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ROYAL AIRCRAFT ESTABLISHMENT 

The Deformation of a Long Swept Wing with Ohodvise 
Variation of' the Thickness 

E.C. Capey, B.S. 

I  

The stress distribution in a long, swept-back, solid, thin wing under 
a bending moment or a torsional mcment is calculated using the inextensianal 
theory for thin flat plates. Solutions are given for all sweep-back angles 
for strips whose cross-sections are rectangular, diamond shaped, parebalio 
and double wedge shaped. 
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1 Notation 

b width of strip 

t thickness of strip at a point 

tO 
thiokness of strip at the centre 

D flexural rigidity at A pokt E: Et3/12(l - v2) 

DO 
flexural rigidity at the centre 

% bending moment 

% torsional moment 

Gx,Oy exe8 in plane of strip, as shown in Fig.1 

angle which generator makes with the x axis 

angle at which strip is built in 

distance measured along generator 

distances of edges of plates measured along generator 

moment acting perpendicular to generator 

sunsent per unit length at a distance '(1 along the generator 

bdQ 2 dx ooseo a 

stress at a point 

bt2 
0 

bt2 

%i 
ou 

= Or 3% 

defined by equation (25) 

defined by equation (32) 

defined by equation (17) 

defined by equation (7) 

effective extra length, shown in Pig.3 

Oe/OP in Fig.3 

a oonstsnt of integration 

A longr~~~~~--~iose',t~iE~e~~ +&es aoross its width, is built in at 
a sweep-b&K,k$~e~ a,, .a113 a ber&&'kome~t or a torsional moment is 
applied at its ends. The mcde of deformation, stress distribution and 
stiffness are obtained using the inextensional theory for thin flat plates's2 
in wllioh it is assumed that the strip is bent without any middle surface 
strain, and consequently mst take the form of a developable surface. 
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The assumption that there is no strain in the mid& surface is gene- 
ally valid when the deflection of the plate is large compared with its 
thickness, so it is only applicable to very thin wings. 

General equations are obtained for a long strip with arbitrary cross- 
section subjected to a bending moment or a torsional mment. These equations 
are solved, for all sweep-back angles, for rectmgulsr, dismond, parabolic 
and double wedge cross-sections. 

3 Method of Solution 

Fig.1 shows a strip to which 8 moment I$ is applied. HKL and HK'L' 
are two adjoining generators making angles a and (a + da) with the x 
axis. The strip KILL%' forms part of a conical surface whose apex is at H. 

The total moment acting perpendicular to the generator HKL is given 
by 

, 

% = ssina 

while if a torsional mxnent h$ is applied instead 

Ma =% 00s a . 

Mansfield and Kleeman' and Mansfield2 have shown that the strain 
energy in inextensional deformation is given by 

(1) * 

(2) 

(3) 



-d-m-e I$ is the flexural rigdity at a distance rl along the generator 
HKL from H. By maximisation of U a relationship oan be obtained between 
x and a. It is shown in Appendix I that for a strip subjected to abend- 
ing moment this relationship is 

sin2 cf. = g(e) ) 

while for a strip subjected to a torsional moment 

sin 2a 5 g(c) , 

where 

E E bg coseo2 a 

(4) 

(5) 

(6) 

and g is a function of E and of the shape of the cross section, though 
it is independent of the tiidth and thickness of the cross-section. In 
Appendix IV expressions ars obtained for g as a function of E for each 
of the four cross-sections considered hers. 

As g is a complicated funotion of E, e*ations (4) and (5) oan be 
solved only by numerical methods. For each cross-section a number of values 
of E were chosen, g was calculated for each of these, using the appro- 
priate formula from Appendix IV, then equations (4) and (5) were used to 
calculate a for each value of E . Integration of equation (6) by arith- 
metical methods then made it possible to plot x/b agsinst a, snd. to draw 
the generators on a diagram of the strLp. Figs.4 to 15 show the generators 
for the four types of strip constiered in this paper. 

