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SUMMARY

Twenty-eight members of the original family of aerofoils, presented in
TDM 67010 3, have been redesigned using an inverse method which takes account of
the major influence of the boundary layer and wake on the pressure distribution.
The more accurate compressibility law devised by Wilby and Lock is used.
Hodges9 results suggesting that the published family has an overoptimistic per-
formance are confirmed. The new sections have design 1lift coefficients which
are usually lower than the original values by amounts up to 10%. Their drag
coefficients are higher by 0.0001 to 0.0004 but they have a wider range of
attached flow in conditions of practical interest, according to Stratford's

method, because of more realistic trailing edge pressures.

The drag values, separation boundaries and drag-rise boundaries are
presented in Ref.12, together with tabulation of ordinates and design pressure
distributions for the complete series of redesigned aerofoils. The present
Report considers mainly the 507 rooftop sections as typical examples and

discusses the basis upon which the new designs were obtained.

* Aerodynamicist, Short Brothers and Harland Ltd., Belfast.

*kReplaces RAE Technical Report 72141 - ARC 34 437.
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1 INTRODUCTION

Until comparatively recently, aerofoils for transonic cruise conditions
were often designed by using NACA camber and thickness forms] as a starting
point. The original family of aerofoils presented in Refs.2 and 3, was chosen
to provide a rather better datum series from which the aircraft designer could
develop suitable sections for his particular purpose. An aerodynamic
specification*, in the form of a prescribed upper-surface pressure distribution
at design conditions, was chosen as shown in Fig.l. This was characterised by
a flat rooftop of length xR/c** followed by a linear pressure recovery to a
plausible trailing edge value. The rooftop level was such that the local Mach
number at, and ahead of, the aerofoil crest, was 1.02 (p/H0 = 0.515). Accord-
ing to the empirical theory of Sinnott2 this ensured that the aerofoil carried
the maximum possible lift at design condition, for a given design Mach number

(M, ) and thickness form, without incurring any wave-drag penalty. The

des
off-design behaviour, with increase of either Mach number or CL’ would also be
favourable in that a hollow leading—edge suction loop resulted which (again
empirically) avoids any premature drag 'creep'z. Two additional advantages of

the original (TDM) specification were:

(a) the small number of design variables which enable exchange rates to be

readily assessed and presented as a guide to the designer, and

(b) that the predicted performance of the aerofoils (which could be designed
using prediction methods for subcritical flow) was superior to that of con-

ventional NACA sections.

Although with the introduction of further degrees of freedom in the
design - such as a supercritical leading-edge velocity peak, or increased
loading near the trailing edge - the performance of modern aerofoils is now
generally higher than the TDM series, nevertheless the series remains the only
coherent datum family and has overall characteristics which are only slightly
inferior to the latest sections and which in any case could not be designed

directly by existing theoretical procedures.

* Henceforth referred to for the sake of brevity as the 'IDM specification’.

*% The thickness form associated with a given pressure distribution need not
have the same rooftop length but for simplicity this was chosen for the TDM
family. Thus, for example an RAE 102 form is always used with a 407
rooftop, RAE 103 with 507, and so on.



The original family of rooftop aerofoils was designed using an inverse
version of the RAE standard method4 (two~dimensional) with the Wilby5 compress-
ibility factor applied to thickness terms only. Profile drag coefficients,
for the upper and lower surfaces, at the rooftop design condition
(%Ld = CLD, MdeS = Mé) were predicted using Nash's method6’22. Charts were

es
presented in Ref.13, in carpet form, for the variation of drag coefficient with
chord Reynolds numbers (Rc) in the range 106 to ]08 and with transition
positions (Xtr/C) in the range 0 to xR/c. Each chart was necessarily con-

fined to those sections with given M and xR/c having a maximum range of

thickness/chord ratios from 0.06 to O?TZ.
Comparisons with the nominally exact results of Sells7 have shown that

the use of Ref.5 in its original form underestimates the effect of compress—

ibility on the lifting terms, whereas the more recent formula due to

Lock, et aZ.8 gives reasonably good results for sections of the present type.

