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SUMMARY
!

;

S~
I this-repest ;bw cycle fatigue phenomenon is investigated in total strain ranges from
1 to 2 per cent, and frequencies from 0.2 to 100 cpm. Changes in endurance life under

varying strain and frequency conditions were determined. During the endurance tests changes
.in the moment and strain values at the critical minimum section of the specimens were

recorded. From the continuous time recordings of these parameters, elastic and plastic

time ratios of specimen lives were defined and their dependence on strain and frequency

levels found. Change of crack propagation rate with frequency was also studieq;f’ﬁigglly
a cumulative fatigue hypothesis, incorporating both frequency and strain parameters, was
formulated and shown to be valid under varying strain and frequency conditions.

RESUME

Le présent Rapport étudie le phénoméne de la fatigue & faible cycle dans toute la gamme
des déformations allant de 1 & 2% et des fréquences comprises entre 0,2 et 100 cpm. Les
modifications de la durde de vie dans différentes conditions de déformation et de
fréquence ont été détermindes. Au cours des essais d’endurance on a enregistré les
modifications des valeurs de moment et de déformation se produisant 4 la section minimale
critique des éprouvettes. Les enregistrements continus de ces paramétres dans le temps
ont permis de définir les rapports dlastiques et plastiques dans le temps des durdes de
vie des déprouvettes et de constater jusqu’'d quel point ils sont fonction des niveaux de
déformation et de fréquence. La modification de la vitesse de propagation de fissures
avec la fréquence a été également étudide. On finit par formuler une hypothése concernant
la fatigue cumulative, qui comporte des paramdtres tant de fréquence que de déformation,

et qui s'est révélée applicable dans différentes conditions de déformation et de fréquence.
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FOREWORD

In no category of applications are fatigue and its potential for damage of greater
importance than in aerospace vehicles. It is to be expected, therefore, that the
Structures and Materials Panel of the NATO Advisory Group for Aerospace Research and
Development devote itself, as it has for years, to the many forms of damage that might be
incurred as a result of fatigue, in terms of both a better fundamental understanding of
the various phenomena and a better appreciation and knowledge of the effects under various
situations. Particular attention has been devoted to developing an improved capability
for predicting the effects of given load spectra on cumulative damage. Experimental data
defining the effects of load frequencies on fatigue behavior are definitely inadequate.
These effects are manifested in various ways to various degrees, sometimes in a contradic-
tory manner, depending on the type and level of loading and on the range of frequencies
concerned.

The present report, therefore, is a welcome addition to the existing literature, in
that it deals with very high strain ranges in low cycle fatigue at low frequencies. It
was solicited by the Panel for presentation as a tutorial lecture at its semi-annual
meeting in Istanbul, in September 1969. It is hoped that the strain results reported,
together with the proposed cumulative fatigue hypotheses, will provide a better insight
to this subject and stimulate further discussion and research in this timely and important
field.

N.E.Promisel Chairman,
AGARD Structures and Materials Panel
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EFFECT OF LOADING FREQUENCY ON THE STRAIN BEHAVIOR AND
DAMAGE ACCUMULATION IN LOW-CYCLE FATIGUE

D.E.Giicer* and M.Gapa*
1. INTRODUCTION

Machine components and structural members which fail by fatigue are nearly,always subjected to load changes
of varying frequencies. In practice these frequency changes range from thousands of cycles per minute down to
thousands of minutes per cycle. An understanding of the frequency effects in fatigue is not only important
because it may throw light on the basic mechanism or mechanisms of fatigue failure; but also because of the
need of the designer for such data in designing structures itself or in designing accelerated tests for
decreasing the testing time of these structures.

In recent years, attention has increasingly been drawn to this problem. However, most of the work has been
carried out in the range of frequencies of conventional fatigue machines, which is roughly 500 to 10,000 cycles
per minute (cpm), and under loads giving long endurance lives. Under these conditions frequency effects have
been found to be small, usually of the order of a few percent. In the investigations above this range, a con-
tinuous increase in fatigue strength, with or without a maximum depending on the type of material and test
conditions, was observed. Below this range results are more conflicting and sometimes contradictory. Study
of existing information shows that. there is a need for extending the investigations to very low and very high
frequency regions. There appears that frequency effects originate from specimen heating due to high damping;
physical changes taking place in the structure of the material as a result of strain aging or other phenomena,
corrosive influence of air or other media, and finally from rheological effects related with strain rate or
creep. Reviews of literature dealing with the effect of frequency on fatigue have been given by Van Leeuwen!,
Forrest?, Stephenson®, Bradshaw" and WellerS.

The present investigation studies the frequency effects in the low-cycle fatigue field. Since endurance
lives in this field are below 10" or .10° cycles, machines with high frequency load application are not suitable.
Usually fatigue tests of axial, rotating bending or direct bending type are carried out at frequencies.below
500 cpm. Existing information indicates that mechanism of failure in low cycle fatigue is, most probably,
different from failure at long endurances, as evidenced from the appearance of the fracture surface which
resembles more that of the static tensile fracture than that of the typical fatigue fracture. Also at low
cycle fatigue endurance is more related to ductility® 7 and strain hardening capacity®, whereas high-cycle
fatigue is better ‘correlated with tensile strength of the material. Information on the effect of frequency in
low cycle field is limited and fragmentary. Eckel's work®, based on his investigations on lead, to correlate
frequency with endurance life and subsequent efforts!® !! to extend this relationship to other materials and its
adaptation by Harris!? to include the effect of corrosion as a parameter should be mentioned.-

2. EXPERIMENTAL ARRANGEMENT

The tests were made by direct reversed bending of a cantilever beam specimen under constant deflection con-
ditions. The testing machine, shown in Figure 1, was constructed to enable continuous frequency changes by
means of a mechanical variator. Frequencies chosen for tests were 0.2, 1, 10, 100 cpm.” The test specimen in
Figure 2, was developed during previous investigations® !3:!* It has biaxial state of stress at the center of
its slightly notched critical section. All specimens were cut from the same plate with their longitudinal axis
in the direction of rolling. Chemical composition and mechanical properties of the test steel are given in
Table 1. Specimens were cut by oxygen, planed, and normalized at 900°C for 50 minutes. They were then grooved
by milling, and a stress relief treatment at 600°C for 50 minutes was performed. Final operation was grinding of
the groove surface by a specially prepared sand belt to 2/0 finish. Although the stress concentration factor of
the g?oove is small (1.001) it helps localize the cracks. A transverse groove at the end of the specimen helps
fix the moment arm at the same length at each test. Endurance life is taken as the number of cycles to the
formation of a crack of 3 mm length. Triplicate tests were run for each testing condition. Strains were
recorded by means of inductive strain gages of 40 mm gage length, throughout the endurance life of the specimen.
‘These gages had a sensitivity of 10°° mm/mm. Deflections were changed by means of an eccentric. For the
calibration of eccentric settings (and deflections) with the longitudinal strains, deformation of a 500 micron
size Vickers indentation on the critical section was followed by an optical microscope. An inductive .gauge
placed at the elastically bent section of the specimen gave a signal proportional to the bending moment at the
plastically bent critical section which was also continuously recorded. Figure 3 shows this arrangement. Leads
from these gages are connected to a multi-channel recorder over dynamic bridges and pre-amplifiers for continuous
time recordings. For obtaining the hysteresis loops the same leads were connected to an X-Y oscilloscope over
dynamic bridges. The loops were photographed from the screen of the X-Y oscilloscope. A microscope equipped
with traveling ocular was used to measure the crack lengths.

®* Prof. Dr Dogan E. Glicer and Dr Mehmet Capa are both connected with the Technical University of Istanbul. Prof. Giicer is
also the Director of the Materials Research Unit of the Turkish Scientific and Technical Research Council (T.B.T.A.K.)
This paper is based on part of the research project MAG-104 sponsored by the T.B.T.A.K.
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3. EXPERIMENTAL RESULTS

3.1 Effect of Frequency on the Strain Behavior

Simultaneous time recordings of moment (above) and total strain (below) are reproduced in Figure 4, starting
with the initial loading of a virgin specimen. Initial yield phenomenon is observed in the moment curve as a
plateau in the first half-cycle, and as an increase in the corresponding strain values. The range between
extreme values of moment is called the moment range and denoted by AM. Strain records represent the total
strain (i.e. elastic plus plastic strain) values. Range of total strain between a maximum tension and a maximum

compression state will be called total strain range and will be denoted by Aet. Figure 4 shows that there is a

continuous increase in the moment range and a continuous decrease in the total strain range due to strain
hardening of the initially annealed and stress relieved specimen. These ranges stabilize after nearly 5 cycles.
It has been observed that these stabilized values remain unchanged until appreciable cracking occurs in the
critical test section, and after which Aet increases due to opening of crack sides and AM decreases due to
loss of the load carrying capacity of the critical section. It was also found out that these changes start when
the size of the cracks reaches about 3 mm length; and the criterion for the end of the test was determined on this
basis. When frequency was changed during a test run between fixed deflection levels, magnitude of the total
strain range did not change. The same result was also seen on the hysteresis curves (Fig.10). For this reason
Aet was taken as the measure of the severity of loading; rather than plastic strain range, which, as will be
shown later, changes with frequency. It should also be remarked that, since the strain values stabilize at the
very early cycles, constant deflection tests become equivalent to the constant strain tests for the remainder of
the endurance life. :

Neglecting any anelastic contribution to the strains, which was found to be negligeable in the range studied,
one can write for the instantaneous values

€ = €+ €, (1)
where €q shows the elastic, ep the plastic component of the total strain € - For the range values of the
same components

Aet = Afe + Aep (2)
is valid, In Figure 5 time recordings of moment and total strain at the Aet = 1.571% level and at the
frequency f = 10cpm are drawn systematically after stabilization is complete, in strict faithfulness to the
original recordings. Approximate cyclic changes in the elastic and plastic components of the total strain
were also shown in broken curves with the following considerations. Obviously when M = O the component
€e = 0 and € = ep , and when M has an extremum value, € . € and €p have the corresponding extremum
values. Also when € = 0 , the components €o :'-ep . When a bent specimen springs back from an extremum

position only elastic deformation takes place, that is, €, alone changes from its extremum value to zero and
€ remains constant. With these considerations fairly approximate €e and € curves were inserted to the
figure and Aee and Afp were indicated. During this investigation deflections were determined by the fixed
eccentric angles. Therefore stabilized values of total strain ranges which show the strain levels are not
round figures, but values obtained by calibration tests. Table II gives these stabilized values over a gage
length l0 , equal to 500 microns, and 40 mms. This latter figure is the gage length of the inductive gages.
Although the periods of all these changes are equal, they are not simple harmonic in character. A systematic
study of these curves recorded at various total strain levels and frequencies revealed that time intervals
following each extremum value of the total strain, during which plastic strains remain constant and only
elastic strains change until the instantaneous value of moment becomes equal to zero, are easily measurable and
reproducable quantities. There are two such intervals during a period, equal in magnitude, one following the
maximum and the other the minimum point. If one-such interval is denoted by t, then 2t becomes the time
interval at each period T during which the specimen deforms only elastically. One can define then the ratio

2t
6, = = 100% 3
€ T
as the elastic time ratio, and the ratio
P T-2t _ P
p T T3 1006 = (100-8,)% (4

as the plastic time ratio of endurance life. That means that during the 96 per cent of its life, given. in
time units, the specimen will undergo elastic deformation only; and during & per cent of its life plastic
deformation will take place along with elastic deformation. Table III gives these values. It will be seen
that at all strain levels, as frequency increases, specimens undergo more elastic deformation and less plastic
deformation. If it is assumed that fatigue damage takes place, to a larger degree, during plastic deformation
and increases with its magnitude, these results correlate very well with the effect of frequency on the
endurance life, as will be seen at a later section. Thus, a quantitative measure is obtained for the generally
qualitatively expressed statement, that as frequency increases materials behave more elastically and there is
less time for plastic deformation.
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Instantaneous changes of bending moment M and total strain €, shown in Figures 4 and 5 can better be
interpreted by means of the M-€, hysteresis shown in Figures 6, 7 and 8. In Figure 6 each loop is slightly
shifted on the screen in order to record the successive cycles without overlapping. Figure 7 shows the same
changes systematically. After an initial yield, there is a gradual increase in bending moment range and a
gradual decrease in the total and plastic strain ranges and an increase in the elastic strain range due to
strain hardening. Finally a stabilized hysteresis loop is obtained after approximately 5 cycles (inner loop
on Fig.7). Stabilized values of moment range &M , and total strain range Aft , Dplastic and elastic strain
ranges Afp and Afe are shown on the stabilized curve. The changes in these parameters between the initial
and stabilized values are denoted by oM , Set , Sep and 869 . As will be seen from the figure, total
changes in the range values are made up from changes on the tension side (indicated by prime signs) and on the
compression side (indicated by double primes. Thus &M = &M’ + 8M” , etc) On either side these changes are
measured from the first to the stabilized extremum values. The changes on the tension and compression sides
are not necessarily equal, because the material changes continuously due to strain hardening. Only in the
stabilized loop corresponding tension and compression values are equal. Obviously also

Se;, = Beg + Bep . (5)

These changes can be obtained directly from the photograph of Figure 8, in which the hysteresis loops were
allowed to overlap. In this figure, curves denoted by (a) show the changes from initial to stabilized conditions;
in order to show a loop separately, the image ‘on the screen was shifted towards the end of the test, and the
curve (b) was recorded. It has been shown® !? that these changes are important in themselves in determining

the relative performance of steels in the low cycle range. It was found that, regardless of the strength
properties of the steels, at a certain Aet level, the steel with lower 56t , that is with lower strain
hardening capacity, gave a higher endurance. Since only one steel was studied in the present investigation,
further evaluation of these range changes was not undertaken.

In Figure 9, an analysis of the stabilized total strain-bending moment hysteresis into its elastic and
plastic components is given. These curves were obtained by direct strain readings. The specimen was strained
by turning the machine manually in successive steps of loading-unloading-reloading; and strain readings were
taken at each step. These values are indicated on the systematic curve. Elastic hysteresis is a straight
line. Plastic loop shows that during elastic spring-back plastic strains remain constant. It will also be
seen that when €, = 0 the values of €, = ~€, as expected. However, these curves were obtained manually
and with short periods of rest for strain readings; therefore they may be compared with recorded hysteresis
loops for 0.2 or 1 cpm frequencies only.

3.2 Effect of Frequency on the Total Strain-Bending Moment Hysteresis

Figure 10 shows these effects. The scale on the screen was magnified in order to make the changes more
clearly visible. Figure 10a shows the upper corner of the stabilized hysteresis; 10b the changes on the strain
axis. Curves a, b and ¢ on Figure 10a correspond to 1, 10 and 100 cpm respectively. That the stabilized
moment range increases with frequency while the total strain range remains constant is visible and corroborates
the observations made on continuous time recordings of these parameters. In Figure 10b corresponding curves
show a decrease in the stabilized plastic range. Since total strain range remains constant with changes in
frequency within the accuracy of measurements, obviously elastic strain range increases and the specimen behaves
more elastically, as would be expected.

These results indicate that a correlation of endurance life with plastic strain range has to take loading
frequency into account. A preliminary analysis, to find out whether observed changes in plastic strain range
could explain the dependence of endurance life on frequency, will be undertaken during the discussion of the
results.

3.3 Effect of Loading Frequency on the Crack Propagation Rate

In order to determine the effect of frequency on the crack propagation in 1 to 2 per cent total strain
range, a crack was deliberately started at the corner of a 4 mm diameter hole drilled on the critical test
section, at a quarter distance fram the edge; since it was found that cracks in unnotched specimens started
generally in this region. Growth of the crack was followed by means of a microscope equipped with a traveling
ocular. Figure 11 shows that cracks propagated more rapidly at lower frequencies. This is presumably due to
longer atmospheric exposure resulting in embrittlement of the material ahead of crack tip or in contamination
of newly formed crack surfaces and consequent prevention of rewelding. It is found that a 3 mm crack length,
which was taken as life criterion, is reached after a smaller number of cycles at lower frequencies. Therefore
crack propagation rate is one of the factors bearing on the frequency dependence of endurance life. :

It is seen that when the crack is small growth rate is also small. After approximately 0.5 mm growth is
rapid at all frequencies. It will be also remarked that endurance life found by these curves is shorter than
the life at regular tests, because in these tests cracks were initiated at an earlier stage due to deliberately
introduced hole.
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The same type of dependence of crack propagation rate on frequency was reported by other authors!®: !® for
different materials and testing conditions.

3.4 Effect of Frequency on Endurance Life

In order to determine this effect, triplicate tests were run at three total strain levels and at four fre-
quencies at each level. During a test, several cracks form on the test section and when their sizes reach 3 mm
length load carrying capacity of the section begins to decrease. For this reason 3 mm crack length was adopted
as a criterion of life. Test results, together with per cent decrease in life with decrease in frequency, are
given in Table IV.

It will be seen that decreases in life from 100 to 0.2 cpm can be as high as 50 per cent (which also corres-
ponds to an increase in life close to 100 per cent when frequency is increased from 0.2 to 100 cpm). These
changes cannot be attributed to any temperature effect since temperatures at the surface or in the bulk of the

' test section do not rise above 50°C as will be seen from Table V. Due to damping specimens gradually heat up
to temperatures in the table and temperature remains constant thereafter. At frequency 0.2 cpm temperature
changes were negligeable and these values were not included in the table.

Strain ageing can also be discounted in this steel. The remaining factors, such as corrosive effect of air,
crack propagation rate and rheological factors (changes in strain ranges, rates, etc.) may be responsible singly
or jointly in affecting the endurances. However it is clear that, in the strain-frequency field investigated,
the effect of frequency on endurance life is comparable in magnitude to that of strain. Similar effects of
smaller magnitude were found, by Mann!® and Wade and Grootenhuis!’ on the endurance lives correlated with stress
range values. A plot of these values on a log-log scale is given in Figure 12, together with the least squares
regression lines of log N on. log f. Obviously an Eckel® type relationship is obeyed. The equations of the
regression lines can be written as

log N = log N, +pu log £, (6)

where u and N, are constants. The least squares values of u« and N, are given below at three strain levels.

Total strain range N,
Aet % M (Calc.)

1.083 0. 0926 1960

1.571 0.0923 1240

1.919 0.0914 705

It will be seen that the slopes of the lines (u values) differ of the order of one percent. It may therefore
be assumed that, in the strain ranges investigated, u values are not dependent on the strain range. This
result does not agree with the conclusions of Gohn and Ellis!" for lead and lead alloys; and McKeown!S for heavy
non-ferrous alloys; who reported different values for different strain levels.

3.5 Cumulative Effects of Frequency

Two series of tests were conducted to find out the cumulative effects of frequency. First, keeping total
strain level constant, specimens were run for various cycle ratios at different frequency levels, and the
cumulative cycle ratios were determined. Secondly, specimens were subjected to cycle ratios with varying strain
and frequency levels, and cumulative cycle ratios were found. Results of these two series of tests are given
below.

(a) Cumulative cycle ratios at constant strain level and varying frequencies. The results of these tests are
given in Table VI. At a fixed total strain level Aét , specimens were first cycled at f, initial

frequency level where endurance was N1 , for a predetermined n, cycles, or a cycle ratio
r, = nl/Nl ; then frequency was changed to f2 level, where endurance was N, , and the remaining
life cycle n, or the cycle ratio r, = n2/N2 was determined; r, plus r, gives the cumulative

cycle ratio. Endurance lives N, and N, are taken from Table IV. A high (100 cpm) and a low (1 cpm)
frequency were chosen for initial cycling; followed by final cycling at 3 other frequencies. In the
low-high frequency tests cumulative cycle ratios of 1.03 and 0.99 were found at the Aet = - 1.571% and
Aft = 1.919% 1levels respectively. In the high-low tests cumulative cycle ratios were 1.02 and 0.96
for these strain levels. Since all the values are very close to 1.00, test results suggest a linear
damage law. By the assumptions,

(1) Total damage, D, at failure is 100 per cent or 1;

(2) Partial damage di received by the specimen during the cycle ratio ry; 1is numerically equal to the
latter, i.e. di = ry

(3) A certain state of damage is independent of the path followed;

we can formulate the following hypothesis for the accumulation of damage at various frequencies at a
certain strain level
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n
D =34d =5 1 =25r %))
1 1 1N i 1
where (1 = 1, 2, 3, ....), indicate the frequency levels.

This is similar to the cumulative damage law proposed by Miner'® for varying stress levels. Hypothesis
put forward in Equation (7) is verified by the two-step tests summarized in Table VI.

