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SUMMARY 

Tht. equations arising in the lifting-surface theory of oscillating 
wings are reviewed briefly. The accuracy with which the theory csn predict 
the derivatives for wings and controls oscillating in simple modes is 
discussed and illustrated. by reference to recent experimental work at Mach 
numbers between 0 and 2.5. 

For wings of moderate aspect ratio the agreement between theory 
and experiment is good in purely subsonic flow. In the upper subsonic speed 
range the differences between calculated and measured pitching derivatives 
show signs of systematic variation even when they are not small. 

For slender wings at small mean incidence theoretical predictions 
agree surprisingly well with the few experimental data available; these 
show significant increases in pitching damping as mean incidence is increased. 

In supersonic flow the accuracy of linearized theory is well 
supported by experiment; nevertheless the comparison can be greatly improved-, 
if thickness effects are included. 

In the transonic flow &gime theory and experiments only agree in 
as much as they follow the same trend with Mach number. Frequency effect 
becomes especially important, yet hard to correlate and predict. The best 
hope appears to lie in a semi-empirical method based on linearized theory; 
proposed theoretical work on transonio derivatives is outlined. 

Finally the large effects of slot-tea walls on derivatives measured 
in wind tunnels are discussed.. This is an outstanding problem of the 
greatest importance, since it is essential to have reliable experimental 
values in the transonic speed range. 
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I. Intr,oduction 

It is clearly important to have reliable estimates of the oscillatory 
derivatives of wings aa control surfaces. This paper is p&mar* concerned 
with the comparison be+ween theory snd experiment for simple configurations. 
Experi+ental techniques of derivative measurement will not be discussed as the 
prinoiples ana details of these are describedin Ref. I. 0d.y the basic 
equations of theory are given (Section 3), as the d.e&il.s of mathematical 
treatment are available in the literature. Shoe the emphasis is on reoent 
unpublished work carried out at the Nationd, Physical Laboratory, the oomments 
represent the viewpoint of on9 laboratory rather than a survey of the whole 
field. 

Calculation and measurement are, as in other branches of 
aerodynamics, complementary, since it may be posstile to apply both or only 
one to any specified configuration; but, whichever is used, it is desirable 
that the method should have been checked by a comprehensive oorrelation 
between theory and experiment. For example, the effects of a fuselage or 
nacelles are often difficult to represent theoretically, but greater 
confidence can be placed in the measured derivatives for a complete aircraft 
if those for wings alone are suppM& by calculation. Again, complicated 
distortional. modes of vibration are difficult to reproduce in tunnel testsi 
the coPresponding derivatives must therefore be calculated, but the method of 
oalculation should have been checked against simpler experiments. Such 
comparisons are not likely to show exact agreement because of experimental 
errors and the idealisations of theory, but research has reached the stage 
where the agreement is often satisfactory, thought there are important 
exceptions whioh are discussed in this paper. Even so, the decision as to 
what values apply to any specific aircraft is often a difficult one. 
Fortuna-tely great accuracy is seldom required. 

Incompressible fldw is regarded merely as a special case of subsanic 
flow and, if not included as such, it invdlves trivial theoretical 
modifications. Results in subsonic flow are discussed in Section 4; here a 
contrast becows obvious between wings, for which derivatives can;be predicted 
fairly well, and controls for whioh estimation is much more uncertain. 
Curiously enough, what few data are availdle for slender wings show that, 
provided the mean incidence is small, their derivatives are well estimated by 
theory. 