This applies to both design and off-design conditions provided the latter remain

nominally subcritical, although small supercritical peaks near the leading edge

can usually be predicted with sufficient accuracy for present purposes.

Hodges9 considered the 102 series which has 40% rooftops and showed that, as a

result of the change in compressibility correction, the values of design 1lift

coefficient . associated with any given TDM specification 0, t/c, xR/c)
des

had been overestimated by amounts varying from 0 to 10% depending upon the

thickaness/chord ratio.

From a practical point of view, the original design performance can be
recovered by a reduction of about 1Z in t/c, at a given xR/c. Using a
slightly revised wake law in the Nash drag calculation he showed also that the
upper-surface drag was very slightly larger or the same as before, whilst the
lower-surface values were increased by the larger adverse pressure gradients

resulting from the revised pressure calculations. This meant that, for a given

Mdes and t/c, the drag coefficient at design <%D ) was raised by between
des

2% and 6% and, combined with the lower values of CL » resulted in appreciable

des
reductions in lift/drag ratio, . /CD » for example. At a given
des Tdes
c s M the lower t/c apparently gave no reduction in C compared
Ld des Ddes

with the published family, however.



Neither the new calculations nor the original TDM predictions allowed for
the proper interaction between the viscous and the inviscid parts of the
calculation. Consequently the trailing edge pressures, for example, were
incorrectly assumed to be independent of Reynolds number and of transition
position. This interaction would change the pressure gradient on the upper
surface and hence the predicted rear separation boundaries, as well as further
modifying the distribution of drag between separate surfaces, although the
total drag itself might not be very strongly affected.

The viscous/inviscid interaction is accounted for adequately for present

7,10,11 provided comparison with

purposes by the iterative method of Powell
measurement is made at a given CL' The availability of a matched pair of
forward and inverse design programs and the experience accumulated at
Teddington in a number of design exercises during recent years led the
Ministry of Technology/Industry Drag Analysis Panel to propose that these
programs should be used to redesign a number of sections and to evaluate new
drag charts to replace the existing (overoptimistic) wvalues as these latter
might mislead the designer seriously if not updated soon. Subsequently a
contract** was issued to the Aerodynamics Department of Short Brothers and
Harland, Belfast to carry out these design point computations and to evaluate
possible forms of presentation. In addition, the contract made provision for

a limited amount of computing time for drag calculations in off-design con-

ditions, and the recalculation of rear separation boundaries.

This Report discusses, in section 2, the basis of the design method used
and goes on, in section 3, to describe a number of preliminary calculations
carried out at Teddington to investigate practical questions concerning the
choice of sections and the values of transition positions etc. that were to be
used in the body of computations to be made at Belfast. ALl the inverse designs
were carried out at Teddington. Their overall characteristics are summarized
here but the complete set of results is presented in the final contract report]2
for the design condition. These results are discussed here selectively and it is

confirmed that the new values of CL are reduced by as much as 107 (see,
des

for example, Fig.15) and the values of drag are generally higher for a given

specification (M t/c, x./c) by as much as 57. Fig.2! shows a typical
R

des’
carpet of Ref.13 compared with the new results.

* RAE (Teddington) programs;
JWDPBP5 —- and JWBIBP3 -- in KDF9 ALGOL.

** Ministry of Technology Contract K5D/08/CBSDAR.



The effect of varying Rc and transition position on trailing edge
pressure coefficient is compared with the unique value supposed earlier (see
Fig.23) and the large changes this implies in terms of the separation boundary

in the Reynolds number versus transition position plane is shown in Fig.24.

Relationships have been obtained between the new values of drag and the
original values. A typical example, from Ref.12, is given here as Fig.19 for

the 507 rooftop sections. It is found that the differences in CD s CD and
u L

total CD, between the corresponding sections from the original and the new
families, can be plotted in a very simple carpet form shown here as Fig.20.

These relationships seem to be independent of Rc’ t/c and xtr/c.

