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General equations arc derived for the conservation of 

mass, momentum and any other conserved property, and their 

solution is made possible by means of: (a) introduction of 

three-parameter profiles., (b) a hypothesis about entrain- 

ment from the mainstream into the boundary layer. Applic- 

ations are made to the following plane uniform-property 

flows along smooth walls: the impermeable flat plate; the 

impermeable wall in the presence of an adverse pressure 

gradient; the flat plate with mass transfer; the wall jet 

in stagnant surroundings; and heat transfer in the absence 

of mass transfer. The assumptions appear to be sufficiently 

realistic and flexible to provide a simple single cal.culation 

method for the above processes, even when these operate 

simultaneously and in conjunction with roughness, three- 

dimensional, flow reversal, and variable-property effects. 

: 

The main barrier to further progress is uncertainty about 

the way in which entrainment is influenced by density : 

variations, 

* Professrx of Heat Transfer. ' 
Replaces A.R,c. 25, 325. 
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I. 

1, Introduction. --- -I,-,, 
I.1 The Eroblem considered. -- -----m------ 

Fig. 1 illustrates a porous solid surface exposed to 

a steady stream of fluid of large extznt. At the upstream 

edge of the surface a narrower stream of a second fluid 

also enters, havin g a component of velocity in the same 

direction at'; that of the main stream. Through the.pores 

in the surface yet another fluid may flow to join the 

previous two; alternatively,' fluid may flow through the 

pores in the op?ositc direction. The flow in. the region 

near the wall is turbulent. Large'property variations may, 

exist in this region as a result of one or more of the 

following influences; temperature differences existing 

between the surface, the main stream and the secondary 

stream; composition differences between the various fluids; 

frictional effects, i.e. "kinetic heating"; and chemical 

reactions between one or more of the fluids., The velocity 

of the main stream may .be non-uniform. 

The flow represented in Fig. 1 contains features which 

are present, though not usually simultaneously, in a great 

many circumstances of-practical importance. If only one 

fluid is present (no injection through slot or porous 

surface), the situation is the familiar one of boundary- 

layer flow along an impermeable wall; it arises in diffusers, 

compressors and turbines, on aircraft wings, and in 

numerous other engineering devices. Injection of fluid 

through a slot is often provided so as to lower the temp- 

erature of the wall downstream of the slot (film-cooling); 

it may also be resorted to ds a means of preventing 

boundary-layer separation. Injection of fluid through a 

porous surface occurs in transpiration cooling; and . 

hydrodynamically similar effects are produced by such 

mass-transfer processes as s*dbli.mation, vaporisation and . 

combustion, 



2. 

The ultimate aim of the work reported in the present 

paper is the provision of a theory for the predictions of ' 

the shear stress and the rates of heat and mass transfer at 

the wall, in situations such as those of Fig, 

1.2 The need for a new theory. ---v---------s-* 

Present knowledge of turbulent boundary layers is 

summarised in several modern text books, for example those 

of:- Schlichting [4d , Lin [24] , Thwaites [62] , Hinze [Is)., 

and Kutateladze and Leont'ev [21]. Although much useful 

information is to be found in these works, it is not 

possible to extract from them a theory of the comprehensive- 

ness that is desired. 

Even when restricted to the boundary layer without 

injection, which has been most thoroughly studied, exist- 

ing theories ar e unsatisfactory..in sever,21 respects. One 

of the most serious of these, made manifest by the thorough 

survey by Thompson 611, is that the majority of methods 

of predicting boundary-layer growth in an adverse pressure 

gradient are decidedly unreliable; only the method of 

Head pa), which will be referred to again below, was 

found by Thompson to be reasonably successful over the 

whole range of conditions that have been explored experi- 

mentally. Another shortcoming is that even the best of 

existing theories accounting for the effect of compress- . 

ibility on flat-plate drag e.g. 66 Ll turn out to involve 

implications about the velocity profiles which are not 

borne out by examination of the experimental data kd ; 

(see section 8.3)'; and in any case these theories have not 

be2n extended to deal with a varying main-stream velocity. 

Although several papers have recently been published 

concerning the so-called wall jet, i.e. the flow down- 

stream of an injection slot such as that of Fig; I, 

little success has been achieved in rationalising the 

experimental data. As an illustration of this point, 



Fig. 2 shows the shear stress versus the Reynolds number 

for the uniform-density cas e with zero main-stream velocity. 

The theoretical line was deduced by Glauert [13], who 

started from the plausible assumption that the velocity 

profile near the wall has the well-known "universal" form 

‘2 3 up to the point of maximum velocity; the experimental points, 

from Sigalla p8] and Bradshaw and Gee [3], exhibit 

appreciably greater shear stresses than are calculated by 

Glauert*. Even more disconcerting is that Bradshaw and 

Gee found the shear stress to have a finite magnitude at -w-m 
the point of zero velocity gradient; none of the hypotheses 

on which it is usual to base theories of turbulent flow 

can be reconciled with this surprising fact. 

Current knowledge of the influence of mass transfer 

through the wall is almost entirely restricted to circum- 

stances of uniform main-stream velocity, without injection 

from a slot. Efforts to fit all the available experimental 

data into a single theoretical framework have met with meagre 

success [5s] . Moreover there exist some major qualitative 

disagreements between theory and experiment; for example, 

Pappas and Okuno 627 have reported that the heat-transfer 

coefficient is affected less by mass transfer at high Mach 

numbers than it is at low Mach numbers; all theories of 

the process imply the opposite tendency. 

Quite apart from these and other individual failures 

of currently available theories, the fragmentariness of 

the existing methods of prediction is both practically 

disadvantageous and aesthetically displeasing. The engin- 

eer seeks a single set of general equations which can be 

particularised merely by striking out irrelevant terms; 

the scientist seeks a single set of physical hypotheses 

which retain their validity over the whole range of 

turbulent flows near walls. Even the comprehensive work 

*See section 6.2 below. 



of Kutateladze and Leont'ev PI], which is so far the 

(i most ambitious attempt to treat all boundary-layer phenomena 

from a unified point of view, omits wall-jet and three- 

dimensional effects. The need for a new and complete 

theory is evi&nt. 

1.3 Outline of the_prcsent theorg. -- ----- 
The present paper describes some aspects of a new 

theory which is being developed to meet the need just 

described. This theory has resulted from the interplay of 

two preoccupations.of the author and his colleagues: an 

interest in tur'bulent mixing and entrainment phenomena in 

the absence of walls - [50, 3d ;‘and an interest in friction, 

heat transfer and mass transftir in boundary layers [51, 52, 

53, 541 0 These two streams of study were caused to impinge 

by an attempt to rationalise the now numerous experimental 

data on film-cooling [67, 7, 8, 16, 17, 33, 44, 45, 46, 

471 ; some of these data could be reconciled by postulating 

that the flow behaved like a turbulent jet in tha absence 

of a wall, while others were more in accord with the view 

that the flow near the wall obeyed the usual laws of the 

boundary layer, without any spatial effects of tha jet 

c 1 56 l 

The new theory rests on two main postulates. The 

first is that the velocity, temperature and concentration 

profiles can be described by formulae having two main 

components, one accounting for effects of momentum, heat 

and mass transfer to the wall, and the other accounting 

for interactions with the main stream; thus the general 

profiles have both "boundary-layer" and "jet" components. 

The second is that fluid is entrained into the wall layer 

in the same manner as it is into a turbulent jet and in 

accordance with similar quantitative laws. These assump- 

tions, when adequately expressed in mathematical form, 

prove'to be strong enough to support a theory covering all 



the phenomena which WE: have discussed so far. What is 

particularly interesting is that an attempt to extend the 

applicability of boundary-layer theory to a new set of 

phenomena, namely the wall-jet, appears to be throwing 

new liy&t on classical problems of the turbulent boundary 

layer. , 

Once the ltnewtl theory had been conceived, it soon 

became appartint that its elements were not new at all, 

Thus the formulae for the velocity profiles turned out 

to be similar to thosa put forward by Ross and Robertson 

[3g , Rotta [38] and Colzs b] as a means of systematising 

the description of experimental findings; these authors had 

however not been able to exploit their discovery because 

they lacked a hypothesis about why any particular profile 

should exist in any particular circumstances. 

Further, a form of entrainment hypothasis.turned out 

to have been put forward, in a highly significant contribut- 

ion to boundary-layer theory, by Head h8] . This author 

supposed that the rato of entrainment was a function of 

the shape factor, and obtained an approximate form of the 

function empirically. As has already been mentioned, 

Head's theory has proved to be more successful than any . 

other in predicting boundary-layer growth. However, his . 

entrainment hypothesis was not linked to any particular 

postulate about the velocity profiles; although this 

freedom from detailed. commitments would have been 

advantageous if experimental data had been more numerous 

and reliable, the absence of a profile assumption left the 

author with no guide as to how to extrapolate or refine his 

empirical entrainment function. 

It may therefore be helpful (though historically 

inaccurate) 'to regard the present theory as a putting 

together of the profile assumptions of Ross andRobertson, 

Rotta and Coles with the entrainment hypothesis of Head, 
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followed by an extension to flows with heat'and mass 

transfer and injection from slots, and carrying the promise 

of further extensions to flows with three-dimensional and 

varying-property effects. Further, the handling of the 

entrainment hypothesis has been influenced by studies of 

some turbulence phenomena of meteorology by Bntchelor[72], 

Horton, Taylor and Turner [74], and Morton [75, 761. 

1.4 Restrictions of the present paper. -- 

The development of the new-theory is of course a 

major undertaking, which will take some time to complete. 

For this reason, and so as to exhibit‘more clearly the 

main elements and implications of the theory, the flows 

dealt with in the pr osent paper arti subject to the foliow- 

ing rastrictions:- 

(i) The density, viscosity,,specific heat and 

thermal conductivity of the fluid are uniform throughout 

the stream. 

(ii) $3 2 wall is hydrodynamically smooth. 

(iii) The velocity vectors thrqugh all points on a 

given normal to the wall lie in a single plane. 

It should be understood that these restrictions are 

not necessarxi One of the main attractions‘of the present 

theory is that it can accommodate variable-property, 

roughness and three-dimensional effects without requiring 

radically new hypotheses. A brief discussion of these 

matters will 'ba found in section 8 below. 

\ 
2. Pisthernatical theor;ll. --- -----v-a 

2.1 Dzfinitions and differential equations+. ------__I 
Some of the notation" which will be used is illustrated 

' Note to printer: Underlines dznotz italics. They have 
howeverbzen omitted from equations, wherein all letters 
should be italicised except d, In, cos, sin, exp. 

*Footnote: A full list of notation and its significance 
will be found in section IO below. 
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in ‘Eli@;, 3, showing profiles of the non-dimensional 

velocity g and of a conserved property 0, plotted 

against the non-dimensional distance from the wall <. 

The subscript G denotes the main-stream state while sub- 

script S denotes that of the fluid adjacent to the wall. 

The distance xG is the "thickness of the boundary layer'1g 

a quantity which is only rendered significant by math- 

ematical specification of the shape of the profiles 

(section 2.2 below); for y > EG the velocity, temijerature 

and composition of the fluid are regarded as uniform. The 

quantity @ may stand for the composition of some chemically 

inert component of the mi;rture, for the stagnation enthalpy, 

or for any other mixture property which is subject to a 

conservation law. 

We shall be concerned with three important integral 

properties of the z and @ profiles: Q, I2 and I+' These 

are defined by: 

s 
1 

I?= o (p/p,) Z dC . . . . ..(2.1-1) 

0.0...(2.1-2) 
1 

I L3E s, c (P/P~) z2dE; 

(ti - ei,> b/P,) z dE . o e.. . (2.1-3) 

Of course, for uniform density, the term o/pG may be 

omitted; however, the definitions and equations in the 

present section (i.e. 2.1) will be expkessed in a form 

valid also for varying density, since it is easy to do this. 

We remark in pa ssing that the quantities Ll and L2 

are related to three familiar concepts of boundary-layer 

theory, the displacement thickness b19 the momentum thick- 

ness b2 and the shape factor g, by: 

6&t = 1 - 11 .,...;(2.1-4) 

b2/Y(3 = II -12 .00w(2.1-5) 

H-' yS2 = (1 - Iq)/(Iq - 54 . . . . ..(2.1-6) 
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Five differ6n.t definitions of Reynolds number will be 

0 2 

used at various points in the analysis. The first four 

relate to a single section through the boundary layer, 

while the fifth (Rx) relates to the distance along the 

wall. They are:- 

RG E PG "G :T,/i+G . . . . .-(2.1-7) 

R2 = pG UG "2&G= (Iq-12)tiG . . . ..(2.1-8) 

YG 
RmI 5 o (P'dj+Y = 11 RG . . . ..(2.1-y) 

. . . ..(2.1-IO) 

. . . ..(2.1-II) 

Three conservation equations can now bt! written, each 

having the form of a first-order ordinary differential 

equation. The first expresses the law of conservation of 

mass: 

1 . . . ..(2.1-72) z- + 'mGEJ2- = -mG + m 1 

Here p! is the non-dimensional rate of mass transfer into 

the boundary layer through the wall', defined by:- 

mr ;'I/( PG uG> . . . ..(2.1-13) 

The quantity mG is so defined that -his the rat2 of 

entrainment of mass from the main stream into the boundary 

layer, divided by pGsG; it may be regarded as being 

defined by equation (2.1-'12). 

The quantity w is the distance between adjacent stream- 

lines in the direction parallel to the surface and normal 

to the flow. For two-dimensional flows, 2 is constant so 

that d(lnw)/dzx vanishes. For axially-symmetrical flows 

w is proportional to the distance from the axis of symmetry. 

The second differential equation represents the law 

of conservation of momentum applied to the boundary layer. 
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It is: 

dR2 d(lnuG) 
-- + (1 -t H)R2----- + R2 

d(lnw) 
----- =. s +, m . . ..(2.1-14) 

dRx d% d Rx 

Here 2 is defined by: 

S;= 't: /(pGU(-f) . . . ..(2.1-15) 

(A more usual, but more clumsy, symbol for s would be 

~$2; the significance of 2 may be remembered by noting 

the fact that s is the initial letter of ttshear'l). The 

quantity T is the shear stress at the wall. The momentum 

equation has been expressed in a form which is sufficiently 

close to the usual one for it to be recognised; however, 

we shall shortly replace I?2 and ,H by grn and appropriate . 
functions of z,, and L2. 

The last differential equation exprcs%cs‘the law of 

conservation of the property pI. It'is: 

This .equation has betin written directly in terms of Em and 

the L'S, since there are no conventionally-used counter- 

parts to R-2 and 11. The subscript T stands for "the trans- 

ferred-substance state", a concept which is explained, if 

explanation be needed, in i$j ; thus itf$3, is the flow rate 

of the entity @ brought about by the fluxes at the wall. 

Equations (2.1-12), (2.'1-14) and (2.1-16) have to be 

solved if predictions of friction, heat transfer and mass 

transfer are to be made. However a simple counting of the 

number of unknowns shows that solution will not be possible 

unless several more relations betwocn these quantitias can 

be found. We shall consider these in the following 

sections. 

2.2 V_elocity profile and drag law (uniform density), w---s- MP ----- 

It will be assumed that the velocity profile, under 

uniform-density ,conditions, may be represented with _ 
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sufficient accuracy by the relation: 

0 3 z = sL+ + (1 - z&:1 - COSTt ig/2 . . . ..(2.2-1) 

Here SE is a parameter which will assum great importance 

later, and g+ is a function of y_-', the non-dimensional 

distance from the wall defined by: 

y-+z Yh P >%iJ- . . . ..(2.2-2) 

The function g+(y') is obtained by study of the flow 

region immediately adjacent to the wall, either by experi- 

ment or by semi-thoorotical analysis. Thus, in the absence 

of mass transfer we shall assume, in accordance with 

well-known experimental findings and idealisations [41]: 

m=O: U+ = 2.5ln(Ey+) . . . ..(2.2-3) 

where E, is a constant*. 

When mass transfer is present, we shall presume'that 

the more general l'bi-logarithmic't law of Black and 

Sarnecki p] holds. This is: 

u+ = 2.5 ln(E'y') +-;-;;T [ln(wy+)] ") . ..(2.2-4) 
. 

Here E_' is expected to bti a function of g, or rather of 
3 m/s w; -- E_' must equal 8, when ; equals zero. 

By combining 

2.1-7), we obtain 

in a sufficiently 

It is: 
1 

equations (2.2-l), (2.2-k), (2.2-2) and 

the 'expression for the velocity profile 

general form for the present purposes. 

~d.5~~ ln(EtRGs* r> + 1.5625m &n(E1TiG's3E; )] 2 + 

+ (I- z&l -cos n;t3/2 ,....(2.2-5) 

This relation clearly takes account of the fact that mass 

transfer modifies the stress variation along a normal to 

the wall. t 

*Footnote. E, is often taken as equal to 9.025. We shall 

however remain uncommitted to any particular number at the‘ 

,present stage, and shall dettirmine E, later in a way which 

gives the best fit with experimental drag data. 
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The corresponding effect of pressure gradient is for 

the time being neglected, since it is relatively small. 

The apparent inconsistency is justified by the facts that . 
the mass-transfer effect is proportional to the velocity, 

while the -pressure-gradient effect is proportional to the 

distance; and the velocity rises 

near the wall. The experimental 

Ludwieg and Tillmann p5) can be 

neglect of the pressure-gradient 

discussed further in section 4. 

. Equation (2.2-5) yields the 

more rapidly than distance 

velocity profiles of 

cited in support of the 

effect. This matter is 

local drsg law, when z ------ -- 

and 5 are both given their values at the outer limit of 

the boundary layer, namely unity. A convenient form of the 

resulting equation is: 

s g (0.4 -!F - 0.625ml)* . . . ..(2.2-6) 

wherein we have used the abbreviation: 

1 s ln(E' fiGsi) . . . . . (2.2-7) 

Equation (2.2-6) can be re-introduced into (2.2-5) 

to render the latter somewhat more transparent. There 

results: 

z = (2.5s3+ 3.125ml)lng + 1.5625m(lnc)* + 

f- zE + (1 - zE)(l - eos 76 <)/ii? . ..(2.2-8) 

For the purpose of evaluating the L-integrals, equation 

(2.2-8) is unnccesssrily elaborate. With little loss of 

accuracy wd can drop the (In < )2 term and so obtain: 

0 5 z --,Dlnc + zE + ('l- z,)(l- cosz<)/2 

where: 
1 

DS 2.5~2 + 3.125ml 

= 2.5(s+ mzE) -3 

. . . ..(2.2-9) 

. . . ..(2.2-IO) 
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Possibly the last of these alternative forms for 2 is 

the most informative; it implies th:lt the shear stress 

governing the logarithmic portion of the velocity profile 

is not the wall stress g, but that quantity augmented by 

the stress mzr; ---I which is necessary to raise the injected 

mass to th3 (non-dimensional) velocity gE. 