Supersonic derivatives are treated in Section 5; unless M is too 
near to unity, the agreement is satisfactory, especially if thickness 
corrections can be included. Bperimental information is lacking for M 
greater than 2.4.5, but the application of linearized theory and thickness 
corrections becomes easier until the region of hypersonic flow is reached, 
The reverse is true in the transonic regime (Section 6), whew agreement is 
oftee poor and the trends of the derivatives with Mach number and frequency 
still require clarification. Since purely theoretic&l. methods are unlikely 
to cater for shock-wave movement andboundary-layer interaction, the best 
hope is for a semi-empirical method-based vn linearized theory. A programme 
to establish the dependence of the linearised derivatives on frequency and 
Mach number is outlined. c’ 

Finally Section 7 considers a difficulty whioh has arisen recently 
from measurements in slotted-wall tunnels. It has been found that derivatives 
in subsonic and transonio flow map be sensitive to variations in slot width or 

spacing./ 
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spacing. Calculation shows that this phenomenon is not due to tunnel 
resonance. This outstanding problem is of crucial importance at present, 
since it is essential to have reliable experimental values in the transonic 
speed range. 

2. Symbols and Definitions 

2.1 S.ymbols 

A 

B 

bs 

c 

a, 

'r 

Ct 
a 

h 

v-k 9 l 

H 

e 

4 
P 

*&JyJ 

M 

N 

P 

PCC2 

9 

S 

sf 
t 

T 

U 

aspect ratio of wing (= 24) 

breadth of rectangular tunnel 

damping derivative coefficient for rigid-bending mode 
(Section 2.2) 

geometric mean chord of ting 

geometric mean chord of control 

root chord of wing 

tip chord of wing 

width of slot 

hinge-moment derivatives (Section 2.2) 

height of rectangular tunnel 

non-dimensional wing loahing defined in equation (6) 

rolling~moment derivative for steady rolling (Section 2.2) 

direct stiffness aa damping derivative coefficients for 
pitching oscillation (Section 2.2) 

free-stream Mach number 

number of slots in horizontal wall of tunnel 

pressure 

fr,ee-stream pressure 

semi-span of wing 

area of wing planform 

area of control planform 

time 

slotted-wall tunnel parameter in equation (12), (Section 7) 

free-stream velooity 



-6- 

component of velocity in the z-direction 

rectangular CO-OdiIlatesj x in the direction of U, 
y to starboard aoross the wing, z upwards 

distance of pitohing axis downstream of root leading edge 

local vertioal displacement of wing from its mean position 

derivative coefficients for lift due to pitching (Section 2.2) 

mean incidence of wing 

111 - hia I+ 

s,mpli.tuae of pitching mode z. = eiwtOo(xo - x)/% 

sweepback of leading edge 

taper ratio of wing (= c+/cr) 

frequency parameter (= G/U) 

a0mmra angle of deflection of control 

free-stream d.ensit;y 

thiokness to 0h0rd ratio at wing root 

perturbation velocity potential 

amplitude of rigid-bending mode z. = e 

angular frequency of oscillation 

2.2 Definitions of derivatiyes 

Lift due to pitching oscillation = -pd"SBoeti't{zO + ivzi] 

Nose-up pitohing moment due to pitching oscillation 

= plPST3~3~e~~ [me + ivmb] 

Hinge moment due to oscillatory control deflection 

= pz$sfE&[[% + iv+!!] 

Bending moment due to rigid-bending osctilation 

= pdSs$,etit[b+ + (iws/U)b;] 

Rolling moment due to steady roXLing with angular velooity p 

= prlass( ps/u)ep 

H3nge moment and rolling moment are defined as positive in the sense of 
g inoreasing and p positive respectively. 

3./ 
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30 Theoretical Background 

The starting point of almost all the theories to which reference 
will be made in this paper is the well known differential equation for 
linearieed compressible flow, 

aaf5 aa4 aa9 

c 

aa#J 2 aa$ I aa# 
+-+- = 

ax8 a? aaa 
he -++-+-- 

a2 u hat Vs ata ' 3 
. . . (1) 

where # is the perturbation velocity potential, U is the free-stream 
velocity in the direction of x inoreasing, and the wing is supposed to be 
thin and to remain near the plane 2; = 0 throughout its motion. The basic 
assumption is that only the first-order disturbances caused by the wing are 
signiacsnt . Equation (1) has to be solved subject to the boundary 
oonditions, that 

w 

( > 

azo azo 
- = JJ-+- 
az z=O ax at 

in the area boundedby the wing planform, where the wing satisfies 

Z = Zob,Y, t> 9 

and that the disturbances die away at Minity like outgoing waves@ 
pressure is then given by 

P - P, 

&Prt" 
= -$p~+;]. 