Consequently, whilst it is thought essential to replace the original TDM

3 . * .
presentations of design point loci CL versus MdeS and of section
des

ordinates, it would be wasteful to replace the original profile drag charts.
Instead, only the figures showing the differences in drag are needed together
with some explanation in the form of typical correlations of the kind shown

here as Fig.20.

If the new drag carpets are required for any purpose then these are

presented in Ref.12.

Seven aerofoils from the new family have been selected as a basis for
computations in off-design conditions and a description of this work is given
in a companion paper]4.

2 THE METHOD OF PREDICTING AEROFOIL SHAPES, PRESSURE DISTRIBUTIONS AND
PROFILE DRAG VALUES IN ATTACHED, SUBCRITICAL COMPRESSIBLE, VISCOUS FLOW

2.1 The aerofoil design method

The method of prediction, described in Ref.10, iterates between pressure
and boundary-layer calculations. The pressure calculation, at any stage,
assumes an inviscid flow about the current estimate of the displacement surface
formed by the aerofoil, boundary layer, and wake. The calculation of the
boundary-layer displacement thickness is based upon the pressures found as a

result of the preceding iterations.

The Weber]5 method for pressure prediction is used with the semi-
empirical compressibility law devised by Lock, et aZ.8. Wake curvature is not

considered but an analytic approximation to wake thickness is employed.

* By a series of figures similar to Fig.15, for example.



The turbulent boundary layer is predicted using the local equilibrium method of
Nash6 whilst the calculation of laminar flow is based on Thwaites' procedure1

. iy sqs . 17
together with the compressibility transformation of Rott .

The inverse (design) program calculates the camber ordinates, incidence
and lower-surface pressures once the thickness form and desired upper-surface
pressures are specified. The iterative calculation includes an adjustment of
these pressures to permit the thickness of the displacement surface at the
trailing edge to be compatible with the pressure predicted there. This adjust-
ment takes the form of a linear variation to the trailing edge from the Weber
point nearest to the end of the rooftop, thus retaining the 'TDM specification'

of a linear pressure rise to the trailing edge.

Firminls, has recently produced a prediction method for aerofoil
behaviour in viscous, compressible flow, which represents an advance over the
Powell method. The vorticity in the wake is accounted for using a method
analogous to that employed by Spence]9 for the thin aerofoil jet flap, and the
boundary-layer and wake-displacement thicknesses are found from the Green/Head
entrainment approachzo. This results in more reliable predictions for the
pressures in the immediate vicinity of the trailing edge but as yet there is

little experience of its usefulness for drag prediction.

A comparison between the present method, and that of Firmin is given, for
the 407 rooftop aerofoil 102-10-40-70 at design condition, in Fig.2.
Excellent agreement for the pressure distributions is obtained provided the
same C, 1is used in both calculations. The profile drag values differ by less

L
than 2% and this also may be considered to be very satisfactory.

2.2 Profile drag prediction

Once the aerofoil calculation has converged the drag is found from the
momentum thickness at the trailing edge by using a wake relationship of the
Squire—Young21 type. Nash introduced changes in the exponents of the com-
pressible flow version in order to match the observed variation of CD with

Mach number (i.e. drag 'creep'). He also assumed that if the value of R at

e’
transition, was less than 320 then the initial value for the turbulent

*
boundary-layer calculation should be raised to this value .

Several detailed discussions of the drag and boundary-layer methods of

Nash have been presented by the Engineering Sciences Data Unit of the

# This is only likely to affect results at very low chord Reynolds numbers
around 109, There is physical justification for this assumption only in zero
pressure gradient, incompressible flow.



Royal Aeronautical Society. Ref.22 considers the wake law, Ref.23 the
prediction of separation and comparison with Stratford's method (see Ref.l),
whilst the assumptions for transition and the effect of trailing edge pressures

on drag are considered in Refs.24 and 25, respectively.