Inspection of equation (2.2-8) reveals that this 

equation reprc:aents a three-paramekr family of'profiles;; 

the parameters might be + KG and ;, or zE, 2 and n/s. 

The approximate profile family represented by equation 

G--Y), on the other hand, is a two-parameter family; zz 

and g are the obvious parameters to choose. 

2.3 The @-profile and flux law (uniform density) 1-p-- 

It will be assumed that the variation of the conserved 

property g through the boundary layer can bs represented by: 

+ @G 
c 9 . . . ..(2+I) 

whcra tt is ;I function of y+, obtained by carrying out a 

Couette-flow analysis similar to that relating-2 +-to y+ _ . 

Sincethe-t+ function appears less often in the literature 

than the g+ function, we shall hcrc indicate how it is 

derived. The analysis can be regarded as an extension to 

finite mass-transfer rates of that made by Spalding and 

Jayatillaka for vanishingly small transfer rates [551. - c 
In a Couette flow, by definition, the only terms 

entering the cons,ervation laws represent fluxes normal to 

the wall. Thus the momentum equation and the @-conservation 

equdion'are:- 

z + 1;1"u = /$ du/dy . . . ..(2.3-2) 

and 

. * . . . (2, 3-9) 

where 

-fit is the VotaF (i.e. laminar plus turbulent) 
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viscosity and rt is the corresponding exchange coefficient, 

i.e. diffusion coefficient times density or thermal conduct- 
\ 

ivity divided by specific heat, according to which is 

; appropriate to the property @. 

Division of corresponding terms in equations (2.3-2) 

and (2.3-T) leads to: 

dlZ1 du 
w--e = M---w- 
a - eiT 

"t u + r/k'" 
. . . ..(2.3-4) - 

where 
rt = /"it/ rt . . . ..(2.3+) 

Let us now suppose that rt, which has the significance 

of a "total" Prandtl or Schmidt number, has the value WC 

throughout the flow apart from a thin region close to the 

wall, the so-called laminar sub-layer. Then we can write 

equation (2.3-4) as: 

ld - Ids 
a--- = 
@s - !$ 

(1 +$ u’) 
L 

cr"exp(;": s PJ - 1 . ..(2.3-6) 

where 

P- = s CFJ 
"t - "0 -w---- 

0 c- 0 
du+ 

1 + ms--h+ 
. . . ..(2.3-7) I 

Hence, if 2' is defined as (a-@S)(z ~)*/{i~~(@S-plTt 

evaluated for a Couette flow, we have: 

( I+ mu+ wO 
t+ = -d S OXP(2 3 “) - I 

-B--N --------Pm- r 
, . .(2 3 8) 

. - 
m/s a 

The quantity g is a function of ths lzminar Prandtl or 
1 

Schmidt number, and of the mass-trcansfer quantity r.~/s~; 

it measures the extra resistance of the laminar sub-layer. 

It must be admitted however that absolutely no knowledge 

currently exists about the influence of m/s3 on g. -- 

In equation (2.3-l), flE has the si@ficance of the 

value of @ evaluatad from the Couettc-flow expression when 

5 is put equal to unity, a. condition for which u,+ is equal 

3 to -g& . Thus: 



This expression mey be regarded as the flux law connecting 

the l~drivingforceformasn transfer in terms of @ ",with the 

mass-transfer rate ; and other quantities, Its significance 

will become clearer when particular cases are considered, 

as will be done shortly. 

Equ;ltion (2.3-l), coupled as it must be with equations 

(2.3-8) and (2.3-q), has a rrlther inconvenient form for 

insertion in the integral Lg. Me therefore introduce the 

approximate form: 

. . . ..(2.+10) 

where the quantity I$ -is chosen So as to cause the spprox- 

imate exprLasion to ugr?e with the exact 

bourhood of the point Y = 1. It may be 

entiation that a suitab:Le expression for 

D% = 2.5wo (@E--V m 
-2 (s + m z-~) 

one in the neigh- 

verified by differ- 

I$ is: 

. . . ..(2.3-11) 

Since these general rela-tions are novel, it is 

desirable to exhibit the forms to which they reduce in . 

cases of particular simplicity. Eirst we consider the 

case of vanishingly small mass transfer, and suppose $3 

to stand for enthalpy. Then equation (2.3-8) reduces to 

the familiar form [55]: 

-t+ = To (P + u') . . . ..(2.3-12) 

With the specific enthalpy h, in place of fl and the heat 

flux $replacing -"(Q-a,), equation (2.3-Y) becomes: 

hE-hS= . . . ..(2.3-13) 

If desired, 2 can of course be eliminated from this 

equation in favour of & by reference to the drag law, 



equation (2.2-G), with JIJ placad equal to zero. Equation 

2.3-13) is ths local heat-tmnsfer law; it has?rsadily --------------- 
understandable form. Finally we note that, in this part- 

icular cask, equation (2.341) rzducs:s to: 

DPI = 2.5 co ;s” 
----I- -- 

(d 
. . . ..(2.3-14) 

The second particular casti is thct in which rt is 

equal to unity throughout. Then 2 equals zero, and we 

find: 

equation (2.3-8)--s t+ = u+ . ..e.(2.3-15) 

equation (2.3-q)--+ %-@S m 'E ------- = -- . . . ..(2.3-16) 
%s - %,y s 

equation (2.3-11)----t . . ..(2.3-17) 

This corrtisponds to the validity of the Reynolds analogy 

between friction and &transport over the Couette-flow 

portion of the layer, for which the relevant @ difference 

is CJE -0, and the relevant velocity difference is gEgG. 

The quantity 2, appearing in equations (2.3-l) and 

(2.3-IO), is a. number lying between 0 and I, The signif- 

ic-ance will be explained below (section 6.4). 

2.4 The integral expressions. -v--B -I_ -- -m 

Equation (2.2-g), on insertion into equation (2.2-l) 

and (2,1-2), yields: 

II = $-(I +k zE) - D . ..*.(2.4-1) 

and 
3 12=g+ 3 2 

~zE+PE - D(O.411+ 1.589 zE) + 2D2 
> . . . ..(2.4-2) 

Related usefui‘expressions arz: 

II- 12= i(l- zE)(l,+jzE)+D(l.589zE-0.589)-2D2 

. . . ..(2.4-3) 

1 - I,, = $(I- zB) +D . . . ..(2.4-4) 
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I-12 = ;(I -z#) (5'.-3zE)+D(iS.411.t1.539 zs)- 2D2 

. . . ..(2.4-5) 

Insertion -of equations (2,2-v) and (2.3-10) into the 

definition (2.1-j) yit?lds: 

IpI= (k&4,> @Cl + z&-g (3+ zE> -DC1 - o.;2055n)3 - 

- Da (0.2055 + 0.791c5zx) + *D Da . . . (2.44) 

These equations permit the L-intk;grzls to be 

expressed, through equations (2.2-10) and (2.3-11); in 

terms of the varirtbles: zE, fig- pl,, 1, m, and P; - E' T. 

2.5 a A preliminary entrainmc:nt law. -I_.- -I-- ------- 
In order to obtain a rtilstion betwlza~ the dimansion- 

less entr.%inment r~.te gG and other properties, we first 

turn to information about the plane free turbulent mixing 

1ayc.r which is formed at the boundary of a large stream 

entering a stagnant fluid (Fig. 4). The velocity profiles 

have been measured by Rcichardt [34] and by Licpmsnn and 

Laufer p3j . They cCa.n be approximately represented by 

the formula: 

z = $(I - cosx <) . . . ..(2.5-1) 

where now, in the definitions of 2 and < , u, is the 
-\T 

velocity of the entering stream, y is the distance normal 

to the stream from the zero-velocity boundary and xG is 

correspondingly th6 total width of thti layer- The data of 

Reichardt pq imply that yG/x is approximately equal to 

0.21, while those of Liepmann and Laufer p3] imply the 

value of 0.26. Of course, since there i?rk many ways of 

fitting thl; cosine profile to the experimental dats, there 

is a certain arbitrariness about each of those numbers. 

Application of the equations of cor,tinuity and 

momentum implies that, if -gGstill stands for the non- 

dimensional entrainmant rati into the mixing region from 

the stream having velocity gG: 

-m G = g (y&d . . . ..(2.5-2) - 

= 0.0787 or 0.0974 
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according to which of the two v&ues for ~$5 is taken. 

Sabin PO] has carried out measurements on the 

more general mixihg layer which results when the stream 

with velocity ;G issues into a stream with velocity 

20 2G’ He reports that the mixing-layer thickness is 

proportional to (I-zo)/(l+ zo). The profile shapes 

reported by Sabin can be fitted quite well by the 

formula: 

z = *{(I -t- zo) - (1 - zo) cosnc] . . . ..(2.$-3) 

In this case, the continuity and momentum equations imply: 

- mG = 3+z 0 YG mm- - 
8 X 

. . . ..(2.5-4) 

Hence, in view of the variation of yG/x with zo, we can 

write: 
-m G =,c (I- z()m + 37)) 

-- . . . ..(2.5-5) 
(1 f y-j> 

where 2 stands for either 0.0787 or 0.0974 according to 

whether Reichardt's or Liepmann hd Laufer's constant is 

taken. Sabin's data, incidentally, lend support to the 

second of the two figures. 

It should be noted that the non-dimensional entrsin- 

ment rate from the lower-velocity stream, which we shall 

call InO, is also determinable from the continuity and , 

momentum equations. The relation is: 

mO 
zc (l- z&3 + z()) 

-----m-s- . . . ..(2.5-6) 
(1 f zo> ’ 

Obviously the entrainment rates are numerically 

equal when i. equals unity;..when zOm@qua&j zero, go has 

an absolute magnitude only one third as great.-as _M~. 

Equations (2.5-5) and (2.5-6) were based on Sabin's 

findings about th ti width of the mixing layer, which were 

obtained in experiments in which z. lay between 0 and 1. 

However, formulae valid for the case in which ~~ is 
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greats?? than unity cran be obtained simply by a change of 

notation. Thus ~0 becomes -mG/zO; -rnGbecomes mO/~0; 

and ~6 must be replaced by l/g,. There result the 

formulae: . . . . 

z. 71: -mG= C (z,-1)(1+3a,> 
------II- . . . ..(2.5-7). 

and (1 +Q 

z. 71: m. =. c (20 - w3+ y)> 
----m-e- 

(1 f “(j> 
. . . . .(2.5-8) 

- \ . 

d rice agsin, those formulaec~op~y that go and IJI~ are 

numerically equal when 20 is/to unity; but whan 20 

tends to infinity, "0 has thr\?e 

magnitude of rnG. 

It is tempting to identify 

tines the numerical 

the quantity ~0 for the 

free mixing layor with the quantity gE for the boundary 

layer. With this identification and with C taken as, say, 

the arithmetic mean of 0.0787 and 0.0974, equations (2.5-5) 

and (2.5-7) would furnish the required lsw of entrainment 

into a boundary layer, We shall however defer judgment *- - . _ 
on this mzttcr, sinc:d there are obvious differences 

between the two.;situations. For example, in the free 

mixing layer, the plane of maximum shesr stress co- . 
incides with the plane at which z is approximately equal 

to (1+go)/2; in the boundary layer, on the othclr hand, 

it may lie nearer to the plane where 2 equals -%. This 

matter is discussed agsinin section 3.3, where empirical 
. . 

information about entrainment into boundary layers is used 

to guide the choice of cntr3inment.law. 

2.6 .AJErecintion of the m?thematict:l problem of predict- -~--~----.~~~-~~ 
bound:lry-lcxyer devslopmlznt. 

Let us now enumarate equations end unknowns, so as 

to establish the conGtions under-which tha mathematical 

problem can be solved. In the first instnnce we shall 

suppose that the mainstrezm velocity u -G, th* stream width 
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E and the injection rate s are prescribed at all values of 

the length co-ordinate x,. The last condition ensures that 

the hydrodynamic problem can be solved separately from and 

prior to the thermal or concentration problem. 

The hydrodynamic problem is constituted by two differ- 

ential equations and several algebraic equations. The 

first differential equation is (2.1-12). The second may 

be derived from (2.1-14) by the use of (2.1-12)and (2.1-6); 

it is: 

(I- 12)Rm d(lnuG) - (I, - '2) mG - 12m- 1,s 
-w--w- 

R m .23L = dRx -_lf--- --- 

d Rx =2 I2 a12 - - w-m 

bzE '1 "E 
I 

1 . . . ..(2.6-1) 

The quantities N2/dzE and aI,/ a-% may be obtained 

from equations (2.4-l) and (2.4-2), coupled with equation 

(2.2-10) for 2. In the latter connexion, it is preferable 

to use the second of the three possible right-hand sides, 

and convenient to regard 1. as a constant;. the latter step 

leads to negligible errors in practice, because the 

variation of 1 is always extremely slow. 

The main dependent variables are thus gE and grn, the 

latter being somewhat preferable to R2 since it is always 

positive. The other quantities appczring in equations 

(2.1-12) nnd(2.6-1) may be related to $ and Em or to 

known quantities by moans of the following equations:- 

(2.4-l), (2.4-2) and (2.2-10) which relate the &Is 

to ZE’ &, a-rid 5; 
(2.2-6) which relates 2 to s, & and m_; and (2.2-T), 

which can conveniently be written in terms of I&, gE, 1: 

and m. a 
-At this point it is appropriate to make/provisional 

decision concerning the quantity E,' which appears in 

equation (2.2-7). The argument of the logarithm cm be 

expressed as yG/\y(~ p )-S(I')-)] . The quantity in 
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curly brackets has the dimensions of length; in physical 

terms it measures the length scale of the turbulence, i.e. 

the "eddy size", as influenced by shear ,and viscous 

effects in the laminar sub-layer. Now when mass transfer 

is present, the shear stress in the laminar sub-layer 

differs from that at-the wall; it would therefore be 

inappropriate to insert p(Tp)-3E-l in the curly bracket, 

leaving E, at the value which prevails for m = 0. Clearly 

we should choose E' so that 5 z E_' is equal to (?)$ 

where ?? is some suitable average value. How can 7 be 

determined? It must certainly lie between 7 and 

z + Iil"u - -G' the former being the stress at the wall and 

the latter the gr eatzst possible stress in the boundary 

layer. Accordingly, we shall presume that 7 equals 

d1 + ,m-&s>, at least until further evidence is forth- 

coming; we can expect this to be too large rather than 

too small a. value, since the location whare 2 equals 2E 

usually lizs outsido the viscous region. 

With this assumption, and with the help of equations 

(2.1- 9) and (2.2-IO), equation (2.2-T) becomes: 

I 1 = ln,E 
I. 

-: j( 0.4 
i 

?E y-- f 1.5625ml . . . ..(2.6-2) 

Of course, since 1 appears within tha argument of the 

logarithm as well as being equal to the logarithm, equation 

(2.6-2) does not yield 1 as an explicit function of Em, 

$ and g; nevertheless, the value of 1 is so little 

influenced by small variations in the argument, that (2.6-2) 

may be used as a rapidly convergent iteration formula. 

The question of the value to ba given to the constant E, 

will be deferred until later. 

It has now been established that we have sufficient 

equations to allow the determination of the unknowns 

(Em9 gE3 59 1) at all points along the surface, when EC, 

m and 2 are specified as functions of the longitudinal 
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We insert at this point another test, albeit a weak 

one, of the suitability of thti velocity-profile family. 

Clausar [4-j devoted considerable experimental attention to 

three different boundary layers.and has reported values of 
1 

5, defined in equation (3.3-2) above, and (l-P,)~-T, the 

latter being denoted by icl,/6 in C13usor's paper. The values 

for G were 6.q (also reported as 6.8 in Clauser pg ), 

10.1 and 19.3; the values of (I-I?)s -4 were 3.6, 6.4 and 

12.0 respectively. Now the present velocity-profile 

assumption implies, as already sisen: 

G = $A2+ 3.9'725A + 12.5 
-----P-P- 

+A + 2.5 
. . . ..(4.1-2) 

and: 

(1 - 1,),-t = -$A + 2.5 . . . ..@-.I-3) 

Fig. 9 contains a plot of -3 (7-&,)s , versus 5. The 

full line represents equations (4.1-2) and (4.1,3), and 

the circles reprc3, ~c,nt Clausor's data. Evidentally the 

crosses lie near to the curve. Once again however, it 

would have been surprising not to find good agreement, for -- 
the relationship between the ordinate and abscissa is not 

greatly dependent on the shape of profila, as is indicated 

by the noarntiss of the bro.lcen curve valid for the profile 

of Ross and Robertson BT] and Rotta [38] which, in prtisent 

notation cran be expressed as: 

2 = zE + Din< + (A - zE)< . . . . ..(4.1-4) 

Of course, Fig. 9 provides no test at all of the accuracy 

of the shear-stress pradiction, since the curve cuts any 

straight line through the origin too obliquely. 

4.2 The stationary-state boundary layer with an adverse ' w-w 

Erossure gradient. -ep -- 
Results of much greater significance are obtained by 

considering the implicstions of equation (2.7-l). With 

rnG substituted from equation (3.3-5), g placed equal to 
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d 
--- 
dK 

X 

d(lnw) 
m ---- = m t@~-JQ> + 

dXx 

f 
m (a, - if&)> 

--P-L-u----s_ ----a . ..(2.6-3 

E -- COP-1 
> 

S 
,, 

This is the equation which has to be integrated, @. 

being the unknown dependent variable. 