In the wake p must be continuous aoross the plane z = 0, so that 

uv +- = 0, 
a~ at 

elsewhere off the wing, $ = 0 in the plane z = 0, Further 9 is 
antisymmetrical with respect to z = 0, 

. . . (2) 

The 

l ** (3) 

*.a (4) 

In the paper attention will be confined to oscillatory motions 
for which z. in equatiot (2), 
and oontain a faotor eLo . 

and therefore 4, vary sinusoidally in tie 
There is no practicable method of solving the 

equation for general planforms when M < 1, and recourse must usually be made 
to the numerical solution of integral equations. If M>l, solutionsuf 
equation (1) o&n be obtained for some special planforms, but for general 
planforms the solution is obtained from integrals or integral equations. 

For M < I, $ may be regarded as the potentia;l due to a 
distr$bution of doublets over the plane z = 0, and it may be shown tiat 
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a 
x- exp 

at3 c ( 
““Z”“) q (- Et) ; ] dx’Q’ , . . . (5) 

where Rr [(X-X')a + #@(y-y' )a + a"z+ 

and the i~~~gtd. is taken over the Wang and the wake. The required integral 
equation is obtained by differentiating equation (5) with respect to z. An 
alternative integral equation is obtained in terms of the non-dimensional 
loading 

P(X,Y, - 0) - P(X,Y, + 0) 
e = 

3P@ 
J 

where p is defined in equation (3). Then 

9kY,Z> = - f 
II 

io( x-x' ) 
~WY~) exp - 

> 
X 

a 
S 

. . . (6) 

where 
RO 

= [E" + pa (y-y')" e @5?+ 

and, since 4 is zero in the wake, the integration is over the wing planform 
only* 

Equations (5) and (7) form the basis of most subsonic oscillatory 
wing theory. They are usually solved by the %ollocation" or '[kernel 
function"' method which consists essentially in assuming for $(x',y', + 0) 
or 4 a linear expression containing a number of unknown constants, then 
integrating t0 obtain (a$/a2)z=0 at the same number of selected points on 
the planform, and finally by equation (2) solving the resulting simultaneous 
equations to determine the constants. Refs. 2 and 3 provide examples of this 
method, but there are many others as fhere is considerable scope for 
variations in numerical analysis. The methods most familiar to the authors 
are the extension of Multhopp's steady lifting surface theory (Ref. 4) to low 
frequency oscillations (Ref, 5) and to finite frequency oscillations (Ref. 6); 
unless otherwise stated Fn Figs. 1 to 12 and 27 to 19 "theory" for M < 4 
refers to one of these methods. 

Turning now to supersonio flow, we find that, although solution of 
the &f'ferential equations has been more successful (Ref. 7), integration 
methods will still be necessary for enera planforms. The supersonio 
analogue of equation (5), derived in Ref. 8 for example, is 

W(X,Y)/ 
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1 aa 
w(x,y) = - - lim - 

x Z-+O aid /iI 
dx ,Y' )exp 

( 
- 

% 
. . . (8) 

R= [(X-X+ gyy-yqa- pv+ 

and the region Si oonsists of those points (x',y') for whioh R is real. 

The analogue of equation (7), disoussed in Ref. 9, is 

TJ ee / idx-x’) \ 

x-x’ 
ex - 

xi,, 4 = r 

where 

There is in supersonic 
Rubinow (Ref. IO), 

where R and S, are 

C(x’,y’) exp - 
t 

’ - 
U 1 

X 

r = [(y-y’)a+ ;I”]$ . 

flow an additional relation, derived by Garriok and 

(x' ,y' J&w 
( 

- M;-y cos(~)~wdy, 

. . . (10) 

defined belo" equation (8). If all the edges of the 
planform are supersonic, equation (IO) allows the potential distribution to be 
determined merely by integration. Stewartson (Ref. 11) has derived modified. 
forms to cope with planforms having leading edges which are partly subsonic. 