Conventional assessments of the accuracy of a prediction method for
profile drag depend essentially on comparison with nominally two-dimensional
wind-tunnel experiments. Thus the problem is not purely one of turbulent
boundary-layer (and wake) prediction, but depends also upon a knowledge of the
position and nature of transition and on the degree of two-dimensionality
actually achieved in the test527. The span/chord ratios of models commonly
used in aerofoil testing facilities are small* and the shape of the displace-
ment surface of the interaction region between the sidewall boundary layer and
the aerofoil will depend on model attitude, thickness and lift coefficient.
The displacement effect, and hence the amount of flow convergence induced at
the centre plane of the model, will depend also on the characteristics of
the sidewall boundary layer itself. Other three-dimensional features are

present in standard test procedures (see Ref.27 for further details).

In view of the large number of factors that might affect comparisons
between theory and experiment it has always been assumed that the overall level
of possible disagreement had a random behaviour. Consequently, a body of such
data was employed to calibrate and test predictive methods of the simple
empirical type used here and it was claimed that the overall level of agreement
with experiment was about *27. Such very simple reasoning was thought to be
preferable, in order to obtain comparative results for families of aerofoils
tested in a given tunnel, to the alternative of waiting for the results of
basic experiments which might lead to the prediction of transition behaviour or
to a proper treatment of departures from the simple two—dimensional flow

assumed in the calculations.

Now, although such arguments are unsatisfactory from a fundamental point
of view, it has been difficult in the past to distinguish clear trends of
systematic disagreement between the Nash prediction method (used here) and

experiment,

As a striking example of this, the comparisons available for tests con-—
ducted in the Teddington 20in x 8in tunnel have been taken. The percentage

differences between theory and experiment are plotted, in Fig.3, as a function

* About 1.5 in small British transonic wind tunnels for which the body of
profile drag data are available, and as low as 0.42 in some older NACA tests,
quoted by Osborne26,



of CL' The large degree of scatter as CL exceeds 0.5 is readily apparent
and it is difficult to apply, with confidence, any rigorous statistical
examination of these results even on the hypothesis that there is 'no correla-
tion with CL', as the exact weighting to be applied to each plotted point is
very uncertain. For example, systematic effects will probably be present

because only the sections with the larger CL values have rear loading.

Transition 'position' has been found by the examination of shadow photo-
graphs and it is convenient to assume that this is the major source of
(random) uncertainty. It is very difficult, especially for the lower surface
of a lifting aerofoil at the lower Mach numbers, to obtain a clear indication
of changes in boundary-layer profile properties. Other techniques for detecting

transition are unsuitable for routine test purposes, uanfortunately.

One of the aerofoils considered in Fig.3 is RAE (NPL) 3111 which has a 357
flat sonic rooftop at its design condition and is very similar in specification
to a member of the aerofoil family designed here. In Figs.4 and 5 direct com-
parisons of measured and predicted profile drag values are made over a range of

c at a constant Mach number, for this section. The data shown in Fig.4 are

L!
taken from the 20in x 8in tunnel and this figure is merely an alternative

presentation of some of the results already seen in Fig.3. 1In Fig.5, however,
the data are taken from the more reliable experiment conducted in the RAE 8ft

wind tunnel at much higher Reynolds numbers.

The span/chord ratio of the model was 3.2 in this case compared with 1.6
in the Teddington tests. The comparison in Fig.5 is a demonstration of the
usefulness of the present simple method both in design and in off-design con-
ditions. The disagreement between theory and experiment is no larger than the

difference between the wake traverse and balance drags themselves.

Once an effective transition position is defined and the flow is also
defined to be two-dimensional then the prediction of drag is likely to be
reliable because it depends principally upon the solution of the first-order
momentum integral equation. The latter can only be in error close to the
trailing edge and, as explained by Thompson, et aZ.27, as the pressure gradients
behind the trailing edge are roughly equal and opposite in sign to those
immediately ahead of the trailing edge, local departures from the boundary-layer
approximation should cancel so that well downstream (x/fc > 1.5, say) the
momentum loss will be accurately predicted. Even the relatively crude method

used here will therefore be as reliable as any individual drag measurement and
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more consistent and reliable as a guide to exchange rates (with M or CL)
than the results from many aerofoil testing facilities. An exception to this
may be when appreciable rear loading is present, which is not the case for the

family of aerofoils considered here.