It can be shown that, under inextensional deformation, the strain 
energy in a long strip subjected to a bending mcmnent becomes a maximum when 
the generators at some distance Pram the ends are at 90' to Ox; while, if 
it is subjected to a torsional moment, the strain energy beoomes a maximum 
when they are at 45’ to Ox . From this it follows that, in the problem of 
a clamped strip, a must tend to 90° as x tends to infinity if a bending 
moment is applied, and to 45O if a torsional moment is applied. 

When e=O, g is always equal to unity, giving an angle a 0 90’ 
in the bending case, and a r: 45’ in the torsionsl case. As E increases, 
g always decreases; but g does not always decrease to zero, so that a 
does not always decrease to zero. In fact equation (4) has solutions only 
for values of a greater then a,, where 

sin' a I = gmin. (7) 

The generators for a less than a, allpassthroughthepoint 0, as 
shown in Fig.2. As generators for varying angles all pass through the seme 
point, it follows that 

ax 
da = 0 

end oonsequently, on substituting this in equatioo? (6), it is seen that E 
has no finite value. 
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(b) 

(cl 

/’ 
--. 

X-t- i 

E-+0 

a+ 3"/4 i 
% : 

5 

In the cases shown in Fig.2 (a) end (b), if the generators and stress 
distribution are known for a, = 0, then they are given for all other 
vslues of ao, as the plate &n be clamped along any of the generators of 
the a0 = 0 system without altering the stresses and strains in the system. 
Similarly, for the ease sharvn in Fig.2(0), it is sufficient to calculate the 
generators and stress distribution for a0 = 90°. The generators and stress 
distributions for rectengular, diamond shaped, parabolic and double wedge 
shaped cross-sections are shown in Figs.4 to 15. 

4 Stress Distribution 

In Appendix II it is shwn that, where a > al, the distribution of 
stress is given by the relationship 

or 

(8) 

where 
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and f is a function of E , for which a general expression is obtained in 
Appendix I. Special expressions for f are gwen in Appendix IV for the 
four strips with which we are dealing. 

For each cross-section, graphs of equal stress were obtained by giving 
selected values then for any particular value cff@, y/b was dhiJ.ated 

FLr each generator Asing equations (8) and (y), remembering that 
function of y/b, 

t/to is a 
end that the value of E was known for each generator. 

Consequently, for each value of U', the appropriate value of y/b was 
marked. on each generator, and graphs of eq?.ml u' were obtained. These are 
shown in Figs.4 to 15. 

Equations (8) and (9) apply only where a a al. It is shown in 
Appendix II that, where a < a,, 

o-1 

or 

(10) 

(II) 

Graphs of equal stress were obtained m this region by the same method as 
was used for a > a 1 ' 

5 Effective Lengths 

If a long strip, shown in Fig.j(a), of length 4, built in at sn 
angle a, rotates as much on application of l+j as a similar strip, of 
length pe +x+), built in at 9C" then we can say that the effective length 
of the former strip is (6 +x*) . For large values of 8, fi depends 
only on a0 . In Append-h III x+ is evaluated, and so is Y, which is 
defined by the equation 

Y = O&/OP. (12) 

e 9 
/\ -7 

;: - i 
1 hl, 

-e * 



It is shown in Appendix III that in the bending case 

y cot a0 = x*/h 

. . . . . (13) 

This equation was integrated numerically, and Y is plotted as a function 
of a0 in Fig.16 for the appropriate cross-sections. 

If A$ is applied to a strip of 1 
much as a slndlar strip of length (8 + 9 T 

h 8, and the strip rotates as 
clamped at 4s", then we can SW 

that the effective length of the former strip is (4 + x*) . A strip 
clamped at 45' has been chosen ss a stadsrd because such a strip bends in a 
simple manner, with all its generators parallel, an application of a tor- 
sional moment. 
Fig. 3(b), 

It is shun in Appendix III that, for the case sm in 

Y(cotao- 1) = x*/h 

x 

= i o $-J [2a,+sinal-2ao-sina + 
0 tto 

f 4cfos2a 1 

a1 

E o 
E sin2 J 

da. 