(b) Cumulative Cycle Ratios at Varying Strain and Frequency Levels Two parallel series of tests were run
according to the program given in the Table below.

Dey | % Frequencies, f, cpm
1,571 100 ——10 —— 1
1.083 1100 —10 —— 1
1.919 100 — 1 — 10 (end)

In these tests the following notations were used. In a test at £y frequency and Aft strain level, total

endurance life was denoted by Njy . 2 partial number of cycles run at this level by nyy , and by partial
cycle ratio ry; = ny;/N;y . For the program given above, f; = 100, f, = 10, f, = 1 cpm and
Aetl = 1.571, Aetz = 1.083, AEts = 1.919% . N;; are to be taken out of Table IV. The partial cycle
ratios in both tests are shown in Table VII. It will be seen that in these two tests, where all the cycle
ratios, except the final r,, , are kept the same, cumulative cycle ratios give the values 0.990 and 1.134
or an average of 1.062 which again is close to 1. Therefore we can hypothesize that damage accumulation is
linear and partial damage dij = Tyy . With further assumptions stated in the previous section we can

generalize the relation (7) to the following form:

5oy o= 1. )

n
D:Ed :E_il
ij
i3 ij Nij

Preliminary testé of Table VII satisfy this hypothesis. However more data is needed to test its validity.
Since specially low frequency tests need too much time, further tests could not be undertaken within the frame-
work of the present investigation.

4. DISCUSSION OF THE RESULTS

In this investigation the effect of loading frequency on strain behavior and damage accumulation was studied.
Although it is difficult to arrive at a fundamental relationship by means of bending tests, where the presence of
stress and strain gradients complicate the analysis of the results, bending is a convenient way for introducing
_ large amounts of plastic strains without endangering the stability of the specimen.

Continuous recordings of bending moments and total strains showed the expected stabilization of these
parameters at early cycles. With frequency increase an increase in the stabilized moment range and the elastic
strain range was observed, while the total strain range remained constant and the plastic strain range decreased.
Constancy of the stabilized total strain range when the frequency changes is a significant result, in that it
gives a reliable parameter for assessing the severity of loading in the low-cycle fatigue under changing
frequencies. Since low-cycle fatigue seems to be dependent on ductility whereas long endurance (high-cycle)
tests depend on stress values, the total strain range parameter could provide a link between these types of fatigue
phenomena. In low cycle range, where Qe component is large with respect to Afe , the behavior of the
material should be determined by A€ or the ductility. In high-cycle fatigue, on the other hand, where Aee
dominates and AED is negligible, Kee which is proportional to stress should be the determining factor of the .
performance.

Since plastic fatigue range decreases with frequency there arises the necessity of examining correlations
of fatigue life based on plastic fatigue range more closely. It would be worth-while to see whether the decrease

in plastic range with frequency, when applied to the Coffin relationship, could explain the observed decrease
in life with decreasing frequency. For low carbon steels this relationship can be written as

Aep N2 o= ¢,

For two different frequencies we may write

’_ZINZ
§}
TN
RILE
o o
o=
~—

N
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At Aet = 1.919% level for f, = 100 and f, = 1 cpm frequencies, from Fig.10b we obtain
2
fw = 0.91
Aep1
whereas Nl/N100 = 0.66 from Table IV. Therefore decrease in N is not explained on the basis of the change

in Aép alone. According to Coffin formula life should decrease of 9% while it actually decreases about 34
percent. This result can be interpreted in two ways: (1) the said relationship does not hold in this case, or
(2) the plastic strain increase is not the only factor determining the observed decrease of the endurance life:
but other factors such as air corrosion and frequency dependence of crack propagation rate also make important
contributions. Indeed, the observation made in this investigation, that at decreased frequencies the crack
propagates faster (in term of load cycles) can make a positive contribution to close this gap. Increased
corrosion time at lower frequencies also produces an effect in the direction of decreasing the life cycles.

Another observation made on the continuous strain records was that, as frequency increased the time during
which the plastic strain component remained constant (that is specimen behaved solely elastically) increased. These
times were expressed in ratio to one period of the strain cycle T and was called, for want of a better definition,
elastic time ratio 9 In the rest of the period, plastic deformation takes place along with elastic
deformation. This tlme expressed as a ratio of the period was called, plastic time ratio Hp . It may be
assumed that during the pure elastic deformation materials do receive less damage than when plastic deformation
is also taking place with the elastic deformation. The fact that Be increases with increasing frequency, and
decreasing strain level, and &_ increases with the decreasing frequency, an increasing strain level may provide
quantitative parameters in explaining the effect of frequency on life. '

Effect of frequency on the crack propagation rate seems to be an important factor in determining the fatigue
life in low cycle fatigue. It has been observed that at high frequencies a crack propagates slower and at low
frequencies faster presumably due to to corrosive and rheological effects. Since life criterion is taken usually
as the number of cyclesuntil the appearance of a crack of a certain length and since in low-cycle fatigue, life
cycle values are small, contribution of this factor on life may be more important in this phenomenon than at high-
cycle fatigue.

The effect of frequency changes from 0.2 to 100 cpm on the endurance life was found to be of the same order
of magnitude as the effect of strains in the 1 to 2 per cent total strain range. As the frequency decreased
from 100 to 0.2 cpm at all total strain levels life decreased between 40 to 50°per cent; whereas an increase in
the total strain range from 1 to 2 percent decreased the life at all frequency levels between 60 to 80 per cent.
The frequency effects may be attributed to the joint influences of increasing plastic strain range, increasing
crack propagation rate and increasing air corrosion” with decrease in frequency. Change of temperature was
found negligible in this Aét-f field, as the increase in surface, where maximum amount of plastic deformation
takes place, and in bulk temperatures, were between 2 to 30° above ambient temperature. This temperature
increase cannot cause noticeable changes in the mechanical properties of the steels, but an effect on the air
corrosion rate may be suspected.

In trying to evaluate the cumulative effects of frequency changes, two series of tests were carried out. In
the first one, cumulative cycle ratios with changing frequency at constant strain levels were determined. In
the second, cumulative cycle ratios during concurrent stepwise changes of strain and frequency levels were
found. In both cases cumulative cycle ratios were close to one. Therefore linear cumulative damage hypothesis
of the general form E(nij/NiJ) =1 where (i,j =1,2,3...) was put forward. Here i indicates the frequency,

j the strain levels. The hypothesis was tested and found to hold under j = constant conditions, and when both
i and j were variable. Previous tests of similar nature had shown!® that it also holds under i = constant
conditions. Therefore this may be a cumulative damage hypothesis for combined changes of strains and fre-
quencies. However, more test data is required to test its validity.

SUMMARY OF RESULTS

.Low-cycle fatigue phenomenon in low carbon steel was studied in 1 to 2% total strain and 0.2 to 100 cpm
frequency ranges. Conclusions reached apply for this strain-frequency field and are summarized below:

1. Bending moment and strain values and their ranges stabilize after approximately 5 cycles.

2. Stabilized range values of bending moment, elastic strain increase, and that of plastic strain decrease
with increasing frequency; whereas total strain range is unaffected by frequency, hence better suited
for the correlation of test data when frequency effects are studied.

3. There is need for closer study of the Coffin relationship in view of the frequency dependence of plastic
strain range.

4. Elastic and plastic time ratio parameters were defined and evaluated quantitatively in order to explain
the frequency dependence of endurance life.

5. Effect of frequency on endurance life was found to be of the same order of magnitude as that of strain
in the strain-frequency field investigated.
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6. Endurance life-frequency dependence obeys the Eckel relationship and correlation coefficient does not
change with strain level. ’

7. Fatigue crack propagates slower at high frequencies, and faster at low frequencies.
8. A cumulative fatigue hypothesis incorporating strain and frequency parameters was formulated as

;1 nij
i —
j Nij
where 1 indicates frequencies and j strain levels. It was shown that this relationship holds under
constant strain changing frequency, constant frequency changing strain conditions and under concurrent
changes of frequency and strain.

=1, (1, = 1,2,3,...)
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Chemical Composition and Mechanical
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TABLE 1

Properties of the Steel

IBRARY

. Cc M P S Si
Chemical " !
Composition 0.18 0.38 0.030 0.020
Elong. at
Yield pt. UTs Reduc. in fract. in
Mechanical kp/mm? kp/mm? area % 5 cms. %
Properties
19.1 36.5 60.2 40.0
TABLE I1
Stabilized Strain Range Values at the
Critical Test Section
Total Strain Plastic strain Elastic strain
Excentric Deflection range Aet % range Aep , % range De, , %
Angle mm
L= 500 p 40 mm 500 w40 mm 500 w40 mm
14° 7.22 1.083 0.930 0.820 0.477 0.263 0.453
16°30' 8.66 1.571 1.180 1.191 0.695 0.380 0.485
20° 10. 50 1.919 1.460 1.424 0.950 0.495 0.510
TABLE III

Elastic and Plastic Time Ratios

Tot.strain

range ﬁft , % 1.083 1.571 1,919

Frequency

7. cpm B0 % 0, % | G0 % Op % | B0 % Op %
0.2 28.2 7T1.8 22.6 71.4 16.8 83.2
1 36.2 63.8 31.4 68.6 30.0 70.0
10 36.8 63.2 36.4 63.6 36.0 64.0
100 37.2 63.8 37.4 62.6 46.6 53.4
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TABLE IV

Effect of Frequency and Total Strain Range

on Endurance Life, N
Total strain
range AEt % 1.083 1.571 1,919
Frequency Perc. Perc. Perc.
f, cpm N Noye decr. N Nove decr. N Nave decr.
3250 1805 1020
100 2900 2983 0 1950 1859 O 1150 1113° 0
2800 1822 1170
2380 1600 900
10 2500 2410 19.2 1665 1608 13.5 850 887 20.3
2350 1560 910
2100 1270 728
1 1950 2025 32.1 1181 1205 35.2 780 733 34.2
2025 1165 690
1730 1040 578
0.2 1560 1680 43.8 1120 1091 41.3 534 566 51.0
1750 1111 586
TABLE V
Maximum Temperatures of Test Specimens
Total strain
range % 1.083 1.571 1.919
Frequency Maximum Temperatures at the Surface of the
f, cpm Critical Section, °C
1 20.6 20.9 21.7
10 21.3 22.1 23.1
100 32.4 38.4 41.3
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TABLE VI

Cumulative Cycle Ratios at Constant Total Strain Ranges and Under Varying Frequencies

Bey = 1.571 % De, = 1.919 %
T, f, n, T, n, r, ry+r, | £y f, n, T, n, r, rtr,
1 100 603 0.50 916 0.49 0.99 1 100 365 0.50 459 0.43 0.93
1 100 301 0.25 1430 0.77 1.02 1° 100 183 0.25 672 0.59 0.84
1 100 120 0.10 1682 0.92 1.02 1 100 73 0.10 831 0.77 0.87
1 10 603 0.50 898 0.51 1.04 1 10 365 0.50 443 0.49 0.99
1 10 301 0.25 1177 0.72 0.97 1 10 183 0.25 652 0.73 0.98
1 10 120 0.10 1332 0.8 0.92 1 10 73 0.10 744 0.77 0.87
1 0.2 603 0.50 837 0.68 1.18 1 0.2 365 0.50 393 0.68 1.18
1 0.2 301 0.25 846 0.77 1.02 1 .2 183 0.25 530 0.93 1.18
1 0.2 120 0.10 1102 1.00 1.10 1 0.2 73 0.10 484 0.98 1.08
100 10 930 0.50 658 0.42 0.92 100 10 557' 0.50 304 0.3¢4 0.84
100 10 465 0.25 1296 0.79 1.04 100 10 278 0.25 587 0.59 0.84
100 10 186 0.10 1495 0.92 1.02 100 10 111 0.10 830 0.92 1.02
100 1 930 0.50 614 0.51 1.01 100 1 557 0.50 309 0.43 0.83
100 1 465 0.25 97¢ 0.79 1.04 100 1 278 0.25 559 0.76 1.01
100 1 186 0.10 1145 0.94 1.04 100 1 111 0.10 638 0.88 0.98
100 0.2 930 0.50 560 0.51 1.01 100 6.2 557 0.50 289 0.51 1.01
100 0.2 465 0.25 841 0.77 1.02 100 0.2 278 0.25 453 0.80 1.05
100 0.2 18 0.10 1040 1.02 1.12 100 0.2 111 . 0.10 492 0.93 1.03
TABLE VII

Cumulative Cycle Ratios Under Varying Frequency

and Strain Level Conditions

Frequency Strain Cycles run, nyy Cycles to Cycle Ratios, rij
Levels  Levels Fractures
£y, com  Dey, % Test I Test IT Ny Test I Test IT
100 1.571 174 174 1859 0.0935 0.0935
10 1.571 96 96 1608 0.059 0. 059
1 1.571 70 70 1205 0.0581 0.0581
100 1.083 200 200 2983 0.0985 0.0985
10 1.083 280 280 2410 0.116 0.116
1 1.083 435 435 2025 0.145 0.145
100 1.919 144 144 1113 0.129 0.129
1 1.919 95 95 733 0.130 0.130
10 1.919 146 276 887 0.161 0.305
Cumulative cycle ratio E}ij = 0.990 1.134
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Fig.1 The testing machine

Fig.3 Arrangement for recording strains and hysteresis loops



¢ ABBOTT

TECHNICAL LIBRARY
ABBOTYTAEROSPACE.COM

12

- 60 —

e——— - foip &

- 275 -
- 450 -

20+

Fig.2 The test specimen

Fig.4 Continuous and simultaneous records of the bending moments and strains during initial cycles

(A, = 1.083%, f = 10 cpm.)

Moment (M)

Time

—~ e i
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wn ‘SL wl et % e -~
| — i ~
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€t Total strain
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Fig.5 Graphical representation of the simultaneous recordings of the stabilized cycles of bending moment and
longitudinal strain.
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Fig.6 Bending moment-longitudinal strain Fig.8 Hysteresis loops allowed to overlap
hysteresis loops (slightly shifted to show the changes in the bending moment
to show successive cycles) and strain ranges.

Fig.10(a)

Fig.10(b)

Fig.10 Changes in the range values with frequency. (a) Changes in bending moment, (b) changes in plastic
strain range

(Gage length 40 mm, Ae; = 1,460%)
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Fig.12 Change of endurance life with frequency at three total strain range levels.
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Since publication the author has amended the following passages in this report:
1. The paragraph, following the table on page 5, which should now read:

In these tests the following notations were used. In a test at fi frequency Aand Aet strain level, total

endurance life was denoted by Njj . a partial number of cycles run at this level by nj; , and by partial
cycle ratio ryy = nij/Nij . For the program given above, f1 = 100, f, = 10, f, = 1 cpm and
Aegy = 1.571, Oeg, = 1.083, Oey, = 1.919% . N;; are to be taken out of Table IV. The partial cycle

ratios in both tests are shown in Table VII. It will be seen that in these two tests, where all the cycle

ratios, except r,, , are kept the same, cumulative cycle ratios give the values 0.9949 and 1.1613 or an average
of 1.078 which again is close to 1. Therefore we can hypothesize that damage accumulation is linear and partial
damage di' =r.. . With further assumptions stated in the previous section we can generalize the relation (7)

1
to the following form:

2. Table VII should now read:

Cumulative Cycle Ratios Under Varying Frequency
and Strain Level Conditions

Frequency Strain Cycles run, nyy Cycles to Cycle Ratios, rij

Levels  Levels Fractures

f;, cpm Aet, % Test I  Test II Niy Test I Test IT

100 1.571 174 174 1859 0.0935 0.0935

10 1.571 96 96 1608 0.0590 0.0590

1 1.571 70 70 1205 0.0587 0.1185

1 1.083 200 240 2045 0.0985 0.0985

10 1.083 280 280 2410 0. 1161 0.1161

100 1.083 435 435 2983 0.1458 0. 1458

100 1.919 144 144 1113 0.1290 0. 1290

1 1.919 95 95 733 0. 1296 0.1296

10 1.919 146 276 887 0. 1645 0.3111

Cumulative cycle ratio Zrij = 0.9949 1.1613
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specimens were recorded. From the continuous time recordings of these para-
meters, elastic and plastic time ratios of specimen lives were defined and
their dependence on strain and frequency levels found. Change of crack propa-
gation rate with frequency was also studied. Finally a cumulative fatigue
hypothesis, incorporating both frequency and strain parameters, was formulated
and shown to be valid under varying strain and frequency conditions.

This Report was prepared at the request of the Structures and Materials Panel
of AGARD
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specimens were recorded. From the continuous time recordings of these para-
meters, elastic and plastic time ratios of specimen lives were defined and
their dependence on strain and frequency levels found. Change of crack propa-
gation rate with frequency was also studied. Finally a cumulative fatigue
hypothesis, incorporating both frequency and strain parameters, was formulated
and shown to be valid under varying strain and frequency conditions.
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3. MERGED STAGNATION SHOCK LAYER OF NON-EQUILIBRIUM
DISSOCIATING GAS ®

P. M. Chung, ** J. F. Holt and S. W. Liu
Aerospace Corporation, El Segundo, California

This paper presents the formulation of the problem, the numerical method leading to solution,
and the physical significance of the results obtained for the fluid flow of a viscous merged layer with
non-equilibrium chemical reactions. The solution is limited to the stagnation region of a blunt
body. The chemical reactions considered are the dissociation and the recombination of air.

It is first shown that the reduced Navier-Stokes equation and the corresponding energy and species
conservation equations, wherein certain curvature effects have been neglected, are sufficiently
accurate for the flow regime in which Res > 20 , where Res is the Reynolds number behind the bow

shock. It is also shown that only in this regime are the non-equilibrium chemical reactions important.

The system of non-linear differential equations defining the flow and elgebraic equations. defining
the gas properties is replaced by a set of finite-difference equations and solved with a digital computer
by Newton's method between the free-stream and the surface.

Suppose, for example, that the equations are given by

fi(et,e ....en,s,) =0 (1=1,2, «vean)

2’

., If, at any stage, approximate solutions 6S are known, then corrections n, are given, by Newton's
rule, from the equations

Er
Lns——i=—fi (i=1,2, ceve n)
a0
S
8=1

The asbove equations constitute a set of linear equations (A.'r\s = -fi) where A is a band matrix,
from which the corrections ng can be computed by Gaussian elimination. The new approximations
Os +M, are then used in place of the previous es , and the process is repeated until convergence is

achieved. A special sub-routine was used for the band matrix A, thus saving a large amount of
machine time and storage.

The major difficulty in using Newton's method for this type of problem is that fairly accurate
initial approximation is required for all variables across the entire range of integration. However,
the advantage of the method is that once a particular solution has been obtained, it can be used as an
initial approximation for other values of the parameters. For subsequent approximations, convergence
is quadratic, requiring only five to ten iterations per solution.

From the solutions it wes found, as was expected, that a strong coupling exists between the
chemical reactions and the rarefaction of the shock layer. One of the unexpected results is that,
for a given flight condition, increase of the surface catalycity causes the shock layer to become
thinner. Since the increase in surface catalycity reduces the degree of dissociation within the
merged shock layer, it had been expected that it would increase the shock layer thickness instead of
decreasing it. The physical interpretation of the phenomenon and its possible implications are
discussed in this paper.

Based on the solutions obtained, calculation of the ionization profile in the merged layer can be
carried out in a relatively straightforward manner. Such calculations, reported elsewhere, have
shown that there is a pronounced effect on the ionization level, which can be as much es two orders of
magnitude lower than that predicted on the basis of a Hugoniot shock model.

Finally, the paper presents comparisons of the present results with results previously obtained
from more approximate analyses. .

.
The research reported in this paper was supported by the United States Air Force umder
Contract No. FOL695-67-C-0158.

-
Consultant. Professor of Fluid Mechanics, University of Illinois at Chicago Circle.
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33. VISCOUS SHOCK LAYER PROBLEM FPOR THE STAGNATION POINT OF A BLUNT BODY*

F. G. Blottner**
Sandia Laboratories
. P. 0, Box 5800
Albuquerque, New Mexico 87115

There has been a significant amount of work devoted to the understanding of the fluid dynamics
of the viscous hypersonic blunt body problem. The present investigation is intended to provide solu-
tions to this problem with more realistic gas models than previously employed. Also, the purpose
of this study is to investigate and develop techniques for solving the governing equations which are
ordinary differential equations with two-point boundary conditions.

The governing equations for a thin hypersonic shock layer in the form used are presented. These
equations have been developed by a number of authors but have not been considered for a complete reacting
air model as presently employed.