2.3 Rear separation

Two alternative separation predictions have been used in the past, namely
Stratford's method in a form suitable for compressible flow2 and the assumption
that the pressure-gradient parameter m, appearing in the local equilibrium
calculation, takes a value of 104 at separation. Ref.23 indicates that these
methods give good agreement for a truly linear pressure rise as on the earlier

aerofoils.

However, reference to Fig.6 for the new calculations with section
103-14-50-70 shows a less satisfactory correlation between any chosen value of
m and the Stratford result. This may be caused by the local departure (see
Fig.12, for example) near the trailing edge, of the upper—surface pressures
from a truly linear form when the new section is run at Reynolds numbers or
with transition positions other than those used in the inverse calculatiom.

This is a disadvantage of the Nash method.

Consequently, the present investigation used Stratford's method, on the
'equivalent' linear pressure rise from end of rooftop to [Cp]te ignoring
any concavity or convexity of the actual pressure distribution. This had the

advantage of being consistent with the existing work of Ref.2.

Some definition of 'significant' separation from a practical point of
view is clearly required as the results in Fig.7 indicate. These show the

variation of boundary-layer properties, H, m, C, and G, at the trailing

f
edge of 103-10-50-70, over a range of incidence at M = 0.65.

If separation is assumed, for instance, to occur at m = 100 then this
o = 2.04°), but if m = 1000

then the section can run up to 5° without separation, whilst o can rise to

has started even at design incidence (o =

6.5 if 1w = 104 is chosen.

This represents a very large uncertainty in CL over which it should be

noticed H 1lies between 2.5 and 3.0. These values have all been thought to

be reasonable separation criteria in the past.

H
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3 DESIGN POINT CALCULATIONS

3.1 Preliminary work

A number of questions had to be answered before the new family of sections
could be designed and the main programme of computing could be undertaken to
prepare the new drag charts. Calculations were made on sections 103-10-50-70
and 103-14-50-70. ’

3.1.1 The choice of section design point in the presence of viscous
effects

For each design point, specified by Mdes’ t/c and xR/c, the section
resulting from the inverse program will have a camber shape and incidence that
will depend upon the assumed transition positions and the Reynolds number. It
was obviously undesirable to have a different section for each of these com-
binations and so an inverse design condition was required to produce a suitable
'mean' section for each combination of Mdes’ t/c and xR/c corresponding to
a particular member of the original aerofoil family and having a unique value
of design CLD, for example. The drag values and separation boundaries could
then be worked out for each of these 'mean' aerofoils as a function of Rc and

transition position.

As the Reynolds number is reduced, or the tramsition position moves
forward (on the upper surface especially) the thickness effect due to the
viscous displacement surface increases at the trailing edge. This causes a
progressive departure from the mean pressure distribution assumed earlier2 in
extrapolating linearly to the trailing edge. The thickness pressures will fall
and if the inverse procedure is to achieve the desired linear pressure variation
on the upper surface it must remove this trend towards a concave pressure dis-—
tribution at low Reynolds numbers by adding extra rear camber; compare the
camber lines shown in Fig.8 for nominally the same TDM specification
103-14-50-70 but assuming very different RC values (106 and 108). Con—
sequently a progressive increase of rear loading occurs with reduction of
Reynolds number (Fig.9). A similar but less severe effect is produced by

forward movement of transition (Fig.10).

This is admittedly a fairly severe case as there is a mild rear separation
predicted for RC = 106 and xtr/c~<0.25 on the upper surface, but even a change
8 .
from 10" to 107 (where the flow is completely attached) for xtr/c = 0,05, as

Fig.9 shows, leads to a difference in C of nearly 57%.

LD
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circulation being found for a forward upper-surface transition and a rearward

position on the lower surface.

Figs.13 and 14 show that there is little dependence of the drag of one
surface on the conditions on the other so that the existing presentation in Ref.3

can be retained.