Finally we must note that, in problems involving 

vaporization, condensation, etc., m is not specified in -I 
the data. In such cases, all three differential equations 

( i.e. those for gm, F+~ and j$.,) must be solved simultaneously. J 
Sometimes two @-equations must ba dealt with, for example 

in 
when the surfaca conditions are/d.irec tly specified [49] ; 

in one, @ might stand for enthalpy, in the other for 

concentration, and a surface-equilibrium condition would 

be needed to link the two prcperties. However, the problem 

remains well within the scope of quite modest computational 

facilities. 

Now that it has been established that a complete 

mathematical structure has been erected, further discussion 

of the general mathematical problem can be dispenszd with. 

2.7 The stationary=state boundary layer. - -------' ----- -- L--AL-- 
In some circumstances, the terms appearing in the 

numerator of the right-hand side of equation (2.6-l) may 

be of such size and sign that two of them dominate the 

equation. Then the term involving d-%/g, may be neglected, 

with only small error. 

We shall call a flow for which equation (2.6-l) shows 

dzE/dRx to be precisely zero a stationary-state bounda= I_-- 

&zer, -- by analogy with similar phenomena in physics and 

chemistry (c.f. Bodenstein's "stationary-state" hypothesis 

for certain classes of chain reactions [2] ). When we 

neglect d-%/dH_x, even though it may r,ot equal zero 
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precisely, the consequent theory will be termed "quasi- 

stationary".* The foundation of the quasi-stationary 

theory is therefore the degenerate form of equation (2.6-l), 

namely: 

dzE -- =r 0 : 
(1 - 12> R, d(ln uG> 

dRx 
---- - (I1 -12)mG 

d Rx 
-12m-IAs= 

/ 
. . . ..(2.7-1) 

The use of this equation brings of course the great 

advantage of eliminating one of the two differentialequations 

which govern the hydrodynamics of the wall layer. Moreover, 

it permits many local properties of the layer, for example 

the local drag law connecting g and g2, to be expressed 

without reference to z -E and without solution of a differ- 

ential equation. Much of the discussion contained in the 

remainder of the paper will be conducted with the aid of 

the quasi-stationary theory, since this permits a swift 

insight into many implications of the full equations. 

3. -- The turbulent flat-plate boundary layer --- ---- -- 
3.1 The nature of the problem -I---------- 

We first consider the flow which has been studied with 

more attention than any other, that on a smooth plane 

0 11 impermeable surface immersed in a stream of uniform velocity, 

without the presence of injection from slots. The situation 

may be characterised mathematically by the conditions: 

m=O 

d‘(lnuG)/dRx = 0 

d(lnw)/dRx = 1 0 

. . . ..(3.1-1) 

Because of the large number of experimental data which 

exist for this flow, we can not only confirm that the 
--- -----w I_-- ---- 

*Footnote: The stationary-state boundary layer is not quite 
the same as the "equilibrium boundary layer" of Clauser [4]. 
For the stationary-state, l-zE is independent of gx; for 
Clauser's equilibrium layer, it may be shown, (1-3)~~ is 
independent of zx. 
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present theory has the right form, but can also fix some 

of the unknown constants (g, s) so as to give good agree- 

ment with the data. 

We shall use the quasi-stationary theory, subsequently 

justifying it -use for the flat-plate 

3.2 Equations. -. 
In the present circumstances, the 

equations.reduce to: 

(2.1-12)e - dR,/dRx = -mG 

(2.2-6) - S = (o.4+1)2 

(2.2-10) --+w D= zE;/l 

(2.4-l) Y 

(2.4-2)--+12= 2 + ZE(& - q" > + zjpg 

(2.7-l)-+ -m = 
G II s ----- 

II - I;, 

flow. 

general hydrodynamic 

. . . ..(3.2-I) 

. . . ..(3.2-2) 

. . . ..(3.2-3) 

. . . ..(3.2-4) 

1.589 _I- 1 + -$T > 

..:..(3.2-5) 

. . . ..(3.2-6) 

Let us now note that we can reasonably guess that gE 

_ is close to unity in this case; for, after all, conventional 

theories implying that zE is equal to unity are fairly 

successful for the flat pILate. Let us also note that the 

provisional entrainment law (2.5-5) implies that -EG iS 

likely to be proportional to (I-zE) (if (I-gE) is itself 

proportional to (I- 2,)); moreover equation (2.'4-3) makes 

it likely that (zl- 22) is also proportional to ('I-ZE); 

meanwhile, $ is approximately unity when zE is near I. 

These considerations, taken together,with equation (3.2-6) 

make it probable that 2 is proportional to (l-~~)~. To 

aid investigation of this question, WC define the quantity 

A,, by: 
. . . ..(3.2-7) 

It is interesting to note that, if the equations indeed 

imply that A, is a constant for an equilibrium flat-plate 
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boundary layer, the present theory will have scored its 

first success; for equation (3.2-7) can be re-arranged as: 

UG - UE 
7;s = A 

. . . ..(3.2-8) 

The left-hand side measures the deviation of the actual 

velocity profile from the logarithmic profile, at the' 

outer edge of the boundary layer; and it was established 

by Schultz-Grunow p3] that this difference has a constant 

value of around 2.3 for flat-plate boundary layers. 

3.3 Deductions from exp erimental data for H. --- s-1-- --u -- 
Substitution of equation (3.207), into equations (3.2-4) 

and (3.2-5), together with the use of (3.2-2), (3.2-3) and 

(2.1-6) leads to the interesting equation: 

1 
H =-- -- 

- $7; 3.9725A + 12.5) 
.,.,.(3.3-l) 

---- -w- 2 
(+A+ 2.5) 1 

Now Hama /35] has observed that the shape factor of measured 

flat-plate velocity profiles can be related to the drag 

coefficient by an equation of the form: 

H = l/(1 - Gs3) . . . ..(3.3-2) 

where G is a constant. Fig. 5 illustrates thti data collected 

by Hama, together with curves drawn for c =1 5.5, 6.0, 6.5 

and 7.0. Hama recommended that the value of g should be 

taken as 6.1. Clauser I41 consid&red the same data and 

recommended variously 6.1 and 6.8. Earlier, Coles c5) had 

suggested a value of 7.1, after a less extensive examination 

of the experimental literature. The value 6.4 is implied 

by the velocity profile of Schultz-Grunow [4a. 

In the present paper we adopt the value of 6.5 for g. 

Since comparison of equations (3.3-7) and (3.3-2) shows 

that the function of 4 appearing in the former is equal to 

2, we can now deduce the corresponding value of A_; it is 

2.342. We therefore deduce that, in the absence of mass 

transfer and pressure gradient: 
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UG - ?I3 
--- - 

(z/p > 3 
=- (‘I - ZE) s-3 

= 2.342 . . ..r(3.3-3) . 
This result is in exctillent agreement with that of Schultz- 

Grunow mentioned at the end of th& last section. Indead ? 

the whole velocity profile which results from insertion of 

(3.3-3)'into (2.2-l) is in good agretiment with that author's 

data, as Pig. 6 shows. Of course, these facts merely 

signify that the family of profiles which has been postulated, 

i.e. that described by equation (2.2-l), fits the measured 

profiles reasonably wzll, 

Let us now examine more clo'sely the conformity of 

the constancy of i?, with our entrainment hypothesis. Suppose 

that -mGis equal to a constant times ('l-g%) in the region 

in question; then equations (3.2-21, (3.2-3), (3.2-f-I-), 

(3.2-51, (3.2-G) and (3.2-7) imply: 
1 

- m G 1 1 - (-@ + 2.5) ~2 . --- = ------ ------a e--m 
1 - ZE A(+A + 2.5) 1 --5- - Gs- 

= - C' , say . . . ..(3.3-4) 

With A = 2.342 and G = 6.5, we d&tuce that C1 is equal to 

0.1163(1- 3.671 g5)/(l-6.5s*i. Since " 3 lies between 

0.1 &nd 0.034 in all the experiments .which ars here under 

review, it is clear that a constant value of C', equaI to 

about Oil4 would fit the data quite ad~~quat~ly. So an 

entrainment law giving -m e.0 G proportional to (I- +) conforms 

with, and may even bc thought to explain, the observations 

of Schultz-Grunow and Hama. 

This is an appropria-tz point at which to make a firmer 

recommendation for the entrainmznt law, valid when zE is 

less than unity: In section 2.5, identificntion of z3 with 

go would have led to a v‘alue of C1 equal to about : 

0.088x(4/3)+2, i.e. 0.059, a li%tle less than half of the 

value just obtained directly from consideration of boundary 

layers. Possibly we should identify (I-3,) with approx- 
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imatcly one half of (I-SO), on the grounds that the mixing 

region of the boundary layer is like just one half'of the 

free mixing layer. On the othar hand, when z+, is close to . , 
zer0 9 it becomes much more reasonable to regard it as having . 

the same significance as zo; for now both the boundary-layer 

mixing region and the free mixing layer have the plane of 

maximum shear stress roughly in the middle. We can devise 

an entrainment formula which approximately fits both these 

requirements; it is: 
,. 

~~'(1: -mG= cp - ZE) (1 t: *z,) l l l l l (3.3-5) 

If now we require that equation (3.3-4,) is satisfied when 

2 has the typical value of 0.0015, with G equal to 6.5 and 

& to 2.342, we deduce that g1 has the value of 0.1023. 

Equation (3.3-5), with C,, equal to CilZ3, will be 

used as the entrainment law for z.~CLI, in the remainder of 

the paper. Of course this practice will require refinement 

when a closer study of all available data has been made; 

ultimately it may be necessary to introduce other quantities 

than zE (for example grn and 2) into the % function. Howover, 

the present hypothesis is a simple and plausible on,e, which 

is worth testing further. It involves the followhg partic- 

ular values of EG:. t 

2,-d : -m G -+ 0.1363 ('1 - z$ 
I 

J 
. . . ..(3e3-6) 

Z~ = O : - m(; = 0.1023 

3.4 Derivation of a lbcal drag law for the flat pleta. -s ------ 

Combination of equation (3.2-j) with equstion (2.2-6) 

leads, for ; = 0 and with g2 introduced via (2.1-8), to: 

S = I . . . ..(3.4-.I) 

We can now fix the constant E, by reference to experimental 

data for drag. By taking as typical the pair of values 

g= 0.0015 and g2 = 5030, extracted from the "best-fit" table 
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of Spalding and Chi [57], and with the values of A, and G 

derived above, we deduce that E; equals 6.542. To this there 

corresponds the following local dr ag law for quasi-station- 

ary flow on a smooth impermeable flat plate: 

s = CO.4 /ln {4.55H2/ (I-~.?s+)}]~ . . . ..(3.4-2) 

This relation appears to fit th (3 experimental data just as 

well as the curve fitted by Spalding and Chi [57], as 

Fig. 7 shows. 

The value of 6.542, for E can be regarded as surpris- 

ingly low in view of the fact that examination of velocity 

-profile data show that a valua ‘of 9.025 is more appropriate 

to the region near the wall. The discrepancy may arise 

from the fact that the velocity proffle (2.2-l) does not 

fit the experimental data in all respscts; but probably' 

0 12 some error is attributable to the use of the quasi-station- 

ary hypothesis. At a later stage in the development of. 

the thoory, it will be necessary to re-adjust all the 

empirically determintid constants by reference to exact 

integrations of both the differential equations. 

3.5 The valid* of the stationary-state hypothesis. --- e-m- ---- -- e-m- 

It is necessary, now that a stationary-state theory 

has been developed for the flat-plate boundary layer, to 

re-examine the general equations to see if the hypothesis 

has a satisfactory foundation. 

In the present circumstances, equiltion (2.6-l) can 

be written: 

Rm d(12/Il) 
--m-v = 

-mG (II -I*>, _ s --- 

dRX II 
. . . ..(3.5-1) 

Now it follows from the quasi-stationary hypothesis that: 

I? = 1 - @A + 2.5)~~ . . . ..(3.5-2) 

I2 = I -, (A f 5) 33 + (+A+2.5)Gs 43.5-3) 
n 

Since we know that gt is considerably less than unity in 
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the situation in question, we can write: 

2&l - (SA tr 2.5) s i! 

II 

Rm 
IlR2 R2 m -- - - ---- N 

II- I2 G$A + 2.5) s3 

and so: 

*In d(12'14 = ,_R1_ B-m-- ds 
dRx 2s dRx 

. . . ..(3.5-4) 

. . . ..(3.5-6) 

Since the g -5 term inside the argument of the logarithm 

of equation (3.4-2) has little influence, we can obtain by 

differentiation of this equation: 

-1 ds 2.5 . ---a ---- G 
dR2 

I__ -- l .  .  .  .  (3.5-7) 
2s3/2 dR, 5 dR, % 

Since further the momentum equation for the flat plate shows 

that dR_p!& simply equals 2, equations (3.5-6) and 

(3.5-7) imply that the left-hand side of (3.5-l) can be 

approximately re-written as follows: 

Rm d(12/Il > 
w-m- =2.5 s3'2 . . . ..(3.5-8) 

dRX 

, We can now pronounce on the validity of the quasi- 

stationary hypothesis; for the two terms on the right of 

equation (3.5-I) are obviously of the order of magnitude of 

2, while the left-hand side is only 2.5s3", i.e. around _ 

0.1 times as great. It follows that the quasi-stationary 

assumption is justified, but only as a first approximation. 

Thus, if the left-hand side of the equation had not been 

neglected,the value of C1 might have been chosen about 

10% larger than that obtained in section 3.3. 

We conclude that the quasi-stationary hypothesis is 

useful for exploratory investigations such as are being 

conducted in the present paper; but more exact analysis . 

will necessitate the retention of the dzE/dRx term. 
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4. The smooth impermeable-wall;nfluence of px~ssure -w-m-- -- 

gradient. m--m 
4.1 Comparison with the drap law of Ludwicm aIWTillmann. ----- -~~a...zL.--I-----u -_I_-- 

Ludwieg and Tillmsnn p5] measured the drag exerted 

by a boundary-layer subjected to an 3dvcrse pressure grad- 
* - 

ient. As a result of their studios, they propounded the 

a following approximate law of local skin friction: 

s.. . = 0.123 x -0.678H IO ( -0.268 
R2 . . . ..(4.1-1) 

Their experiments covered a-range of II2 from about 

IO3 to about. 4 X104, 
Ii-l 

and Q range of 2 from about-l.2 up 

to 1.8; the larger7values mainly occurred at the hig.her 

Reynolds numbers. 

A relation between 2,. II2 and g can be derived solely 

from the velocity-profile assumption of the present theory; 

for ,H may be expressed.via equations (2.1-6), (2.4-l) and 

(2.4-2) in terms of -%, 2nd JJ; I, can be expressed in terms 

Of z!E and 1. via (2.2-10) with m =' 0; 1 is connected with- 

n, and -2 vi.3 (2.6-2); and 2 is given by (2.2-6). Comput- 

ations have been carried out using these equations together 

with the'value 6.542 derivid for E in‘section 3.4. The 

results are plotted as full curves in Fig. 8; the broken 

straight lines represbnt the iudwieg-Tillmann formula 

(4.1-I)) their extent covering roughlk the area appropritite, 

to the experimenta 1 conditions explored by those'authors. 

The agreement between the present theory and the 

Ludwieg-Tillmann formula may be regarded as rather 

0 13 satisfactory, particularly in view of the fact that'the 

latter is itself only approximctd'. However, it would have 

been surprising if poor agreement had been obtained, for 

care has been taken to ensure that the postulated family 

of velocity crofiles fits the experimental data fairly well; 

and even a poor fit of the velocity-profile data will still 

give a fairly .good agreement with the experimental drag 

data, 
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We insert at this point another test, albeit a weak 

one, of the suitability of thti velocity-profile family. 

Clausar [4-j devoted considerable experimental attention to 

three different boundary layers.and has reported values of 
1 

5, defined in equation (3.3-2) above, and (l-P,)~-T, the 

latter being denoted by icl,/6 in C13usor's paper. The values 

for G were 6.q (also reported as 6.8 in Clauser pg ), 

10.1 and 19.3; the values of (I-I?)s -4 were 3.6, 6.4 and 

12.0 respectively. Now the present velocity-profile 

assumption implies, as already sisen: 

G = $A2+ 3.9'725A + 12.5 
-----P-P- 

+A + 2.5 
. . . ..(4.1-2) 

and: 

(1 - 1,),-t = -$A + 2.5 . . . ..@-.I-3) 

Fig. 9 contains a plot of -3 (7-&,)s , versus 5. The 

full line represents equations (4.1-2) and (4.1,3), and 

the circles reprc3, ~c,nt Clausor's data. Evidentally the 

crosses lie near to the curve. Once again however, it 

would have been surprising not to find good agreement, for -- 
the relationship between the ordinate and abscissa is not 

greatly dependent on the shape of profila, as is indicated 

by the noarntiss of the bro.lcen curve valid for the profile 

of Ross and Robertson BT] and Rotta [38] which, in prtisent 

notation cran be expressed as: 

2 = zE + Din< + (A - zE)< . . . . ..(4.1-4) 

Of course, Fig. 9 provides no test at all of the accuracy 

of the shear-stress pradiction, since the curve cuts any 

straight line through the origin too obliquely. 