while for the case shown in Fig.J(c), 

. . . . . (14) 

y(cot a0 + I) = 'x*/b (15) 

where x*/h is given by the same ex ression, except that the limit of 
integration in this instance is % 4. P 

6 Discussion of Results 

Figs.4 to 15 show the generators and stresses in strips with rectsn- 
gular, diamond shaped, parabolic and double wedge shaped cross-sections when 
a bending moment or a torsional moment is applied on the strip. Fig.4 is 
taken from 'The i&extensional Theory for Thin Flat Plates' by Mansfield*. 
Figs.7, 8 and 9 refer to diamond shaped strips, and show that there is no 
extra stress concentration due to the clamping of the strip at a skew angle. 
Flgs.10 to 15 refer to double wedge shaped strips and parabolic strips, and 
show highly localised stresses, with a stress concentration factor of up to 
1.20 for the double wedge shaped strip, ma of UP to 1.52 for the parabolic 
strip. The rectangular strip (show in Figs.4, 5 end 6) has a very high 
stress concentration in a small regica; but this mst not be taken too 
seriously, as in this region the inextensional theory is inapplicable, even 
when it is accurate elsewhere. 

Figs.16 and 17 shuw how the stiffnesses of the strips vary with the 
angle a 

11 
at which the strip is to be clamped. Fig.16 refers to a strip 

subjecte to a bending nmment, and shows that as a0 approaches PO', y 
approaches 0.5, so that the effective length of the strip is nearly equd to 
the average length; while for small values of (x0, y becms small, so 
that the effective lmgth approaches the smallest length of the strip. 
Fig.17 refers to a strip subjected to a torsional moment. In this instance 
y approaches 0.5 as a 
a, approaches 0' or p08. 

approaches 45O or 135O, ana y becomes small when 
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'7 Conclusions 

Methods of calculation are derived far a long s&ip, built in at any 
angle, subjected to a bending mcanent or a torsional moment. The method is 
applied to strips with rectangular, dismond shaped, parabolic snd double 
wedge shaped Cross-sections, and diagrams are presented showing generators 
end lines of equal stress. 

It is shown that claqdng the dienmnd shaped strip at a skew angle 
produces no extra stress concentration, that clemping the parabolic and 
double wedge shaped stdps produces a smdl extra stress concentration, and 
that clamping the rectangular strip prduces very high stresses in a small 
region. 

The stiffness of the strips is discussed and hessions sxe given for 
the effective length of a strip under a beding moment or a torsionsl 
moment. From the graphs the effective length can be obtained for any of the 
four strips which have been considered, for any sweepback angle. 
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APFENDIxI 

Determination af the - @ nerators of a low strip built 
in at an angle. ad subjected to a moment 

Equation (3), for the strain energy of the strips, can be put in the 
folm 

where 

U z & 
i 

F da (16) 

F = 4 

i" 

2D .' 
(17) 

\ 

171 

$ av 

It is difficult to deal with F in this form, and it is convenient to 
substitute other expressions for tl, -q and. q2 . Using the notation of 
Fig.1 it follows from geometrical considerations that 

and that 

If we also substitute 

= ~sina ‘l)l da (18) 

rl2 - 9 = b cosec a . 

.“j 

where 
F 

T = dv, 

E = b acr cosec2 OT ax, 

rl2 - 111 rs 
"1 

* 

in equation (17) ,. .$t bemmes 
*)ii j 

F= i+E I' 

f = 
I 

(19) 

(20) 

(21) 

(22) 

(23) 

(25) 



As 

which is a function of y/b for a given shape of plate, end ss 

T P 1 +sy/b (26) 

it follows that f is a function of E . Therefore, using e 
ana @I), it follows that F is a function of a and of 
given strip. Considering that 

(27) 

is to be maximised, it can be shownfromthe cslculus of variations that 

where K is a constant. Using equations (24) and (21) %is becomes 

which can be put in the form 

Ma sin a 

(Ma sin a) Co 
= $ $jm 

( 

(29) 

(PO) 

As x tends to infinity, a tends to x/2 in the bending case and 
or 3x/l+ in the torsion case. In either case da/dx tends to zero, 

aonsequently e does the same. 
equation (30) becomes 

Substituting equations (1) end (2) for 

2 
sin a = g(E) (bending) 

I 

(31) * 

sin 2a = g(E) (torsion) 

(32) 

As f osn be calculated as a function of E, these equations show the 
relationship between a and E, from which a relationship can be obtained 
between x end a . 