3.2 Results of calculations at design C and comparison with the original

L’

aerofoil family

3.2.1 The design point (drag-rise) loci

The results for the 507 rooftop aerofoils (extracted from Ref.l12) are
reproduced here, as Fig.|5, and are entirely typical. The loss of lift as com-
pared with the aerofoils of Ref.2 varies from about 1% for the thicker sections
at the lower design Mach numbers (e.g. 101-14-30-70, 103-14-50-70 sections) to
about 107 for the thinner more highly cambered sections with the largest values

of CL (e.g. 104-06-60-70, 103-06-50-70). The design lift coefficients are
des

compared, in Table 1, with the original values from Ref.2. The new values for
the 102 series, which have 40Z rooftops, are close to those found by Hodges9
and confirm that the estimates in TDM 67009 2 were overoptimistic resulting

from the less accurate compressibility corrections used originally.

3.2.2 The design pressure distributions and camber lines

Ref.12 gives the pressure distributions and section ordinates for the com-
plete family of new aerofoils designed at the 'mean' design condition of
Rc = 107 and xtr/c = 0.05. Comparisons are made here only for the 507 roof-

top sections.

Fig.16 shows the effect on the inviscid designs of changing the compress-
ibility law from the original Wilby expression as used in Ref.2, to that
devised by Lock8. The new compressibility law produces a loss of 1lift and of
camber; the effect becomes more significant as t/c falls. Fig.17 then shows
the effect of including viscous effects in the design process; the new com-
pressibility law being used in each case for the calculation of pressures. The
introduction of viscous displacement effects raises the camber progressively as
t/c rises and the influence of the displacement thickness at the trailing edge
gives rise to a lowered pressure there. Consequently, the combined effect (see
Fig.18) is to reduce loading and camber over the forward part of the section

but to increase these over the rear, by an amount that rises with t/c.



14

3.2.3 Profile drag

Cosby shows, in Ref.l!2, a series of graphs in which the new values of

CD , CD and CD are plotted against the corresponding original valuesl3.
u L

One such graph is reproduced here as Fig.19, for the 507 rooftop sections.
This figure shows that the new total drag coefficients exhibit a constant
increment over the old values which seems to be independent of Reynolds number,
transition position or t/c. This is found to be true, for CDu, CDQ and CD

at a given xR/c and M over the whole range of conditions covered by

des’
the new family. Consequently, the complete set of carpet plots for profile
drag need not be replaced by new ones; only the differences need be plotted

as in Fig.20. That is, as
CDu, CDQ, CD = f(Mdes, xR/c) .

For completeness, the new carpets of profile drag are plotted out in
Ref.12 and compared with the originals. As an example, the carpets for
103-14-50-70 are shown here as Fig.21.

3.2.4 Lift/drag ratio

The loss of performance of the new sections when compared with the
original family is clearly demonstrated by Fig.22. Again, attention is
restricted here to the 50% rooftop sections but the other sections show similar

behaviour.

3.2.5 Trailing edge pressures and rear separation

The trailing edge pressures, estimated from the extrapolation of inviscid
pressures of the original family, were unrealistically large, except for very
large Reynolds numbers, as Fig.23 shows. The strong variation of [Cp]te with
transition position and Reynolds number also results in considerable differences
between the new rear separation boundaries predicted by Stratford's method and
those obtained earlier. Fig.24 shows this for the 103 series aerofoils. The
gain in operating Reynolds number for attached flow over the original estimates
becomes larger as the sections become thicker. This is due to the greater
relaxation of adverse pressure gradients on the upper surface (see Fig.12, for

example).
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4 CONCLUSIONS

The comparisons of the new pressure and lift values with those of the

original family show that:

(1) The new sections have design lift coefficients lower by O to 10Z, at

given M, , t/c, xR/c. They generally have slightly increased rear loading

des
and camber, because viscous displacement effects are now included in the design,

but reduced forward loading due to the changed compressibility law.

(ii) The new trailing edge pressures depend strongly upon transition position

and RC and show that the original estimated values were unrealistically high.

(iii) Consequently, the new sections have a much larger range of attached flow

conditions than the original calculations indicated.
The profile drag comparisons show that:

(iv) The new sections have, for a given M and xR/c, a constant

des
increment in profile drag over the earlier aerofoils irrespective of Reynolds

number, t/c or transition position.
Hence,

(v) The performance (e.g. in terms of CL/CD) associated with the original

family is too high and the new sections are thought to be much more realistic.