A review is given of techniques developed for solving two-point boundary problems. The finite-
difference and non-linear over-relaxation methods have been applied to the flow of a binary gas at a
stagnation point. A comparison of the convergence of the two procedures is made and the results for
the velocity, temperature and atom mass fraction are presented. The application of these methods to
pure air shock layer and boundary flow is discussed.

Solutions for pure air flows at the stagnation point of a hyperboloidf at various altitudes and a
velocity of 20,000 fps are presented. The properties of the flow such as velocity, temperature, and
chemical species from the body to the shock wave are given. The electron density across the shock

layer is also given. The heat transfer and skin friction parameters are obtained for the various
altitudes and theories employed (shock layer or boundary layer). )
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*This paper has been accepted for publication in the AIAA Journal.

*
Staff Member, Aerothermodynamics Research Department.
This work was supported by the U.S. Atomic Energy Commission.

TThis problem and body geometry were requested to be employed by participators in the AGARD Seminar.
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32, THE HYPERSONIC VISCOUS SHOCK-LAYER PROBLEM

. R. T. Davis
Virginia Polytechnic Institute

Laminar flow past blunt bodies moving at hypersonic speeds is considered on the basis of a set of
equations which govern the fully viscous shock-layer for moderate to high Reynolds numbers. The method
of solution used is an implicit finite-difference method which is similar to the method developed by
Blottner and Flugge-Lotz{1] for solving the compressible boundary-layer equations.

First the full Navier-Stokes equations are written in boundary-layer co-ordinates and an order of
magnitude analysis is performed on the terms in the equations. Terms are kept up to second-order in
the square root of the Reynolds number from both a viscous and an inviscid viewpoint, so that the
simplified governing equations are uniformly velid to moderately low Reynolds numbers (see Davis and
Flugge-Lotz [2] ). To the order of the approximations involved the body surface conditions are given
by slip and temperature jump conditions while the ordinary Rankine-Hugoniot relations are used _to
determine conditions behind the shock. This formulation is similar to that given by Cheng L3] , the
difference being that some second-order terms are retained which were not considered by him.

Next, the thin shock-layer approximation is applied to the simplified set of governing equations,
and the resulting equations are found to be of parabolic type. This is an important simplification as
far as numerical solution of the problem is concerned. The thin shock-layer equations can be solved
by numerical methods similar to those developed for solving the boundary-layer equations. The”
nunerical procedure consists of finding initial data at the stagnation-point and then integrating down-
stream using an implicit finite-difference method. The method is developed so that the equations yield
the stagnation-point solutions directly.

Rather than work with the governing equations in boundary-layer co-ordinates, it is found that it
is more convenient to work with the equations in a transformed form., New dependent variables are
defined by dividing the o0ld normal variable by the local distance from the body to the shock. The
advantage of this transformed co-ordinate system is that the transformed distance to the shock is always
one and the new dependent variables are always one at the shock. This means that in using the finite-
difference method a constant number of steps can be taken between the body and the shock. This elimin-
ates interpolation to find the shock position and makes it much easier to satisafy conservation of mass
in order to determine the shock position.

Several example cases are presented in Da,vis[h-] for flows oyer various bodies. The results are
compared w:EJs:l'Jx the second-order boundaery-layer results of Adams 5] and with the experimental results
of Little .
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w < 1, by elther the behaviour (1) T, ~K, ?J.b" (1=9) g &, +w, vwhere K is determined
by all three terms in the energy equation, or the behaviour (2) T, ~ K, (z'be - zb)"/"" as

;b - zbe (finite), which means the viscous term being dominant. Because of the larger mass flow in

the transition layer, the second behaviour 1s ruled out. 1In the case of ® > 1 , there are again two
types of possible satisfying behaviour: (1) T, ~ [{w-1 )ébe(?;be - éb)/lf-]” ©=-2)" " which is a

balance between the viscous and convective terms, and (2) T, ~ K, (;be - Z,b) /< _ which is again

given by the (dominant) viscous term. It is noted that while the first behaviour has a gero slope
at z’b = zbe , the second behaviour has an infinite slope. The second behaviour is screened out by

the transition layer. It is clear now that in any case the boundary-layer temperature behaviour can't
match with the inviscid behaviour.

The temperature transition for the case of w < 1 was studied by Bush (1966) on a phase plane by
which he showed also the matching of the temperature behaviour between the three regions. A more
general study (Ref. 2) shows that the ordinary differential equation governing the temperature transi-
tion takes essentially the same form for a large class of flows with power-law shocks, and that it is
even possible to match the transition-layer solution to an inviscid entropy-layer solution. The
present work treats, in addition, y = G[yt(x) + 5nytt + eee ] The first term y, only gives

the shape of the sharp edge. The distribution of streamlines in the transition layer is given by the
second term Vg » the determination of which depends on the asymptotic value of Ypp ©8 z’b > 0 .

In this sense, the higher-order boundary-layer problem neglected by Bush (1966) is necessary. The
temperature transition in the case of ® » 1 is accomplished in two sublayers. Through the
principal transition layer, the temperature is brought from its boundary-layer behaviour to a reference
temperature based on the inviscid solution at the stream function corresponding to z’b = ébe . The

transition to the inviscid behaviour is conducted in the exterior transition layer. Since the momentum
equation is decoupled from the energy equation in the transition layer, the (u - 1) transition can be
studied separately in a similar manner.

In additioh to the higher-order effect due to the transition-layer displacement which is treated
in detail in the present work for the case of w < 1, there are other higher-order effects of com-
parable importance which can be treated separately. The slip and temperature-jump effects are of the
order G(Tb w) 1/% | ¥hich can be lower or higher than the order &" depending on the wall temperature.
’

However, in the self-similar flat-plate problem, their influence on surface heat transfer is of a higher
" order, as noted by Aroesty (1964) . The strong and hi;h&l.i' curved shock wave generates the heating and

external vorticity effects which are of the order & %" ) higher than the order 8" in the case
of w< 1 but lower in the case of w > 1 . In the case of w< 1, the present analysis also finds
that, due to the singular behaviour of the trangition-layer solution, there is another boundary-layer
correction of the order between 60 and 627/ (2*~) " Pinally, the effect of uncertainty about the
leading edge is assumed to be of still higher order since no indeterminacy is encountered in our
analysis up to the order & .

The details of the present work, plus some numerical results, will be submitied for publication in
an open jowrnal.

References
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3. THE HYPERSONIC BOUNDARY LAYER ON SLENDER BODIES,
IS OUTER-EDGE BEHAVIOUR AND HIGHER-ORDER APFROXIMATIONS®*

Richard S. Lee
McDonnell Douglas Astronautics Company-Western Division
Santa Monica, California

H. K. Cheng
University of Southern Californis
Los Angeles, California

There are several characteristics which distinguish the hypersonic boundary layer on slender bodies
from its supersonic or subsonic counterparts. Its comparatively large displacement effect has long
been recognized to induce pressure interactions, strong or weak, with the accompanying inviscid flow.
Another character is the low temperature at its outer edge as compared with the typical temperature
level in its interior. Thus a commonly practised approximation is to solve the boundary-layer equations
with the condition of a vanishing temperature at a sharp edge, regardless of the actual value and dis-
tribution of the edge temperature (and hence Mach number). However, the vanishing-temperature condition
can be satisfied by more than one asymptotic (singular) behaviour of the boundary-layer equations; and,
in any case, such a boundary-layer solution cannot be expected to match properly with the inviscid solu-
tion, In general, what is needed theoretically, is a transition layer in the neighbourhood of the sharp
edge to screen the proper choice of the boundary-layer solution and to allow the transition from the
boundary-layer-solution behaviour to the inviscid-solution behaviour. In fact, recently, Bush (1966),
treating the problem of a flat plate in the hypersonic strong-interaction regime with the viscosity law
Moo ™ (w < 1), demonstrated such a three-region flow structure in von Mises' co-ordinstes., However,
we shall emphasige that the physical location of streamlines in the transition layer can not be uniquely
determined without solving the boundary layer problem to the higher approximation treated in the present
work.

The analysis of the transition layer can be circumvented by using von Mises' variables {or variables
of a similar nature), in the exceptional case of a linear viscosity law p « T . The same authors have
shown that in such a case, the boundary-layer solution combined with its higher—order approximation due
to the transition-layer displacement is the composite asymptotic solution for both the boundary layer -
and the transition layer. In the transition layer, the boundary-layer solution becomes of the same
order as its higher-order approximation and, near the inviscid region, the higher-order approximation
furnishes the proper dominant behaviour to match with the inviscid solution. The details and some use-
ful numerical results are published in Ref. 1.

In the present work, the flat plate in the hypersonic strong-interaction regime is used as an
example to study the hypersonic boundary layer on slender bodies, its outer-edge behaviour and higher-
order approximations in the case of a non-linear viscosity law p = CT™(w# 1) . A comprehensive
presentation for more general power-law bodies is included in Ref. 2, where a detailed review of past
relevant works can also be found. Since the mass flow in the transition layer is greater than that in
the boundary layer in the case of w < 1 and vice versa in the case of ® > 1, the outer-edge behaviour
for these two cases differ significantly and have to be separately studied. In the present analysis,

matched asymptotic expansions in terms of the small parameter & = (C(yl:)“’/nn) 1/4  are made from the

non-dimensional Navier-Stokes equations in von Mises' variables in the inviscid region, the transition
layer and the boundary layer.

In the inviscid region, we assume a strong (1/M® 6% = 0(6°) or smaller) Rankine-Hugoniot shook
L]

of the shape y, = 6ax3/4 (1 + ab® xXD/4 ) , where n=(1+w)(3y - 2)/(3y - 1 + ®) and the higher-
order term is determined by the transition-layer displacement. The expansions for the flow quantities
and the governing equations are those of the hypersonic small-disturbance theory. These equations can
be reduced to the self-similar form, in terms of the independent variable &h = v/GAx” 4, and can be
integrated numerically with the canstants "A" and "a™ scal_ed out. Neg.r_thf viscous regions, i.e., as
%, = O , we have the asymptotic behaviour p = yM: 59A% x /8 (P, ab"x io'o_;," « )

T = yM:S“A"x"“OO Z,h"“y. + ...and y=oax3/4 (Yo + Y, ;h""“yq. ab x Yo+ «ee) » where

the constants Po’ Poo’ © o’ Yo, Y, and Yoo are known from the integration.

In the boundary layer, the temperature is at the level of gtagna.tlon temperature, hencenwe assume
T = yM? [Tb <|-6n'I'bb 4+ «+2] + Other expansions are u=u.b+8 Wp + oo and y:&[yb + & Tpp + A I

The second term in the expansions is again due to the transition-layer displacement. The pressure does
not change across the viscous layers and is thus givem by the inviscid behaviour near 2;h =0, The
sub-b quantities in the expansions are govemed by the classical boundary-layer equations‘ which can be
reduced to the self-similar form, in terms of the independent varisble %, = if/GlAPo"’ 8 xtid Near
the outer edge, w approaches unity and the energy equation (with the dissipation term being of higher
order) takes the form (Tb“’."‘T.L)' /o + LbT}'J/h. -y - 1)Tb/2y = 0, where the prime denotes differenti-
ation with respect to ;b . The vanishing temperature condition can be satisfied, in the case of

- v e e Em mm am am e e e e o e mm e e s mn mr e e e omm e s = e e e e e e e o e = e e e e = e
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30. FIRST- AND SECOND-ORDER BOUNDARY LAYER EFFECTS
AT HYPERSONIC CONDITIONS #

Clark H. Lewist
ARO, Inc.
Arnold Air Force Station, Tennessee

First— and second-order boundary-layer solutions are presented for a 9-deg half-angle, spherically
blunted cone at M =9 and 18. The effects of transverse curvature, vorticity, displacement and
slip and temperatufe jump are considered both as first-order and second-order effects. The first-order
results were obtained by modifying the classical boundary-layer equations and method of Clutter and
Smith. The second-order results were obtained from the theory of Van Dyke using the implicit finite
difference method of Davis and Fliigge-Lotz. Primary interest is given to the higher-order effects
on zero~lift drag including comparisons with the experimental data. Comparisons of displacement
thickness, wall shear stress, heat transfer, and pressure distributions are presented. Limitations
in the theories are indicated based upon comparisons between the numerical results and comparison with
previously published experimental data.
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The final results of the calculations are the coefficients «a,8 defined by:

T
£ = 1+al
T

95=0

3‘)' = 1+p82L
qwii:()

shown in Fig. 1. = The parameter I is a measure for the vorticity intensity:
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29. EFFECTS OF AN EXTERNAL VORTEX ON
THE BOUNDARY LAYER AT AN AXTSYMMETRIC STAGNATION POINT

Gunter Kretzschmar
O.N.E.R.A., Paris

Several second-order effects may be important in modern boundary-layer problems “]. In the case of
hypersonic flight of a blunt body in a not too rarefied atmosphere two of these second-order effects will
be of particular importance, namely the combined effects of boundary-layer displacement and vorticity in
the outer flow.

Recently an integral method of calculation which takes into account these effects has been elabora-
ted in order to predict the development of laminar boundary layers{2],13). 4As a part of this investiga-
tion an exact solution of the boundary-layer equations at an axisymmetric stagnation point has been
evolved. A large number of boundary-layer profiles (velocity, temperature, shear stress and heat flux)
a8 well as some characteristic quantities (thicknesses, wall heat flux coefficient) have been obtained
on an analogue computer as functions of the wall to free-stream temperature ratio and the vorticity
intensity.

The boundary-layer equations in the usual form include the second-order effects of displacement and
varticity. The Levy-Lees transformation, when applied to the stagnation point flow, yields:

PR £ du ] E 4dp
( f")'+ff"-2f'°—-—6-z—§- — 2
Pg Mg Ky GE P Py Uy dE

PH '
( g') + Prg' =0 .
Ps M

Here the subscript & refers to the conditions at the outer edge of the boundary layer. The velocity
and pressure gradient parameters

g du 13 dp
g i
Yg ag P5 ‘1‘5 &

may be expressed with the aid of the outer velocity distribution
u (x,y) =Kax [t +Ks(y-8%)]

where the constant Kg measures the vorticity intensity. One finds:

R R
s g 4
E d.p5 1 1

Py Uy dE b B o+Ka(b-6%)]°

Thus, the solution of the boundary-layer equations depends on the parameter % = Q + Ka(b - 6*)]°
which may be expressed in terms of the dimensionless stream-function and its second derivative at the

outer edge:

1
= 1=2(ff'") .
B+ka(8-8%)]° n=g

The parameter ® represents the combined effects of displacement (factor & - 6*) and of outer
vorticity (factor Kg) .
For a fixed value of % the solution has been obtained by starting the integration at the wall

with different assumed values of f'' and g' until the preceding relationship was met when
f"n& = 1 . The corresponding value of the dimensionless co-ordinate g indicates the position of

the outer edge of the boundary layer which is at a finite distance from the wall.
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28. HIGHER CRDER BOUNDARY-LAYER EFFECTS ON ANALYTIC BODIES OF REVOLUTION*

John C. Adans, Jr.T
AROQ, Inc.
Arnold Air Force Station, Tennessee

BResults are presented from an investigation into second-order compressible boundary-layer theory
applicable to blunt bodies formulated for numerical solution in the transformed plans using an implieit
finite-difference scheme. Various combinations of second-order effects (external vorticity, displace-
ment, transverse curvature, longitudinal curvature, slip, and temperature jump) are considered for two
different bodies, a paraboloid and a hyperboloid of 22°5° asymptotic half-angle, in a Mach 10 flow
under low Reynolds number conditions. Two different wall-to~stagnation temperature ratios are used,
namely 020 and 0°60, in order to simulate both cold and hot wall conditions, respectively. For com-
parison purposes, solutions are obtained using three different viscosity laws - Sutherland, linear,
and square-root - as well as two different Prandtl numbers 070 and 1°0. A locally similar first-order
solution using the finite-difference scheme is also presented in order to permit a critical assessment
of the locally similar approximation.

Particular attention is devoted to the treatment of the separate second-order vorticity and dis-
placement effects. It is shown that the only correct manner to treat these separate effects is in a
displacement speed sense - a displacement pressure approach is not consistent with the mathematics of
second~order boundary-layer theory. However, a displacement speed treatment is unreasonable with
respect to the magnitude of the separate effects and certainly not representative of the actual physical
effects. Hence it is proposed that one should properly interpret second-order vorticity and displace-
ment in a combined sense as a vorticity-displacement interaction. Furthermore, a new and powerful
technique for considering the second-order displacement effect using first-order inviscid theory is

presented; this approach is not limited to the nose reglon and may be applied equally well over the
entire body.

Numerical results indicate that the vorticity-displacement interaction is the dominant second-order
effect on the bodies under consideration, especially for the hyperboloid where it becomes a first-order
effect. Considerable attention is devoted to the effects of viscosity law on both first- and second-
order solutions; Prandtl number and wall temperature effects are also considered. It is shown that a
severe underprediction in skin friction and heat transfer results from use of the linear viscosity law.
An interesting wall temperature effect on the hyperboloid is observed in that the cool wall case has a
higher skin-friction drag than does the hot wall case; +this is explained in terms of a “transition®
to flat plate behaviour on the af't portion of the hyperboloid due to the surface pressure distribution.
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27. A SURVEY OF HIGHER-ORDER BOUNDARY-LAYER THEQRY

Milton Van Dyke
Stanford University

At present one can discuss higher approximations to Prandtl's boundary-layer theory in any detail
only for steady, plane or axisymmetric, laminar, and unseparated flows. Under these restrictions,
higher-order boundary-layer theory appears to yield an asymptotic expansion in inverse half-powers of a
characteristic Reynolds number. Only the second approximation has been examined in detail. Thanks
to linearity, the second-order correction can be subdivided into a number of physically identifiable
effects. The theory is developed most safely and systematically using the method of matched asymptotic
expansions, but the intuitive approach yields greater physical insight.

For incompressible flow, the second-order effects are four in number. First, the easiest to under-
stand but hardest to calculate, is the displacement effect, which modifies the outer inviscid flow and
80 alters the conditions at the outer edge of the boundary layer. Second, longitudinal curvature adds
centrifugal forces to the momentum equation; attempts to calculate this effect have resulted in a pro-
tracted comedy of errors. Third, for axisymmetric shapes, transverse curvature adds further effects
of the same sort. Fourth, vorticity in the oncoming stream also changes the outer boundary condition;
and a second controversy over just how it is changed has only recently been resolved. In compressible
flow, additional second-order effects result from slip and temperature jump at the wall, and external
vorticity can be divided into gradients of entropy and of stagnation enthalpy. Each of these effects
is discussed, and illustrated with the simplest possible example.

Aside from the complicated phenomenon of separation, non-uniformities are introduced into this
scheme by sudden curvature, as at corners and edges, by indefinite length of the body, and by non-
analyticity of the outer flow at the surface. The consequent modifications are outlined. Brief com-
parison is made with the limited available experimental measurements.

This paper appeared as a report of limited circulation: Air Force Office of Scientific Research’
Report No. AFOSR-67-2291, Sept. 1967. It has been published in an extensively revised and amplified
form as

Van Dyke, Milton D. 1969 Higher-order boundary-layer theory. Annual Review of Fluid Mechanics 1,
265-292. Annusl Reviews, Inc., Palo Alto, Calif.

Further discussion of the modifications introduced by non-analyticity of the external stream will appear
shortly as

Conti, R. J. and Van Dyke, M. D. 1969 Reacting flow as an example of a boundary layer under
singular external conditions. J. Fluid Mech. (to appear).
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conservation equations, The guasi-linearization techniques typically employ conventional numerical
integrating routines, the matrix method mentioned above uses conventional finite-difference relations

to achieve the same goal, and the integral-matrix method presented here effects the integration with

the connected cubics. Regardless of the form adopted for the conservation equations, the methods
demand the introduction of these equations at each point in the integration routine, each point in the
differential formulation, ar each spline point, respectively. For most of the classical problems and
the simpler solutions usually reported, this fact is of little consequence. It is of major consequence,
however, when a general chemical environment is to be treated. The time required to evaluate the
chenical state often dominates all other time considerations, anmd this state must be evaluated each

time the conservation equations are introduced.

The matrix formalization introduced with the Newton-Raphson procedure is of particular value in the
present application. Two major reductions are performed at each iteration in the solution process.
The first is based on the a priori solution of all the originally linear equations, in particular the
spline fit relations, and results in a major reduction in the order of the resultant matrix equation.
A subsequent matrix reduction permits the inclusion of general and varied wall boumdary conditions.
In this reduction the entire boundary-layer solution (including wall fluxes) is expressed at each
iteration, in terms of wall values of f, HT and Kk . Thus special energy and mass balances can

be simply performed in terms of this very reduced set of variables.