Solutions in the form of expansions in powers of frequency parameter 
have been obtained for the triangular and rectangular planforms, e.g., 
Refs. 12 and 13. These are convenient for calculation unless M is too near 
unity or the frequency is high. 

Theoretically equations (8), (9) and (10) and the solutions last 
mentioned are sufficient to provide the means of solving for almost any 
planform likely to be encountered in practice, but for low supersonic Mach 
numbers the numerical work involved is likely to be very heavy. Some possible 
prooedures are discussed in Ref. 14; the main problem is in the field of 
computer programming. For these low Mach numbers (Miles (Ref. 7) has 
aonsidered the slender delta planform for which the solution of Ref. 13 is 
also still. available provided the frequency is low. Miles (Ref. 15) has also 
obtained a solution for the rectangular wing of low effective aspect ratio /?A. 

For M = 1 no general method exists, although Mangler (Ref. 16) 
and Miles (Ref. 15) h ave given solutions for the triangular and rectangular 
wings respectively. Landabl (Ref. 17) has argued that not only for M = 1 
but for M near to unity equation (1) shouldbe replaced by 

aagl, 
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aa+ aa$ ' P aa+ rkd aa+ 
-++ = 2 --+--; 
a? a2 u axat I? ai? 

. . . (II) 

he has given or indicated solutions for fairly general planforms. 

It is also possible to solve by collocation methods the integral 
equation obtained by taking the limit of equation (7) as M tends to one from 
below (Ref. 18), and solutions have in fact been obtained by Dr. D. E. Davies 
at the Royal Aircraft Establishment. 

One must also mention two methods applicable in very restricted 
fields, namely unsteady slender-wing theory, e.g., Ref. 19 for wings of 
exceedingly small aspect ratio, and piston theory (Ref. 20) for high supersonic 
Mach numbers only. The second of these includes thickness effects which are 
discussed in Section 5. 

The oonditions under which the various differential equations of flow 
are applicable have been analysed by Miles (Ref. 7) and Landahl (Ref. 21). 
Ref. 7 gives a fuJJ. treatment of the equations of unsteady supersonic flow and 
a general mathematical account of the subject. 

4. Estimation of Subsonic Derivatives 

4.1 Wings of moderate aspect ratio 

The subsonic lifting-surface theories mentioned in the previous 
section may be expected to apply to wings oscillating with sufficiently small 
amplitude, provided that the mean flow does not violate the conditions implicit 
in the linearized equations. For example, if the Mach number is so high that 
regions of supersonic flow exist, linear perturbations in velocity cannot 
adequately describe the flow; again, if the wing is so slender that free 
vortices are shed from the leading edge, then it is no longer correct to 
represent the perturbed flow as that due to a vortex sheet in a plane. The 
accuracy of the solutions will depend on how well the wing planform and the 
mode of oscillation are represented by the finite number of quantities used in 
approximating to the integral equation. 

As examples of configurations for which these considerations might 
lead us to expect reasonable agxeement, consider the set of three delta wings 
of constant taper ratio h = 17 whose direct pitching derivatives about two 
axes are shown as functions of Mach number in Figs. I to 3. These experiments 
were performed in the N.P.L. y$ in. tunnel with half models having conventional 
aerofoil sections, 6% thick for sll three planforms and also 1% thiok for the 
aspect ratio A = 3. Some general trends may be observed; the experimental 
damping derivative, - me, agrees fairly well with theory up to M = 0.6, but 
for higher values of M the experimental values tend to be lower than theory 
for the forward axis and higher than theory for the rearward axis. The 
experimental stiffness derivative, - me, for the forward axis is in good 
agreement with theory up to M = 0.6; at higher values of M the experimental 
values for both axes are consistently of lower magnitude than that obtained 
theoretically. These trends with axis positi.on are indicated in Fig. 4 for 
M = 0.8. 