(iv) The present method of aerofoil design is supported by comparison with the
newer method due to Firmin. Despite the crude nature of the present drag
prediction procedure, it seems to be as reliable as present experimental results
although neither transitional nor tbree-dimensional phenomena are accounted for

properly in existing comparisons between theory and experiment.
Finally,

(viii) Some experimental work is clearly needed to establish criteria for

significant separation effects, even in the absence of shocks.
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COMPARISON OF DESIGN LIFT COEFFICIENTS OF THE NEW

SECTIONS WITH THE ORIGINAL TDM VALUES

New CL

Original C

Section des Ldes
101-10-30-65 0.823 0.87
101-14-30-65 0.657 0.66
101-06~30~-70 0.69 0.75
101-10-30-70 0.505 0.53
101-14-30-70 0.312 0.30
101-06-30-75 0.438 0.48
101-10-30-75 0.222 0.23
101-06-30-80 0.208 0.22
102-10-40-65 0.924 0.98
102-14-40-65 0.769 0.79
102-06-40~70 0.767 0.84
102-10-40-70 0.587 0.63
102-14-40-70 0.403 0.40
102-06~40-75 0.496 0.55
102-10-40-75 0.289 0.30
102-06-40-80 0.255 0.28
103-06-50-70 0.849 0.93
103-10-50-70 0.673 0.72
103-14-50-70 0.496 0.50
103-06-50-75 0.557 0.62
103~-10-50-75 0.36 0.38
103-06~-50-80 0.304 0.33
104-06~-60-70 0.919 1.01
104-10-60~70 0.751 0.81
104-14-60~70 0.581 0.59
104-06-60-75 0.618 0.69
104-10-60~75 0.425 0.44
104-06-60-80 0.340 0.38




NOTATION

c chord length
e tocal skin-friction coefficient (= TO/%DeuZ)
G boundary-layer similarity parameter
1 2
= ™ ]. (ue u) dy .[ (ue u)dy
0 0
H boundary-layer shape factor = §%/6
s arc length around aerofoil surface in chordwise plane, measured from
leading edge stagnation point
t aerofoil thickness
u velocity component within boundary layer
u, free stream velocity locally
x distance along chord
a angle of incidence
§* boundary-layer displacement thickness
9 boundary-layer momentum thickness
§* dp sy eq s .
i = =— —£} equilibrium pressure gradient
T dx
To local surface shear stress
Subscripts
des design point value (e.g. C s C
L D
des des
D drag-rise value, in this context also the design point value
e.g. C , >
-
R end of rooftop value (e.g. xR/c)
tr transition point value (e.g. Xtr/c)
u upper surface
L lower surface
te trailing edge (e.g. [C ] )

p te

e local free stream value (e.g. Me)
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NOTATION (concluded)

TDM section designation:

(Member of RAE 100 series thickness forms ) - (Z t/c) - (100 x roof top
length xR/c) - (100 x design Mach number MD): e.g. 103-14-50-70 has a 147
thick RAE 103 thickness distribution, constant upper-surface pressure

(Me =1.02) up to x/c = 0.50, and a design (drag-rise) M = 0.70.
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Fig. 2 Comparison of design pressure distribution from the
present method with that predicted by Firmin’s method
(Ref IB) for the same value of lift coefticient
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Reynolds numbers are
correspondingly .
1= i0¢—i-7 x10°
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‘ Fig.3 The effect of lift coefticient upon comparisons between

drag prediction and experimental results from the
RAE (Teddington) 20in x 8in wind tunnel
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Fig7 Variation of trailing edge boundary layer properties
with incidence, at M=0-65, for a section designed to have
a flat rooftop at M=0-7 (ic section |O3-IO~50-70)
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108

F|g Il Effect of incidence correction to give CL:CLdes

on upper surface profile drag values
New section: 103-14-50-70 designed at

Re =107, [Xgr/c]u =0-05
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Fig.I5 Comparison of drag-rise loci for original and new
aerofoil sections
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