- II - 



AlJPEiwIx II 

Determination of the Stress Distribution in the Strie 

The equation for the principal stress on the surface of a plate 
subjected to a bending moment in one dimension is 

fs = 6aa t*. T/ 

Using the equations given by Mansfield',* and Kleemsn', this becomes 

6D M 

(33) 

(34) 

fcr any plate under inextensional deformation. Substituting equations (17) 
md (24) we have 

u = 
6D ‘Ma 

Do t2n. f(s) - 
(35) 

For the bending case, equations (I), (4) and (32) are substituted to give 

%D 
0 e - i?l!k 1 

t2 D 0 
forl$sincx 

tiich is valid. only when a > al . From geometrical considerations it ten 
be shown that 

q sin a = q,sinu+y, (37) 

and substitutxon of this and equation (18) into equation (36) gives 

A'sxmilar treatment--of the torsional case produces the equation 

bt2 
(a > a,) . 

Wnen a < z,, E is infinite. So for bending equation (35) becomes 

0 

(38) 

(39) 

(40) 
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As 11, = 0 for this region, equation (37) 
tion m equation (40) gives 

is simplified, and on substitu- 

bt* 
u' 0 06 = 

% 
(a < a,) , 

while a similar treatment of the torsional Case gives 

(41) 

6' (42) . 

- 13 - 



APPENDIX III 

Determination of the Stiffness of the Strip 

The flexibil&y of a strip subJected to a particular type of loading 
is equsl. to the strain energy produced by that loading divided by half the 
square of the magnitude of the load. The flexibility of a long strip built 
in at an angle ao under B moment b$ is therefore equal to 

. (43) 

substituting equations (16) and (24 for U . The flexibility of the 
equivalent strip of length (4 + x* , shown in Fig.3, is 

This integral can be rewritten by replacing 

w 

Id-X 
= I;zi 

i 
g-$-L 

0 
0 

As ?h,‘fl as E-t 0, equation (18) can be substituted, giving 

so that the flexibility of the equivalent. strip becomes 

(44) 

(45) 

e + x* 
Eipq’ (46) 
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Equating expressions (43) and (i&i), th e e q uivalent 
the equation 

length is deteIorin& by 

. . . . . . (47) 

so that 

l . . . . . (i&.8) 

when 8 is large the integral from 0 to 8 csn be considered as an 
5ntegrsl from a = u., to a = 42 . 
used to substitute for &/da, 

V&en, in addition, equation (21) is 

equation (4.8) becomes 
end the first integral is evaluated, 

. . . . . . (49) : 

A similar treatment of the torsionel cask gives the equation 

. . . . . . (50) 

where the upper limit of the integral is ST/~+ for the situation shown in 
Fig.J(b), and 3x/4 for the situation shown inFig.j(c). 0 
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APPFJDIX Iv 

Evaluation of f(s) and n(E) for particular cross-sections 

It is desired to evaluate f end g for eaoh oross-seotion, time 
f is given by equation (25), that is 

while, fram equation (32), 

ra g=$f , 0 EdI 
where 

1 Reotan@ar Strip 

As trt,, f Is determined by the equaticm 

l+E 

= h(l4.c) . 

P - = ar E as 

= I 
and therefore 

g = 41 + E dn(l + E)/e . 

2 Diamond shaped strip -1. i 

The shape-is -defined by the .5quat+ons 

ana 

(51) 

(52) 

(53) 

(54) 



Remembering that (D/Do) is the oube of (t/to), and substituting equation 
(26) for y/b we have 

L 
3 

Dc 
for I<T<1+E/2 

k = 8(4+) for 1 + E/2 < T < 1 + E . 1 

Therefore 

On integration this expression becomes 

f = 8 (: + 1)3 &I (+-+j - 5 en (I + "/2) - 5 (I + 24 

which tends to E/l+ as E + 0, so that 

r 
0 $. = 9. 