Because of the fully coupled nature of this approach, rapid convergence is usually achieved
(typically 5 iterations for stagnation points and 3 for downstream stations). The use of the spline
interpoletion functions yields accurate solutions with relatively few spline segments (3 to 4 place
accuracy with 6 to 10 segments). The technique has been programmed in Fortran IV and applied to a
broad range of problems with excellent results. Non-similar solutions have been obtained with coupled
mass and energy balances for laminar and turbulent boundary layers over graphite, silica reinforced
charring ablation materials, and porous surfaces with water transpiration, as well as problems of more
classical interest.
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THE INTEGRAL MATRIX APFROACH TO THE SOLUTION OF

26.
THE GENERAL MULTICOMPONENT BOUNDARY LAYER

Robert M. Kendall and Eugene P. Bartlett**

The integral matrix procedure is introduced for the accurate prediction of the behaviour of laminar
and turbulent boundary layers within a general equilibrium chemical environment. The current pro-
cedure utilizes an integral approach with square-wave weighting (or moment) functions and with spline
(or connected cubic) interpolation functions for the primary dependent variables, that is, velocity,
total enthalpy, and elemental mass fractions. Implicit quadratic finite-difference relations are
applied to stireamwise derivatives for non-similar solutions. A1l other terms in the conservation
equations are expressed analytically in terms of the primary variables. The resultant set of linear
and non-linear algebraic relations is solved using general Newton-Raphson iteration, with significant
matrix reductions being employed.

The selection of the spline interpolation functions is based on their ability to accurately conform
to complex curves without the often erratic character of high order polynomials. These functions are
introduced into the eguations by using a set of linear algebreic relations obtained by truncating Taylor
series expansions. Thus, consldering the velocity, f', to be described by a cubic in the range of a
spline segment, the stream functions and its derivatives are related by

f \] 10 (Gn)a 11t (&n); ) tet (&n)a
fn+1 =t fnﬁn + fn **a 8 * fn+1 21,
1] ] 1 10 &n)n Tt (&])B
fn+1 = fn + fn on + fn 3 * e 6 (1)
T =T 0 TN

Similar sets of relations apply for the enthalpy function and the elemental mass fractions. In the
streamwise direction the implicitly defined quadratic representation of the primary variables is
reasonably standard. A scaling parameter, Ay s which is an implicit function of the streamwise co-
ordinate, is introduced into the definition of the stream-normal co-ordinate in order to assure efficient
use of a fixed stream-normal grid. The criterion currently employed for this parameter assures a pre-
selected velocity at a prescribed grid point.

‘When considering. either the energy or species conservation equations in boundary-layer form, a

significant simplification results as a consequence of stream-normal integration with a.constant weighting

function. This is due to the complexity of the divergence term in these equations when a general
chemical environment is involved and particularly when unequal diffusion and thermel diffusion effects
are included, as in the current example. For this reason, square-wave weighting functions were employed
in the integration of the conservation equations, each square wave being aligned with an individual

spline segment.

With but one exception (the density integration in the momentum eqpation) it is possible to express
analytically all terms appearing in the integrated conservation equations as functions of the primary
set of variables. A major factor in achieving this goal is the availability of means of evaluating
the state and certain state derivatives in terms of this primary set of variables. Thus, for example,
the density derivative at spline point n is defined by

(D) e LR)s o

where the partial derivatives are stete properties obtained from the state solution at point =n . In
this equation and Kk are the total enthalpy and the elemental mass fraction of element k,

respectively. With the density gradients provided as above, it is convenient to formulate the density
integration in terms of a special set of connected cubics. At this juncture, the original partial
differential equations have been reduced to a set of algebraic equations. Because of the analytical
character of the formulation of these equations, the accuracy of any solutions of these algebraic
relations can be assessed solely in terms of the accuracy of the distribution of the primary variables.
Also the integral form selected assures overall conservation of mass and energy.

In order to achieve solution of this set of linear and non-linear algebraic equations, the general
Newton-Raphson iterative solution procedure has been adopted. In this application all coefficients are
considered variable and an effort is made to avoid successive approximation assumptions with regard to
any coefficient or variable. In this respect, the present method differs from the matrix procedure
of D. C. F. Leigh and most of the current quasi-linearization techniques. The other basic differences
between this method and those Jjust mentioned, with respect to their treatment of similar solutions,
relate to the formulation of the nume.ical integration procedure and the means of introducing the
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25. FINITE DIFFERENCE SOLUTION OF THE FIRST ORDER BOUNDARY LAYER EQUATIONS

F. G. Blottner**
Sandia Laboratories
P. 0. Box 5800
Albuquerque, New Mexico 87115

A review of various methods for solving the first order boundary layer equations by numerical
techniques is given. The emphasis is on the finite-difference schemes that have been employed
recently and how the presently employed techniques have evolved. Procedures developed by authors
in various countries such as Russia, Germany, France and the United States are considered.

The governing equations and boundary conditions for a multi-component non-equilibrium gas are
presented in the similarity co-ordinate system. The boundary conditions at the surface require the
mass flux of the chemical species to be specified. How these conditions can be determined for a
‘catalytic type of interaction between the gas and the surface material are presented. The edge con-
ditions are obtained from the inviscid flow. ©For a blunt body flow with chemical reactions teken into
-account, the classical boundary layer approach is not valid and swallowing of the inviscid flow should
be included in the analysis. However, in the present case the edge conditions are obtained from the
inviscid streamline along the surface of the body with finite rate chemistry. These conditions were
provided to participants in the Seminar.

) The solution of the boundary layer equations are next presented. An implicit finite-difference
technique is presented which is appropriate for solving flows with a large number of chemical species,
a8 occurs with ablation contaminants. This method does not require iterations at each step, and
solutions can be obtained when the gas is near chemical equilibrium. With the equations uncoupled and
the technique not requiring iterations at each step, the overall computing time for flows with many
chemical species is reasonable.

The procedure has been employed to obtain the boundary layer flow on a sharp cone at 150 kft
altitude, a velocity of 22 kfps and a wall temperature of 1000°K with the gas undissociated at the
surface. The peak electron density along the body is compared to the results of several authors.
The difference between the various results is mainly due to the gas models employed. The flow on a
hyperboloidf at an altitude of 100 kft and a velocity of 20 kfps is also obtained. The results
presented are displacement thickness, heat transfer and skin friction along the body. The profiles
of the boundary layer properties (velocity, temperature and chemical species) are given for both a
catalytic and non-catalytic wall at 50 nose radii downstream from the stagnation point.

e
Staff Member, Aerothermodynamics Research Department
This work was supported by the U.8. Atomic Energy Commission.

I’

This problem and body geometry were requested to be employed by participators in the AGARD Seminar,
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In the momentum equation chemical forces appear. But the related coefficient )‘r is not known, so

that these terms cannot be used for practical calculations. This leads to an unknown errqf. A further
tern from irreversible thermodynamics appears in the energy equation, the coefficient k can be
evaluated from kinetic theory. A

After a similarity transformation, the transformed variables u,v,T, Xy explicitly appearing in
the eguations are considered as dependent variables. All coefficients are estimated for the last
profile. The equations are uncoupled by linearization; momentum -<u, continuity v, energy -T,
component continuity simultaneously X5 . This method diverges, unless the component continuities are
replaced by the condition of chemical equilibrium. During the calculations all coefficients have been
printed out.

Thus we could see, that for small deviations from chemical equilibrium the chemical terms became
about 1000 times larger than the mechanical terms near the wall. So, small deviations from equilibrium
lead to large deviations of temperature (and therefore of the equilibrium concentrations). But as
the mechanical and chemical terms must have the same order of magnitude, the deviations from equilibrium
for the new temperature must again be small, because the chemical terms have enormous gradients.
Blottner has shown, that by expanding the chemical terms in x-direction these terms can be incorporated
implicitly into the equations and thus the wethod becomes stable. Our aim is to preserve by a suitable
expansion the uncoupling of the equations, which saves half the computing time and machine storage
compared with the coupled solution of the equations. Further the uncoupling allows a separate itera-
tion of the concentrations. This iteration is necessary for the boundary condition of chemical equi-
1librium at the wall. This is the only chemical boundary condition that does not lead to a singularity.
The often used condition ™no chemical reaction at the wall" leads to & contradiction to the compatibility
condition at the wall and therefore to a singularity.

Numerical results for chemical equilibrium bdls. will be published in the report on the hyper-
boloid caloulations of the AGARD Seminar, edited by C. H. Lewis.
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2. NUMER ICAL EXPERIMENTS IN IDEAL AND REAL GAS LAMINAR BOUNDARY LAYER FLOW

W. Schonauer
Inst. fur Angewandte Grengzschicht theory,
Techn. Hochschule, Karlsruhe

About the Crocco Transformetion: In the last years many numerical experiments at the University “of
Karlsruhe have been made with implicit finite difference methods for the bdl. equs. in the Prandtl-,
the v. Mises— and the Crocco-form. A modification of the Crocco-form, with H~ u® as dependent
variable has proved superior to all other forms. The Crocco-form has a rectangular domain of integra-
tion. But the Crocco profiles have infinite curvature at the outer edge of the bdl.

2 V . . .
“Hﬁ-uy Domain of integration
1
Crocco protile h 4*;

/
0 { Uu o

The consequence of the singularity (for Z - 41: H-+ (1-%)® [a+b &n (1-Z) ]) is, that 3- or 5-point
equidistant net formulae for the Z-derivatives and 3-point unequally spaced net-formulae all have an
error 0(1) . Therefore the best net is an unequally spaced net with a concentration of points near
the outer edge (for the singularity) and near the wall (for the separation profiles). In the Prandtl
form instead of the singularity we have an infinite domain. Here unequally spaced nets with a wider
mesh at the outer edge give optimal accuracy for a given number of mesh points. Rittmann extended the
Crocco-method for rotating bodies of revolution. i

Wippermann studied the ideal gas compressible bdl. He applied first a Stewartson transformation
and then the modified Crocco transformation on the momentum and energy equations. The equations are
uncoupled by linearization. TFirst is solved the energy equation for the enthalpy function, then the
mompentum equation for the Crocco variable H . :

Initial Profile Calculation (arbitrary form of bdl. equs., but after a similarity transformation to
avoid singularity at x = 0): The ordinary eqs. for the initial profile result from the partial differ-
ential egs. by taking the x-dependent coefficients at x = 0 . Therefore in the bdl. program one has
only to fix x = O, to begin with an arbitrary initial profile, to compute the “downstream" profile, to
take this as new initial profile and so on, until the profile stands. Then the usual downstream calcu-
lation begins with the iterated profile. '

Real Gas Boundary Layer (Prandtl form): A team has been formed at Karlsruhe to study the real gas
effects with the concept of irreversible thermodynamics. With the mol concentrations Xy for the
component i the equations are:

MOMENTUM
)
Px 7\r Ar
puu, + pYu, = = —— 4+ (mz.y)y {- < ———) }
K”M“ r=1 T x
=0
Py
CONTINU ITY
u
upx+uxp+—prx+vpy+vyp = 0

r
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23. SOME SIMILAR LAMINAR FLOWS OBTAINED BY QUASI-LINEAR IzZATION

Paul A. Libby* and T. M. Liu**
Department of the Aerospace and Mechanical Engineering Sciences
' University of California, San Diego
La Jolla, California

Laninar boundary layers exhibiting similarity have long played an important role in exposing the
principal physical features of boundary layer phenomena and in providing bases for approximate methods
of calculating more complex, non-similar cases. Despite the large number of similar solutions presently
available, new ones continually appear in the literature since the number of combinations of distribu-
tions in the external stream, of mass and heat transfer and of three-dimensionality satisfying similarity
requirements is apparently limitless.

Our purpose in the present work is to show that two relatively well-known sets of similarity
equations have a multiplicity of solutions not previously obtained. The two sets correspond to the
laminar compressible boundary layer with arbitrary pressure gradient and heat transfer, usually
associated with Cohen and Reshotko, and to the laminar hypersonic boundary layer near a pla.ne of
symmetry studied by Trella and I.:Lbby

In order to obtain the new solutions the method of quasi-linearization is applied to the treatment
of the two-point boundary value problem. There are employed both a straightforward application of the
technique and a modified application in which a wall value, usually considered unknown, is fixed a priori
and a parameter, usually selected a priori, is determined as the iterations leading to a solution are
carried out., It is indicated that the new solutions involving as they do complex profiles would be
difficult if not impossible to obtain without numerical techniques of this sort.

The results of the numerical analysis indicate that these similarity equations contain for adverse
pressure gredients a variety of solutions. Most dramatic is the result that for a given set of para-
meters defining a particular hypersonic flow near a plane of symmetry there are six solutions, each with
exponential decay to free stream values, an extreme case of non-uniqueness. How many of these six and,
indeed, how many of the new solutions obtained in this work are physically observable is not known but
we do know that they satisfy the usual conservation equations and that obtaining them requires a sophi-
sticated numerical technique.

t This study was carried out as part of a research program being performed under National Aemnaut:.cs
and Space Administration Grant NGR-05-009-025. ATAA Journal 6, 1541 (1968).

® Professor of Aerospace Engineering.

*#Research Assistant.
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The approximate solution is chosen so as to satisfy equations (2a), (2b), and (2c); thus boundary
conditions on-(5) are given by ] '

e(0) =¢'(0) =e'(n) = 0 @

The interval (O,nn) is transformed to the interval (-1,1) and the quantity ‘& and its higher
derivatives are approximeted by the Chebyshev series {10]

N-n
e () = a2y Z 20z (2) ®)
r=1
where
Tr(z) = cos (r arcos z) “1geg

The set of Chebyshev coefficients of the series for €, €', e'', and e''' constitute
4N - 2 unknowns. The polynomials T are linearly independent; thus after substitution of the serie
given by equation (8) into equation 1‘(5) a solution is obtained by equating resulting coefficients of
Tr to zero. This leads to a set of N + 1 1linear equationa for the coefficients of T, Tgs eee T

and a constant term. The boundary conditions yield three more equations and in addition there are
2N - 6 equations of the form

31(_1_1?) = 9‘1(:;1) + 2re.z(,n) (9)

61
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relating coefficients of & to &', €' to e'',  and e'' to g''' . The solution to equation (5)

is used to generate a new approximation and the non-linear equation is satisfied upon convergence of
successive approximations 'fi given by ’

fgn) = eifz + fﬁfz (10)

The method has been applied to obtain solutions to the Falkner-Skan equation, & solution to the
Howarth retarded flow problem and to the flow over an elliptic cylinder studied experimentally by
Schubauer(11]. In addition, the solution for the wake behind & flat plate was obtained using the
present method with modified boundary conditions. For most flows a series of 12 terms ensures
4-place accuracy; in the immediate vicinity of separation approximately twice as many terms are neces-
sary for the same accuracy. Convergence of the solution to the non-linear equation to as many places
as the Chebyshev series is accurate is usually guaranteed after four iterations (successive approxima-
tions) on the linearized equation. Comparisons with existing solutions and experiment have verified
the accuracy and generality of the method. To date only a limited number of comparisons between the
present method and implicit finite-difference techniques have been made; for those flows studied the
present method is competitive with finite difference techniques. In addition, it has the advantage
of providing the solution in an analytic form that is easily integrable or differentiable.
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22, *  THE APPLICATION OF QUASI-LINEARIZATION AND CHEBYSHEV SERIES
T0 THE NUMERICAL ANALYSIS OF VISCOUS SHEAR LAYERS

N. A, Jaffe* and J. Thomas**

A method for solving the incompressible laminar boundary-layer equations for arbitrarily-shaped
axisymmetric or two—dimensional bodies is given. With little modification, the techniques described
can be applied to wake flows. The method is capable of computing the flow field for similar and non-
similar flows with arbitrarily specified surface mass transfer distributions.

The equations of momentum and continuity are combined leading to the following third-order, non-
linear, parabolic, partial-differential equation for the dimensionless stream function f in transformed
co-ordinates

. af! af
£+ u(1 - £ )+fo"=x<f'———f"—-> (1)
ax dx
having the following boundary conditions:
£(0) = fw(x) specified (2a)
£1(0) =0 (2v)
f'(‘n”) = 1 (2¢)

The primes denote derivatives with respect to the transformed co-ordinate normal to the surface, x is
the curvi-linear co-ordinate measured parallel to the surface, and the quantities M and N, which
depend on body geometry are specified functions of x .

The problem of solving the above partial-differential equation is reduced to that of solving con-
secutively a sequence of ordinary~differential equations by replacing the streamwise derivatives
(8f'/dx) and (af/ax% with forward difference approximations in accordance with ideas originated by
Hartree and Womersley 1], That is, using a three-point Lagrange forward difference approximation at a
given x, the streamwise derivative of a quantity ( ) is approximated by

a( )
—a—':a()#b( )-’_+C( )-9 (3)

where a, b, and c are the appropriate Lagrange coefficients and the subscripts -+ -2 designate

two stations previous to x . If solutions are known at x-i1 and X-g the equation is ordinary at x.
At the initial station (x = 0) the streanwise derivatives which are a multiple of x need not be
evaluated; at the second station the above three-point approximation is replaced by a two-point
approximation. Thus the flow field can be obtained by solving a sequence of ordinary equations marching
downstrean. This technique has been successfully employed by Smith and coworkers for incompressible

flow [2,3], compressible flow[l,5] flow of a non-reacting binary gms [6], and non-equilibrium flow on a

&as .

In Refs. [2] through [7] the ordinary differential equations resulting from the approximation given
by equation (3) are solved by an initial value (shooting method) technique. Equation (1) is repeatedly
integrated with boundary conditions (2a), (2b) and trial velues of f"((lo) until it is possible to
construct a solution satisfying equation (2c). In certain cases solutions at the outer boundary, n, s
are extremely sensitive to trial values of £''(0) and it is impossible or extremely time consuming to
satisfy the boundary condition at m . Moreover, there are flows in which the programmed logic that

L d
determines whether a given trial value of f''(0) is high or low, after a trial solution has been
obtained, fails and thus it is not possible to converge on the desired solution. An glternative method
for solving the ordinary equations was therefore investigated [8] . The ordinary non-linear equation
upon substitution of the approximation given by equation (3) is of the form

Q@ (£roe,e01,£0,£) = O (%)

Expanding in a Taylor's series about an approximate solution fo and neglecting non-linear terms in
the dependent variable gives 9],

3G FY:J
ror(Gm) e () o G G @
o () . £() _ o(0) ©

.Investigation conducted while visiting Oxford University; currently Senigr Engineer/Scientist, -
Douglas Aircraft Company, McDonnell Douglas Gorporation, Long Beach, Calif.
**%raduate research student, Oxford Universify, England
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Since the time of the meeting the author's main attention has been given to a rather conventional
implicit finite-difference procedure used in connection with the turbulent boundary-lsyer equations.
In turbulent boundary layers the eddy viscosity is an unknown function of the boundary layer thickness
and another iteration cycle is required to find it. While the shooting method has been successfully
applied to this problem it was slow because of the extra iteration. The finite-difference method 1s
80 constituted that no additional iteration is required for an eddy viscosity, making the method faster
for turbulent flows. Based on this considerable experience with both methods it is the author's
opinion that the shooting method can more easily give high accuracy - say five figures - if that is
wanted., For equal accuracy the shooting method is somewhat. slower, but not importantly. It is
perhaps half as fast as the finite difference when applied to the same laminar flow problem. Because
of the sophisticated integration procedure used in the shooting technique much larger y-steps can be
used for the same accuracy. Often the two methods are compared timewise with equal steps. Then
the finite-difference technique turms out to be much faster. But for the condition of equal accuracy
in laminar flows the shooting method does not have an important time disadvantage. Below are listed
the principal reports and publications based on the shooting method as developed by the author and his

cowarkers.

MOMENTUM
EQUATION l L=0
: SPECIES ENERGY FLUID PROPERT|ES]
Q=0,n | L=1 -
| SPECIES ENERGY FLUID PROPERTIES |
| iz -
: REPEAT ITERATIONS UNTIL L =L yay
L=l yax
SPECIES ENERGY FLUID PROPERTIESI
£= - —
MOMENTUM L=0 v
EQUATION. | [SPECIES |- - REPEAT PROCEDURE IN Q=0 n
Q-I.n r ————— UNTIL L=LMAX.
MOMENTUM —
EQUATION REPEAT Q- STEP UNTIL EITHER
Q=2.n Q=Qnax OR (fglﬂ' Qe (f;;.)qq <€

PROCEED TO NEXT STATION.

