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by

E. G. Broadbent

SUMMARY

The flutter problem of a thin rectangular solid steel wing of aspect
ratio 3 is considered with allowance for reduction in stiffnesses due to
thermal effects. The change in camber associated with wing bending gives
rise to a destabilising aerodynamic coupling which leads to a critical
flutter Mach number of just over 3%; no other coupling in the same sense
exists with the assumptions made; so that without this effect the flutter
speed would be infinite. The root constraint is not important for a wing
of the aspect ratic considered.
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1 INTRODUCT ION

In reference 1 a simple example of aeroelastic deformation at high
temperatures was presented. The calculation was for a solid steel biconvex
wing of rectongular planform, and used the large deflection analysis due to
Mansfield2., Mansfield assumes that the heating leads to a temperature
distribution that is parabolic across the wing chord and then derives exact
two-dimensional rclationships between the torque and rate of twist, and
between the bending mement and the curvature. These non-linear equations
were solved by a process of successive approxj_matioﬂ to obtain theequili-
brium deformation of the wing when set at incidence in a supersonic airstream.
The effects of the thermal stresses are to reduce the torsional and bending
stiffnesses and to increase the anticlastic curvature that accampanies any
bending deformation. This last effect is stabilising in the static problem
mentioned above but it seemed to the writer that it would very likely be
destabilising in an aeroelastic vibration., This point is illustrated in the
present paper in which the flutter speed of the same wing is calculated with
an allewence for thermal cffects, although in this case only the linear part
of the equations is retained. The aerodynamic assumptions are such that the
flutter speed would have been infinite with no chordwise curvature, but with
the curvature included the critical flutter condition is represented by a
Mach number of just over 3%'.

2 FLUTITER ANALYSIS

The wing is illustrated in Fig.1s It is a rectangular wing clamped
at the root and with a panel aspect ratio of 15 (i.e. the net tip to tip
aspect ratic would be 3) and with a symmetric biconvex section of 2% thicke
ness chord ratio in solid steel. The flutter analysis is in two degrees of
freedam, one of wing torsicn in which the rate of twist is assumed to fall
linearly to zerc from root te tip and the other of wing bending in which
the spanwise curvature also falls linearly to zerc fram root to tip; these
modes satisfy the tip condition of zero bending moment and zero torque.
Lagrange's equations are used, so that the elastic coefficients are obtained
from the strain energy, the inertia coefficients are obtained fram the
kinetic enecrgy and the aerodynamic coefficients (based in this case on
piston theory) are cbtained by considering the virtual work done in a small
displacenent,

2¢1 The strain energy

The linearised equations can be cbtained frcm the exact relationships2
by neglecting the second order terms® which leads to:-
L

T

3

18 (1 +v) (1)

i1

= (1= (14) (1+(1=n)8) = F [ad(1-w] (@
and B oLl (1498 (3)
3

* They are also given by Mansield” in an earlier paper, but it is convenient
here to use the notation of ref.? which is mostly teken from ref,2. Work
gimilar to Mansficld's has been published independently by Kochanski and

Argyrish.
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where is the torque on a section

is the rate of twist at the section

21 @ =3

is the bending moment on a section
¥ is the spanwise curvature at the scction

k' 1is the chordwise curvature at the section

and the circumflex accent denotes a non-dimensional form of the quantity iece

8 . __93__9.__ |

L V5 tO
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o= - M

4~f5toB
T o= _e®r

b V5%, 0 1

where B is the flexural rigidity (B I) } without thermal effects
C is the torsional rigidity (G J)

and to is the wing thickness at mid chord,

Also v is Poisson's ratio
2 e

and - - C (Xg (5)
10 to

where ¢ is the wing chord

T is the temperature differcnce between the average temperature of the
leading and trailing edges and the mid chord

Rl

is the coefficient of thermal expansion.,

The non—~dimensional parameter & gives a measure of the thermal strain (er
thermal stresu) and in the prcsent example has a value of Ouli« This value, taken
from ref.1, is based on a temperature difference of 135 which gives a reason-
able simulation of conditions reached by acceleration to a Mach number of sbout
3 at 20,000 £+ altitude., It will perhaps be as well to state here that the
method of solution of the flutter equations is to calculate the critical Mach
number for flutter; if this critical Mach number had been found to be very
different from 3 then a process of trial and error would have been followed,
but in fact such a process proves to be unnecessary in this particular example,



The modes of deformation are given by:-

2256 = (1-m)q (6)
and.
$o=sx o= (1-m) g (7)

where s is the distance from root to tip
® is the incidence of a section relative to the root
M = y/s vhere y is the spanwise variable

¢ is the slope of the mid-chord line relative to the corresponding
slope at the root

and %Y and q, are the generalised co~ordinates.