The same remarks apply to the set oE' three swept wings of constant 
aspect ratio A = 2.64 and taper ratio h = & for which derivatives are 

shown/ 
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shown in Figs. 5 to 7. These experimental values were also obtained in the 
N,P.L, $$ in. tunnel with half-models of conventionalaerofoil section, 6% 
thick. Other details of the comparisons are remarkably consistent for all 
six wings. The measured values of - rni for the forward axis are constant or 

fall initially with Mach number, but above M = 0.8 they rise to a peak value 
(usually below theory) which flattens with increasing sweepback. While the 
measured values of - rnh for the rearward axis agree well with theory at 
M = 006 and M = o,y in all cases, the intermediate experimental values 
are up to 4% above theory. There is little calculated or measured effect of 
M on - me for the rearward axis, the experimental value being 46 to 26 

low numerically in each case. Such comparisons are encouraging since the 
differences show signs of systematic variation even when they are not small and 
provide a promising basis for estimating subsonic pitching derivatives. 

Derivatives for a much less conventional M-wing planform are shown in 
Fig, 8, and these include the theoretical effect of finite frequency (Ref. 22) 
as calculated by Ref. 6, as well as derivatives for low frequency, but 
unfortunately model flexibility restricted measurement of the derivatives to 
low frequency parameters. The measurements (Ref. 23) were made in the N.P.L. 
25 in. by 20 in. tunnel with slotted roof and floor and included lift and 
moment derivatives, the latter for three pitching axes. In Fig. 8 the four 
derivatives are plotted against axis position for M = 0,8. When the tests 
were repeated with the roof and floor completely closed, experimental 
discrepancies were revealed of masitude comparable to that predicted in 
Ref. 22 for a frequency change from tr = 0 to 1, = 0,6, Since the 
experimental frequency parameter is low, corrections to the closed-tunnel 
in-phase derivatives may be made by steady tunnel-interference theory; this 
does in fact improve the agreement for - z8 and - me. Unfortunately no 
simple method of correcting the out-of-phase derivatives appears to be 
available; however, the two experimental values of - ZI, and - rni lie on 
opposite sides of the theoreticaIi. curves. The problem of slotted-wall 
interference is discussed in Section 7. 

In spite of these reservations the picture for wings of moderate 
aspect ratio in rigid pitching at Mach numbers well below unity is fairly 
encouraging. It is now necessary to consider some other modes. Fig. 9 
shows the direct damping derivative for a half model of the same M-wing planform 
treated in Fig. 8, in a rotational osciXLation about a streamwise axis just 
outside the tunnel wall. This rigid-bending mode thus corresponds to a 
flapping motion with a small amount of vertical translation superimposed. The 
agreement in this case is very good for the range of Mach number 0.6 < M G oJ3 
for which both theoretical and experimental results are available, Since the 
derivative - bb might be expected to have characteristics similar to those 
of the steady rolling derivative, - 4 

P' the theoretical curve for the latter is 
also plotted and is expected to be a reliable estimate. It must bL added, 
however, that half-model tests of rectangular as of aspect ratio 2 and 4 
gave less satisfactory agreement, especially for A = 2, 

The evidence for rigid pitching leads one to expect that, provided a 
mode in~lving deformation has a simple shape, theory could predict its 
derivatives fairly well; but, as deforming modes are d3fficuI.t to produce in 
a wind tunnel, this point oannot be reerded as proved. Modes which involve 

discontinuities/ 
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discontinuities in the slope of the wing may be expected to cause difficulty, 
unless special precautions are taken. The oommonest example is that of a 
trailing-edge control where discontinuous downwash is required at the hinge 
line. The disposition of the collocation points relative to the hinge line 
could have a large effect on the calculated lift distribution. One way of 
overcoming this difficulty is to replace the wing by a continuously deforming 
surface chosen so that each chordwise section, when treated by two-dimensional 
theory, has the oorrect lift pitching moment and hinge moment. Obviously 
this procedure i s not ideal, but, as Fig. IO shows, it can give results for 
the hinge-moment darnptilg derivative, - 