Fig. 1. Flow diagram for solution at station x,
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Treatment of the x-Derivative

A1l the transformed equations involve first, and only first, derivatives in x , as in equation (1).
These derivatives are replaced by Lagrangian d.erive.tive formulae; two-, three-, and four-point
formulae have been investigated. The substitution reduces the various equations to ordinary differ-
ential equations, for which there are many good numerical-solution techniques. Since the equations
are pargbolic, we have reduced the problem of solving the partial differentiel equations to one of
solving an ordinary differential equation repeatedly at each x-station as we proceed downstream.

It is emphasized that the equations applying to the individual x-stations are solved consecutively, not
simultaneously. This basic approach was used much earlier by Hartree and Womersley, to adapt partial
differential equations to the old Bush Differential Analyser.

Integration

Integration is performed on the resulting transformed ordinary equations as they stand. The
momentum equation is non-linear. The other equations are non-linear too, if variable gas properties
are involved, because they are not known until the correct solution is found. However, in practice
iteration is used, and gas properties are supplied by the last previous iteration. This process
reduces the energy and species. equations to linear forms.

In the development of the method of solution, both the Runge-Kutta and the Adams~Falkner integra-
tion methods have been used with success, but the latter has been used more often. 1In any one solu-
tion, the step size in the y-direction is taken to be constant, primarily because the computation of
the x—derivatives would otherwise be greatly complicated.

Meeting Boundary Conditions

In the x-momentum equation two boundary conditions occur at the wall and the third at 1 = e .
Since the momentum equation is non-linear the common "shooting" method is used to satisfy this third
condition, with two refinements. The first refinement has to do with interpolation for f£Y' , the
derivative of f' at the wall. In practice the outer boundary condition must be satiafial at some
finite mn-value, called n, - Study showed that, within a limited range or corrider, f£'(n ) was a

very regular, slightly quadratic function of f'"' s the second derivative at the wall, which in the

unknown being sought. Therefore it became possible to set up a simple three-point interpolation
schene that required only the construction of three trial solutions corresponding to three values of
f" The correct outer boundary condition is f'('n ) =41 . Trial solutions meeting the requirement

0- < f'(‘n ) < 1¢5 generally afforded an accurate bese for three-point interpolation. By contrast,
s:l.mple "ahoot:l.ng would require systematic variation of f" until a solution was found such that, for
usual accuracy, 0°999 < f* ('n ) < 1*001 . In favourable oases s the three-solution interpolation pro-

cedure reduces compute.tion by 75 to 80 percent, compared with simple "shooting®™. Of course, for linear
equations any two suiteble trial solutions suffice as a baae for interpolation. The energy equation
is effectively linear.

The second refinement of the “shooting® method has to do with continuing the solution when excess-
ively large pumbers arise. Often, becasuse of the exponential character of trial solutions, values of f*
at m  become too large to handle. TYet, two partial solutions may be found, one of which is clearly
high with respect to the boundary condition £ (11”) = 1 and the other clearly low. If these two

solutions are compared, it will be found that they agrees, to a certain degree of accuracy, up to some
value of 14 greater than gzero, for example, My =1 . The desired solution lies between this pair

of high and low solutions. Hence, depending on the accuracy demanded, the correot solution has been
established up to some point M4 . This point can then be treated as a new origin, and search can be
continued by means of seversl trial values of fY' . The process can be repeated several times, if
necessary, to construct solutions running all the way to n, - This trick has been dubbed ETI (Extended
Trajectory Integration).

If gas properties are temporarily assumed - as they are - the energy, species, and s—momentum
equations gll become linear. Meeting boundary conditions for ithese then becomes easy, because the
desired solution is just a linear combination of two trial solutions, which have no special restrictions
on their magnitude at n, - However, exponential growth still exists, and the ETI treatment must often

be used, for solutions having values at n, as high as 10° may often occur. They are legitimate, but

accuracy is lost in the process of linear combination of two such solutions, and a@.in ETI provides
improvement.

In the more general flows, the gas properties themselves must be found as part of the solution.
The process involves iterative or cyclic solution of several equations, First, gas properties are
assumed and then the x-momentum equation is solved. When properties are assumed the process of solving
the x-momentum equation, even for reacting flows, is just the same as for incompressible flow. When
a solution with the assumed properties that meets the boundary conditions is found, the new velocity
information is fed to the energy equation, which in turn is solved. The results are then used to
compute improved fluid properties. The energy equation is solved again with these new fluid properties,
and the process continues until convergence is obtained. But this convergence is obtained with only
approximate values of velocity supplied by the momentum equation. Therefore, the final converged
fluid properties are in turn supplied to the momentum equation, and the procedure is repeated. In an
overall ‘sense, when the momentum equation and energy equation are involved, the method of solution may
be characterized as a combination of an inner iteration and an outer iteration. When a third équation,
for example, a species, is used, it too is involved in the inner-iteration cycle. Fig. 1 shows the
flow diagram for the most general case.
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21, NUMERICAL SOLUTION OF LAMINAR BOUNDARY LAYERS

A. M. 0. Smith*

General

This paper constitutes an abridged version of the complete paper of the same title presented at
the NPL AGARD Seminar on "Numerical Methods for Viscous Flows™. The basic purpose of the complete
paper is to present a comprehensive description of one particular method of solution and its capabili-
ties. Often, in a complete presentation, so many details are included that the fundamental underlying
concepts are hidden. Therefore this summary is meant to be a kind of supplement that in a brief and
non-mathematical fashion gives the essentials of the method.

Before proceeding to details, some general information will be presented. The author and
several able collaborators have worked since 1960 on this numerical method for solving the laminar
boundary layers. Because of the author's involvement with aircraft rather than with missiles, the
emphasis has been more on development of the method of solution than on the chemistry and physics of
the geses involved. The first problem attacked was incompressible laminar two-dimensional or axi-
symmetric flow subject to quite general boundary conditions. This problem involved solution of the
continuity and x-momentum equations. The most advanced problems so far solved - with similar very

general boundary conditions - involve the equations of (1) global continuity, (2) x-momentum, (3) energy,

and (4) either continuity of species or g-momentum. The s-momentum equation is needed in describing
three-dimensional flow past an infinite yawed cylinder. With these four equations non-equilibrium flow
of .a binary gas can be correctly treated, but non~equilibrium flow of air can be only approximated.

For three- to four-place accuracy, the flow is typically divided into about 24 x-stations. The
y—direction is divided into about 100 stations. For incompressible flow, a solution at one station
requires about 20 seconds on an IBM 7094. Four-equation flows require about 90 seconds per station.
The total time is approximately equal to the time per station multiplied by the number of stations.
We now turn to a general description of the method.

Equations

The basic equations are the complete first-order boundary-layer equations, except that in some of
the most recent work second-order transverse-curvature effects have been included in treating axi-
symmetric flow. The important fact about the equations is the form actually used in the solution,

It is some kind of f-transformation such as Levy-lLees. For example, one form used in solving incom-
pressible flows is

. 2" ae
£ 4 28 v (1 - £°) = 2x f'-——-f"—) (1)
ox 0x

where x 1is a measure of distance from the stagnation point and primes denote derivatives with respect
to n , the transformed y-variable.

This basio form for the system of equations has the fallowing important advantages:

1. Starting the solution is remarkably easy. Note that at x = O in the above equation we are
left with an ordinary differential equation, the Falkner-Skan equation.

2. Most of the variation in boundary-layer thickness is eliminated, making for easier handling
of the outer boundary conditions.

3. Solutions are supplied in a well-known form.

4. ™Overshoot® causes no problem. In certain other transformations, "overshoot" causes the
solution to fail. :

Gas Properties

Gas properties have always been defined by some algebraic relation or combinations of algebraic
relations. Perfect-gas relations, Sutherland's law, piecewise polynomial descriptions of enthalpy
and the density-viscosity product are a few examples. Others are the binary diffusion coefficient
and the chemical source term arising in non-equilibrium flows. Different representations of gas
properties involve new formulae and reprogramming only of the gas—property part of the entire computing
program.

‘Chief' Aerodynamics Engineer, Research, Douglas Aircraft Company, McDonnell Douglas Corporation,
Long Beach, California.
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20. DIFFERENCE APPROXIMATION OF THE BOUNDARY-LAYER EQUATIONS
NEAR SEPARATION

P. G, Williams
University College, London

In this paper the behaviour near separation of a standard difference approximation to the
boundary~layer equations is considered. Attention is first restricted to simple two-dimensional incom-
pressible flow, then the extension to a quasi-three-dimensional flow and compressible flow are touched
upon.

The singular behaviour of the solutions of the laminar boundary-layer equations at the separation

du
point x = X s where the skin friction coefficient Ty = < —) vanishes, has been the subject of
) dz / 2=0
a number of investigations (Refs. [1], [2], (3], &4], [5]). It has been established that a logically
consistent expansion can be obtained in terms of the variables E = (xB -x)4 = z(xs -x)" 4

this leads to an expression for the skin friction coefficient of the form
Ty = N2E® [as + @ E + a3 E*+ aqd E¥ + (85 4nE +ag) E* + (BelnE +ag)E®+ OE® ¢nE)]

in which @, as, @g, «.. are disposable and have to be determined by matching to the upstream flow.
Previous numerical work in this comnection (1], (3], L5] has concentrated on obtaining the upstream
flow to some reasonable accuracy and then attempting a match. Here we examine the difference equations
obtained by differencing in the z~direction only and try to deduce what happens as separation is
approached; for simplicity, this is largely explained in terms of a one-mesh-point model, and it is
shown that a singularity occurs at which the solution in general has an expansion in even powers of E .
We consider to what extent the behaviour for a fixed non-zero mesh size h models the behaviour of the
boundary-layer equations, and suggest that this illuminates the singularity of the boundary-layer
equations at separation. The convergence as h + O is investigated numerically for the case with
mainstream velocity U(x) =1 -x .

The basic numerical procedure is allied to those used by Leigh 3] and Terrii1 5], but differs
mainly in the method of solving the non-linear set of difference equations. Here Newton iteration is
used, and the resulting set of linear equations solved by an efficient form of Gaussian elimination.
The method has been extended to deal with a fifth-order system of partial differential equations which
includes compressible flow using Stewartson's transformation and some quasi-three-dimensional flows, in
particular, flow past a yawed flat plate with an imposed pressure gradient, which will be considered
numerically for the mainstream (U,V) = (1 - x,1) .

For this case the equation for the crossflow component of velocity v 1is decoupled from the chord-
wise flow equations, which is the ordinary two-dimensional equation with U =1 - x . A Goldstein-type
theory has recently been developed for it by Banks (as yet unpublished), and an excellent match been
made with a numerical solution. Details of this match will be presented. This case is of interest
here because it turns out that 'ry » the crossflow skin friction, has an expansion of the form

1'y = bo - b1 Es.'.' oE®?)

with bo s by # 0, Bso that the fact that the difference equations can only have an expansion in even
powers of E is shown up more sharply. Nevertheless, excellent agreement is obtained in the limit
h-0,.
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The solution was evaluated numerically using the Runge~Kutta method.

In the special case m = O one obtains the Prandtl-Blasius equation
' 4 g8’ =0 (11)
with the boundary condition at the wall

n*=0: ¢=C~-L4a, ¢'=0 (12)

Thus longitudinal curvature and boundary layer control have the same influence on the boundary con-

dition. In order to obtain a potential main flow one can deduce from the expression for the vorticity

that up to the order A the relation

U (x)
U(x:}') = 2 (13)
1+ ky
must hold. This leads to a stream function
Uo
Y1 =—¢en(1+ ky) (1%)
k

which differs from the asymptotic stream function of the boundary layer and does not include the
displacement effect. Therefore an additional stream function ¢ g is introduced which satisfies
the condition of irrotationality up to terms of the order A

3%
me*?

=0 (15)

The boundary condition is given by the v-component of the boundary layer solution at the edge of the
boundary layer, which may be identified with m® = O . This leads to

2 - X 5
¥a = ~ |- Tos xa v &1 (—) (16)
m+1 X4

The solutions V¥, , and ¥g show that the co-ordinates m*®* and x are optimal co-ordinates
in the sense of Kaplun [3]. Thus the solution derived here also describes the main flow accurately
up to terms of. second order and therefore fulfills all requirements of a second order theory. In [4]
¥ s was not yet included as it does not influence the numerical results.

The heat transfer problem considering the dissipation function now also cah be treated. {i].
Numerical results are obtained which can be applied to curvature as well as boundary layer control.
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19. SELF-SIMILAR SOLUTIONS OF SECOND ORDER LAMINAR BOUNDARY LAYER EQUATIONS
WITH LONGITUDINAL CURVATURE AND BOUNDARY LAYER CONTROL

F. Schultz-Grunow, H. Henseler .
Institut flir Allgemeine Mechanik an der Technischen Hochschule,
Aachen

Terms up to the order &/R (6 = boundary layer thickness, R = radius of curvature) or
Re*/® (R = RU/v) are considered [1,2],

n-1

53

The similarity conditions lead to a class of surfaces with a curvature k~ x — , where m is -

arbitrary and x dis the arc length of the wall curve. This requires a main flow velocity distribution

along the wall according to Uo ~x% , m=0 corresponds to the evolute of a circle with a sharp
leading edge and m = 1 to the stagnation point flow at a cylinder.

’ I
The boundary layer equations can be simplified considersbly by introducing the substitutioan]
1
n* = —en(1 + ky) (1)
24

Yy denotes the co-ordinate perpendicular to the wall and A the curvature parameter. (A > O:
convex wall, A < O: concave wall). This quantity is deduced from the similarity condition
6/k = const. leading to the relation ky = 24 with n = y/6 .

Introducing a dimensionless stream function @ (n*) into the boundary layer equation and elimina-

ting the pressure by crosswise differentiation one obtains the fourth order equation [4].

[« (P-1a)p -2 "= 08 TP & (F-48)9"'] (2)

which can be integrated once. The integral can be solved by successive approximation putting the
right hand side, which is of the small order A, equal zero. Thus the Falkner-Skan equation is
obtained, the integral of which leads to

(1 +B)/F° an*=¢'" + G 4 pm*+ Cy (3)

+The constant of integration C is determined by the asymptotic behaviour of ‘f at large n*, which
is found by considering the displacement thickmess 6. , which is defined by
£ U(s) ~u

dy (&)
U

Introducing the dimensionless quantity &4 ,

2 2> G-
5; = _— 61 (5)
m+l U

61

one obtains

*«©

/(1-¢')m‘=n‘—¢(w)+c ©)
o

C is the boundary layer control paranmeter. (c > 0: suction, C < O blowing )

From this the asymptotic expression for the stream function is

Cf(oo) =nN¥+ C -~ 31 (7)

Using this relationship the constant C, in (3) can be expressed as

Cs =-8(s - C) (8)
and one obtains when substituting. ¢ =9 - LA
B -
' v 90" +B(1 - ¢*7) =LA — [g'" 4 ¢¢' - n* - 8y ] (9)
: £+1

with the boundary conditions

N =0: $=C-4h, ¢'=0; n*zw: ¢ =1 (10)
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4. Refinement

The accuracy of some of our solutions was checked against known results. It was found for :1.ns1:a.1£<2><;.I

that if we take N = 25 and 50 in succession (N = number of intervals in the 7 direction) and then
use Richardson's h®-extrapolation L 6] the results are often more accurate than those for a computation
using N = 100 . If we went further and used h*-extrapolation we could obtain better results with
N=5,N=10 and N = 20 +than we could with N = 100 . ’

5. Starting the Computation

When starting from a stagnation point it has been found that one can vary the first step size
without affecting the result at the end of this step very much. One can see, for instance, that in
the first step from x = O the expression xuu_ expressed in finite difference form does not depend
on 6x . Being worried about this Catherall and Mangler [4] decided to use a series solution at the
start so that they could begin the finite difference procedure a little way downstream with a known
starting value: This was later found not only unnecessary but actually a disadvantage because the
starting value is a solution of the differential not the difference equation and because it complicates
the procedure considerably. It is now believed to be better to start at the stagnation point with the
same procedure as used later. Fig. 1 illustrates this well, and it also shows that oscillations damp
out very quickly and that the solutions end up the same whatever starting method is used. 6 = & was
taken in all the computations of Fig. 1.

At x = 0 itself the equations become ordinary differential equations which are solved by a pro-~
cedure identical with that already given, only simpler. Almost any initial guess for the profile
will do, and the solution is actually performed by the same computer routine as the later step-by-step
method, simply by writing 6 =1 m =0 Jjust for this one computation.

6. Separation

As we proceed downstreal, separation may occur and this may modify the external streanm. If we
insist on keeping to the specified external flow a singularity usually arises, which in incompressible
flow is typified by

(9~ (x, = %)*/2

where x_ 1is the value of x at separation. What happens in practice is that the number of itera-

tions required for convergence to a specified tolerance starts to increase. We then halve the step
size and this enables us to get a little further downstream, when we may need to halve the step again
and again; even this fails in the end. By this means we can approach very near to the separation

point and we can obtain a very close approximation to its value by plotting x against (u,n): . Ve

obtain a line which is very nearly straight and by this means we can find the separation point by
finding the value of x which makes (u )o vanish. We do the same in the compressible case but the

power does not always seem to be % . We then have to find a power which gives the straightest line.
If we choose powers near to this the extrapolated separatlion point hardly changes anyway, so the exact
power is unimportant for this purpose.

Catherall and liangler (4] by careful adjustment of the external stream were able to avoid the
occurrence of a singularity at separation and were even able to continue on to a reattachment point.
This was only possible when the separation bubble was embedded deep down inside the layer and very
small. Presumably this is because inside the bubble they are marching upstream, and errors grow.

If, however, the bubble is small the growth of error is not serious. Fig. 2 shows a series of separa-
tion bubbles{2] obtained by suitable adjustment of the extérnal stream. The upper half is a magnifica-
tion of the last bubble in the lower half. Fig. 3 shows A, (u ) and U_ for this particular
solution. n-e e

7. General Three-Dimensional Boundary Layers

We have only just started using the same technique for genuine three-dimensional cases and have so
far only deaelt with incompressible flow; we have not yet investigated the difficulties which will no
doubt arise when starting. This work has been done by Hall {71, who has also used the method for a
problem involving two space dimensions and time (8] , which has many features similar to a three-
dimensional problem. These two references describe the procedure well enough to render detailed
description here unnecessary.
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i/
(8 -HL) (B~ 1)
C = (18)
(8 ~ B - Hu?)
where B is a constant known from Sutherland's law and the given external stagnation conditions.

The boundary conditions are, for an impermeable wall, u=0,§ =0 or § =0 for m =0;
u=1, S=1 for n= N, together with 8§ or its m derivative known at m = O and a given
initial profile at x =0 .

This formulation is due to Sells '?]

We do not find it necessary to make any more sophisticated transformation.

The first equation (13) is considered as an equation in u and is evaluated at the pooint
{(m+ 8) 6x, n &n] as elrveady described, with the additional complication that it must be linearized
and ¢ must be found.

The non-linear terms in (13) are dealt with by Newtonian quasi-linesrization, that is, if u(o)
is the value of u at one iteration and u'*’? is the value at the next then the terms wu and
u? are written

(1) o (2 (o) (0) [f2) . (o)
(uux) = u uwe? o+ uy (uux)
(ua)(s) = 2u(") u(o) _ (ua)(o)
The second equation (14) is linear in S, but contains ¢ .
To find ¢ .o = We write equation (15) or (17) in finite difference form, evaluating it at the
’
point {(m + 8) 6x, (n - %) &n}; the latter becomes
Pus0,n ~ Puvo,ns = M +E[(m+06)6x]] L8 u +(1-8)u _+0u +(1-06)0 }
on -z _ 2 med,n n,n ¥ el ,n-1 m,n-1
u -u )+ (u o)
+ (o + 6) 5x m+1,n m,n m+1 ,n-1 m,n-1 ,
26x

with a corresponding simpler form for the former. The boundary condition is ¢m+e 0= 0 . Finding
J

¢ in this way is basically an integration by the trapezium rule.

Thus the procedure is to guess (or extrapolate) values at the end of the step, find ¢ from
equations (15) or (17) as the case may be and solve (13) and (14) for u and S as already described.
We then iterate beckwards end forwards between the three equations until there is only a very sumall
change or ‘'*olerance' € in some representative quantity which may be an expression related to skin
friction such as (u'q)o or displacement thiclkmess such as A(x) = /(1 = u) dn , usually the latter.

The iteration is done in strict sequence and not in 'blocks'.

The step sizes are usually such that the number of iterations required is gbout 6 or so early on,
tut the number increases slowly. Later it increases more rapidly as separation is approached, when it
is necessary to recuce the step size.