The strain energy V is given by:-
1 1
2V:s/6Tdﬂ+s/rcﬁdﬂ . (8)

(o]

From equations (1), (2), (6) ad (7) and the relations (4), this expression
for the strain energy can be evaluated in terms of the generalised co-
ordinates Uy and U viz:-

<l

2 =3%51‘-3‘(14-\/)}{CQ1Z+B[1+3‘(1~V)]QQZ}' (9)

2.2 The kinetic energy

The downward deflection of a point P on the wing mid chord AB (see
Fige1) is given by:-

¢ 2
1
zp:sf¢dn=:%—<1~-3->sq2 (10)
o

by equation (7). The deflection of a point Q in the chord D E (see Fige1)
relative to P1 isi-
x x

— f
ZQ-P“_/XK dx+/®dx
o

¢
where x is the chordwise varisble measured aft from the mid chord; ie.es
X = PQ. Let
x = ok

& g
P 02 2
then z = o /gx' d& + ¢ / 93 = —5—x'+06E (11)

QP
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since k' and ©® are constant over the chord. If we substitute for @ using
equation (6) and for k' using equations (3) and (7), then by (10) and (11)

we have -

2

2(gm) = o a, g(n-.-g—)+sq2"-*'l§-(1~1;->-—2—c;§g2 (1=n) b a1-98 |+ (12)

The kinetic energy % is now given by
1

3
2T = p cst /° an /' (1=} &
1
0]

-

2

Y 5% (gm) a &

where Ps is the density of steel, since the wing thickness at a point

(£,m) is t, (1 E9).

245 The aerodynamic forces

In the present example pisten theory5 is used with the thickness terms

neglected. This leads to the very simple expression for the pressure

difference between the lower and upper surfaces:-

3z 0z
Ap = 2 pa (3{ + V'EED
where p is the air density

and a is the speed of sound.

We let z = 2 el ®

ta | . . . .
where % = 7;-15 a non~dimensional time variable.

2
Mach number, Ap = 2 2%— <K g o+ Mf%%)

Hence, if M is the

2

and the work done in a small displacement 6z is given by:-—

1

W = =scC /° dm)
o

2«4 Applicaticn of Lagrange's equations

i
N‘{“‘\Sml_\.

Lagrange's equaticns are given byi—

a ot 3T .

Ay *q, = Msq,

AP 6Z (3;:,’1’]) dZ;; Y

where the suffix r is given in turn the values 1 and 2, and W6 is the co-

efficient of 8qr in the expression for W given by

equation (17); i.es Wy

(13)

(14)

(15)

(16)

(17)

(18)



is the generalised force in the degree of freedom SNC We have two
equations of the form (18) which are made non-dimensional by dividing

through by the factor paz scz. The inertia terms will then have the form
in tre ith Lagrangion equation:—

L1d 2
A.. q. A. . .
pa sc? psc!" +J J

by the definition of N in equation (15). The aerodynamic terms in the ith
Lagrangian equation will have the form:e

(xbij + Moij) 4 (20)

where bi,j and ci,j are non~dimensional aerodynamic coefficients, and the

elastic coefficients in the ith Lagrangian egquation will have the form:-

E. .
*—2-3;'3—5 4. = e.. 4. (21)
pa” sc

since there are two cowordinates i and j take the values 1 and 2 and the
two flutter equations can be written in matrix formsm

[a7»2+b}\+cM+e] g = O (22)

wh.re 2, b, ¢ and ¢ are squarc matrices of non-dimensional coefficients and
q is a matrix column. Equation (22) is solved by equating the determinant
to zere and solving for the Mach nunber M.

2.5 Solution of the flutter equation

We may remexk from the form of the expression for potential energy,
equation (9), that no elastic coupling exists, i.e. e;. =0, i #j, Also in

the expression for the kinetic energy, equations (412) and (;13), since the
integral of an odd power of £ between the limits of —:-32 and 5 is zero we
again have no coupling term and 255 = 0, 1%+ Jje This implies that the two co-

ordinatcs are in fact nommal co-ordinates, which can also be inferred fram
physicel consideraticns., Finally, in the expression for the aerodynsmic
work fram equations (16) and (17), we_again have that the part which is
proportional to A is an integral of z“ (similar to the integral for the
kinetic encrgy) and hence bij =0, 1#j, It also follows that the direct

aesrcdynamic dampings which are proportional +to b'l'l and b22 are poeitive,

and only the aerodynemic stiffnesses can supply the couplings which would
leud to flutter. It is instructive here to consider the test functions
for stability; the flutter determinant can be sxpanded to give