4.2 The stationary-state boundary layer with an adverse ' w-w 

Erossure gradient. -ep -- 
Results of much greater significance are obtained by 

considering the implicstions of equation (2.7-l). With 

rnG substituted from equation (3.3-5), g placed equal to 
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zero because mass transfer is absent, and a new symbol for 

the non-dimensional pressure gradient, namely: - . - b - 
I 

F* = R* d (lnuGl ‘2 d"G 
.- r 

----- = e--e ---- . . . . (4.2-q) 
d R* U1 ir dx 

there results: 

Equation (4.2-2) can be used, in conjunction with those 

A 0.1023 (1 - z&l + .jZE, _ (II -I >2 2 
qu - 121 

, . . . . (‘4.2-2) 

mentioned in the previous section, for the computation of 

values of g2 for various values of g and g2. The results 

of such computations are displayed in Fig. IO; lines of 

constant z.~ are also shown. -Al 
I?2 has been chosen as the measure of the pressure 

gradient partly because Kutateladze and Leont'ev p'il , 

among others, have suggested that this quantity exerts a \ 
dominant influence; in particular, these authors argue, 

boundary-layer separation always oocurs when -lZ2 exceeds 

0.01, the corresponding value of g.being around 1.9. We 

shall now show that I?2 plays an important role in the 

present theory also, although the critical value which 

. 

emerges is appreciably lower than that of Kutaceladze 
_ 

and LeonPeG. _ 

First it must be emphasised that Fig. IO is strictly * 
. 

valid for only'the stationary-state boundary layer, i.e. 

the layer with ZE independent of z; such boundary layers I 

can be contrived in the laboratory by ensuring that the 

pressure gradient changes with Reynolds number in accordance 

with one of the constant--gg lines of Fig. IO. ; Obviously 

g will vary slightly with downstream distance in such a 

boundary layer, .and of course g will eventually vanish-; 

the pressure-gradient parameter $/s chosen by some authors 

(e.g. Clauser C4I.l ), will therefore vary widely. . . 
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The main conclusions to be drawn from inspection of 

Fig. IO are as follows: 

(i) At any particular momentum-thickness Reynolds 

number E,, there are in general two possible vzdues of g 

which correspond to the stationary state for a givennon- 

dimensional pressure gradient l?2. 

(ii) At low values of -l?2 (mildly adverse pressure 

gradients) only one value of H exists for which -% lies 

between zero and unity. Probably another one exists for 

negative zE, but boundary layers with reverse-flow regions 

will not be discussed in the present report, although they 

can, in principle at least, be fitted into the framework 

of the theory. 

(iii) At somewhat higher values of -g2, two values 

of g can satisfy equation (4.2-2) at a fixed value of lZ2 

without involving rcverse flow (-% < 0). 

(iv) When however -g2 exceeds a given value, which is 

near 0.006 but which varies somewhat with.Reynolds number, 

no real stationary-state boundary layer exists. It follows 

that, for such high values of -l?2, dzE/dRx is bound to be 

finite; re-examination of equation (2.6)) shows that 

this quantity must indeed be negative. So for -g2 in 

excess of about 0.006, -% will fall and the boundary layer 

will separate. This is a striking prodiction, of the same 

character as that of Kutateladze and Leont'ev PI], but 

involving a lower value of -F2 and also based on quite 

different considerations. It will be interesting to make 

a comparison with experimental data. 

4.3 Comparison with experimental F3-K ---- ----- -c 
Fig. 11 contains the same curves as 

data. -A-- 

are shown on 

Fig. 10. -In addition it contains curves deduced from 

several experimental investigations. Each curve is marked 

with an arrow indicating the direction in which lZx increased 

in the experiments; points at which I?2 equalled 5x'103 



and IO4 are indicated by circles and squares. It must be 

remembered that, with the possible exception of the 

experiments of Clauser [4], the experimental boundary. 

layers were not in or near the quasi-stationary state; 

indeed the variation in their velocity profiles along the 

surface was so extreme that boundary-layer breakaway 

eventually occurred in three of the five cases. Therefore 

we do not expect the experimental curves to lie near the 

theoretical ones except in regions in which the pressure 

gradient changes slowly. 

The experimental data of Clauser [4] provide two 

curves. The lower one on Fig. 11 is short. It lies well 

within the band of stationary-state curves; although the 

point where I32 is IO4 does not lie in exactly the predicted 

position for a stationary-state layer. The second and 

higher curve is considerably longer; although this inter- 

sects the stationary-state curves, the upstream state of 

the boundary layer has a surprisingly high value of H. 

Possibly however the l?2~values, which have been deduced 

from a differentiation of the main-stream velocity variation, 

are somewhat in error. In any case it appears that the 

boundary layer changes so as eventually to conform 

fairly closely with the stationary state, 

The data of vcn Doenhoff and Tetervin DO} were 

obtained for an ac-:, ,-ofoil (FACA 65(216)-222 (approx.) at 

an incidence of '10'). The curve on Fig. 11 representing 

0 14 these data runs fairly close to the stationary-state 

curves in the upstream region; however, when -E2 has just 

exceeded 0.004, the curve suddenly bends back so that H . 

increases and -l?2 falls. According to the quasi-stationary 

theory the value of zE would be about 0.52 where the 

departure occurs. 

The data of Newman [29] , also obtained for an aero- 

foil, and those of Schubauer and Klebanoff [42], which 
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relate to a specially constructed surface, show very 

similar behaviour. In both cases the upstream region 

conforms fairly closely to the stationary-state curves; 

and when -x2 reaches about 0.0037, the experimental curves 

rise and bend over. 

Consideration of Fig. II and its implications seems 

to justify the following conclusions:- 

(i) Whereas the sthtionary-state hypothesis implies 

that turbulent boundary layers are caprble of withstanding 

adverse pressure gradients for which -E., is 2)s grest as -4- 
0,006, the experiments cited suggest that values only 

' two-thirds as great will suffice to cause boundary-layer 

separation; for the upper branches of the curves of 

Doenhoff/Tetcrvin, Newman and Schubauer/Klebanoff are 

all associated with the latter phenomenon. Thus both 

the argument of section 4.2 and the theory of Kutateladze 

and Leont'ev (for which -ET = 0.01 at sepa*ration) over- L 
estimate the pressure gradient that can be sustained. 

However, Fig. II provides support for the view 

that Q is indeed the dimensionless quantity which governs 

boundary-layer separation. Moreover, it may be judged 

that the positions of the lower branches of the experiment- 

al curves add plausibility to the prese_rlt theory. 

(ii) For purposes of the design of engineering systems, 

in which boundary-layer separation is 2 phenomenon to be 

avoided, it would probably be sufficient to conclude 

that the present theory may be used wh*n -I$ is less than, 

say, 0.0035, and that boundary-layer separation is to be, 

expected thereafter. However the reason for the lowness 

of the critical value of -l?2 also needs to be established. 

The following explanation seems plausible. We have 

0 15 neglected the influence of the pressure gradient on the 

form of the velocity profile close to the wall, on the 

strength of the observations of Ludtiieg and Tillmann 1251 
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(see section 2.2). However, the experimental and theoreti- 

cal work of Stratford [39) has shown that;at high adverse 

pressure gradients, this neglect is unjustified; in partic- 

ular, when the pressure gradient is sufficiently high, the 

shear stress at the w&L falls to zero and ths velocity 

profile,i.n the immediate vicinity of the wall obeys the 

law: 

u = . . . ..(4.3-*I) 

where g is a mixing-length constant, 

Tt follows that, for zero wall stress, the pressure- 

gradient $, has the value F -2,o g iven by: 

-F2,0 = (K/2)2 z2 E crl - $1 . . . ..(4.3-2) 

Now if -F_* were to exceed -g2 o this could only be 
5 

as a result of a doparturci of the velocity profile from 

the form postulated in section 2.2; for no solution of 

the Couette-flow differential equation exists for such high 

pressure gr;ldionts. Wa must therefore expect that the 

curves pru lamented in Fig. 10 can reprdscnt stationary-state 

performance only for val.ues of -g2 which are less than 

-E2,0* 
(iii) The actual value of -B2 o is obviously around 

5 

0.004, according to the experimental data collected on 

Fig. 11 and the value of gX at which it occurs is around 

0.55. The value of (:I&- 12) varies of course with E2, 

but, in this range, it is around 0.16. Substitution of 

these values in equation (4.3-2) yields: g = O.'j75. Since, 

in more conventional boundary-layer circumstances ,K is 

taken as equal to 0.4‘ (and has been so taken throughout 

the present paper), so high a value may seem surprising. 

However, Townsend @3] h as argued that I;z should have a 

larger-than-usual value in zero-wall-stress layers, and 

indeed suggests: & =: 0.5 2 0.05; the value which we have 

deduced lies only just outside this range, 
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Fig. 12 provides further evidence that the present 

theory needs toabe modified so as to take account of the 

influence of pressure grsdient on the u'yy' relationship; 

it reprasents a plot of 2 2 versus. 4 , is bssed on experi- 

mental results for zzro wall stress obtained by Stratford 

[59] 9 and is extracted from the paper by Townsend [633. 

The curve represents equation (2.2-l), with however 2' 
-4 +4ual to -$g/--yE 1 in accordance with equation (4.3-l), and 

ZE equal to 0.663, Evidently tha conception underlying the 

pressnt argument is fairly realistic. . 

In lz'ter developments of the unified theory of 

boundary layars and ~~11 jets, it will clearly be desirable, 

' to modify the I&E+ relation so as to take full account 

of the effects of pressure gradient. Meanwhile ws merely 

present Fig. 13, which contains the constsnt -R2 curves 

of Fig. 10 once more, but also has lines of constant 

-E2 /{z$ (I,, - 22)] drawn on it. Equation (4.302), 

with K = 0.575, impli es that the curves of Fig. IO can 

bk regarded as valid Tar -g2/ .@$ (&, - L2)] less than 

0.0827, a limit which is marked on Fig. 'l3. 

(iv) The foregoing discussion may bc held to explain 

why Kutatelzdze and LeontTev [21) predicted too high a 

critical value of -E2; for their theory implies (among 

other things) a unity value of gE* In other words the 

boundary layer of these authors contains only the wall- 

law component, not the ttmixing-layer't or "wake" component. 

(v) Finally, it is interesting to comparz the degree 

of success achieved by the present theory in predicting 
i 

experimental behaviour with that of ether theories. A 

rough comparison can be made by inspection of Fig. 13a, 

which contains. the curves of Fig, IO yet again, and also a 

set of curves extracted from the valuable rsview paper by 

Rotta [77]; the latter are based on tht? theories of the . 
authors whose names appear on the-diagram, and hold for 
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equilibrium boundary layers with I?2 equal to '104. It is 

interesting to note that few of them bear much relation . 

to the e-xperimental data represented .on l?ig. 12; 

curiously enough, the least unrealistic prcdiction is 

the earliest of all, namely that of Buri pJ3]. 

4.4 Comparison with-Head's entrainment law. 

As mentioned in section 1.2, the idea of entrainment 

has been introduced into boundary-layer theory by Head 

fi83 9 who used the measurements reported by Schubauer and 

Hlebanoff &;13 , and by Newman p7], for the empirical 

deduction of 6.n entrainment law. Head presented his 

results in the form of two diagrams, reproduced here in' 

Figs. 14 and 15. The first plots El- verse Ii, where I&, 

is defined in the present notation by: 

HI = (yG - b1)b2 

= 11/(11 -i2) . . . ..(4.4-1) 

The second plots -m+ versus &,O The circles represent 

data from Newman pqj ; the crosses represent data from 

Schubauer and Klcbanoff [42]. 

Also drawn on Figs. 14 and 15 are curves representing 

the prediction of the present theory, R-2 being the parameter. 

Those on Fig. 14 represent solely the i.mplications of the 

family of velocity profiles; those on Fig. 15 in addition 

represent the implications of the assumed ontrainment 

function. The following conclusions appear to be 

justified:- 

(i) The scatter of the points on Pig. 'I4 is probably 

mainly due to the difficulty of deciding, from inspection 

of velocity profiles, which location shall be adopted for 

the outer edge of the boundary, However, the "theoretical" 

curves on Fig. 14 show that the experimental points are 

not to be expected to lie on a single curve; there is a 

significant Reynolds-number influence. Then these two 
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facts are taken into account, it can be said that Fig. 14 

provides no reason for doubting the suitability of the 

assurucd family of velocity profiles, this being the only 

matter under test. 

(ii) The uncertainty in the evaluation of 3, applies . 

to Fig. 15 also; here too one must expect a band of points, 

$ being the parameter, rather than a single curve. 

However, even when these facts are taken into account, 

Fig. 14 definitBly suggests cithcr that the presumed 

entrainment law over-estimates the rate at which mass 

can be dravm into the boundary layer, or that the predicted 

values of g1 are too ~~11. 

The author's present view is that the latter explana- 

tion is the more probable, the cause being again the 

neglect of the influence of pressure gradient on the 

wall law. It must be the aia of future work to procure 

closer agreement between the measured and presumed 

entrainment laws. However,, since the latter is regarded 

entirely as an empirical input to the theory, there 

should be no serious difficulty in doing this. 

(iii) As already mentioned, Read's theory of boundary 

layer development, which rests on the postulate that 

unique relations exist between -m,, H, and I&,, is more 

successful than any other [61]. Since the influence of 

I$ on these functions is recognised in the present theory, 

it should be possible to dcvclop a calculation procedure 

whiah is even more successful than that of Head. 

5, Mass transfer in the absence of pressure gradient; 

quasi-stationary theory. 

5.1 Prediction of the local drag law. 

Mickley and Davis [27] have made an extensive 

experimental study of the boundary layer on a smooth 

flat plate through which air is injected towards the 
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main air stream. Their measurements afford a useful 

check of the present theory. 

The relevant equations are:- the drag law (2.2-6) 

with 1 given by equation (2.6-2); the definition of the \ - 
z's, with g obtained from (2,2-IO); the entrainment law 

(3.3-5); and the differential equations (2.1-12) and (2.6-l). 

However, encouraged by our success with the flat plate 

in the.abscnce of mass transfer (section 3)) we shall 

here make use of the stationary-state assumption, and so 

replace the two differential equations by a single 

algebraic equation, namely (2.7-l), which here reduces to: ' 

0.1023(1- z,$(l+~zE)(l,, -12) - 12m - I?s = G 

.00..(5&1) 

The results of computations using these equations are 

displayed in Fig. 16, in the form of a plot of 2 versus 

R-2 for various values of m_. It is evident that the agree- 

ment between prediction and experiment is very satisfactory; 

certainly, what little systematic error exists is not 

sufficient to justify a modification to the argument 

leading to equation (2.6-2) for example. 

The agrcemcnt betwocn theory and expcrimcnt, though 

gratifying, is not a complete vindication of the assumptions 

underlying the present theory; for it has to be admitted 

that Mickley and Davis themselves showed that the theory 

of Rubesin [39] agreed satisfactorily with the data when 

the two empirical constants were appropriately chosen. 

The theory of Rubesin might be characterised as differing 

from the present one in implying that gE equals unity 

throughout; in other words, like the majority of authors 

until recently, Rubesin thought only of the wall layer 

and neglected the outer or. lrwaketl region. 

Pig. 17 contains a plot of the shape factor H, 

versus g2 for various m,; the points represent the 
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experimental data of Mickley and Davis, while the curves 

correspond to the present theory. The agreement between 

theory and experiment is less satisfactory in this case. 

However, this may imply no more than that the Nickley-' 

Davis boundary layers are not as close to the stationary 

state as might have been expected; for the disagreement 

between theory and experiment is as great for g = 0 as 

for finite m, and we know that the theoretical curve fits 

the majority of data in this case because it has been 

adjusted to do so (section 3). 

Clearly, any further deductions from the Mickley- 

0 15 Davis data must be based on the full differential equations, 

and not on the stationary-state hypothesis. 

5.2 The entrainment law. ---------- 

Values of H,, versus g and of -rnC versus.&,, according 

to the quasi-stationary theory for the flat plate‘with 

mass transfer, are plotted on Figs. 14 and 14, in order 

that they can be compared with the calculated curves for 

impermeable plates with pressure gradient. It is interest- . 

ing to note that the new curves are not identical to the 

previous ones. This may explain why Head pa] could not 

reconcile the Mickley/Davis data with those which he 

deducted from impermeable-wall experiments; we see that 

unique H-H or -m -H - -1 -G -1 relations are not to be expected. 

This is not to say, however, that the choice of entrain- 

ment function made in the present paper is correct. 

Of course, if the relations between II, HI and -mG 

are desired in the most compact form, it is inconvenient 

to allow I$ to enter; for each of these quantities can be 

expressed in terms of at most two quantities, e.g. gE and 

(3+ &3* This fact may be recognised by examining the 

definitions of &,, and $ and equation (2.2-10) for D,. 
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5.3 An analytical theory for the effect of mass transfer ------ ---- ---m -- 

on drag. - 

The effect of mass transfer on drag has been expressed 

in a particularly convenient formula by Kutateladze and 

Leont'ev [Zl] ; these authors deduce: 

1 - * 2L 

% 
. . . ..(5.34) 

Here 50 is a function of F$; specifically it is the value 

of s appropriate to the momentum-thickness Reynolds number 

for a smooth wall in the absence of mass transfer and 

pressure gradient. We shall derive a comparable formula 

from the present set of equations. 

Let g* and 2; be the values of 2 and 2E which are 

valid, for a fixed value of &, for the smooth-wall boundary 
. . 

layer with " and ;F2 equal to zero. Then, from equation 

(2.2-6) with m = 0: - 

s* = 
. ..*. .(5.3-S) 

Also from equation (2.2-6), with rn# 0, WC can deduce: 

S -- ( ) 
4 zE = .- - Am 

4- 
ZE* . . . . . (5..3-3) 

S* 
ZEy . ( 

0” 

We now show that g* has practically the same . _ 

significance as go by demonstrating that 1 varies little 

with m at fixed R,2. We write equation (2.6-2), by simple 
, I 

substitutions, as: .- , 

l= In 
. . . ..(5.3-4) 

l!low we can expect, after re-capitulating the arguments 

of sections 3.2, 3.3 and 3.5, that a stationary-state 

boundary layer with m&s transfer but no pressure 

gradient will aporoximately obey the relation: 

II- I2 x 3.671 (s + mzE) 3 . . . ..(5.3-5) 
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It follows that the argument of the logarithm varies 

I little with m and therefore 1 itself varies still less. 

Exact computations.bear this out. Therefore we may 

equate ~0 to s* approximately; and z * may be replaced -E 
by zE 0 which signifies the value of gE which prevails, 

9 
at the given R,2, in the absence of mass transfer. Thus. 

the counterpart of the Kutateladze/Leont'ev formula 

(5.3-l) is: 

. . . ..(5.3-6) 

A study of equations (5.3-l) and (5.3-6) permits 

the following conclusions to be drawn:- 

(i) 
and %,o 
Reynolds 

moderate 

all have 

The two equations are identical when both zE 

are unity. This occurs at the limit of infinite 

number. However gF is fairly close to unity for . -J 
R,2ls; for example, the' points computed on Fig. 16 

gE-values between 0.8 and 0.95. It is 
. 

therefore not surprising that Kutateladze and Leont'ev 

[211 find good agreement between the predictions of J 
equation (5.3-l) and experimental data. 