%- 
O, in good agreement with experiment3 

low exper5ncnta.l values of the stiffness derivative, - 
% 

, are to be expected 
from the bolL&try-layer rffscts that occur in steady flow. It should also be 
noted that some oontrol derivatives, for example overall lift due to control 
oscillation, may be cnlculated by using the reverse-flow theorem (Ref. 24). 

h most Of this section so far the frequency parameters of the 
experiments have been low, and in fact data on the derivatives at high values 
are scanty and confused except for low speeds where frequency effects in any case 
tend to be small. Otherwise the frequency effects shown by theory and experiment - 
sometimes agree and sometimes disagree; in the latter case experimental scatter 
may be of the same magnitude as the theoretically predicted frequency effect. 

4.2 Slender wings 

In the development of the linearieed theory it is assumed that all 
the vortioity in the flow is confined to a nearly plane region extending 
downstream of the leading edge of the wing, and also that the perturbation 
velocity is everywhere small. As is well knojlrn, the flow round wings with 
slender planforms, especially those with sharp leading edges, may contain 
concentrated free vorticity so that these assumptions are not fulfilled. It 
might therefore be expected that linearized theory would be inaccurate for 
such wings, and that a new theory would have to be developed to include the 
effect of the free vorticity, but the data in Figs. 11 and 12 show that this 
is not necessarily true. 

Calculations for a triangular wing of aspect ratio 1.0 and a gothic 
wing of aspect ratio 0.75 have been compared with measurements of pitching 
damping at low speeds; the results are plotted against axis position h in 
Figs. II and 12 respectively. Although the models have sharp leading edges, 
the derivative - rnc for small oscillations about zero mean incidence 

(a = 0) lies very close to the value given by lifting-surface theory. The 
results afford experimental confirmation of the deficiencies of slender-wing 
theory, which often exceed 5C$, even for such low aspect ratios. Preliminary 
unconfirmed measurements on the triangular wing made at the Royal Aircraft 
Establishment, Bedford, corroborate those made by Bristol Aircraft Ltd., both 
as regards the special case a = 
incidence (Fig. II). 

0 and the trend with increasing mean 
Fig. 12 for the gothic wing not only shows the same 

trend with increasing mean incidence, but includes values of - rni measured 

by Bristol Aircraft Ltd., on two models of different maximum thickness ratio, T, 
It is significant that the trend towards greater damping with increasing mean 
incidence is also obtained with decreasing ~3 each of these variations might 
be expected to intensify the non-linear effect of leading-edge separation. 

These comparisons are encouraging as far as they go, but as they cover 
only two planforms and low Mach nuinbers, the wider question of the accuracy of 
theoretical prediction must await settlement until more experimental evidence is 
available. 

54 
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50 Estimation of Supersonic Derivatives 

The various integral expressions quoted in Section 3 provide, 
formally at least, a method of calculating the forces on any wing in supersonic 
flow, although for low supersonic Mach numbers the large number of intersecting 
Mach lines crossing the wing may present formidable problems of programming. 
Nevertheless considerable progress has been made in this direction, and it 
seems likely that in the near future most practical planforms will be amenable 
to calculation. 

There remains the question of how well such calculations will predict 
the derivatives. Fig. 13 shows a fair comparison between linearized theory 
and experimental values of - rnb and -m 8 against h obtained in the N,P,L. 