A 27

Ps

+ D, +:p27\‘2+133>»+101F = 0 (23)



and it is necessary and sufficient for stability that all the p's shall
be positive and that

2 2
T; & PyPy PP, Py =P B >0 . (24)

Suppose, for the moment that the canber term, k', were zerc, as would
generally be assumed in a flutter calculation that did not take account of

the thermal stresses. 1In ihis case Cyq2 %o and S50 would all be zero;

hence the motion would inevitably be stable since no (1,2) coupling term
would exist and the direct dampings would be positive. We know, however,
that the effect of the camber x' is stabilising as regards static divergence
(see ref,1 s for example, in which the analogy with a swept back wing is
drawn) so that the value of Cyo introduced by k' must increase Py, since this

coefficient vanishes at the divergence speed., Alternatively, it can be seen
from the expression for W (or from physical considerations) that Cpy is

positive and that ¢ 109 which depends on k' is negative, and hence B, is

increased. The magnitude of this increase is, moreover, proportiocnal to M2
whereas Pyr Pys Py and P axe all constant, and it follows from the form of

T3 in expression (22+) that this must lead to instability for sufficiently

large values of M,

The critical Mach number for flutter is found most simply by using
the test function T3 and solving for the limiting case T3 =0, This is a

linear equabtion in M,

3 NUMERICAL RESULT AND CONCLUSIONS

The structural data assumed are given by:—

2945 x 106 1b/sq ine

E =
G = 115 % 10° 1b/sq in.
v = 0.28
P = 490 Ib/cub. £t
GJ = 4 GI

and & = O

No zllowsnce for reduction in the elastic moduli due to thermal effects
has been mades The aerodynamic data are

0e533 x 0,002378 slug/cube £t (at 20,000 ft)

1l

p
1038 ft/sec.

&

i

These data lead to the following matrices of coefficients:-



a . | 1067 0 ]
= Lo 9,273 |
b = | 0s02222 0 7]
- 0 Oe 1146
[ o ~04009037 |
T 0e 1621 0
e - | 041066 0 ]
0 0.0882

and the solution of ’133 =0 gives M = 3,6, This is in sufficiently close

agreement with the assumed conditions at a Mach number of 3 to be taken as
the critical flutter Mach nunber. It may be noted that this value of 3.6
compares with the value of infinity if there is no camber change and

Cyp = 0. It may perhaps be mentioned here that the reason why finite flutter

speeds are often predicted for symmetric supersonic sections using piston
theory is that if the thickness terms are included a small negative value is
introduced for b,, (and also for c,, although this is much less important)

and this prov:.aes the required coupl:z.ng. The coupling would be very small
for a wing of only 2% thickness/chord ratio,

It may be thought that the flutter Mach number of 3.6 is unrealistic
because of the root constraint, but this is not in fact so. Mansfieldl ha.s
shown that the root constraint would be effective to a distance of about -c
(for a parsbolic section as used in our example) from the root. The magnitude
of this restraint has been estimated by neglecting the effect of k' for
0 <M< 0.2. This led to a reduction in the numerical value of 40 by about

15% and an increase in the value of o (since there is now no loss in bending
gtiffness near the root) by about 20% The reduction in Cyp raises the flutter
speed, but the increase in e,, lowers it again so that the net effect is that

the critical flubtter speed is increased only slightly: in fact the solution
gave M = 348.

. The general implications of these calculations are that thermal stresses
can seriously lower the flutter speed of a solid wing at high Mach numbers,
For a thicker wing, however, the effects would be much less, because of greater
intrinsie stiffness, less drop in stiffness and less adverse camber change,
It is also apparent that if the wing is designed to keep the thermal stresses
to a low level by using a torsion box, for example, instead of a solid section,
then again the flutter speed would remain high.

LIST OF SYMBOLS

Ai,j a dimensional inertia coefficient
B the flexural rigidity (EI)

C the torsional rigidity (GJ)

E Young's modulus
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shear modulus
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bending moment
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temperature difference
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rotation of chordwise section relative to root
coefficient of thermal expansion
non-dimensional spanwise variable = y/s

rate of twist

non-dimensional rate of twist (see equation 1)
spanwise curvature
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chordwise curvature
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FIG.1. PLANFORM OF WING CONSIDERED.
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