(ii) Equation (5.3-6) implies that mass transfer 

may influence drag in two ways, corresponding to the two 

terms on the right-hand side. The second term expresses , 

an influence which manifests itself in equation (5.3-l) 

also, that of the us&y+ relation; as in respect of 

pressure-gradient effects, this is the aspect of 

boundary-layer flows which has receivedtmost attention 

from earlier authors. The first term might be regarded 

as the specific contribution of the prosent theory; it 

implies that 2 will be decreased if mass transfer should 

cause a reduction in gE, as indeed the stationary-state 

assumption implies, through equation (2.7-l), that it 
, , 

does. 
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Fig. 18 emphasises the last-mentioned interaction. 

It contains a plot of zE versus g based on equation (5.1-l) 

with 2 placed equal to zero; ID, has also been put equal to 

zero in evaluation of the quantities &A and $. This curve 

expresses the influence of the ,entrainmcnt hypothesis, 

the continuity and momentum equations, and. the stationary- 

state requirement; holdlcver the law of~'the wall is disregarded. 

The important point to note is that zF becomes zero when u 
fe attains a finite value (0.0341). Although not all 

points on the curve arc physically attainable (bec3usa of 

the neglect of the t~all LxJ), the point of zero -% has 

physical si,gnificance, since both 2 and D are truly equal 

to zero when ~~ is zero. 

(iii) The recognition of the role of the changing 

mixing-layer component of the boundary layer may 

ultimately provide an explanation for the fact that existing 

theories do not correctly predict the influence of mass 

transfer on drag at high Plach number. Specifically, 

theories w&h consider tfie u+ my' relation alond predict 

that s/% has a smaller value, at a given value of z/20, - 

at high Pisch number than at iew; the reverse is found in 

practice. This effect would be explained if it turned out 

-that zX,O were very much lower for high Ncich numbers than 

for low, as would be the case if the low density of the 

high-Mach-number mixing layer inhibited entrainment. How- 

ever, the detailed study of this question lies beyond the 

scope of the present pcper. . - 

(iv) The observation, made in (ii) above, that z falls -E 
to zero when m = 0.0341 prompts the reflection that this 

condition is different from thti condition of zero wall 

stress. The latter, equation (5.3-6) implies, occurs when: 

s = 0: m ~4s 0 zE/zE2 0 . . . . . (5.3-7) 9 
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Since -%/&O is of the order ofunity, and a typical 9 
value of ~0 is 0.0015, the value of m for zero shear 

stress is of the order of 0.006, i.e. considerably less 

than 0.0341. 

In this connexion it is interesting to recall the 

experiments of Hacker @4], who measured the blowing 

rates which caused complete separation of the turbulent 

boundary layer from the wall. He found that the values 

of ,m appropriate to this phenomenon lay between 0.02 

and 0.04. The value 0.0341 lies in this range, which is 

admittedly rather large. Values in excess of 0.0341 can 

be explained by invoking the fact that Hacker's boundary 

0 17 layers were certainly not in the stationary state. Values 

below 0.0341 canbe partly explained by observing that our 

entrainment law gives 2 rather higher value of -EG at 

2E = 0 than is justified by the experiments of lieichdrdt 

c34] and Liepmann and Lzufer p3] (section 2.5); if the 

former's value of xG/x wert7 taken, the value of g for 

zero 2 -E would be one-third of 0.0787, i.e. 0.0266. This 

still does not reach the lower limit of Hacker's range, 

but goes some way towards it. 

6. The wall jet in stagnant surroundings.. --- 
6.1 Velocity profiles. , 

We here consider the situation in which a fluid 

is injected through a slot along a wall, this being 

immersed in a large reservoir of fluid which is at rest. 

This is the "wall-jet" situation studied theoretically by 

Glauert pfl and experimentally by Sigalla [48], Bradshaw 

and Gee D], Myers, Schauer nnd Eustis p8], Stratford, 

Jawar and Golesworthy [60] and others. The wall is 

supposed impermeable, and there is of course no pressure 

gradient. 
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The equations which are relevant to this situation 

are the general ones, with however -s tending to infinity. 

Thus we deduce: 

Prom equations (2.2-9) and (2.2-40): 

z -I- = 6 
i 

1 + cos (xc) 
zE 

t $- lnzf, . . . ..(6.1-1) 

From equation (2.24): 

From equations (2.2-IO), (2.4-l) and (2.4-2): 

and 

5 3 I.529 2 

-?-=F _ ------ 1 t 7- l2 

From equations (2.2-$0) and (2.4-6): 

. . . ..(6.1-2) 

. . . ..(6.1-3) 

. . . . .(6.1-4) 

- - I  = 

ZTi: 

(ra,-$9,) p -  % -  $(T -0*2oSSn)] -  

n 

- DPj (OJq4-5- 2/l) . . . ..(6el+) 

In these equations, + has boon transferred to the left- 

hand side in order -that all the terms should be finite. 

Equation (6.1-I) implies that 2 passes through a 

maximum value, zrnax' where < equals cmax, these 

quantities being related to 1 by: 

7c <rnax sin(aEmax) = 2/l . . . ..(6.1-6) 

and 

z max -__I- = I f cos( 7r<mau)' +-2_ 7 
lncn;ax 

FE 
91 L 

. . . ..(6.1-7) 

Since cmax is always much smaller than unity, the sine 

of x5 max is approxima-tely equal to its argument. It 

follows from equation (6.1-6) that: 
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I 2 3 

max z--- 
7L ( ) 1 

. . . ..(6.1-8) 

An even closer approximation, obtained by taking one 

further term in the power-series expansion of the sine 

function, is: 

c max G-k (+-)’ {,- -$ (+)+]-’ . . . . . (6.1-g) 

Fig. 19 presents a plot of the velocity profile 

according to equation (6.1-l), with & having the value 

of 9.94 ( rmax = 0.145, zmax -$= / 0.7544); the ordinate, 

and abscissa are z/zmax and < . Also shown on Fig. 19 

0 78 are experimental measurements made by Bradshaw and 

Gee [3) and originally reported in terms of g/zrnax versus 

5&p where 6 3 is the value of 5 at which ~~~~~~ equals 

3; in plotting these data E;s has been taken as 0.54, 

which corresponds to 1 = 9.94. It will be observed that 

the agreement is good, but not perfect. 

Fig. 20 represents the same velocity-profile data, 

represented in the llwall-law*' co-ordinate system: u/(r/p) ii 

versus g( T p )+/p. Similar remarks can be made. It is 

interesting to note that the deviations from the law: 

g/c z/p > 3 = 2.5 l+(z p>"/p] tcnnst are very great. J 
6.2 The local drag-law. -- 

It was mentioned already in section 1.2 that the 

theory of Glauert fJ3], which rested on the supposition 

that the usual wall law prevailed in the region between 

the wall and the velocity maximum, fails to predict the 

drag correctly. Examination of Fig. 20 shows why. Let 

us now see whether the present theory is any better. 

Fig. 21 shows a plot of ~/(pg~~,x) versus R -max' 
i.e. (Pgmax XG <m,,ip) 9 calculated by means of the 

present equations. Also shown are curves representing - 

the theory of Glauert fl3] and the experiments of 
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Sigalla @8], together with points representing the 

experiments of Bradshaw and Gee [3]. Evidently the agree- 

ment between experimental data and the present theory is , 
extremely satisfactory, even though, as Fig. 19 shows, 

rl - b 19 the location of-the velocity maximum is not predicted 

very accurately. 
. . 

%6 may conclude that, although It would probably be 

possible to find a better function than the cosine to 

represent th e mixing4ayer component of the velocity 

profile, the present theory predicts.the local drag law 

satisfactorily. It should however be mentioned that 

Myers, Schauzr and Eustis [28-J report measurements of drag 

which are abqut 15% higher than those of Sigalla; evidently, 

precise measurements are not easy in wall-jet circumstances. 

6.3 Variations in the x-direction: deduction of thg ---- --- -------- -- 

. - entrainment constant. . ---------Me _ . 3 - 
The differential equation s which govern the growth 

of the wall-jet flow i.n the z-direction are equations 

(2.1-12) and (2.6-1); g9 d(lnw)/dgx and d(lnu,)/dR_, -u 
are all to b;t placed equal to zero. We shall presume, 

I 
guided by equation (2.5:7), that&the entrainment law is 

given by: L 1 
gE:-fCV -m G = ‘2 'E :~ . . . ..(6.3-1) 

The differential equations then become: 

dRm ----.- _ = 
zE dH, "2 . . . ..(6.3-2) 

and 

. . . ..(6.3-3) 

1 and i/-G vary slightly with Rx. However, since 

the second term in equation (6.3-3) will prove to be 

considerably smaller than the first, we here treat these 
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quantities as constants having the values appropriate to 

R ~,,,=1.085x104, namely &= 9.94, g/-25 = 1.8 %10-3. Then 

equation (6.3-3) becomes: 

RmdzE 
= 

-. 
Z-Z 

- c2 - 0.00305 

- C2(1+E.), say . . . ..(6.3-4) 

To solve equations (6.3-2) and (6.3,4), we first 

eliminate dRx. Integration then yields: 
-(1&E) 

zE/a = Rm . . . ..(6.3-5) 

where a is an integration constant. Substitution of .- 
(6.3-5) into (6.3~2).now yields: 

c 1 
l/(2+(9 

Rm = (2 + E)C2aRx . ..(6.3-6) 

Pinally, substitution in (6.3-5) yields: 

53’ 
a = {(2+ E) C*aq-(1+w(2+~) 

. . . ..(6.3-7) 

It is interesting to know the rate of spread of the 

jet. The above equations, together with the definition of 

Em and the continued use of the assumption 1 = 9.94, 

lead to: 

yG/x = 2.502(2+~)~~ . . . ..(6.3-8) 

As we shall shortly see, the quantity Ecis of the 

order of 0.1. It is therefore convenient temporarily to 

neglect it altogether. In physic&l terms, this amounts 

to neglecting the influence of wall shezr on thz momentum 

flux. The above equations then reduce to: 

Rm ';= (2C2 oRx) 5 . . . . . (6.3-9) 

zE/a = (2C2aXx) -& . . . ..(6.3-10) 

i 
Y(/X = 5c, ..,..(6.3-11) 

These equations are probably sufficiently precise for the 

preliminary evaluation of C2 from experimental data. 
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Most experimenters have reported their results in 

terms of 13/z and umax/gc versus x/xc, where y1 is the I -2 - 
distance from the wall at which 2 equals %~~ax, L+ is 

the velocity of the fluid emerging from the slot, and xc 

is the width of the slot. We may t&e yq 
--H 

as approximately 

equal to 0.54xG, this result being precise for L=9.94; 

similarly, smEX mny be taken 3s 0.7544gE. In order to 

introduce u 4 and yc into the relations however, it is 

necessary to make still more use of the assumption that 

the shear stress at the wall is small. If this shear 

stress is neglected, we can equate the momentum flux 

at nny section to the momentum flux at the jet, SO 

obtaining: 

UG Rm ‘2 
2 

F uc Yc ---em = ------ 

II I-” 
i....(6.3-12) 

With 1 = 9.94 agrlin, and so I,1 = 0.4~ and z2= 0.2361&, 

we deduce: 
a 1.65 p"C 'C -- = u-----s . . . ..(6.3-13) 

UC'UG P 

wherein u, needs to bc retained, even though it tends to --iT 
zero in the case in quastion, because, like z+, 2 tends 

(6.3 -1'3) into (6.3-g) and to infinity, Substitution of 

(6.3-10) now yields: 

Rm --s--m g/i ,837 
P UC Yc & 

and, with u -max = 0.7544% : 

3 
.,...(6.3-14) 

-3 
. . . ..(6.3-15) 

Equations (6,3-'il) and (6.3-15) provide convenient avenues 

for the approximata determination of CY2 from experimental 

data. The former c2.n be re-written as: 

. . . ..(6.3-16') 
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while the latter becomes: 

c2 =z 0.4825{ %;x cy;f} -2 . . . . .(6.3-lj) 

The experimental data of Sigaila [48], Bradshclw and 

Gee [3], Nyers, Schauer and Eustis [28j, 3nd Strstford, 

Jawar and Golesworthy [601 exhibit considerable scatter. 

They may however be roughly summarised by the first two 

columns of Table I. 

Table I. -w-v s2 deduced from ezrimental data ------mm ------mm .- I 
Author y-&/x ‘2 Umax x 

Cd 

3 
c2 

uc c 
Sigalla 0.065 0.0241 3.45 or 2.8 0.0405 or 0.0615 

' Bradshawetal 
I 
0.07 0.0259 2.8 0.06’15 

Myers eta1 0.08 0.0296 3.45 0.0405 

Stratfordetal 0.064 0.0237 3.6 0.0372 
I 

It is noticeable that the C2 values deduced in the 

second column exceed those in th;;! first column. This may 

be explained by the fact that the wall friction is not 

entirely negligible; so the raduction in ~&3x is due to 

loss of momentum as well as to entrainment. and the rate 

of the latter is over-estimated. We shall therefore regard 

the values in the first column as more reliable, but shall 

adopt a value somewhat above their arithmetic mean, 

namely 0.03. 

Two further facts may be considered before a final 

value of G2 is chosen. The first is that Stratford, Jawar 

and Golesworthy [GO] attempted to make direct measurements, 

of the ratesof entrainment; they report that the "entrain- 

ment velocity" is 3bout 0.04 times the peak velocity in 

the jet. Since (for & = 9.94) ~m3x/zE is about $, this 

implies 3n entrainment constant s2 of 0.03. Equation 

(2.5-7) for the free mixing layer, with z. tending to 
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infinity and s having the arithmetic 

0.0767 and 0.0974, woyld imply: -_mC 

z. can reasonably be identified with 

0.03 for C2 is further confirmed. 

mean of the values 

0.02932~; since 

Ed, thz choice of 

Bafors leaving this topic, it is important to note 

that both Bradshaw and Gee r3.3 and Stratford, Jewar and 

Golesworthy [60-i hava shown that the entrainment rate is 

greater when the surfzcz over which the jet flows is 

convex than it is when the wall is plane. Undoubtedly 

the centrifugsl-force field is rtisponsible for this fact. 

.It seems highly probable that the effect will be -present, 

albeit with reversed sign, when z -F is less than unity, J 
i.e. in conventional boundary-lzyc;r flows. .Ultimately 

therefore it will be necessary to work with an EG-function 

having yG G (radius of curvature) as one of its arguments. 

In th;: meantime however, we will take the following . 
. I 

form for the entrainment function, baing &ided.by the 

foregoing analysis and the discussion of section 2,5:- 
-- 

-zE>l: 
------------ . . . ..(6.3-18) 

I -- . 

Of course this has not yet been -tGstod in the vicinity of 

6.4 The ndiabntic ~~~11 tcmzcraturz. -- -------I_ I_-- 

It is convenient at th2 prtisent juncture to make a 

preliminary examination of the implications of thz fore- 

going equations for film cooling. In particulsr, we 

consider the case in which g'stands for enthalpy, and the 

wall is adiabatic. The latter condition implies that I$ 

equals zero (see equation (2,3-14)), and that %.=h,+, 

(see equation (2.3-13)); together with equation (6.1-5), 

these rasults imply: 

hS - hG =- 
1 zE: d -s---u---------- 

1‘ n 
. . . . ..(6.4-?) 

7-z - I (1 c! '8---i- - 0.2055~) 



Now equation (2.6-3) r?duccs simply to: 

a I@ m-m- --- 

( ) dHx II 

Rm = 0 . . . ..(6.4-2) 

On integration we have: , 

I' R I- 
II m 

= const 

= (hC - hGj P uc Y& . . . ..(6.4-3) 

the latter term representing of course the enthalpy flux 

through the injection slot. Combination of equations 

(6.4,3), (6.4-l) and (6.1-3) then yields a useful relation 

for the dimensionless adiabatic-wall enthalpy: 

hs - hG =: p uc yc b- 
11 

- ---I-- -- -F - -IL,---,--, --- 

hC - hG Rm +--g- +(I- 0.2055n) 

. . . ..(6.4-4) 

Let us now use the approximations and insert the 

numbers used in section 6,3,,namely 1 = 9.94, s, = 0.03. 

Then, from equations (6.3-14) and (6.4~4), we have: 

hS - hG 3.14 ------- = --------- 
hC - hG 1 - 0.251n 

. ..(6.4-5) 

Now g is a quantity which has been inserted into the 

assumed #-profile expression (equation (2.3-I)) in order 

to account for the fact that, as many experiments have 

shown, heat and matter are transferred more rapidly than 

momentum in free turbulent flows. If ; were equal to 

unity, the rates of spread would be equal; with p; = 0, 

the rate of @ transfer is very fast indeed; we expect g 

to lie between zero and unity. Consequently, equation 

. 

(6.4-5) implies that the quantity (h+-hG)/(hC-hG), 

usually known as the effectivaness of film cooling,is -I---l-- 

equal to a constant times (z/x)', the value of this 

constant lying between 3.1'+ and 4..2. It is therefore 
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satisfactory to note that Seban and Back b5] report 

experimental data for which the constant is about 3.6; 

this corresponds to an n-value of about 0.51 in equation 

(6.4-5). The experimental data are not accurate enough, 

nor has our argumant been sufficiently rigorous, for this 

to be regarded as a determination of 2, but it is gratifying --- ---- 

to note that this is the order of magnitude which is expected. 

We therefore use this opportunity for introducing a discuss- 

ion of what n-value is appropriate. 

We consider two- cases of free turbulent flows, in 

which the velocity and @-profiles may be described by 

equations (2.2-9).and (2.3-IO), with Q and D placed equal 
-% 

to zero. Thus we hava: 

. z-z- E - +(I - z.,>(l - cosx~) . ..(6.4-6) 

and 

g-p& = (la,--@,> p -$-(l-cosTIq . . . ..(6.4-7) 

It is easy to see that the value of c for which z has the 

arithmetic maan of its maximum and minimum values is -$; 

fl on the other hand is equal to (%+-@,)/2 when 7ci$ 
-1 r equals cos u- n- 1)/e] . The "ratio of the half-widths" 

for the two profiles is the:raforz (2/1;;)cos -1 
i (n-l)/r~] . 