11 in, tunnel, for a tapered unswept planform at M = 42, The model used in 
the experiment had a sectional shape which was geometrically similar from root 
to tip; this was a double wedge of thickness ratio 0,05. Allowance was made 
for this thickness by applying van Dyke's two-dimensional oscillating aerofoil 
theory (Ref, 25) on a strip-theory basis, Fig. 13 shows that the thickness 
correction gives a large improvement in the comparison. As described in 
Ref. 26, the same result was found for higher Mach numbers, 

Fig,, 14, reproduced from Ref. 26, shows the comparisons for a family 
of models obtained from that of Fig. 13 by cutting off portions near the tip. 
These results are for M = <2 and oscillation about the mid-root-chord 
axis, the variable being the angle at which the tip is cut off. If the tip 
is removed by making a single out normal to the planform, then a non-streamwise 
tip will have a leading or trailing edge of finite thickness; these oases are 
referred to as "blunt raked edge" and are denoted in Fig. 14 by solid circles. 
For some tests this blunt raked edge was machined so that the wing section was 
still everywhere a 5% double wedge as in the case of a streamwise tip. 
Reference to Fig. 14 shows that the effect of this modification can be 
appreciable especially when applied to the leading-edge. For the wings of 
the two largest spans (s/c, = 1.37 and s/cr = 1.00) the agreement of 
theory and experiment is improved by adding a thickness correction. The 
same is true for the smallest span (s/c, = 0.625) when the tip is in the 

streamwise direction; for blunt raked edges and small span ageeme:lt with 
theory is poor, but this is not surprising since a large proportion of the 
wing area is affected by the blunt tips. 

Some idea of the effect of varying Mach number is given by Fig. 15, 
which reinforces the remarks already made and also shows how the thickness 
correction is predicted by piston theory. At the high Mach numbers, where 

-this may be expected to apply, the corrections are small. Fig. 16 has 
therefore been included to show how the thickness corrections, - Amb, 
according to the two theories vary with Mach number; the limiting value by 
van Dyke's theory as M tends to infinity is in fact the value computed 
(formally) by piston theory for M = 0. Piston theory includes the 
thiokness parameter squared whereas van Dyke's includes it linearly, so that 
piston theory may be more accurate for very high M. 

It seems generally advantageous to apply a thickness oorrection 
unless the wing has subsonic leading edges or the equivalent aspect ratio Ap 
is small. For lower supersonic Mach numbers the pioture is less satisfactory 
and only much rougher agreement can be expected. 
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6, The Transonic Speed Rage 

As already stated, derivatives can be calculated without great 
difficulty for fairly low subsonio and fairly high supersonic Mach numbers; 
then the effects of frequency are seldom large. It is found, both 
experimentally and theoretically, that when M is neax to unity the frequency 
effects may be large and complicated. Moreover the applicability of 
linearized theory is dubious owing to the possible occurrence of large 
ree;ions in the flow field where the perturbation velocity is not small, and 
solutions of the linearized equations are not always e2sily obtained especially 
for LoTa supcrscnic Y. There are also, as we shall see later (Section 7), 
some difficulties from the experimental point of view. 

It cannot, therefore, be expected that derivatives will be predicted 
as accurately for transonic flow as for subsonic or supersonic flow. An 
example of the situation which may arise is provided by Figs. 17 and 18 which 
give the respective pitching derivatives - n; and - me for&a rectangular 
wing of aspect ratio 2.0 as functions of M. From low-frequency theories 
there are full curves for M < I from Ref, 5, for ld > I from Ref. 12, and 
for low supersonic Mach numbers from Ref, 15; this last solution due to Miles 
msy be expected to be fairly accurate in a range of Mach number up to about 
M = 1.1 for this wing. The broken curves for non-zero frequency parameters 
were obtained by the method of Ref, 2 for M < I and from Ref. 12 for M > I. 
Also plotted in Figs. 17 and 18 are the two derivatives for transonic M 
predicted by La.nddiL’~ theory (Ref. 17, Part II); these are in good agreement 
with values calculated by Dr. D, F. Davies at the R.A.E., using a collocation 
methodin thelimitas nB+l. The experimental points, obtained in the 
N.P.L. 25 in, by 20 in. tunnel, support fairly well the general trend of theory 
for both - rni, and - me but differ widely in detail. The variation with 
frequency is probably within the experimental error except for the large 
changes which occur near M = 1, when the trend is the same as in theory although 
quantitatively different. The conclusion is that at present theory can only 
provide very rough estimates. 