Dzifferentiation of equation (57) gives 

from which it follows that 

(55) 

(56) 

(57) 

(58) 

(59) 

8(~+l~ezx(~)-~h f+t)-5(1 +$) . (60) 

g = :&3+3&+ +;)-&(1+$~&4+$] 

3 Parabolic Strip 

For a parabolic strip 

(61) 

so that, on substituting equation (26), we have 

(62) 
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en3 f is given by the equation 

f I - (T - 1)3 (T - E - i)3 y . (63) 

&I integration this becomes 

. . . . . . (64) 

end its differential ooefficicnt with respect to E is given by 

E 
as =64 + E) ‘+ &I (1 + E) . 

E 3 

. . . . . . (65) 

When e=O, 

(66) 

so that 

2- ' 

285 

+ 7 - 
0 3 

E7 

8x3 (1 + e) 

g = 3 . 

4 

.ana 

I I 
vu-- J‘j- 12 

OE2 2E3 2,4 
- 2 - +. + 3 (2 + E) * 8n (1 * E) 

E 3 

. . . . . . (67) 

Double wedge shaped strip 

The shape is defined by the equations 

t = 3x 
to 

b 

for LXX< 3 b $-' 

I 

(68) 

t 
tc 

Substituting for t' as before, the expression for f is 

f = ljx/‘“(::“+,~“,~,327~..~~~, 

. . . . . . (69) 
- 18 - 



which becmes on integration 

f = -al ;::; -yl(l+E/3) +yl+E)y-*)-21 (:+;). 
b-3 

On differentiatkg end reorganising the terns we have 

. . . . . . (70) 

ar 
dE 

= 5 &l (1 + E/3) 
2+ 

-?(I +gy+-+$+~. (71) 

when E=O 

f=1 
E 2' (72) 

and substitution of (70), (71) and (72) into the equation for g gives 

g = f2Ce,(j$j$f)-54n(1*/3) +fj(l~)3~(*)-21(j-+~)) . 

JT 
i2! dn (1.43) 
E2 

4,(,+$%4$)+36] * * 
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CROSS SECTION 
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.GENERATORS 

FIG. 4. STRESSES AND GENERATORS IN A RECTANGULAR STRIP SUBJECTED TO 
A BENDING MOMENT WITH CLAMPING ANGLE Oco = 0. 





FIG. 6. RECTANGULAR STRIP SUBJECTED TO A TORSIONAL 
WITH CLAMPING ANGLE 0(,=90. 
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DISCONTINUITY 
IN SOLUTION 
AT a, -34. So 

FIG. 8. DIAMOND SHAPED STRIP SUBJECTED TO A TORSIONAL MOMENT, 

WITH CLAMPING ANGLE % ‘0 ,“. -__------. 



DISCON‘TINUITY 
IN SOLUTION a- - c#? -0 

FIC.9. DIAMOND SHAPED STRIP SUBJECTED TO A TORSIONAL MOMENT, 
WITH CLAMPING ANGLE do= 90” 

. . . . . 
,“. ---------. 



DISCONTINUITY 

FIG. IO. PARABOLIC STRIP SUBJECTED TO A BEND 
WITH CLAMPING ANGLE M.=O 
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FIG. 12. PARABOLIC STRIP SUBJECTED TO A TORSIONAL MOMENT 
WITH CLAMPING ANGLE MO= 90: 
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FIG. 13. DOUBLE WEDGE SHAPED STRIP SUBJECTED TO A BENDING MOMENT 

WITH CLAMPING ANGLE =o -0 
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50LUTION 
-r dl = 57.40 

/ / / / / 

- - ---- 

FIG.15 DOUBLE WEDGE SHAPED STRIP SUBJECTED TO A TORSIONAL MOMENT, 

WITH CLAMPING ANGLE MO= 90° 
* . . 8. . * 
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FIG. 16. ‘d FOR A STRIP SUBJECTED TO A BENDING MOME 
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