' Schlichting [41] reports measurements by Reichardt [34] 

of the temperature and velocity distributions for a two- \ 
dimensional jet issuing into stagnant surroundings. These 

show that the temperature profile is broader than the velocity 

profile, the "ratio of the half-widths".being about 1.42.. 

Hinze b91 reports measurements by Townsend k4] and Fage 

and Falkner p2] for.the velocity and temperature distrib- 

utions in the wake of a heated cylinder held normal to . 

the stream; once again th c tompersture profilo is wider 

than the velocity profile, the "ratio of the half-widths", 

being about 1.4, in good agrezmcnt with the data for jets. 

The corresponding value of i; is 0.63; WC shall use this 



55. 
in subsequent work. 

Fig. 22 shows the relations which we thus presume to 

obtain between the mixing-layer components of all our 

boundary layars; the experi mental data just cited are also 

included. It is true of course that the @profile is 

rather unrealistic at thz outer boundary; its form has 

beeri chosen so as to permit easy integration. However, 

there is no reason to suppose that the existence of the 

"corneP in the prasurricd @-profile will introduce any 

great error in calculation of the transfer through the wall. 

7* -I- --I_- ----- He%t transfer in the absence of mass transfer. 

7.1 E_guntions. -m-- 

We now consider some of tha implications of the 

differential equations involving the conscrvhd property a. 

Since our purpose is mainly to show that the pres&nt theory, 

in addition to btiing general in application, is in conform- 

ance with modern knowledge, attention is here restricted 

to the process which has b?cn most intensively studied, 

namely heat transftir between a fluid and a smooth imperm- 

eable wall. In the present section therefors,we replace 

@ by the specific enthalpy h. - - 

The fluid-dynamic equations which are relevant are 

equations (3.2-21, (3.2-3j, (3.2-4) and (3.2-5) and the 

differential equations (2.'3-14). The latter is here 

preferred to its Blternative (2.6-l), since it is not 

proposed to consider numerical integrations of the equations, 

but rather their genersl implications. Equation (2.1-14) 

may bti written, with 2 = 0, iis: 

d (R&f+ -  I211 
e-----c--- 

dRx 
4” (1 - I21 RG 

d(lnw) 
---- 

dRx 

=I S .-.(7.1-l) 

with (L,., - $) and (I-12) expressible as: 
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I1 -12=&+z&- O;589) - p(& ‘l,rss + +, -- 
1 . . (7 q-3 

l 

1 

and 

The quantity &, from zyuation (Z.&l?), becomes: 

The 

the heat 

' (2.6-31, 

1 = ln(2.5168 RGzE/l) . . . ..(7.1-4) 

equations governing the specific cnthcllpy and 

transfer are: (2.3~'13)) (2.3,‘ILC), (2.4-6) and 

the right-hand side of the latter reducing simply 

to -p’y(puo) l The writing out of these equations,is 

facilitated by introduction of some new symbols. The 

first is &, defined by analogy to zE as: 

GE” h:~ - hs ------ 
hG - hs 

. . . ..(7.1-$) 

The second is the Stanton number S, defined as: 

S ~ ?l;/(hG - hs> --_)I_---- . . . ..(7.1-6) 

The above equations then imply: 
.  ’ 

'h ---- = + 

h -h S G 
(I - r,)-{; - &i, + z& - ; - 1 + 0.2055 $} 

-I- SE + 0.7945 ZE - 2zE -;-;-;-4p'- -7 . . (7.1-7) 
.  1 > 

s =E 11- = I --e-m *. , . . (7.143) 
S Gp,Z,(l +0.4P/l) - 

and 

d(lhRG) -- 
dR* 

+ IhRG d(lnw) (h -I--- = G-hs)S .  .  l .  .  (7.1-9) 

dRx . 

The-quantity g, which-measures tht: extra resistance 

to heat transfer exerted by the laminar sub-layer, may be 

evaluated from the formula recommended by Spalding and 

Jayatillaka [55], namely: 
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I? = 9.24 { (dcro$ - I] {I + O~28sxp(-0.007w~cro)~ 

. . . . . (7.1-10) 

where T0 is equal to 0.9, andcr is ‘the laminsr Prandtl 

number. 

7.2 The isothermal flat @at". -u_-em------- 
The situation covered by the title is characterised 

by: 

d(ln UC> 
------ =r 0 

dRx 

d.(lnd =; o -- . 

dR 
X I 

. . . . .(7.2-1) 

I 
d(hG - hs) 

-----I-- = 0 
dH 

X 

We shall consider the implications of the equations with ' 

these substitutions in two cas3s. First is considered the 

case in which the laminar and turbulent Prandtl numbers 

are both equal to,unity; here we expect to be able to . 

derive the "Reynolds-analogyl' relation. The second case 

is the general one; n slight approximation is made so as 

to east the discussion. 

Case fir: a--- crt = r. = I (deynolds analogy) 

In the present case the quantity P is equal to zero 

and the quantity- 2 !nust be put equ::l to unity. Then 

equation (7.1-B) reduces to: 

S cl3 --- = --I e.. . . (7.2-2) 

Thus the Stanton number is not equal to one half the drag 

coefficient unless cE is equal to gB (N.B. 2 = 3/2). 

The differential equations (7.1-I) and (7.1-9) may 

be written as: 

d --_I- 
dRx 

. . . ..(7.2-3) 



Substitution shows that, by reason of equation (7.2-21, 

equations (7.2-3) and (7.2-4) are identical when 2. and cE 

are equal. We conclude that gg and l;B _clre equal, i.e. that 

there is complete similarity between the velocity and the 

enthalpy distributions. The equations are therefore in 

agreement with exgectntions. 

Case (ii): -- cctj uti+l; P#O; rl#l 

It has already been shown in section 3 that -% and 1 \ 
vary very slowly with distance, R,x; we may expect the same 

to be true of $ also. It is therefore permissible to 

treat the quantities (I? - 22) and Lh as constants in 

equations (7.19) and (7.1-g), so that they may be moved 

to the left of the differential operators. Division and 
,. 

introduction of (7.1-B) then yields: 

- 
r E Ib/(hG - hs> * ------ m- = ----,-- 

co k (1 + 0.4I?/%) 
. . . ..(7.2+) 

It is possible to express the right-hand side of this 
- 

equation in tarms of -s, cE, 1, ;, and p by means of 

equations (7.1-2) and (7.1-7); the resulting equation can 

be re-arranged to yield cE explicitly in terms of the other 

quantities. Thereafter the Stanton numbar S, can be evalu- 

ated by way of equation (7.1-a). It should here be noted 

that, for the flat plate, equation (3.2-T) holds with A 

equal to 2.342 (see section 3.3); with its aid, 1. can be 

expressed in terms of 2 via (3.2-2) as: 

1 = 0.4~~+- 0.9368 . . . . . (7,2-6) 

It follows that the equations of the present section can 

be re-arr,ulged to yield S; in terms of 2, n_, ~b and r 

alone. 
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As a test of- the theory, the equations will be used 

for the prediction of the temperature profile on a smooth 

isothermal flat plats. The conditions chosen are: 

R-x= 9.8X10>, 2 = 0.0018, cy = 0.7, so as to conform to 

one of the tests for which Reynolds, Keys and Klinti [35] 

report temperature profiles. 'Phc prediction according 

to the present theory, with UC = 0.3 and 2 = 0.63 as 

recommended above, is shown in Fig. 23 by a full line, 

while the experimental data points aro shown cs trir*ngles. 

It is evident that very satisfactory agreement is cxhlbited 

between the predictions and the experiments. In order that 

the significance of this ag recment can bti better appreciated, 

a broken line with ordinate (2.5111 {y(~ P)*/$A] + 5.5) 

is also shown; this is the line which would be predicted. 

as the temperature profile by a Couetto-flow clnolysis 

employing the Reynolds analogy. 

Fig. 24 shows further predictions msda by means of , 

the present theory in thl; form of Stimton number versus 

3, for the flat plat e with various Przndtl numbers of the 

fluid. In connecting 2 with gx, tht? table of Spalding and 

Chi [57] has bedn used. The curves exhibit the effects of 

Reynolds number and Prandtl number which ari- familiar 

to heat-trtinsfel workers. 

7.3 Adiabatic-.wsll tumoerature downstream of a local ~~~--m."i---L----u- --- 
heat si:>k. -7 
In stiction 6.4 was considertid on2 extreme case of 

film cooling, that in which the flow in thd region near 

the wall is entirely dominated.by the momentum of the 

fluid entering through the slot. Now the opposite 

extreme will be considered, that in which the fluid inject- 

ed through the slot makes nt, 3-ligible contribution to the 

mass and momentum fluxes; wz thus coasidcr the wall temp- 

erature distribution on an insulated wall downstream of a 

narrow heat sink of strength it, measured in heat units 
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per unit time and width of plate. The stream velocity 

will again be regarded as uniform, as will also the stream 

width w. Fig. 25 illustrates the situation. 

Downstream of the heat. sink, both the second and 

third terms of equation (7.1-q) are zero; theeequation 

therefore may be integrated immediately with the result: 

IhRG = constant 

= - i$ . . . ..(7.3-1) 

The enthalpy of the fluid adjacent to the wall is then 

obtained from this equation and (7.1-7), with the sub- 

stitution GE= 0 since the heat flux is zero. We have: 

. . . ..(‘A+2) 

Here R2/(Iq - 12) has been inserted in place of EG, since 

R2 is more directly calculable and is sometimes reported 

by experimenters. 

The expression on the right-hand side of (7.3-2) 

has a value which varies somewhat with E2. We can evaluate 

it, in.the absence of pressure gradient, by the use of 

equations (3.4-2), (3.2-7) and (7,2-6). 

In order to establish a relation between GG -hs and 

the distance along the wall downstream of the heat sink, 

it is necessary to relate g2 to R_x. This can be done by 

integration of the momentum and mass-conservation equations; 

however it suffices for present purposes to make use of 

the momentum equation together with the well-known 

approximate 

Integration 

drag law for the flat plate, namely: 

dR2/dRx = s = 0.0296Rx-"'2 l l .(7.3-3) 

yields: 

R2 : = 0 037R,o" . ..*.(7.3-4) 
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The final expression for the adiabatic-wall enthalpy is 

therefore: 

hG- hS 
--mm = 

iv& 
.27.02~-O*~ 

X 

I 
. . . ..(7.3-5) 

Finally we make connexion once more w-ith film-cooling 

terminology, noting that the "heat sink" is then a slot 

which introduces fluid of enthalpy less than that of the 

mainstream. Then 4' must be replaced by pC&(_hG-$)yC 

where yC is the slot width and the subscript C relates 

to condi.tions in the film-cooling stream. We find that 

the enthalpy ratio known as the effectiveness is: 

hG- hS --- 
hG- hC 

= 27. 02(p c UC yc&J 
----pm- 

X 

$+ Z&y--f---) 1 0.589 - ZE 2 (g---- 3 1.589 1 2 
+y2) 

--- 
-~JFY~~~i + 0.2055?) 

. . . . ..(7.3-6) 

Here the origin of 2 will not ordinarily be the slot 

itself, since the momentum thickness will usually be 

finite there, as a result of the boundary layer which . 

flows from upstream of the slot, and because of the 

momentum deficit (or excess) of the injected fluid. 

Theories of film cooling which imply that the 

effectiveness is proportional to (pC~CyC/,,)~~'8 have 

been presented by several authors pii;, 78, 46, 561 , 

various values being given for the proportionality 

constant; Equation (7.3-5) and the fore- 

going discussion show the limitations of these theories. 

Provided that the quantity in the square bracket does not 

change much, and provided that the injected fluid does not 

greatly change the momentum flux, the theories give fairly 

good predictions (?5O$);there are however many practical 

circumstances in which neither condition is fulfilled, as 

for example in the wall jet of section 6.4. 



62. 

Since equation (7.3-2) is more reliable than (7.3-6), 

we test the former, using the measurements of (h-%)/(%-l+) 

and b2 reported.by Seban =and Back [46> Those measure- , 
ments are selected for comparison which relate to the larg- 

est values of YJ~ so that disturbances caused by the slot 

have had an opportunity to die down and so that gX and 1 

are likely to have values appropriate to equilibrium bound- 

ary layers on flat plates. The measurements were inade in 

air about one foot downstream of a slot of l/l6 inch 

width. The value of I?2 in the measurement region was 

about 3002 to which correspond, it may be shown, the 

values: g.,, = 0,903, 2 = S,77; with n = 0.63 as before, -I 
the quantity in the square bracket in equation (7.3-2) 

then becomes equal to 0.210. .- 
Fig. 26 shows the measured values as circles; the 

prediction of equation (7.3-2), with r~- = 0.63, is shown 
. . 

as a full straight line. The agreement is quite good. 

Also drawn are the broken straight lines which correspond 

to the insertion in equation (7.3-2) of the n - values of 

0 and 1.0 respectively. It is clear that neither of 

these values would be acceptable, although 0.63 may not 

be quite the best that could be chosen. 

It would be possible to check equation (7.3-6) 

against the sam-3 data, with however some doubt about the 

appropriate origin of the distance x. ExEaination of 

Seban and Back's measurements reveals that their values 

of the momentum thickness were about 40$ greater than 

wculd correspond to equation (7.3-4) with cx measured 

from the slot; we can therefore immediately conclude 

that equation (7.3-6), if gxwere interpreted in this 

fashion, would yield values of the effectiveness about 

405 in excess of those measured* Since it is not in- 
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tended to provide numerical solutions of the differential 

equations in the present p'aper, there is no point in con- 

tinuing the comparison further here, . 

In section 6.4 it r~as shown that the film-cooling 

effectiveness was proportional to 5 -I'; equation.(7.+6) 

predicted that -0.8 it Was proportional to g e In the 

first case, the injection velocity was such larger than 

the main stream; in the second, the mcmeatum of the in- 

jected fluid lrfas neglected; both tkese cases therefore 

represent extremes. It may therefore'be worth mentioning, 

before leaving tZ.s topic, that nany practical situations 
. 
may be erected to exhibit both the above tendencies. u-m.- 

Fig. 2'7 is a sketch illustrating this; it shows the var- 

iation of efiectiveness versus downstream distance which 

is to be expected when fluid is injected th-rough the slot 

at a velocity appreciably greater than that of the main 

stream. At moderate values of z&y0 the curve has the 

slope of -l/2, in accordance with the findings of section 

6.4; at 1argc-x Z/Q, ho?zcver the wall-jet behaviour dis- 

appears and the Ilow has a more conventional boundary- 

layer character 4 the slope therefore changing ever to 

- 0.8. The correspcnding var.i,ation of -z-ji:, which is also 

sketched, may m-&e those treads easier to understand. 

Of course, i-t is necessary to solve the diKerentia1 

equations ( 2.1-12) and (2.6-j) numerically ii' the two 

curves are to be plotted accurately. This will not be 

done here. 

7.4 Summery ----A 

Although, in the foxgoing sections, heat transfer 

has only been considered in flows from which pressure- 

gradient and mass-transfer effects are absent, it should 

be clear that the differential and auxiliary equations 
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are sufficiently flexible to cover the general~ca~e~also. 

Although it will be necessary to carry out an extensive 

programme of tests of the predictions against experiment- 

-al findings 9 probably coupled with adjustment of the 

empirical constants and functions (e.g. -pro*file shapes, 

value of g, entrainacnt function), it should by now be 

clear that the predictions of the theory are already 

qualitatively correct and, in the cases tested, also qui.te 

good quantitatively. 

8. giscussion ofmlble further developments 

8.1. Plane ~m.ifo~~-properl flows --I*- --- 

Although the presen, + gaper has been restricted to 

plane flotrs of a fluid of uniform properties, it has not 

been possible to do more than indicate the main features 

and implications of the unified theory. All the topics 

which have been discussed will require further study; 

in particular it will be necessary to rely solely on 

exact numerica integratioas of the differential equat- 

-ions and to dispense with approCmations such as the 

stationary-state hypothesis. Eoreover, the extensive . 

experimental literature needs to bE examined systematic- 

ally 3 so that firmer conclusions can be drawn and so that 

the best possible entrainment 1%~ can be derived. 

As indicated in section 4,3, it seems quite certain 

that modifications can usefully be made to the I&;P- 
-I- 

relation to account for pressure gradient. What are 

needed are a velocity profile and corresponding drag law 

which accord With those above when ?L+ is zero, and which 

exhibit a smooth -j;ransition to the zero-wall-stress , 

limit of Stratford [59] as -k.+ increases; it will be 

desirable to -t&e simultaneous account of mass transfer. 

Although the development of such modifications will 
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certainly raise new questions (e.g.: Should 5, referred 

to in section 2.6, now include some contribution from 

the pressure gradient?), a judicious combination of speo- 

-ulatiOn and appeal to experiment should make this one 

Of the easier oxtcnsions to the theory. 

The entrainment law in its present form, though some- 

what more sophisticated than that of Tiead pa] , is prob- 

-ably still far too crude to do justice to real flows. 

It has been mentioned (section 6.3), that the effect of 

radius of curvature may be large and requires quantitative 

study; quite probably buoyancy and other body forces 

need to be accounted for as ~11. In addition, it is 

possible that nm+ depends on rates of change of local 

properties (e.g. dG/dz$ as well as on the local pro- 

perties themselves. If such influences are detected 

md quantified, they can bc built into the computer pro- 

gramme embodying the differential equations; the frame- 

work of the theory is strong enough to support many such 

elaborations. 

There are two main methods by which the entrainment 

law can be refined: by the performance and analysis of 

specially contrived eqcriments; and by the formulation 

of hygothcses concerning the mechanism of entrainment. 

In the latter connexion it will be interesting to examine 

whether existing theories of turbulent-s can throw any 

light on how rnG is affected by the various properties 

of the boundary layer. Thus, one might explore the 

implications for the m+ function of Truckenbrodt's @5] 

use of the integral energy equation combined with Clauser's 

Cl 4 observation, recently elaborated by Mollor and 

Gibson k6] , that the effective kinematic viscosity in 

the outer part of the boundary layer is equal to a 



66. 

constant (around 0,0:16) times the product of the stream 

(3 22 

velocity and the displacement thickness. 