No narticular difficulty was found in using these methods but in one Case[5] the iterations some-
times oscillated and did not aP'oear to be converging or converged very slowly. The answer here was
under-relaxation. Thus if u(®) and uf* are the results at any two stages in the iteration,
instead of taking u*) as the starting point for the next iteration the value

a u?) + (1 -a) L9

was taken; usually a = ‘5 was satisfactory. Of course it was necessary to reduce the tolerance €
accoréingly. -

For the determination of derivatives at the wall it was usual to go one step 'into' the wall so
that equation (3) involves one extra equation corresponding to n =0 .

Suction or blowing causes no difficulty. Instead of ¢(0) = O we must hove ¢(0) = w (x) , a
function known from the given circumstances of blowing or suction. ELither a given heat transfer or a
given wall temperature can be dealt with equally easily.

&7
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3. Boundary Layer Equations

We write the two~dimensional equations in the
and density Py in the usual way

AL LIBRARY

usual notation, scaled by a length &, velocity U

9
plate!, w Wit ) = -p 4= (u',) @)
dz
( ) [} ;01
p(u'h_ + w'h = u'p +uu'? s — —h) (5)
x z x ' z oz pr 2
9 3
— (pu') + —(pw') = © (6)
ox dz
and put
put = ¥, pw = -y )
and then make the transformation
/3
Vo= Qe xU )% ©)
U /8 2
ne (=) [ e ®)
B, Py X
8's °
where the subscript s denotes stagnation values. We write
N h '
Pk (10)
Mg Hs

xU H h p u?
E______EJ_‘,F:_S.E,G,:ee,H:L. (11)
Ue he Hy Py Hy
We also write
h + u'?
wo= U g o= Uu, § = — (12)
H
s
and the equations become
9
J— - - [N a 2 _
¢ (c un) = unkz('l + E) ¢+x¢gx]+xuux+F(u 5) (13)
@ ,C | 1
G—(—S = ~8 (1 +E)¢ +x¢g_J+xus
a,n Pr n n X X
[} C 9
-HG—-{-— —-@r-1)@=-1)} (14)
an Pr on
¢T\ = u. (15)

Since the factor in square brackets occurs in both equations, and if there is a third (as in
three dimensions) it ocecurs again, some of us use a new ¢ satisfying

$ = 2(1+E)p+xp (16)

which simplifies the first two (or three) equations and replaces the last one by

mn

¢ =%(1+E)u+xux. ' (17)

We take C as a constant or give it its value -according to Sutherland's law
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18. THE NUMERICAL SOLUTION OF THE LAMINAR BOUNDARY LAYER EQUATIONS
FOR AN IDEAL GAS IN TWO AND THREE DIMENSIONS

J. C. Cooke*
K. W. Mangler

1. Introduction

In this paper we intend to concentrate on the implicit finite difference methods developed at the
Royal Aircraft kstablishment for the calculation of laminar boundary layers for perfect gases, with
Prandtl number not far from 1, usually around O-7.

The method, with experience, has proved capable of solving more and more complicated types of
problem, going as far as separation or even beyond it. It has also been applied to three-dimensional
boundary layer problems.

We shall illustrate the methods by taking rather simplified equations to illustrate the points we are
aiming to stress.

2. The Basic Method

In all cases the external flow is assumed to be known and the usual stretching of the co-ordinate =z
normal to the wall is done, the stretched co-ordinate being denoted by m whilst the velocities u and
v are normalized by their external values Ue and Ve . Boundary layers approach the external flow

exponentially; indeed it is true in general that a normalized velocity u approaches its external
value 1 in such a way that

- 3
uln) =1 +0(e™ ) as N> w,

where k 1s some constant. Hence for a given problem the infinite range O € m < o 18 replaced by
the finite range O <m € m_ where m_ has some value depending on the problem and the transformation.
We have often fixed M, during the whole of the computation, not too large (otherwise there is much

wasted work) and not too small (otherwise there is a loss of accuracy). We can check this by looking
at the full velocity profiles from time to time during s computation. Catherall [1] has sometimes
tested to see if there is a sufficiently small difference between u(‘no) =1 and u(’no - &) . If this

grows above a very small value we increase m_ by some fixed amount (say add ten more points). This
may have to be done several times during a computation.

It is usual Yo illustrate the method by consideration of the heat conduction equation

Y = k(x,m) u (1)

in which we divide the range O£ n <1 ° into N intervals and express the equation in finite difference

form. With an obvious notation equation (1) is evaluated at the point [(m + 6) 6x, nén] where
0< 6 <1 and we obtain

e(um-n-‘l,m‘l - 2um+1 ,n M um1,n-1) + (1 - e)(“m,nﬂ - 2um4n + um,n-1)
(n)®
(2)
Ynet,n ~ Yn,n
=20 D8 x{(p+6)éx,n bn} .

6x

This is most accurate when 0 = § . If all quantities with subscript m are known it gives an
equation of the form

& um+1,m-1 * bn um«M,n * um+1,n—1 = dn » (lsnsN-1)

u

ml,0 * o, Unet,N * T (3

with 8. bn’ s dn’ all known. The solution of this equation is easily obtained by inverting a tri-

diagonal matrix. The Crank-Nicholson method[z] is equivalent to taking 6 = 4, and in the linear case
the procedure is stable if Z ¢ 8. < 1 .

We usually take 6 = % but occasionally we have had to vary it.

® Now at University of Bristol.
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17. A NEW, FAST, FINITE-DIFFERENCE PROCEDURE FOR THE SOLUTION
OF PARABOLIC DIFFERENTIAL EQUATIONS, WITH SPECIAL REFERENCE
TO THOSE OF THE TURBULENT BOUNDARY LAYER

D. B. Spalding
Imperial College, London

Nature of method

The method is an implicit, finite-difference, marching-integration procedure, for solving sets of
simultaneous, non-linear, parabolic differential equations, of the type:

X2 X a9 -1 9 ¢
o}:—+(a+bw)—=—<c—>+d,
1

Ogows ax o oW dw

where ¢ is a typical dependent variable; a and b are functions of x, perhaps defined by differ-
ential equations involving the local ¢ distribution; and ¢ and d are functions of x, w and the
$'s.

In boundary-layer circumetances, ¢ can stand for longitudinal velocity, swirl velocity, stagna-
tion enthalpy, concentration, kinetic energy of turbulent fluctuations, etc.; x is downstream distance,
and ® is non~dimensional stream function. The quantities a and b. represent the rates of change
of the stream functions at the limits w =0 and w = 1; if elther of these limits separates the
boundary layer from an adjacent shear-free stream, the differential equations for a and b are chosen
so as to keep the conditions at the nearest grid point extremely close to the conditions of the main
stream. The quantity d represents, according to the significance of ¢ : longitudinal pressure
gradient; or kinetic heating; or sources and sinks of material resulting from chemical reaction; or
generation and dissipation of the kinetic energy of turbulence; etc.

For computational economy, special practices may be introduced near solid walls, where the longi-
tudinal convection terms become negligible. Appropriate "wall-flux relations", based upon once-for-all
exact numerical integrations of the Couette-flow equations, are employed in place of the standard
finite-difference relations, for the interval near a solid wall.

The method is, so far, confined to two-dimensional flows, whether plane or axisymmetrical.

Applications made so far

The method has been applied to several physical situations in the last few months (up to
September 1967), including:

(1) PFree turbulent flows, namely: plane mixing layers, with influence of density variations;
axisymmetrical turbulent flows, with influence of density variations brought about by temperature
differences, concentration differences, and kinetic heating; plane jets and wakes.

(ii) Turbulent wall jets, especially those encountered in film-cooling situations, with influence
of density variations. The radial wall jet, with mass transfer through the wall, is one of the
special cases which have been studied.

(iii) Hydrodynamic and thermal development of turbulent boundary layers on smooth walls with
influence of pressure gradient end non-uniform wall temperature. The so-called "equilibfium"
boundary layers have been given special attention.

(iv) Both laminar and turbulent boundary layers on a flat plate, with influence of temperature
difference and kinetic heating on viscosity and density.

(v) Laminar and turbulent flows within round-sectioned pipes and diffusers, with influence of
property variations and mass transfer through the walls.

(vi) 4 turbulent free-convection boundary layer on a vertical flat plate.

The method is found to be fast enough for computer time to impose no serious limitation. About
1000 f'orward-integration steps are made per minute on an IBM 7090, when three or four equations are
solved simultaneously and when the ® range is split into 15 intervals (more are seldom needed). In
a typical forward step, the mass flow rate in the boundary layer increases by 5%; 8o 200 to 500
forward steps are usually enough to complete the calculation of a boundary layer.

Publications, etc.

The method, together with the general Fortran IV computer programme, has been published as a book.
The reference is: S. V. Patankar and D. B. Spalding, "Heat and mass transfer in boundary layers",
International Textbook Co. Ltd., 158, Buckingham Palace Rd., London, S.W.1.
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which are usually roughly equal and opposite and do not exceed one or two degrees except near separa-
tion. These inclined characteristics can be crudely thought of as the boundaries of the wake of a
disturbance within the boundary layer, so that the notions of hyperbolicity agrees with the usual
physical concepts. The V component velocity does not occur in the equations along the inclined
characteristics because it is a consequence, rather than a cause, of the changes in U and 7 : +thus
only two of the three characteristic equations need be solved simultaneously, and V follows from the
equation along the vertical characteristic which is easily seen from equations (1) and (2) to be

& au au, ar
-U—-+V—=(U,,-——)+— (5)

dy dy ax ay
the term in parentheses being of course known. The numerical method is therefore almost trivial and
most of our ingenuity has gone on satisfying the boundary conditions (especially the inner boundary
condition) and minimising computing time.. A typical run, over an x distance of 100 initial boundary
layer thicknesses takes about a minute in Kidsgrove Algol on KDF 9, a computer with a 6 4 sec cycle time:
writing in user code would reduce this by a factor of 10 or 15, and Fortran runs on IBM 360 or CDC 6600
take only a few seconds.

We specify U and T at points equally spaced on the y-axis (which is a characteristic, so
that V follows from (5) ) and use the finite-difference equations along the inclined characteristics
to calculate U and 7 at x = Ax , again at equally-spaced points: it is a considerable advantage
to keep the mesh points on the vertical characteristic. Since L~ y near the surface the equations
are singular at. y = O (in reality, viscous stresses become important): since 97/dy is not negli-
gible near the surface it is an advantage to approach as near as possible to the singularity, and to
our surprise the numerical method can be persuaded to work with adequate (4 percent) accuracy down to
one y step from the surface despite the complicated nature of the algebraic boundary conditions;
therefore we have not bothered to stretch the co-ordinates, which would give greater accuracy at the
expense of complications. The outer boundary condition has given relatively little trouble: we
allow the boundary layer to grow by one y step per x step (occasionally doubling the y step to
keep the number of points down) and clip off any negative values of 71 (or excessive values of U )
that are introduced by finite-difference errors.

In the lecture, we shall give details of the extension of the method to compressible heat transfer,
in which we use an equation for the heat transfer ©v which is very similar to equation (3) for the
momentum transfer uUv : five characteristics appear and the problem is somewhat complicated by the
coupling between the velocity and temperature fields caused by density variations. We shall also
outline the extension to three-dimensional flow, which is not much more complicated than two-dimensional
flow because spanwise diffusion of turbulent energy is negligible (to the boundary layer approximation)
8o that the characteristics emanating from a point remain lines on a twisted strip rather than forming
a conical surface. This behaviour (2] is reminiscent of Raetsz's zone-of-influence concept for the

laminar boundary layer.

Recently (3] , we have programmed an implicit method for the basic two-dimensional method, using
first-order differences in the x direction with a logarithmic formula for 4U/3y and a parabolic
formula for dr/dy: +this approach is more convenient than the method of characteristics for problems
with large numbers of dependent or independent variables.

The extension to time-dependent flows is analytically straightforward: one adds appropriate
terms in "9/0t to the left hand sides of equations (1) and (3), and no further empirical information
is needed. Only the numerically trivial case of flow on an infinite accelerating plate has been
programmed so far.

A summary of the work is given in Ref. 4.
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16. REFRESENTATION OF TURBULENT MIXING BY HYPERBOLIC EQUATIONS

P. Bradshaw and D. H, Ferriss
National Physical Laboratory, Teddington

Conventional hypotheses about the Reynolds shear stress - puv are usually direct relations
between the shear stress and the local velocity gradient: for instance, the "eddy viscosity" Vo
is defined by - W = v, dU/dy and the “mixing length® ¢ by - W = £2(3U/3y)?, and » e/u.nst
and £/86 are assumed to be universal functions of y/6 . This sort of local-equilibrium concept is
valid only if the distance that a turbulent eddy travels in the course of its lifetime is short com-
pared to any length scale of the mean flow and numerous experiments have shown that this is not so in .
general. However, in a boundary layer close to the surface (say for y < 0°18) the mixing length
formula, with ¢ = Ky, (or a corresponding eddy-viscosity formila) is a good approximation, and since
at least two-thirds of the rise to free stream velocity occurs between the surface and y = 016
the assumptions made in the outer part of the boundary layer are not too critical unless the boundary
layer is changing rapidly.
although they are not very satisfactory for predicting separation, a phenomenon in which the aircraft
engineer, in particular, is deeply interested.

If we wish to improve our predictions we must allow for the effect of past history on the shear
stress at a given point: we require a differential equation expressing the rate of change of shear
stress (along a streamline) as & function of local conditions. Now from the Navier-Stokes equations
we can obtain an exact differential equation for the rate of change of turbulent kinetic energy

2pq® = 3p(u® + v + wP) along a streamline as a function of local mean velocity gredient and various
local properties of the turbulence, and if we make the hypothesis that there are simple universal
relations between the shear stress and the other properties of the turbulence and substitute these
relations into the turbulent energy equations, we obtain the desired differential equation for shear
stress. The hypothesis of simple relations between the shear stress and the other properties of the
turbulence is defended and documented in Ref. 1: here we need only comment that this hypothesis is
prima facie more reasonable than the hypotheses of relations between shear stress and mean velocity.
The same hypothesis can be applied to the exact differential eguation for the rate of change of -puv
along a mean streamline, but the turbulent energy equation is better understood.

The time-average equations to be solved in the two-dimensional incompressible case are

oU au dU; or

J— 4t V—=Ug — + — (1)
ox ay dx dy
oU  av
—_—— =0 (2)
éx ady
1 ar ar ou r3/8 Y 1/3
—(U—..V—):r— - - — (err_) (3)
2a4 ox oy oy L oy nax
advection production dissi- diffusion
pation

where v is the kinematic shear stress - Uv and ajy, L and G are empirical functions: a; is

a constant, G is a dimensionless function of y/0 and L is a length such that L/8 1s a function
of y/6 . The mixing-length approach equates the local production and dissipation but ignores both
the advection (the rate of change of shear stress along a streamline) and the diffusion term: these
terms are small in a boundary layer close to the surface and equation (3) then reduces to the mixing
length formula. Equation (3) is not expected to be valid in the viscous sublayer very close to the
surface but, fortunately, there is a well-established algebraic relation between U and Tt (the
logerithmic law) which holds close to the surface but outside the sublayer, and this provides a
*boundary' condition: in addition V is specified at (or very near) the surface. At the outer edge
of a boundary layer, or at both edges of a free shear layer, we have U - constant, 7 O .

Equations (1) to (3) are hyperbolic. If the energy diffusion is represented as a gradient pro-
cess, a secand derivative appears in the last term of equation (3) and the equations are parabolic,
but with no diffusion at all they are hyperbolic: we chose the present form for the diffusion term
as being the most plausible physically without regard to the mathematical consequences. It is
natural and convenient to use the method of characteristics: one of the three characteristics is
normal to the surface, the other two are inclined to the surface at the angles

(%)

. v,,atG,.;;;z\]a’:G’rma-h‘ T
tan” { }

U

Therefore mixing-length and eddy viscosity methods have been quite popular
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Since no laboratory experiments were conducted to verify the results of the numerical solution
of the physical problem treated in Ref. i1 » the next study was focused on the following. We wished
to see if a steady state (asymptotic) solution of the Navier-Stokes equations would reproduce the
classical Becker analytical solution for shock wave structure. Furthermore, we were interested in
establishing that the steady state (asymptotic solution) would be achieved utilizing a reasonable
amount of computer time. When constant viscosity and thermal conductivity were introduced into the
governing equations, we were able to obtain numerical solutions (23 for the time development of the
structure of a one-dimensional shock wave which in the asymptotic limit came arbitrarily close to
Becker's analytical solution for constant gas properties. Moreover, it was found that the physical
elapsed time to achieve a steady state shock wave structure utilizing an adiabatic piston, (and the
corresponding computer time), was quite reasonable as measured in terms of cost. After obtaining a
number of solutions of the one-dimensional Navier-Stokes equations in cartesian co-ordinates, the
authors also Investigated the shock formetion problem in spherical co-ordinates {31 . 1Inthe latter
paper a standard explosion was treated and it was discovered that accuracy could not be maintained
unless the local computational mesh size was of the o'rde%\the local mean free path.

In extending the method to the multi-dimensional case, the authors proceeded to investigate the
two-dimensional supersonic viscous flow around a circular cylinder [4:5plr. In following nature

in two-dimensional problems, we have found it convenient to initiate the flow using a one-dimensional
steady flow obtained in our earlier work. This can be likened to a physical experiment in which a model
is placed into a shock tube and the flow is subsequently initiated by the passage of a planar shock wave
down the tube from the high pressure end.

In Ref. [4], the stability and convergence criteria were extended to two spatial dimensions and
time, and it was again demonstrated computationally that convergence could indeed be obtained. Further-
more, the question of the downstream boundary conditions which we imposed at a finite distance from the
body was investigated and it was established that the effects of upstream influence could be made negli-~
gibly small by placing the downstream boundary sufficiently far away from the body. 1In Ref. [57] the
same physical problem of the viscous flow around a cylinder was treated, except that the non-equilibrium
dissociation of the molecules was calculated. A diffusion equation was introduced with finite reaction
rate chemistry in order to calculate the dissociation of the nitrogen molecules into atoms in a self-
consistent manner. 1In both of these papers, only one of the two limiting boundary conditions on surface
temperature was considered, namely, the adiabatic wall, (zero heat transfer rate).

In studying viscous problems, the question was raised whether or not the finite difference repre-
sentation we were using did not introduce artifiicial viscosity effects. Accordingly, the method was
applied to the solution of the Euler equations [Ref. 6] and it was shown that no artificial viscosity
effect existed which might mask the true molecular viscosity when the Euler subsystem was coupled to
the viscous terms appearing in the complete Navier-Stokes equations.

In our most recent study [Ref. 7], the other limiting boundary condition on surface temperature
was also utilized, namely, the isothermal wall (finite heat transfer rate). The new results for the
isothermal and adiasbatic limits were compared. In addition, numerical solutions were obtained for the
viscous supersonic flow around an isothermal sphere. The structure of the flow field and the new
results for the pressure and shear stress distributions and heat transfer rate at the surface of the
cylindricael and spherical bodies were obtained.
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15. SOLUTION OF THE TIME-DEPENDENT NAVIER-STOKES EQUATIONS FOR
SUPERSONIC FLOWS

Sinclaire M. Scala1 and Paul Gordon2

General Electric Company
Valley Forge Space Technology Center

In the past, aerodynamicists have simplified the theoretical treatment of determining the flow field
around a hypersonic vehicle by developing special methods for treating the various viscous and relatively
inviscid zones of the flow, including the shock wave, the shock layer, the boundary layer and the wake.
Although each of the earlier approaches started with the Navier-Stokes equations, with few exceptions,
different sets of assumptions were then introduced and the resulting simplified equations were integrated
employing different analytical or numerical techniques such as separation of the variables, similarity
solutions, series solutions and the method of characteristics.

Thus, in the past, the total flow field has been obtained by means of "patchwork™. The contiguous
flow regions have not usually been treated self-consistently. Moreover, in many cases, it was assumed
that an independent knowledge of certain critical parameters was available, say from a flow visualization
experiment, (e.g. the shock shape or the length and shape of the near wake region). Consequently, none
of the aforementioned techniques is satisfactory if one wishes to calculate the complete compressible,
viscous, thermally conducting, non-equilibrium flow around a vehicle, without either knowing or assuming
a significant part of the solution.

It is therefore desirable to have available an established procedure for calculating viscous flow
fields in which patchwork techniques are not employed, and where one does not require experimental results
to construct a solution. That is, one should be able to solve the complete Navier-Stokes equations
numerically without introducing assumptions which oversimplify the problem and without depending on the
availability of data which may not necessarily exist.

