I.A.A. Journal, vol. 1, 1963,
page 1685; and that of T. N. Stevenson, "Turbulent Boundary
Layers with Transpiration", A.I.A.A. Journal, vol. 2, 1964,
page 1500. The first paper reports new experiments
concerning the velocity profile for a porous flat plate
with blowing, together with the conclusion that the outer
part of the boundary layer, when plotted in the form of

(ug - w/( 'tmax/p);2L versus £ , gives a curve identical to

that for the impermeable plate. Here'rmaX is the maximum
shear stress in the boundary layer; the authors do not
report any values for this quantity, but we may surmise
that it is rather close to ng§(§4-@gﬂ). Hence the

Mickley/Smith finding can be expressed as:
")
£ >0.1, say: 1-2 = (s+41;E)?f( E)  oe...(A16-1)

Stevenson takes the velocity-profile data of Mickley
and Davis [27] and shows that, in the region away from

the wall, these can be expressed in the form:

1

25% 2
{(1 +_§_> } (1 . %é)} S fCE) e (416-2)
m

where again f( ) is the "defect law" for the equilibrium

boundary layer on an impermeable flat plate. This equation
can be made more directly comparable with equation (A16-1)

by algebraic manipulation; the result is:
» a1
1-2 <3 {(s+m)? + (s+mz)%} FCEY  uvn..(A16-3)
Since, in the region £ >0.1, z has an average value which
is of the order of Zgo equations (A16-1) and (A16-3) do

not differ by an amount which is significant, having regard

_to the scatter exhibited by the data.
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Now the velocity profile adopted in the present theory,

represented by equation (2.2-9), cuan be written as:

N '(’]_Z__\) 1+COSTCE
1-2 = (S + m ZE>2[2051DE +( ):2[( 2 >
S+m ZE

eeeeo (A16-4)

&3]

The quantity in the square bracket is a function of ‘£ alone
if (1-—5E)/(§4-95E)% is 2 constant.

A repetition of the anelysis of section 3.2, with m
however not put equal to zero, indeed yields the result
that (1-—gE)/(§+;§gE)% is a constant when 2z, is not too far
from unity; this constant is A, for which we derived the
value 2.342 from impermedble plate data in section 3.3.

We may conclude that the findings of Mickley and Smith,
and those of Stevenson, are in accordance with the predictions
of the present theory. Even the numericol values are

atisfactory; for Mickley and Smith report A as 2.7 (deduced
from the value of 1-2 obtained when the logarithmic
portion of their defect law is extrapolated to E = 1); and
Stevenson's version of f£( £) gives an A-value of about 2.2.

The differences between 2.7, 2.2 and 2.342 are of the same‘

order as the scatter in the experimental data.

<::> An interesting question is: What happens when m exceeds
the limits indicated in the text? This question has practical
significance since it is clearly possible;experimentally,

to arrange for m to have any desired magnitude. The answer

must be that the velocity profile will take a shape appropri-
ate to a free mixing layer (EE==O) and the region of large
velocity gradients will move away from the wall. However

it is important to note that the prescnt theory cannot

describe the process guentitatively, because the cquations

have no solution in such a case, Clearly the theory requires
extension; presumably the first step must be to relax the

requirement that the velocity profile obeys equation (2.2-4).
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The differences between the measured velocity profile
and that of the present theory are consistently observed
for large values of Zgs in particular, the velocity maxima
are always found to be significantly nearer the wall than
equation (6.1-1) implies. It is therefore certain, in my
opinion, that the cosine form is not well suited to the
description of the free-turbulence contribution to wall- .
jet profiles. Probably therefore it will prove to be
necessary, in the future, to abandon equation (2.2-1) as

a universal velocity-profile expression; the term
(1-cosmE)/2 might be better replaced by a polynomial in
£, the coefficients of which would be functions of Zge
THere would be no difficulty about incorporating such a
profile family into the present theory; however a careful
and comprehensive exanmination of experimental data is

necessary if the functions are to be chosen correctly.

\ The use of E = 7.7 instead of E = 6.542, referred to
above, makes the agreement between theory and experiment
worse. The use of k = 0.47 instead of k = 0.4 approx-

imately restores the status quo.

<2£9 I now think that this formula is unjustifiably
elaborate; moreover, it appears to over-estimate entrain-
ment rates for zp not much greater than unity. It would

be more reasonable to adopt:

2 >1: -mg= 0.03(zg - 1) .....(6.3-18a)

(éa Both these exercises have now been carried out and
will be reported elsewhere. The Clauser-lMellor-Gibson
hypothesis leads to the entrainment law:

Zg 1 - men\:0.0?(’I - zE)

This agrees fairly well with experiment.
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The Truckenbrodt recommendation for the "dissipation
integral" leads to an entrainment law which disagrees
seriously with the experimental data for small wvalues
of Zpe The cause of the discrepancy appears simply to
be that Truckenbrodt's recommendation ié not a very good
one; this recognition has made it possible to devise a
new proposal for the dissipation-integral function which
agrees with the entrainment data. The most important result
of the exploration is that theories. such as the present one,
and the earlier one of Head, can be regarded as consistent
with theories based on the integral-kinetic-energy equation;
each has an empirical input, in one case the entrainment
function, in the other the dissipation integral; a relation
exists between these two functions. Future developments
of the present theory are likely, in my opinion, to refer

to dissipation at least as much as to entrainment.

(::) The extension of the theory to rough walls is

currcntly being carried out.

D L42694/1/Wt.61 K4y 10/65 R & CL
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Fig. A-3. Graphical representation of enthalpy

profiles; linear distance co-ordinate.
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flexible to provide a simple single calculation method for the above
processes, even when these operate simultaneously and in conjunction with
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effects. The main barrier to further progress is uncertainty about the
way in which entrainment is influenced by density variations.
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