In Figs. 17 and 18 the theories themselves do at least indicate 
clearly the sign of the frequency effect near M = 1, but Fig. 19 for a 
triangular wing of aspect ratio 4.5 suggests that this is not generally true. 
In Fig. 19 sonic theory (Mangler, Ref, 16) predicts a variation in rn; of 
opposite sign to that found by linearixed theory for M = 0.99. The 
collocation theory of Dr. D. E. Davies for M = 1 predicts the same trend 
as Mangler8s theory but is different quantitatively. 
LandaM's theory (Ref. 21) for Y 

The value predicted by 
= 0.05 agrees fairly well with Kangler's 

theory. Since according to low-frequency theory - m* tends to f Q) as 
M 3 I from below and tends to - 03 as M -+ I from a ove, I? rapid changes in 
- m* oanbe expected near M = 1. Evidently it is exceedingly difficult 
to !?btain reliable theoretical curves in such cases. As for M = 0 in 
Fig. 11, simple slender-wing theory gives a value much too high for subsonic 
and supersonic Mach numbers. 

It is intended that calculations by linear theory shall be made for 
the rectangular and triangular wings at non-zero frequencies and several Mach 
numbers in the low supersonic range I,0 < M < 4.1. The aim is to establish 
reliable transonic theoretical curves against M for fixed frequency parameters, 
and then to use these curves and available experimental results semi-empirically, 
or perhaps as a basis for more advanced non-linear theories. 

7./ 
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7. Slotted-Wall Interference Problems 

In order to obtain derivatives at transonio speeds it is necessary 
to avoid choking the wind tunnel, and one Common way of doing this is by 
incorporating longitudinal slots in part or all of the working section. For 
example, the experimental results described in Section 6 were obtained in a 
rectangular tunnel with solid side-walls and a slotted roof and floor. This 
arrangement succeeds in making transonic tests possible but introduces the 
complication that there is no known method of calculating the unsteady wall 
interference. 

To investigate slotted-wall interference some measurements were made 
in the N.P.L. 25 in. by 20 in. tunnel using the half-model of an M-wing shown 
in Fig. 8 and mentioned in Section Ll. In the normal state the roof and 
floor of the tunnel each have eleven slots, These were progressively sealed 
and the effect on the pitching derivatives observed. Fig. 20 shows how they 
vary with the number of slots left open. Here T is the parameter commonly 
used for steady slotted-waJJ interference, defined by 

B xNd 
1 - - log, cosec - 

2B 
T = 

B md 
l+- 

7GIH 
log, cosec - 

a3 

..O (12) 

where the tunnel has height H, breadth B and N slots of width d in each 
horizontal wall. For the closed tunnel T = - 1, and for open roof and 
floor T = + I. Both derivatives - me and - mi, vary smoothly with T; 
the effect on the damping derivative is found to be very large especially for 
the higher values of M. 

This phenomenon is not due to tunnel resonance, indeed the critical 
resonanoe frequency for a slotted tunnel is higher than that for a closed 
tunnel. Fig. 21 shows how the critical frequency varies with the open area 
ratio for a tunnel having slots in its roof and floor at a spacing equal to &-I. 
Calculations were made for two open area ratios by regarding the working section 
as a resonating cavity and calculating its fundamental frequency by the well 
known relaxation method. 

No satisfactory explanation of variations of the derivatives with T 
is known. A simple empirical observation is that, as T is varied for a 
fixed M, the ratio of the lift vector to the moment vector in the plane of 
real and imaginary parts remains roughly constant. Further tests designed to 
facilitate a semi-empirical method of correction are to be undertaken at the 
N.P.L. by a series of measurements in three slotted-wall tunnels. 
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