In-the present work, no attention has been given 

to situations in which some of the fluid flo?js upstream, 

as occurs after bounSary-layer separation. Such flows 

can certainly be descri.bed and computed by the present 

set of equations (with obvious modifications here and 

there), simply by allowing zT --La -to take negative values. 

Whether the equLations will accurately describe reverse 

flows will require detailed study; probably a more 

general family of velocity profiles will need to be 

invented. 

The drag laws and all -IAle examples in the present 

paper have related to smooth walls. Yowever, a con- 

siderable mount of information is already available 

about the way in which roughness influences both the 

I?-$ and the z+m$' relations f41,9,31,30,22]: it 

appears that roughness has no direct influence on the 

outer portion of the boundary layer, i.e. the "mixing- 

layer" region. It should be a fairly easy matter to 

combine this information with the present general 

equations; certainly this must be done if the theory 

is truly to justify the ambitious adjective "unified". 

Buoyancy has beesn mentioned as an influence on the 

entrainment function. It has of course a more obvious 

effect, whenever the bodg forces (e.g. gravity) have a 

component along the wall, in providing an additional 

term in the momentum equation. It will therefore be 

of interest to re-examine sucn phenomena as turbulent 

natural convection from a heated wall in the light of 

the present theory. Several further problems suggest 

themselves as likely to provide useful tests, for 
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example the "natural-convection wall jet" (Fig.28). 

This would consist of a linear source of hot gas, 

e.g. a long horizontal flame, at the b*ase of a vertical 

adiabatic or cooled wall; from measurements of the gas 

concentration at the wall, the entrainroent rates could 

be deduced. 

As a last suggestion under the present heading, we 

mention the industrially important flow configurations 

in which an axi-symmetrical or two-dimensional jet im- 

pinges on a surface inclined to it at an angle, thereby 

causing heat and mass transfer. Several eqerimental 

and theoretical investigations of such systerris have by 

now been made ~8,69,7GJ’l];it is necessary to examine 

these to see firstly whether the present theory fits 

the reported data and secondly to see whether t:ie theory 

can predict the behaviour o.f such systems under con- 

ditions not yet investigated, 

8.2 Three-dimensional flows --I_ ---- 

Although most research is carried out on plane 

flows, in engineering practice there are nearly always 

three-dimensional effects. In axial-flow comgre,3sors, 

air flows radially inwards in the boundary layers; 

swept-back wings introcluce unavoidable three-dimensional 

effects on aircraft; indeed, as all scrupulous boundary- 

layer researchers have discovered, it is very difficult 

to contrive a flow which is truly plane. It is there- 

fore of importance to note that the present theory is 

easily extensible to flows in which the fluid in the 

boundary layer, for example, moves in a different direc- 

tion from that in the main stream. 

That a 'lskewed-waket' cam-ponent of the velocity 

profile might be used in the descrintion of these 
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flows was clearly stated by Coles [G] ; however, no 

use has been made of the suggestion, so far as the 

present author knows, because no hypothesis about the 

properties of such altskewed=wakefl boundary layer was 

provided. It is however easy to invent an entrainment 

hypothesis which i s plausible and which completes the 

set of equations needed for computation of boundary- 

layer development. Of course the velocity u, now has -4.2 
to be described by two comgonents; however the obvious 

entrainment hypothesis is that the entrainment rate is 

dependent on (say, proportional to) the absolute magni- 

tude of the vector % minus the vector gE. Then the I 
mass-conservation equation and -the momentum equa- 

tions (for two directions along the wall) suffice to 

define the flow. 

The hypothesis just described need not be relied 

on for long. Once its relevance to three-dimensional 

boundary layers is recognised, surely experimental veri- 

fications will be forthcoming; and these will as cer- 

tainly lead to better descriptions of entrainment in 

such circumstances. If it is indeed true, as seems to 

be the case, that no study has yet been made of a jet 

mixing with a stream which has a velocity component 

along the slot, this omission can quickly be made good. 

There is no need to start with three-dimensional 

flows of great complexity. One that has been studied 

in much detail is that near a rotating disc 117 . I: J 
It should prove instructive to begin by testing the 

entrainment hypothesis against the facts which have 

already been ascertained. 

8.3 The influence of property variations 

HOW can the unified theory be extended to situa- 
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tions in which the density and other propcrtiss vary 

through the boundary layer? In part the modification 

is easy; in part the now theory possesses difficulties 

which it shares with old ones; but also it throws up 

new questions to which we do not .at present lc-;L?ow the 

answers. 

The easy part concorns the differential equations 

and the I - integrals appearing therein. The f ormcr 

remain valid iCthout change; the latter ccan bo evalu- 

ated without essential difficulty. In all the s's 

there appears p, which can be related to other proper- 

ties (e.g. cnthalpy and composition) by refcronce to 

thermodynamic information; and ttre already possess means 

(the differential equations and profile assumptions) 

for establishing the distributions of these properties. 

Morcover, as is shown by l?ig023, for.example, these 

means are extremely satisfactory; certainly they are a 

great improvement on the "Reynolds-analogy assumption" 

which is so often used in this connexion [set e,g. 581. 

Admittedly the necessity to evaluate the 2's by numer- 

ical quadrature rather than from algebraic formulae 

will increase the time and expense of computatLon; 

however, the increasing cay -acity and availability of 

digital computers alleviates this disadvantage. 

The difficulties shared with existing theories 

relate to the s+^b x' relation or "law of the wall"; 

one manifestation is uncertainty about the constant g 

trhich appears ultimately in the drag law, as is clear 

from the review by Gpalding and Chi [57] . Eowever, 

in one respect the viewoint of tho unified theory 

may prove advantageous; for previous authors, suppos- 

ing the lflaw of the WC~L~~ to daminate the whole 
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boundary layer and wishing to provide a reliable drag 

law, have been forced to unacceptable conclusions. 

Thus, the theory of Van Driest [66] is shown by Spalding 

and Chi c I 57 to be almost the best in its -predictions 

of drag; this theory is built on the assumption that 

the whole boundary laycr profile is described by the law: 

+ 505 
* .0. (8.3 - 1) 

where p is related to u, by the Reynolds-Analogy assump- 

tion. Yet Fig.29, from tho work of II@31 poj , 

shows how reraote from reality ttlis assumption is; it 

displays,velocity profiles reported by various workers 

for the supersonic flow of air along an adiabatic wall, 

plotted in a mannor, which if equation (8.3-l) were 

valid would reduce to a single straight line outside 

the sub-layer region. In extending the present uni- 

fied theory, however, the assumptions about the l=aminar 

sub-layer l'constantl' g can be devised so as to fit the 

velocity-profile data in the low -x+ region; the 

mixing-layer region, which contributes largely to the 

momentum thickness and so to the local drag law, can 

then be subjected to separate study. 

However it is precisely in attonpting to extend 

our existing entrainment hypothesis to cover this 

nixing-layer region that the cxtcnt of current ignor- 

ance becomes clear. Pig.29 suggests that the "mixing- 

layer" component of the velocity profile is at least as 

inportant in variable-property boundary layers as in 

unifrom property ones; but there have simply not been 

sufficient experimental studios for the procedure of 

sections 303, by which the entrainment constant for 



low-speed flow WCS deduced, to ho carried out at Mach 

numbers appreciably in excess of zero. Nor, for that 

matter,, have free-mixing-layer measurements, such as 

were used for guidance in saction 2.5,been carried out 

under conditions of large density difference- It 

seems certain that entrcinment of high-density fluid by 

low-density fluid does not proceed so rapidly (in terms 

of entrainment vclocit2- divided by imposed velocity 

difference) QS when the densities are uniform; but it 

is not yet possible to express the effect quantitatively. 

The autho@'s opinion is therefore -l&it t-he cxteh- 

sion of the present theory to varying-density flows 

will not be achieved without a considerable amount of 

experimental study. Ncverthelecn ,,a? the theory does 

seem to offer a means of escape from the inadequacies 

which characteri, se all the theories which have been 

formulated so far; its further development therefore 

seems to be worthsrhile.. 
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10. Nomenclature 

Symbol IYe aning Typical 
units 

Equation 
of first 
mention 

A constant connected with the (3.2 - 7) 

velocity profile 

Integration constant 

law 

law 

1CiW 

law 

(6.3 - 5) 
(2.5 - 5) 

(3.3 - 4) 

(3.5 - 5) 
(4.2 - 1) 

( > 

Constant 

Constant 

Constant 

Constant 

Specific 

pressure 

Friction 

Constant 

in entrainment 

in entrainment 

in entrainment 

in entrainment 

hetct at constant (Btu/lb degF) 

( factor 

in approximate velocity- 

(2.2 - 9) profile formula 

Constant in approximate 

@-profile formula 

Constmt in s+- x+ relation 

Constant in 2+-y+ relation 

Pressure-gradient parameter 

Value of E2 causing zero wall 

shear stress 

A constant connected with the 

velocity profile 

Shape factor 

Head's shape factor 

Specific enthalpy 

&,L2 Intcgrel quantities associated 

Various (2.3 -10) 

(2.2 - 3) 

(2.2 - 4) 

(4.2 - 1) 

(4*3 - 21 

(3.3 - 2) 

(2.1 - 6) 

(4.3 - 1) 

(Stub b) (2.3 -13) 

with the velocity and density 

profiles 

-46 Integral quLantity associated 

with the velocity, density and 

&profiles 

E. Mixing-length conskant 

(2.1-1,2) 

Various (2.1 - 3) 

(4*3 - 1) 
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STymbol Meaning T!cNpiCCl 

units 
Equation 
of first 
mention 

1 -c 

m 

mG .- 

% 

n 

-RG 

R2 

-Rmax 

Abbreviation for a logarithm 

Dimensionless rate of mass 

transfer through the wall. 

Negative of dimensionless rate 

of entrainment from mainstream 

Rate of entrainment from low- 

velocity stream in free mixing 

Rate of mass transfer from wall 

into main stream (Ib/ft2h) 

Constant in the @-profile 

formula 

Dimensionless measure of the 

additional resistance to @-transfer 

caused by the fact that the laminar 

Prandtl/Schmidt number differs from 

that of the turbulent fluid. 

Fluid pressure times constant in 

Newton's Second Law of Motion (lb/fth2) 

Heat extracted from boundary layer 

per unit width of stream (Btu/fth). 

Beat flux towards wall through 

control volume in fluid adjacent 

to wall 

Reynolds number 

layer thickness 

Reynolds number 

thickness 

Reynolds number 

in the boundary 

Reynolds number 

velocity in the 

(Btu/ft2 h) 

based on boundary- 

based on momentum 

based on flow rate 

layer 

based on maximum 

boundary layer and 

(2.2 - 6) 

(2.1 -12) 

(2.1 -12) 

(2.5 - 6) 

(2.1 -13) 

(2.3 - 1) 

(2.3 - 6) 

(4.3-l) . 

(7*3 -1) 

(2.3 -13) 

(2.1 - 7) 

(2.1 - 8) 

(2.1 - 9) 
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Symbol Meaning Typical Equation 
units of first 

mention 

R 
-X 

s 
s 
% 

s* 

t+ 

u 
u+ 

W - 

X - 

z 
s+ 

zE,O 

the distance of the location of 

the maximum from the Wall 

Peynolds number based on distance 

along the wall 

Xtanton number 

Dimensionless shear stress (zcf/2) 

Value of 2 which would exist, at 

the prescribed g,, if mass transfer 

were absent 

Value of 2 which i*Tould exist at 

the prescribed A, if mass transfer 

were absent 

Dimensionless measure of@ in 

Couette-flow analysis 

Velocity in main-stream direction 

Dimensionless measure of velocity 

in Couette-flow analysis 

Width of stream 

Distance along wall in main- 

stream direction 

Distance normal to the wall 

IYon-dimensional form of x appearing 

in Couette-flow analysis 

Non-dimensional velocity (=I&) 

Yarameter in velocity profile. 

(l-gE) measures the relative magni- 

tude of the free-mixing-layer com- 

ponent of the velocity profile 

value of zE at the se-me I$ in the 

( ft/h) 

WI 

mJ 

(2.1 - 10) 

(2.1 - 11) 

(7.1 - 6) 

(2.1 - 14) 

(4.3 - 1) 

(5.3 -2) 

(2.3 - 1) 
(2.1 - 7) 

(2.2 - 1) 

(2.1 - 12) ( 

(2.1 - 11) 

(2.1 - 4) 

(2.2 - 2) 

(2.1 - 1) 

(2.2 - 1) 

(5.3 - 6) absence of mass transfer 
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Symbol Keaning Ty”pk31 Equation 
u-ii t s of first 

mention 

Value of gz at the same 1 

in the absence of mss transfer 

Velocity of other stream divided 

by velocity of main stream (g+) 

in free mixing layer 

ttTotal:'(i.e.turbulent plus la&nar) 

exchange coefficient (E diffusion 

coefficient times density, or 

thermal condwtivitg divided by 

si;ecific he2t at constant pressure). 
(+'ft h) 

Displacement thickness 

E'lomentuzn thickness 

A smzll quantity 

Parawter such that (l-&) 

measures the relative r~agrit-~de 

of the free-mixing-layer com- 

ponent of the o-profile 

Viscosity of fluid (la.U.na*) 

'lTotall' (i.e. turbulent plus 

laminar) viscosity of fluid 

Dimensionless distance from 

7JKxL @&(g) 

Fluid density 

Prandtl or Schmidt nuraber, 

laainar 

l?PcSalE1 Erandtl or Schmidt 

number 

Value ofcrt valid for the fully 

turbulent region 

(5.3 - 2) 

@5 - 3) 

(2.3 - 3) 
(f-Q (2.1 - 4) 

W) (2.1 - 5) 

(6.3 - 4) 

(lb/f-t h) 

c7:1 - 5) 
(2.1 - 7) 

(lb/ft h) (2.3 - 2) 

(lb/ft3) 

(2.1 - 1) 

(2.1 - 1) 

(2,3 - 4) 

(2.3 - 4) 

(2.3 - 6) 



76. 

Symbol Meaning Typical Equation 
units of first 

mention 
, 

z Shear stress exerted by the fluid 

on the wall., times tIIe constant 

in jlkwton's Second ikw of Hotion (lb/ft h*) (2.1 -15) 

121 A conserved property (various) (2.1 - 3) 

Subscript2 

E 

G 

S 

T 

mrw 

'h 

State which would exist at the wall if the free-mixing 

layer component of the boundary layer existed by 

itself. 

Main-strcF state 

State of fluid adjacent the wall. 

State of transfsrred substance. 

Uhere the velocity profile exhibits 

a maximum. 

Where u, - *J has one half of its maximum 

value. 
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A unified theory of friction, heat transfer and mass --------- --I-_- w----------P-- 

transfer in the turbulent boundary layerandwall Jet -- -------------------.-~------- - 

APPBMDIX: Additional notes (November 1364) --II_- ------w---.---------L---, 

0 1 Professor Glauert has pointed out that the t'theoretical 

line" and the "plausible assumptiontt should not be attribut- 

ed to him. The practice which he really recommended 

(the use of an eesz-viscosity distribution appropriate ------I-- 

to the universal velocity profile) gives better agreement 

with experiment. 

0 2 The viscosity of tne mainstream at the section in 

question, /uc, has been used in the definitions of the 

Reynolds numbers; this practice is unwise; it requires 

that pG should be independent of 2 if equation (2.1-12), 

for example, is to be strictly valid. The simple way 

out of this difficulty is to replace PG by pref, some 

reference viscosity which is a constant for the whole 

flow; one-might adopt for jLref the viscosity of the 

main stream at entry to the region in question. --A 

8 3, The two terms on the right-hand side of equation 

(2.2-l) can be associated with the "law of the wall" and 

the "law of the wake" respectively; the terminolog here 

is that of Coles PI. If gE is equal to unity, only the 

first term is finite: the velocity distribution is then 

that appropriate to a Couette flow. If the shear stress 

is zero, only the second term is finite; the velocity 

distribution then has a sinusoidal form. 

Ross and Robertson [37] and Rotta p8] introduced 

two-term velocity profiles in which the second term would 

be written, in present notation, as (l-zE)c ; in other 

words, they employed linear wake laws. Coles [6] deduced 
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the form of the wake law from his -examination of many 

experimental velocity profiles; he expressed his recommend- 

ed profile by means of a table of numbers; but 

(1 - cosn<)/2, the function of < appearing in equation 

(2.2-l), differs very little from his recommendation. 

Equation (2.2-l) can thus be regarded as an obvious 

generalisation of already well-established ideas. The 

Couette flow term is generalised, in that we include 

the influence of mass transfer; the wake-law term is 

generalised, in that zE :is regarded as capable of having 

values in excess of unity (jet-like flow), or less than 

zero (separated flow). 

Figs. A-l and A-2 provide graphical expressions 

of equations (2.2-l), (2,2-3) and (2.2-4). The first 

shows the velocity E plotted against the distance from 

the wall c , for several values of zE, including some 

negative ones and some in excess of unity; the graphs 

happen to be drawn for E, = 7.7 and ECs- = ' 1000. The 

curve for z -E= 1 may be regarded as typical of a boundary 

layer in an accelerating flow while those for 0 <zE <I 

are to be found in boundary layers with adverse pressure 

gradients. Profiles with z,, greater than unity arise 

downstream of wall jets, while those with negative z -E _ 
are typical of boundary la.yers exhibiting reverse flow, 

Fig. A-2 represents the same profiles as appear in 

Fig. A-1, but in the semi-logarithmic co-ordinate system 

conventionally used for demonstrating the universality 

of the velocity profiles (for smooth impermeable walls) 

close to the wall. It is clear that, for LZE= 1, the 

velocity profile po ssesses the well-known logarithmic 

form. 