During the past five years, the suthors have been active in the development and extension of
numerical procedures for the calculation of flow fields based on the solution of the time-dependent
Navier-Stokes equations including compressibility, viscosity, diffusion and other real gas effects. The
treatment of such flows implies that one will include in the governing system of partial differential
equations the specific effects of compressibility, viscous dissipation, thermal conductivity, diffusion
and chemical reactions. It was desirable that a method be developed which could be used not only to
include any or all of the aforementioned real gas effects, but could also be used to compute the flow in
an arbitrary multi-dimensional curvilinear co-ordinate system.

There are at least two compelling reasons for utilizing the time~dependent form of the Navier-Stokes
equations. One, is simply that in meny practical problems, the transient solution is the one of interest
rather than the steady state solution, (which may be the trivial solution, or may even be non-existent).
Two, even when the steady state solution is the one desired, it appears necessary to retain some form of
the time dependence of the equations. For example, each iterative step of a relaxation method, such as
the one proposed years ago by Thom and Apelt, for solving the Navier-Stokes equations, can also be inter-
preted as a fictitious time-dependent path, in which the vanishing of the residuals corresponds to the
transient approach to the steady state solution.

This idea of following a time-dependent path to the steady state was investigated more directly by
Peaceman and Rachford in the solution of a generalized elliptic equation (e.g., the multi-dimensional
heat conduction equation) by retaining a physically meaningful time-dependent term and actually solving
the parabolic partial differential equation for a long elapsed time.

The idea of retaining the time derivatives, i.e., "following nature®, in flow field problems was
presented by Crocco as a means of obtaining the steady state solution of the Navier-Stokes equations.
In his pioneering paper, Crocco presented the rationale for introducing a time-dependent term which would
in some sense follow nature and vanish identically in the asymptotic limit as the steady state solution
is approached.

In extending Crocco's ideas, we decided to treat the complete time-dependent form of the Navier-Stokes
equations, rather than introduce fictitious time derivatives. In our first paper on this subjectl?],
numerical solutions were presented for the complete time-dependent compressible Navier-Stokes equations
for the one-dimensional motion produced by a piston. A planar piston was accelerated into a stationary
gas and the formation of the resulting compression wave, and its subsequent reflection at a wall, was
followed in time. The gas model utilized for molecular nitrogen specified that the molecules had a con-
stant specific heat, and that the viscosity and thermal conductivity coefficients were proportional to the
‘square root of the local absolute gas temperature. During the evolution of the finite difference pro-
cedure, the authors experimented with various numerical methods including the purely explicit scheme,
and the Dufort-Frankel method as applied to the viscous terms; the Lax method and characteristic methods
such as envisaged by Courant, Isaacson and Rees were applied to the inviscid terus. In Ref. (1], the
authors derived stability and convergence criteria and showed computationally that convergence was
achieved when these criteria were satisfied.

1Manager, Environmental Sciences Laboratory.

2Manageri Scientific Computations and Applied Mathematics.
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Since the one-dimensional linearized Navier~Stokes equations, when written in matrix form, have

" the same appearance as equation (*), a scheme that is stable for the Navier-Stokes equations should be

stable for (*) . In addition, at the present, we know of no scheme that is stable for (*), that has
not proved stable when naturally extended and used for the Navier-Stokes system of equations, in either
one or two dimensions. The advantage of using (*) is that stability criteria (from the von Neumann
necessary condition) are rather easily derived, whereas for the linearized Navier-Stokes equations the
conditions are sometimes hard to find. It seems safe, therefore, when examining difference schemes, to
limit oneself initially to the consideration of schemes that are stable for (*).

The time difference scheme that we have used is given below for equation (*), where we use the
notation

u(x,t) = u(jax, nAt) = u?

“ aAt At R
W R e — B - ) ey — (B - A )
J J x| ot J-1 Ax? o J 31
abt . At
WP @Sy, — @ o
J J aax | ot 1 Ax® o 9H! J J-1

with the stability condition alAt < Ax .

This two step scheme has the advantage that both steps have the same difference form. This allows
the boundary conditions to be applied in the same manner for each step.

In the calculations a uniform rectangular mesh was used with the length of the mesh cell in the
direction of the centreline twice the length in the normsl direction. There were approximately 2000
grid points in the field. A check calculation with the mesh size approximately halved was performed
and the results compared favourably.

Solutions were obtained for a range of Reynolds numbers (based on the base half-height and the in—
flow conditions) less than 1000 at Mach numbers between 2 and 4. Both the cases of an adiabatic wall
and a constant wall temperature were computed. The important features of the flow, such as the expan-
sion around the cormer, the separation of the boundary layer, the re-circulation region, the re-
compression, and the formation of the wake shock are illustrated in the results. Also shown are the
changes in the solution with the variation of the Reynolds number, the Mach number, and the wall
temperature condition.
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1. NUMERICAL SOLUTIONS OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
FOR THE LAMINAR NEAR-WAKE IN SUPERSONIC FLOW +

* ‘ *
J. 8. Allen and S. I. Cheng
Princeton University, Princeton, New Jersey

Numerical solutions of finite difference approximations to the compressible Navier-Stokes
equations have been calculated for the steady flow of a supersonic stream and boundary layer over a
rectangular base. The configuration represents a model problem for the laminar near wake of a slender
blunt-based body. Typical results are shown in Figs. 1-4.

The incoming flow is placed upstream of the corner of the base. On the body the no-slip condition
is applied to the velocity components and a specified wall temperature or an adiabatic wall condition
is applied to the internal energy. The flow field is assumed to be symmetric about a centreline
running through the base. Along the top boundary a simple wave condition, simulating the effect of a
fluid of infinite extent, is used.

The difference approximations are derived from the integral form of the conservation laws which
are written in a Cartesian co-ordinate system for a calorically perfect gas with a Prandtl number equal
to one. Constant coefficients of viscosity and heat conductivity are used. The steady state solutions
are obtained from an iteration scheme that is based essentially on a difference approximation to the

unsteady equations.

To formulate the difference equations the flow field is divided into uniform rectangular mesh
cells, where the centres of the cells form a set of grid points. The approximations to the spatial
derivatives are derived from the integral form of the conservation laws for each mesh cell. This
results in centred difference equations with a formal discretization error of the order of the grid
size squared. An important advantage of the integral formulation is the conceptual aid it gives in
applying boundary conditions on a body surface. Wall boundaries are placed along cell edges, rather
than through grid points, and the boundary conditions are applied directly to the flux terms. This
procedure was found to be of crucial importance to the success of the computations. Wall boundary
conditions that were not formulated in strict accordance with the integral conditions of the conserva-
tion laws were found to lead quickly to non-physical results (e.g. negative densities).

The boundary conditions on the top and outflow boundaries of the computational grid, both of which
are assumed to lie in the flow field (and as such are not natural boundaries of the flow), require
special attention. The outflow boundary was placed far enough downstream so that the outflow was
almost entirely supersonic. An extrapolation procedure where, at each time step, the values on the
boundary were obtained by smoothly extrapolating the values at the interior points has proved satis-

factory.

For the top boundary a simple wave condition has been developed. The inflow above the boundary
layer is assumed to Le a uniform supersonic stream of infinite extent. Therefore, in the steady state
the waves in the outer inviscid flow, resulting from the expansion around the base, should be simple
waves, and the outward running family of characteristics should be straight lines with the flow
properties constant along them. A boundary condition based on these considerations was used in the
unsteady calculations. Values of the variables on the top boundary were obtained by directly extra-
polating, along the guasi-steady characteristic directions, the values from the interior row of grid
points below the boundary. a4s a result, in the steady state solution, the values of the variables
along the top boundary are consistent with the simple wave condition.

To find the solution to the steady difference equations we used an explicit time difference scheme
which we have formed by modifying = scheme due to Brailovskaya 1] . The modification removes the
Reynolds number from the stability condition and results in an approximation to ¢ifferent wnsteady
equations. Limited numerical tests have indicated improved rates of convergence for this scheme
compared with the original and with other schemes 2] . This is especially true when the local Reynolds
nunber attains low values in parts of the flow field.

In choosing a stable time difference scheme for the compressible Navier-Stokes equations we found
it extremely helpful to study first the application of various difference schemes to the linearized form
of Burgers' equation (denoted as equation (*)).

du du a%u
—_—pg—= p — D] a, v >0, constants
ot ax ax?®
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13. COMPUTER STUDIES OF TIME-DEPENDENT FLOWS*

C. W. Hirt
University of California, Los Alamos Scientific Laboratory
Los Alamos, New Mexico

This paper presents a discussion of finite difference approximations to the full, time-dependent,
Navier-Stokes equations. The methods described here are developed from an Eulerian viewpoint. A
fluid is visualized as flowing through a network of stationary rectangular cells, and for each cell
of the network, values are assigned for the average mass, momentum, and energy. These-values are
advanced in time by calculating net fluxes, through cell surfaces.

In this paper the basic Eulerian approach is introduced by considering a simple linear convection
equation. Several alternative finite difference approximations are compared. They lead to the
important result that truncation errors associated with a finite difference approximation are good
indicators of computational stability and accuracy [1]. This result is quite general and has important
consequences for approximations of the Navier-Stokes equations.

The approximations used for the linear convection equation can be developed readily into finite
difference approximations for the full Navier-Stokes equations. An example of this is illustrated by
the Fluid-In-Cell (FLIC) method [2]. The FLIC method can be applied to a variety of aerodynamic
problems. Two typical examples are the calculation of hypersonic flow about a cone and the calcula-
tion of an interaction between a blast wave and a bow shock on a blunt nosed projectile.

Extensions of the FLIC method are possible in many directions. One interesting extension was
developed in a study of hypersonic flow about the sharp leading edge of a flat plate (3] . This
study involved a coupling of the continuum Navier-Stokes equations with boundary conditions derived
from a molecular model. The molecular model simulated partial slip and temperature Jump boundary
conditions.

The FLIC method is not suitable for multimaterial problems, since it has no provision for
recording the positions of material interfaces. In FLIC, every cell is treated as homogeneous, and
average masses are fluxed through cell boundaries. These processes produce smeared interfaces, which
can significantly affect the results of a calculation. A way out of this problem is to replace con-
tinuous mass distributions by particles having discrete masses. Flux calculations are replaced by
calculations of particle movement, and material interfaces sre maintained by labelling the type of’

_ material that each mass particle belongs to. This idea forms the basis of the Particle-In-Cell (r1c)
method [4] . The PIC method is illustrated by a calculation of hypersonic wake flow, and by a calcu-
lation of the hypervelocity impact of a projectile on a plate.

The FLIC and PIC methods represent two ways of calculating time-dependent flows of compressible
fluids. For incompressible fluids special techniques must be employed to satisfy the incompressibility
condition. One computing scheme is described, the Marker-And-Cell (MAC) method 19 , which satisfies
this condition by solving a Poisson equation for the pressure at each step in time. The technique
is illustrated by application to the investigation of hydraulic jump formation.

It has slready been noted that the truncation error analysis applied to the linear convection
equation is quite general. In particular, it can be applied to finite difference approximations of
the Navier-Stokes equations. It is easy to see, in fact, that diffusion-like truncation errors must
occur. These errors can overshadow real viscosity effects unless an upper bound is set on the
Reynolds number of a calculation. The actual value of the upper bound depends on the particular
difference scheme used and on the particular problem under study. This and related restrictions
must be carefully observed when using finite difference approximations. In many cases the results
for a fictitiously low Reynolds number, however, can closely approximate true high-Reynoclds-number
flows. °

An exciting new contribution to numerical fluid dynamics is the attempt to calculate turbulent
flows. It would appear out of the question to resolve the detailed motion of a turbulent fluid.
However, it now seems possible to simulate the effects of turbulence on the mean motion of a fluid by
coupling the Navier-Stokes equations, including a Reynolds stress, to a set of turbulence transport
equations . This approach looks quite promising and is now under active investigation.
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12. RAREFIED HYPERSONIC FLOW OVER THE FORWARD PART OF A BLUNTED CONE*

R. J. Magnus and W. H. Gallaher
The Convair Division of General Dynamics

San Diego, California, U.S.A.

The calculation of the Mach 6¢28, Re 83+4 airflow about a spherically blunted 3¢6 degree half
angle cone frustum by numerical means based on the unsteady Navier-Stokes equations has been
attempted.

About 850 mesh points in systems of body-oriented orthogonal curvi-linear co-ordinates (spaced
each 3°6 degrees aslong the sphere and spaced 0°05 sphere radii normal to the body) have been used to
cover the field.

The calculation was started with uniform parallel flow and adiabatic-wall no-slip boundary
conditions imposed along the body. Conditions at points of the field were altered by amounts calcu-
lated using finite~difference approximations to the unsteady equations. To try to hasten convergence
to a steady state, the solution was advanced in the timelike direction as far as permissible based
upon local limits on the stability of the difference scheme employed.

Drift in free-stream properties because of the truncation errors of the difference scheme and
the use of curvi-linear co-ordinates was suppressed by re-assigning free-stream conditions to field
points at which changes did not exceed preassigned threshold values. Rigorous convergence to a
stationary state was not achieved when the calculation was halted, because of expense, after 580
passes through the field. The pressure, density, and tofal velocity contours and the streamlines
after 580 passes are shown in Figs. 1 to 4. From the state of the field when calculations were
suspended and the time step limits of the difference scheme used, it has been estimated that from
800 to 3600 timelike calculation steps (depending upon the particular streamline being followed)
would be necessary to follow the convection of a particle through the shock layer.

The calculated density distributions along the stagnation streamline and 30° ray are compared
to measurements obtained by Wainwright [1] ahead of a Tw = To spherical model in Figs. 5 and a.
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region of a blunt body in high speed rarefied flow.
Celestial Research Corp., Rep. BD-339-101, Nov. 1966, AD-6L46743.

.
This work uses a computer program developed under sponsorship of the Air Force Flight Dynamics
Laboratory, Research and Technology Division, Air Force Systems Command, USAF, Contract AF33(615)-
5156. See Magnus, R. J. and Gallaher, W.H., "Development of a Program for Calculating Viscous
Supersonic Flow over Blunted Cones," Air Force Flight Dynamics laboratory, AFFDL TR68-28,
January 1968 AD-836553.
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which is a difference approximation to the differential equation
Ax
Ut=Fx"—Fxx
2
Thus again we have a acheme which introduces an artificial viscosity of O(Ax) .
Consider now the case finite & . For & = 0(1) any of the above mentioned schemes would yield
a legitimate solution since the artificial viscosity is an order of magnitude smaller than the real
viscous term. However, if € = O(Ax) = O(At) , then the real and artificial viscosities are of the
same order of magnitude. For still smaller & , the artificial viscosity dominates the real one.
It seems that in neither case will the difference scheme furnish a legitimate solution.
Another possible difference scheme uses the real viscous terms to ensure numerical stability.
The simplest of these schemes has the following form:
At €At
1 o o o o o [}
U =0 +4=— (F -F )+— (U +U =-20)
°© Jax ** -1 Ax? +1 -1 o
In order for this scheme to remain stable, the following condition must be satisfied:
At 2eAt
jaf — < ——< 1
T ax Ax®
At
The condition a -—— g 1 is recognized as the Courant-Friedrichs-Lewy (C.F.L.) condition. For the
Ax
case of the Navier-Stokes equations this condition becomes:
At
— < (g+a)”*
Ax
where q is the magnitude of the fluid velocity vector and a is the speed of sound.
The term Ax/e represents a Reynolds number referred to the mesh size, ReAx . Provided that
the C.F.L. condition is satisfied, the stability condition restricts the use of this difference scheme
2
to ReAx § — which is of order one. Thus the scheme is feasible only for very low Reynolds numbers.
la}

Another method which was proposed in Ref. 1 uses the second order term, Utt » in the Taylor

series to ensure stability. This term, however, is approximated in such a fashion that it should
vanish simultaneously with the first order terms in the approach to steady state. Thus no artificial
viscosity is introduced; however, this scheme has not been sufficiently tested.

The condition Re, = 0(1) is unnecessarily restrictive. An estimate based on boundary layer
concepts[1] shows that sufficlient resolution is achieved if

fn Re, = o(1)

where Amn is the mesh size normal to the surface using boundary layer type co-ordinates. For larger
Reynolds numbers, say of order 10* , it becomes necessary to separste the flow field into viscous and
inviscid regions so that it becomes manageable on present day computers.

However, for any of the above mentioned explicit schemes, the small mesh size in the viscous region
would require s correspondingly small time step. Implicit schemes, on the other hand, seem out of
question for the full Navier-Stokes equations. Consequently, alternate methods are now being studied
which exhibit some of the stability properties of the implicit schemes but allow calculations in a
fashion similar to those used for explicit schemes.

. Reference

[{1] Preudiger, F. A., Gallaher, W. H. and Thommen, H. U. Numerical calculation of low Reynolds
number flow over a blunt wedge with rearward facing step.
Office of Aerospace Research, ARL 67-0151. (July 1967?.
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1. INTEGRATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS
BY FINITE DIFFERENCES 1

Hans U. Thommen2

A number of investigators have recently developed methods for integrating the Navier-Stokes
equations numerically. Some authors base their approach on the unsteady equations and find steady
state flowfields as asymptotic solutions for large times. This paper deals with this approach; an
attempt is being made to estimate the limits of applicability of such methods.

Rather than discussing the full Navier-Stokes equations we will consider the simpler, scalar
equation introduced by Burgers for the study of some aspects of turbulent flow. Using subscripts to
denote partial differentiation, the Burgers equation is written in the form 3

U, = Fx(U) +eU_ = a(U)Ux +eU_ : (1)

We assume that the parameter € is small; it plays the role of the reciprocal of the Reynolds number
in the Navier-Stokes equations. The difference approximation to equation (1) is based on a Taylor
expansion of U . If the expansion is performed about the point (x,t), we have:

At®
U(x,t + At) = u(x,t) + &t Ut(x,t) + _!- Utt(x,t) + 0(at®)
, 2
At?

= U(x,t) + At IF +€ Un] + -2-!— {(a Fx)x (2)

3

+e[(aUn)x+Fm+eU ]}+0(At)
where we have replaced the time derivatives with spatial derivatives using equation (1). Let us

first consider the inviscid case, & = O . This case was treated by Lax and Wendroff by using
centred differences to approximate Fx . In this case it is necessary to include the second order

term, (a F ) , in order to have a stable difference scheme. This term then represents an artificial

viscosity term in the asymptotic, steady state solution, as can be seen by rewriting equation (2) in
the form:

At
U(x,t + At) - U(x,t) = At [Fx + ? (« Fx)x} + 0(At?)

As the left-hand side tends to zero, the difference approximation approaches the steady state solution
to the modified differential equation

At
Fx-l-'; (a Fx)x=0

with an artificial viscosity term of O(At) . The same is true if non—centred differences are used
for »Fx and the Taylor series is truncated after the first term. Using the abbreviation

U(x + mAx, t +2A%) = U’; » & scheme used by several authors is of the form:
At
v=ule— |B° - F"]
o 0 Ax o
This equation can be written in the form
At At
o
vi=uds — | B - r°;l s — (B, - 2F + F ]
246x

1Work reported in this paper was supported by the U.S. Air Force under contract AF 35 (615)-5989

2Pro:t‘essor of Mechanical Engineering, Southeastern Massachusetts University, North Dartmouth .
Massachusetts 02747

3Burgers considered the case a = dR/4U = -
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The use of the method of integral relations for the numerical solution of the Navier-Stokes
equations was shown by an approximate calculation of the laminar flow over a flat plate of finite
length at large Reynolds numbers (1], The calculations were extended to regions upstream and down-
stream of the plate, as well. The numerical solution of the system - it consisted of four non~linear
differential equations of the third order in this case ~ did not offer fundamental difficulties.

The singularities at the leading and trailing edge occurring in other methods did not appear. The
results, some of them shown in Figs. 1 to 8, are in good agreement with other work and supply some new
information: especially on the existence of the velocity overshoot and its maximum value

Aua' =ug - U at y =08, where b is exactly defined, and on the distribution of skin friction.

The calculations are not very good in regions in front of the plate and in the wake for reasons
given in (1), So displacement thickness &6, should tend steadily to zero there, forming an apparent
body with cusp-nosed leading edge. As a surprising result Cp has a tendency to vanish at the

leading and trailing edge, which seems to be physically reasocnable.