Throughout the text, and so in Figs. A-1 and A-2 

also, 1 have used the value 0.4 for the "mixing-length" 
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constant k which appears in the differential equation 

from which equations (2.2-3) and (2.2-4).may be derived, 

namely:- 

shear stress = k 2P12((au/aY[)2 

Thus 2.5 is l/0.4, 1.6 is 4 x 0.4, I.5625 is 2.5+(4-x 0.4), 

0.625 is It (4~ 5.4), etc. The choice: k = 0.4, has 

been used by many workers in,the past and has been 

specifically recommended by'Coles [63, along with the 

value 7.7 for %. - . 
In a later paper however 1: "The Turbulent Boundary 

Layer in a Compressible Fluidl', Project Rand Report 

R-403-PR, September 19621, Coles recommends: k = 0.41, 

g = 7.7. The incorporation of this new value of & 

would reduce the disagreement between prediction and 

experiment referred to in notes @ and @ below. The 

difficulty of deciding what values should be adopted 

for these constants is very great, largely because of 

the prevalence in the published literature of conflicting 

experimental data, and because the manner in which the 

data are reported (e.g.. on small-scale graphs, with 

inadequate supplementary data) immensely increases the 

difficulty of a comprehensive sifting operation. Coles' 

work in this field is the best available; but he has 

reported the conclusions of his work without making the 

basic data appreciably more accessible to other workers. 

0 4 The case of ~~(0 needs more careful treatment than 

it is accorded in the text. It would be more appropriate, 

and in accordance with the derivation from Prandtl's 

mixing-length hypothesis, to write equation (2.2-3) as: 

U 

m=O: ( 1 z,p ,)jf$ = ' 20~1n{Ey'~ ")" > ..... (2.2-3a) 

while the more general equation (2.2,LI.) ,correspondingly * 
becomes: 
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U 

(It/pl)~ = 
----+- -m--- 

. . . ..(2.2-4a) 

The negative sign is to be taken when zE is negative, the 

positive sign when gE is positive. 

It is therefore proper to accept equation (2.2-5) as 

valid for -%3 0 only; for zE<O we have, instead: 

z =- [2.5s3(1+ln E,)+1.~625m(1-+1nZ,)*] + 

+ (1 - ZE)(l - cosTGE;)/2 . . . ..(2.2-5a) 

Here we have generalised the definition (2.1-15) to read: 

. . . ..(*.I-&) 

Insertion of <= 1 into (2.2-5a) yields the drag law valid 

for gE C 0, namely: 

s3 =(-0.4zE/1)- 0.625 ml . . . ..(2.2-6a) 

Equations (2.2-8), (2.2-g) and (2.2-10) then take 

the following forms, valid for ~~~40: 

z= -(2.5$+ 3.125ml)ln< - l.56*5m(ln4)2 + 

+ z,+(+-Z,)(? -&OS+/2 . . ..(2.2-8a) . 

., -. 
Z% -Dlnc+ zE + (I-zE)(l-cos~~)/2 ' . . . ..(*.*+a) 

D s 2.5~4 + 3.125ml 

= - zg/l + 1.5625ml 

i 

. . . ..(2.2-IOa) 

= 2.5(s-m%)3 J 

I nowregard it as preferable to employ the quantity 

1' in place of 2. This is defined by: 

1 '5 I ZE/DI 

so that the approximate profile becomes: 

> 
+ (1 - z-E> . ..(2.2-qb) 
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Equation system (2.2-10) then takes the form: 

ZEp 0: 
+ 3.125ml 

+ 1.5625ml 

= 2.5(s + n(z,()' 

. . . ..(2.2-lob) 

For an impermeable wall, 1' is identical with 1. It 

varies but little in the turbulent boundaries which arise 

in practice; its value lies usually between 7 and 12. 

I& by contrast, covers a wider range; and it changes 

sign with z-,. -.h 

-c> 6 Equation (2.3-l) requires, for its ready understanding, 

much moye explanation than is supplied in the text. I 

will try now to disentangle the strands from 

woven. 

which it is 

(i) Knowledpge of th3 t near-analogy which exists 

between the friction, heat-transfer and mass-transfer 

processes, suggests that the @-profile expression should 

echo the velocity-profile expression (2.2-l); at least it 

should have two main terms, corresponding respectively to 

the "wall law" and the "wake lawl'. Equation (2.3-1) 

conforms with this suggestion, hs may be seen by re-writ- 

in.5 the equation thus: 

$3 - ‘Z’s = + (@,- gE)$<l - coslg) 

wallcomponent wake component 

. . . ..(2.3-la) 

(ii) To tackle the second term first, we notice that 

it equals zero when c equals zero; it equals ($3 G - @& 
when y= 1. (@,- eX) corresponds to I-+; it is the 

magnitude of the wake component of the fl profile, just as 

I- zE is that of the velocity profile. What however is 

the significance of n? This is explained in the text in 

section G.4 (pages 53, 54 and 55). If the equations of 
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g-transfer were the same as those of momentum transfer, 

it would be reasonable to take n as unity; since however 

it is known that hea%,and concentration are transferred 

more rapidly than momentum in free turbulent mixing 

processes, we may expect differences to exist between 

the valocity and $3 profiles; these can take the form of 

a non-unity 4. 

(iii) The first term on the right cf equation (2.3-la) 

can be written as c @s - a,) ~~~}~'/(T& Here, the 

quantity in curly brackets signifies: the rate of transfer 

of $3 (b,y convection and by molecular processes) across the 

interface into the fluid from the neighbouring phase. 

The subscript T denotes the l'transferred-substance't state, 

explained in detail elsewhere [4-g] . 

It should be noted that the quantity in the curly 

bracket does not vanish with &II as a rule. The most 

important illustration of t-his is the case of heat transfer 

at rate it2 from the fluid to an impermeable (iIt = 0) wall; 

then $3 stands for enthalpy and ($S~@,,)i" simply equals 

- 4"s. It is rather unfortunate that it is Just the case 

of greatest practical import,ance which proves to 

necessitate special interpretation; this iacrifice of 

convenience has been mzda on the altar of generality, 

perhaps unwisely. 

(iv) What is the significance of subscript E, and 

so of Q? The definition at the foot of page 13 

ought to have bf;en introduced earlier, and could have 

been put more clearly. An equivalent definition is that, 

when t+ is given the v<%lue appropriate to the outer 

boundary, where y = 1, the quantity {(@S - @,) ~'~t'/d 

is equal to jZ$ygs; so !Z&-pl' is the $3 increase which Ll 
would exist across a Couette flow having the same 

values of itI, z, p, %,, ei,, yG, pand r as arc possess- 

ed by the boundary layer. An important consequence, made 
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manifest by equation (2.3-g), is that fis is equal to 8, 

whenever (@S-@T)i" is equal to zero. 

(v) Let us now return to consideration of the second 

term of equation (2.3-la). If f13 equals @S when (gS- @T)i" 

equals zero, as just stated, we can conclude from equation 

(2,3-la), by putting Z, = 1, that: 

<= 1, (%s-%T)itl=O: %-!Z$= (ldG-gE)n . . . ..(2.3-lb) 

Now for E, >I, i.e. at points in the mainstream, we 

know that fl equals @G. It follows that, if 2 is not equal 

to unity, the @ profile must exhibit a discontinuity at 

y = 1. This is d.isplayed by Fig. 22 for example. 

We know that such discontinuities do not arise in 

practice. Why therefore adopt a profile which is qunlitat- 

ively in conflict with experimental observations? The 

answer is that the formula adopted for the wake component 

in equation (2.3-l) permits e2s.y integration, and contains 

sufficient flexibility for the purposes of preliminary work 

such as that in the present paper. However the assumption 

is no more than a temporary convenience, to be discarded 

at the earliest opportunity. It seems probable that a less 

objectionable profile can be devised.which is expressed 

by a polynomial in 5. 

(vi) The quantity tf, which also appears in the wall- 

lsw expression, c3n be regarded as a generalisation of 

the "friction temperaturetl introduced into heat-transfer 

analysis by H. B. Squire ("General discussion on heat 

transfer", I.IYech. E., A.S.K.E., London, 1951, page 185). . 
Generalisation is involved because we are dealing with a 

general fluid property @, and allowing mass transfer to 

exist. 

(vii) Figs. A-3 and A-4 display some implications of 

equation (2.3-l) for the particular case of: heat transfer 

(a=&, the specific enthalpy), low velocities, a smooth 

wall, no mass transfer (2 = 0), ; = '0.63, and the Prandtl 
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number taken as 0.7 in the laminar region and 0.9 in 

the turbulent region. The parameter is k, the counterpart 

to -%, defined later in the paper (section 7.1) as 

Qg - & M & G  -  &s> l The two diagrnms.may be compared 

with Figs. A-l and A-2; the differences represent the 

allowance which is made, in the present theory, for depart- 

ures from the Reynolds Analogy. 

(viii) Oniy slight modifications need be made to the 

equations when z -E is negative: it suffices to regard t+, 

s and2 3 as being invariably positive. 

0 7 In equations (2.4-2) and (214-3) appears the quantity 

0.589 (and '1+ and I- this quantity). It is the numerical 

value of: I 

and has been evaluated by numerical quadrature. 

0 8 Fig. A-5 represents the values of the quantities 

II -I2 and l-r,, as influenced by zE and 1'; g has been 

taken as 7.7 and k as 0.4 in the computations. 

Further information, both theoretical and experimental, 

may be found in the book by G. iL7. Abramovich: "Theory of 

turbulent jets", N.I.T. Press, 1963. 

0 IO I nowthink that it would be wiser to adopt the term 

"equilibrium" to describe layers for which dgE/dx_ equals 

zero, i.e. to disregard the difference between this 

defining condition and that employed by Clauser. Certainly 

no experimental boundary layers have so far been studied 

which satisfy either condition with a precision of the e-v 
order of the difference between the two conditions. 

\ 
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0 II 'Part of this section is concerned with boundary 

layers on rough plates also; indeed it is only in 

section 3./C, where the value of E, is derived, that the 

condition of smoothness is introduced. 

G 12 I now regard the procedure adopted in this section 

for the determination of the entrainment constant and of 

E, as giving results which are rather too dependent on the 

uncertainties in the flat-plate experimental data. It 

therefore seems preferable to base the value of E, on 
. 

experimental data for the velocity profile (7.7 is the 

value implicitly recommended by Coles 6 , as a consequence [I 

of such a study); the entrainment const,ant is best deter, 

mined from direct study of the rate of increase of flow in 

the boundary layer. Such a direct study shows that 

equation (3.3-5), with C,, =0.1023 considerably over- 

estimates the entrainm#ent rates; the experimental data 

would sup-port a simpler relation giving lower values, 

such 3s: 

zv <I : -m G = 0.06 (I - zE> . . . ..(3.3-5a) u 

0 13 The use of g = 7.7 rather than E = 6,542, referred 

to in note 12 0 , actually makes the agreement less good 

(But see the second part of note 0 -3 1. Since the drag 

law is a direct consequence of the velocity-profile 

assumption, and since our only urbikrary input has been 

the cosine wake law, which fits the velocity profiles 

quite well, it appears that there exists a certain 

conflict between the drag law recommended by Ludwieg 

and Tillmann, itself based on velocity-profile data, and 

the recommendations of Coles [61. 

The more one 'sifts through the reported and processed 

experimental data for velocity profiles and drag, the 
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more anomalies one finds. There is an urgent need for 

a further, perhaps fin::l, study of the available data. 

which will identify the sources of the anomalies. The 

main question is: Are they experimental inaccuracies or 

systematic expressions of a factor not yet accounted for 

in velocity-profile expressions? Such a factor might be 

the pressure-gradient effect referred to at the foot of 

page 35. However, there also exist*serious disagreements 

in the data which have been reported for flows without 

pressure gradients. 

0 14 Some minor errors were made in processing the data 

of reference RIO] and plotting them on Fig. 11. However, 

sinc,e the qualitative conclusions would not be different 

for the correctly processed data, Fig. II has not been 

amended. 

0 I’ 2 A still more plausible explanation is that the 

entrainment rates are lower than equation (3.3-5) predicts. 

The use of equation (3.3-5a) (see note 0 12 ), gives 

appreciably closer agreemen t between the predicted and 

experimental values of the pressure gradient which 

causes boundary-layer separation. This is however not 

to say that the direct influence of the pressure gradient 

on the wall law can be ignored. 

0 16 Exact integrations of the differential equations 

have now been performed (by W. B. Nicoll); the results 

agree closely with those of the quasirstationary theory. 

The shape-factor anomaly remains unexplained; reasonable 

modifications to the value of E, and to the entrainment law 

do not remove them. Uncertainty about the two-dimension- 

ality and the closeness to zero of the pressure gradient 

in the experiments discourage further attempts to find 

explanati.ons. 
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This is a suitable point at which to mention 

another respect in which the Cckley/Davis data do -- 
accord with the present theory, and also to make connexion 

with two further publications; that of H. S. Nickley and 

K. A. Smith f'Velocity Defect Law for a Transpired 

Turbulent Boundary Layer'l,A.I.A.A. Journal, vol. 1, 1963, 

page 1685; and that of T. N. Stevenson, "Turbulent Boundary 

Layers with Transpirationf', A.I.A.A. Journal, vol. 2, 1964, 

page 1500. The first paper reports new experiments 

concerning the velocity profile for a porous flat plate 

with blowing, together with the conclusion that the outer 

part of the boundary layer, when plotted in the form of 

(yu)/( Zmax/P P versus 5 , gives a curve identical to 

that for the impermeable plate. Here z max is the maximum 

shear stress in the boundary layer; the authors do not 

report any values for this quantity, but we may surmise 

that it is rather close to p~~(~+~~~* Hence the 

Mickley/Smith finding can be expressed as: 

C >O.l, say: 1-z = (s+m~)~f(~) . . . ..(A16-1) 

Stevenson takes the velocity-profile data of Mickley 

and Davis [27] and shows that, in the region away from 

the wall, these can be expressed in the form: 

2;+{k +-II)* - (I + +j}=f(r, . . . ..(A16-2) 

where again f( <) is the "defect law" for the equilibrium 

boundary layer on an impermeable flat plate. This equation 

can be made more directly comparable with equation (Al6-I) 

by algebraic manipulation; the result is: 

l-z =i (s+m) * + (s+~z)~] f( y) . . . ..(~16-3) 

Since, in the region <>O.l, _ z has an average value which 

is of the order of zE, equations (A16-I) and ,(Al6-3) do 

not differ by an amount which is significant, having regard . 

+to the scatter exhibited by the data. 
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Now the velocity profile adopted in the present theory, 

represented by equation (2.2-g), can be written as: 

1-i = (~+mzE)~2.51nF; 
[ 

-i ---- 
~"-z~~l+~cm~~] 

(s + m zE> 

. . . ..(s16-4) . 

The quantity in the square bracket is a function of Y, alone 

if (I -gE)/(S+;zE) 3 is a constant. 

A repetition of the analysis of section 3.2, with m 

however not put equal to zero, indeed yields the result 

that (l- g*>& + g $1 3 is a constant when z -E is not too far 

from unity; this constant is &, for which we derived the 

value 2.342 from impermeable plate data in section 3.3. 

We may conclude that the findings of Mickley and Smith, ' 

and those of Stevenson, are in accordance with the predictions 

of the present theory. Even the numerical values are , 

satisfactory; for Mickley and Smith reilort 4 as 2.7 (deduced 

from the value of 1-z obtained when the logarithmic 

portion of their defect law is extrapolated to < = I); and 

Stevenson's version of e( 5) gives an A_-value of about 2.2. 

The differences between 2.7, 2.2 and 2.342 are of the same 

order as the scatter in the experimental data. 

0 17 An interesting question is: What happens when ; exceeds 

the limits indicated in the text? This question has practical 

significance since it is c:Lezrly possible,experimentaliy, 

to arrange _ for m to have any desired magnitude. The answer 

,must be that the velocity profile will take a shape appropri- 

ate to 2 free mixing layer (gE= 0) and the region of large 

velocity gradients will move away from the wall. However 

it is important to note that the nrescnt theory cannot --a----- -- 
describe the process qucntitativelv, because the equations -me ------ ------L 

have no solution in such a case. Clearly the theory requires 

extension; p resumably the first step must be to relax the 

requirement that the velocity profile obeys equation (2.2-4). 
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0 18 The differences between the measured velocity profile 

and that of the present theory are consistently observed 

for large values of +; in particular, the velocity maxima 

are always found to be significantly nearer the wall than 

equation (6.1-'I) implies. It is therefore certain, in my 

opinion, that the cosine form is not well suited to the 

description of the free-turbulence contribution to wall- . 

jet profiles. Probably therefore it will prove to be 

necessary, in the future, to abandon equation (2.2-l) as 

a universal velocity-profile expression; the term --a- 

u - cosn%)/2 might be better replaced by a polynomial in 

5, the coefficients of which would be functions of zZ. 

There would be no difficulty about incorporating such a 

profile family into the present theory; however a-careful 

and comprehensive examination of experimental da-ta is 

necessary if the functions are to be chosen correctly. 

, 0 19 The use of g = 7.7 instead of g = 6.542, referred to 

above, makes the agreement between theory'and experiment 

worse. The use of k = 0.41 instead of k = 0.4 approx- 

imately restores the status quo. 

0 20 I now think that this formula is unjustifiably 

elaborate; moreover, it appears to over-estimate entrain- 

ment rates for + not much greater than unity. It would 

be more reasonable to adopt: 

zE;>l: - rnG*i 0.03(+ -1) . . . ..(6.3-18a) 

0 2 30th these exercises have now been carried out and 

will be reported elsewhere. The Clauser-hellor-Gibson 

hypothesis leads to the entrainment law: 

ZE <I : -mGe0.07(1- zE) 

This agrees fairly well with experiment. 
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The Truckenbrodt recommendation for the. tldissipation 

integral" leads to an entrainment law which disagrees 

seriously with the experimental data for small values 

of ZE' The cause of the discrepancy appears simply to 
.' 

be that Truckenbrodt's recommendation is not a very good 

one; this recognition has made it possible to devise a 

new proposal for the dissipation-integral function which 

agrees with the entrainment data. The most important result 

of the exploration is that theories.such as the present one, 

and the earlier one of Head, can be regarded as consisteqt 

with theories based on the integral-kinetic-energy equation; 

each has.an empirical input, in one case the entrainment 

function, in the other the dissipation integral; a relation 

exists between these two functions. Future developments 

of the present theory are likely, in my opinion, to refer 

to dissipation at least as much as to entrainment. 

0 22 The extension of the theory to rough walls is 

currently being carried out. 
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