The advantage of the method may be seen in its transparency to physical understanding and in its
relatively small calculation effort.' Application to turbulent flow is possible,

References

[1] Gerking, L. Ein Verfahren gur Losung der Navier-Stokesschen Gleichungen mit Integral-
bedingungen und seine Anwendung auf die Stromung um eine endlich lange ebene Platte.
Diss. Universitit Karlsruhe. (1967).
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10. AN APPROXIMATE METHOD FOR THE SOLUTION OF THE NAVIER-STOKES EQUATIONS
USING INTEGRAL RELATIONS AND ITS APPLICATION
TO THE FLOW OVER A FLAT PLATE OF FINITE LENGTH

L. Gerking
University of Karlsruhe

The method of integral relations, known as a successful method in boundary-layer theory, has been
applied in a modified form to the solution of the complete Navier-Stokes equations. By multiplying
the vorticity equation with powers of the distance from the body, followed by integration across the
whole flow field vertical to the incident flow, a set of an infinite number of ordinary differential

equations is obtained. These are for two-dimensional incompressible flow:
;o dw P o, 0w T a0 e
[Fows [F—wan [P () w (1)
- ox oy ax®  oy*?
-0 =e0

n=0,1,2 ...
for axisymmetrical incompressible flow:
7o, 0w S dw Y Fo o 1 s o
/r—dr+/rn—dr=/r —+—+——-—>dr (2)

dz or az® ar®* r ar ?®
~o ~es -0

n= 1’2’5 s e

u + v
for two-dimensional compressible flow: <w1th q= —)

T _ dpuw T opw dp dq  dp 3g
[y—-dy+/y——ay+/ < ————— >dy

Ix 0x dy 9y ox
—. o
(3)
re bpm % g a® av a* du a? ou v
R el G Re] Gl R B et R I
y? ax? ay? ax ax® dy dy ox ax 9y
- e
n = 0,1,2 ...

For flows in pipes and channels the integration is extended from one wall to the other. While the
integrals exist in two-dimensional incompressible flow, by virtue of the exponential decay of vorticity
® , this has not yet been proved for the two other flow types.

Assunptions for the unknown functions have to be made with respect to y or r , respectively, to
solve these equations, e.g. for w in set (1):

-a3 (x) ya

o(x,y) = [a (x) + 2 (x)y]e ()

With a suitable assumption for the velocity profile u(x,y) -v then follows from continuity
equation - the integro-differential equations are transformed into ordinary differential equations, which
serve to determine the unknown x-dependent parameters a (x) , a1(x) etc. Improvements for better
approximation of the exact solution will lead to more parame‘bers in the assumptions, and by consequence
more equations have to be solved.

It is reasonable to start calculation with the first equations, because they have a physical
meaning. So the second equations of the sets are momentum equations. They give the total change of
momentum in planes verticel to the incident flow, supplying expressions for 1lift and drag. Some
physical statements of basic interest may be derived from these integro-differential conservation
laws, which refer not only to the momentum transfer, but with the third equations to the moment of
momentum, and furthermore to the conservation of mass and energy [2,3] . above all it can be shown
that overshoots in velocity occur in every incompressible two-dimensional and axisymmetrical flow
at some distance from the wall of a body placed into an infinitely large flow field of uniform velocity
U . This holds as well for the infinitely thin flat plate of finite length at zero incidence, for

/”(u-U)d\v=0 (5)

by consequence of mass conservation.




dp
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Vitesse de 1'dcoulement & 1'infini.
Longueur caractéristique de 1l'obstacle.
Nombre de Reynolds basé sur les conditions a 1'infini.

Fonction de courant.

Abscisse curviligne d'un point de la paroi.

Distance normale a la paroi.

Variables couche limite

Variables Navier—Stokes

Frottement & la paroi

Gradient de pression exterieur.
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Conclusion

L'hypothese I etant trés peu restrictive (elle élimine seulement les solutions conduisent & des
vitesses 1nf1n1es au point de separation comme 1/b avec p > 1), on peut dire que tout est base
sur la validité de 1'hypothése I.

-7
Reprenant alors les deux questions soulevees au début, on peut apporter les eléments de réponse
suivants:

1) si1* othdse I est satisfaite, la solution de Prandtl est régulitre au point de séparation
(« =h¥§. On peut alors penser qu'il n'existe pas de zone Navier-Stokes et, effectivement,
1l'ordre de grandeur de cette zone seraif telle que & = £ d'apres (3), c'est-d-dire du
meme ordre gque l'epalsseur de la couche limite, ce qui est impossible, ainsi qu'on peut le
montrer facilement & partir des resultats de [6] ; les équations de 1la couche limite sont
alors valables au voisinage du point de decollement et, de plus, l'angle de séparation est

soit d'ordre 1AR , soit égal & x/2 (point d'arret)

2) 8i l'hypoth¥se I n'est pas satisfaite, L'Stude présentée ici ne permet pas d'eliminer la
solution singuliére de Goldstein [1], pour laquelle a =% ; on a alors & = 3/5, valeur
compatible avec les résultats de [6]. Il existe donc, dans cette hypoth®se, une zone
Navier-Stokes d'ordre de grandeur LR~ %% .,

Signalons, pour terminer, deux travaux récents qui viennent appuyer la thése 1); IL s'agit,
d'une part, d'un caloul numérique de Catherall et Mangler (8] qui montre que les équations de la couche
limite sont capables de conduire 3 des solutions réguliéres, avec décollement, et, d'autre part,
d'une etude théorique de Guiraud [9], qui aboutit X des conclusions analogues, & partir d'un modéle
linéaire ol 1'équation de la chaleur joue le role de celle de Prandtl, et 1'dquation de Laplace, celle
de Navier-Stokes.
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9. ETUDE DU DECOLLEMENT SUR PLAQUE PLANE

Claude Francois
O0.N.E.R.A., Paris

Le déc ollement de la couche limite laminaire en un point 0 d'une paroi ou le rayon de courbure est
modéré souldve les deux questions importantes de la validité des &quations de Prandtl au voisinage de O
et de 1la présence éventuelle d'une singularité en ce point, De nombrrey.x auteurs se sont penche's B
ces questions, parmi lesquels il faut mentionner Goldsteint"], Dean .21, Stewartson[ﬁ et Kaplun [4{,

Il convient &galement de citer le remarquable article de synthése dll récemment & Brown et Stewartson (51.

Le travail présenté ici, limité au cas incompressible et bidimensionnel, est basé sur 1'idée que
1'étude du seul voisinage de la paroi permet de linfariser les équations et de construire ainsi plus
facilement la solution; on peut, en effet, montrer que lorsque la distance & la paroi tend vers zéro,
1'écoulement est dominé par les effets visqueux. Il s'ensuit que, partout ol il existe une couche
limite, la solution, écrite dans le systéme de variables couche-limite, admet, au voisinage du corps, un
développement de 1la forme (1):

¥ =a@T* +8F) T+ ... (1)

od a(X) représente le frottement & la paroi et F(%) le gradient de pression extérieur.

S'il existe des zones ou il gst nécessaire de revenir aux équations de Navier-Stokes cdmplétes, on
retrouve, prés du corps, 1'équation de Stokes (2) écrite dans le systdme de variables Navier-Stokes.

BEV) =0 (2)
Désignant par «(%X) ~ %% 1é comportemmt du frottement au voisinage du point de séparation 0, 1'étude du

raccord couche limite e» zone Navier-Stokes, présentée dans [6], conduit & la conclusion que cette
- P . . P . -
derniere région a pour dimension caractéristique LR avec:

3
2(x + 2)

5 = (3)

On doit alors rechercher des solutions de (2), vérifiant la condition d'adhérence du fluide & la paroi

(qui, & cette échelle, est un plan), et se comportant lorsque X -+ » comme y° x%; pour ce faire,
on écrit la solution de (2) sous la forme (4);

¥ =12(z) + 2(3) + 2e(z) + 2E(3) (%)

ol 2= 3} + ix ; 2z = ; - J‘S{v, f et g désignant deux fonctions arbitraires et E,g- leurs fonctions
conjuguees .

La détermination de f,8, F,é, envisagée en détail dans [7] utilise les techniques dévelo;;pées par
Muskhelishvili et conduit & la solution (5);

-~ -~ ~ \
V=V1+ Vs
_ Py & D) Q ¥y dQs
Vi = 4 Re [y—+ 2y + ix ————}
’ dz 2 z dz > (5)
~ s a1 dQ2 Qs
Yg = 2 Im {y(—-——«r—)-l’n}
dz z dz 22
J

Dans ces expressions Ps;,Q1,Ps,Qs désignent quatre polynames arbitraires de la variable z® et Re { i,
In { ] sont respectivement les parties réelles et imaginaires des parenthéses.

La solution (5) est obtenue sous réserve que soient satisfaites les hypothéses suivantes:

Huothése 1: f,g,f,é sont holomorphes dans le demi plan '}; > 0 et de degré fini & 1'infini.

Hypothése II: f* ,f‘, g, 8 vérif‘ient, -au point O , une condition de Holder du type:
leG) | « —
®(z g —
! 2 P

(C = constante réelle positive et p constante réelle, inférieure & 1).

L'examen de (5) montre alors qu'il n'existe aucune solution présenta.nt une ligne de séparation unique
issue de O, et ayant le comportement voulu lorsque |X|+ » exceptd si a =1 (Cf. [7]).
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8. A NEW PROCEDURE FOR THE NUMERICAL SOLUTION OF THE ELLIPTIC
EQUATIONS OF SIMULTANEOUS HEAT, MASS, AND MOMENTUM ‘TRANSFER

D. B. Spalding . .
Imperial College, London

Nature of method

The method is a finite~difference, successive-substitution procedure, suitable for solving sets of
simultaneous, non-linear, elliptic differential equations, of the type:

G. grad ¢ = div (r¢ grad ¢) + s¢

where: G is the mass-flux vector, obtainable by differentiating the stream function (which also obeys
an equation of the above form, though simpler); ¢ is any dependent variable, such as vorticity,
stagnation enthalpy, swirl velocity, concentration, kinetic energy of turbulent fluctuations, etc.;

I', is an appropriate diffusion coefficient, dependent in any way on local conditions; and S, stands
for a source or sink of the relevant property. The method is so far, confined to two~dimensional flows,
whether plane or axisymmetrical.

0f several novelties in the method, the crucial one is the derivation of the difference equations
from the differential ones by integration over a small region surrounding the grid point, coupled with
the assumption that fluid crossing a boundary of this region carries the properties prevailing at ‘the
upstream grid point. (The label ™tank-and-tube formulation" has been used, and is suggestive). Other
novelties concern the handling of the boundary condition for vorticity, and the use of under-relaxation
when large density variations are present.

liost of the novelties have been introduced so as to procure, first of all, unfailing convergence
of the substitution procedure, and, secondly, high accuracy with modest computer time. Both objectives
have been achieved, the first more completely than the second.

Applications made so far

The method has been applied to several physical situstions in the last few months (up to
September, 1967), including:

(i) Uniform-property laminar flows, namely: the flow of heat, vorticity and material in a square
cavity with a moving 1id; and the flow which arises when a jet impinges at right angles on to a wall.
Reynolds numbers up to 10° have been used without divergence, even with coarse grids (10 x 10).

(ii) A non-Newtonian flow, namely: the flow of material and heat induced in a polymer, passing
through the spiral passage of a screw extruder.

(iii) A turbulent impinging-jet flow. The Kolmogorov-Prandtl model of turbulence has been used;
this necessitates the solution of the partial differential equation for the kinetic energy of turbulent

fluctuations.

(iv) Flow in an axisymmetrical combustion chamber in which fuel and air enter through separate
orifices at one end; mixing and combusion occur in the chamber; and combustion products flow out
through the other end. The air enters with a swirling motion, so four simultaneous equations have
to be solved in this case; +the dependent variables are: stream function, vorticity, swirl velocity,
and temperature. A solution is obtained, typically, in four minutes on an IBM 7090 computer.

Publications

The method is described in detail in a book by A. D. Crosman, W. M. Pun, A. K. Runchal,
D. B. Spalding and M. Wolfshtein entitled "Heat and mass transfer in recirculating flows". This book
will be published by Academic Press during June, 1969.




[ECHNICAL LIBRARY
19

Ax8) = Z g (x)u_(4) ()
n=1

and then, by standard methods of orthogonal functions equation (11) is reduced to

dgi (i-1)
- . g =f;(x), (i=1,23...), (15)
where
T
£, =t Z [Ai,ju) R W ORE O} gj]
J=1 .
with
© ¥
Ai,j(X)'—‘ / x5u1(¢)uj(¢)d¢
J+1 i/a © R R
‘ R ) B A OO

This method is suggested by the fact that at the limit point 2z = 0, the solution to equation (11)
actually reduces to one of the modes (8). ' i

Initial conditions for the functions gi(x) can be stated so that the system of equations (15) can

be integrated to a given degree of precision using step-by-step methods. As each step of the solution
is completed, the function A(x,$) ocan be computed and ¥'(x,¢) determined from (12) by numerical
integration. For example, in the case of any flow symmetrical gbout 6 = O, the function k(x,¢) is
an odd function of ¢ and only the odd modes of (9) are involved. In this case a set of boundary
conditions is '

81 (0) =1, 81(0) =0, (i = 5:5:7:°-°) .

For general asymmeirical flows the problem is a little more complicated. All modes are present and a
component generating from the fundamental solutions (8) with n = 2 must be included. This includes
a further arbitrary-constant, dependent upon the 1lift coefficient.

For small enough x , series solutions of the system of equations (15) and the equation (12) can be
obtained. The general solution of (15) can be written

. 2! . .
g; (x) = x1’1/ t_(1.1)fi(t) at + cnxl'1 , (16)

where the Cn are arbitrary constants determined from the initial conditions. A method of successive

approximation is used to generate solutions for each gi(x) in the form of series

'x = ; ( ’S) X (o] X 8 ?
(1 ’s)

whefe the Py are numerical coefficients. There is a corresponding series for W'(x,¢)l

¥ (x,9) = ZF (£,8) () x"(10g x)° , (18)

where the F(r,s)(¢) are numerical functions of ¢ . It is hoped to publish full details of the
results which have been obtained.
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It can be shown that equation (5) has a set of fundamental solutions at the limit point z = O,
As z - 0, its limiting form is

X 3%y
27 — 4 — ~ (1 + %)X =0 . (7)
3z d¢?

By separation of variables, fundemental solutions of {7) are found to be

X, = 8,2 0, @), (n=0,1,2,..0) (8)

where the functions My satisfy

pr+ (2n+1-¢")p =0, _ (9)
primes denoting differentiation with regard to ¢ . The solutions of (9) are known to be

+%/2_
P N L

Hn

where Hn(¢) are the Hermite polynomials and & = 2%ni(x)*/® and is so chosen that

The functions pn(¢) are orthogonal in the range (0O,0) for ¢ . Finally it may be shown that if
% is to have the correct behaviour as z -» O then AO = 0 , and the leading term at 2z =0 is

X,_ = A,, ZBP,, (¢) .

Substitution of this in (6) leads to the limit point solution for ¥

C. ¢
¥~ - 2 / et at » (10)
vE 0]

where CD is the drag coefficient on the immersed body, in terms of which A, ocan be expressed by

integrating the totel stresses round a large contour in the fluid. It also turns out that all physical
parameters of the solution can be removed from the basic equations and from the boundary conditions by
making the substitutions

k
z2=—x, X=Asrg®, ¥ =a¥" ,
2a

where a = CD/';t /8 | Thys ultimately (6) and (7) become

3%\ LY a . dY' A ay' oy’
—-+<2+—12-x——>x—--;—x'-——+(5-¢’+x——+12-x°¢ —)x:o (1)
ag® ) ox ax ¢ 3¢ ax
and :
a%y P
pi/ane® /2 (12)
ag*

For small enough z , the physical range (-=%x,%) far the co-ordinate 6 corresponds to the range
(-w,w) for ¢ and the boundary conditions are

7‘(0:‘#) = P1(¢): )‘(xo“”) =X(x,») =0,

oy v (13)
— (x, -oo) = (x, m) =0 .
99 : o

It is possible to integrate the two equations (411) and (12) numerically subject to the conditions
(13). It is also possible to reduce {11) to a set of ordinary differential equations by the following

procedure. Put
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7. A NUMER ICAL METHOD FOR CALCULATING TWO-DIMENSIONAL WAKES

S. C. R. Dennis
University of Western Ontario

It is known that it is possible to obtain a solution of the Navier-Stokes equations for the steady
two-dimensional motion of an incompressible fluid which is valid at large distances from a body submerged
in the fluid. The problem was considered by Filon (1926) and subsequently developed by Imai (1951) and
I.D. Chang (4961). These solutions are to some extent arbitrary since they contain unknown constants.
However, the constants can be definitely fixed when the 1lift and drag on the body are known and then the
solution is completely determined. 1In recent times some use has been made of Imai's solution by
Kawaguti (1953) end Keller and Takami (1966) in computing numerical solutions of the flow past a circular
cylinder. Thus solutions of this kind are of practical, as well as theoretical, interest. The main
difficulty in obtaining solutions by purely analytical methods is that successive approximations, on
which the methods usually depend, rapidly build up in complexity. In the present paper a method is-
considered in which the analysis is developed partly analytically and partly numerically. By employing
numerical analysis, successive approximations to the Navier~Stokes equations can be carried much farther.

A1l quantities are assumed to be dimensionless. Let (£,8) represent modified polar co-ordinates,
the variable & being related to the polar distance r by the equation £ = log r . Then the equa-
tions governing steady motion are known to be, in terms of the stream function { and vorticity magni-
tude % ,

2y +rf2 =0 )
3
"y R (¥,%) @
29(0.8)

where VZ = 9°/0E® + 0%/06® and R = U4/ v is the Reynolds number based on a representative length 4.

If the external flow is a steady stream parallel to & = 0 , the stream function of the potential flow is
r sin © and it is customary to work in terms of a perturbation stream function ¥ such that

¥ =Y4+rsinb . )

The first approximation to the vorticity of the outer flow is obtained by substituting (3) in (2)
and neglecting products of derivatives of ¥ and g , assumed small. This is the Oseen solution and
from it can be deduced the fact that, for large r , the vorticity is essentially confined to a narrow-
ing region of the (; 9,6)-pla.rfe distributed about the axis © = O with breadth (in the angle 6)
proportional to r~ . This gives rise to an expanding parabolic vorticity wake in the (x,y)-plane.
For this reason, Imai employed a transformation of the Cartesian form of the equations to a system of
parabolic co-ordinates and then used methods of the complex variable to obtain approximations to the

equations.
In the present method a different procedure is adopted, The form of the vorticity wake at large
distances indicates that one should scale the co-ordinate © with respect to the breadth of the wake.

At the same time it is convenient to identify r = « with the origin of a new co~ordinate 2z , and also
introduce a change in the variable & . Thus the change of variables

a
z:r-",s', e=2kz¢,;=xe'¢/2, (10-)

are mede, where Xk = {2/R)*?® . If these are substituted in (2) it is found that certain terms may be
omitted if z?/R is small, and equation (2) becomes

3 ox 9% z'awaax z% ¢ oy
<2+i—w>z —x+—-—--z——-—-(1+¢”—-———>x=o. (5)

k o¢ 9z 9¢® k 3z 3¢ k 3z
The perturbed stream function ¥ satisfies the same equation (1) as ¥ . If z®/R is small, the
equation for ¥ is
a*y 8 ]
-—_+-—e_¢/2x =0. (6)
a¢ﬂ Rz%

These are the two basic equations from which the solution at large distances (or for large enough R)
is derived. '
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6. ECOULEMENT PLAN D'UN FLUIDE VISQUEUX INCOMPRESSIBLE AUTOUR
D'UN OBSTACLE S'ETENDANT A L'INFINI AVAL

Rgbert Legendre
Ingénieur General du Geénie Maritime
Directeur Technique de 1'0.N.E.R.A., Paris

La nméthode d'approximations successives utilisée ne fait pas appel A la théorie de la couche limite
et ne fixe aucun ordre de grandeur pour le nombre de Reynolds rapporte & une dimension caracteéristique
de 1l'obstacle ou pour le nombre de Reynolds rapporté a l'abscisse ‘curviligne.

Dans 1'équation portant sur la fonction de courant, déduite des équations de Navier-Stokes, le
Laplaclen du Laplacien est séparé et les autres termes sont suppos€s connus d'aprés les approximations
précédentes. Une fonction de Green convenable, satisfaisant ¥ la condition d'adhdrence intégre
1l'equation ainsi simplifi€e. La premiére approximation doit étre celle de Blasius.

Un artifice est utilisd pour que la singularité a 1'infini de la fonction de courant, qui est trés
compliquée, ne compromette pas la convergence de 1l'intégrale fournissant la nouvelle approximation.
Il suffit de substituer au calecul de la fonction de courant celui d'une correction et toutes les
approximations successives sont asymptotiques a 1'approximation de Blasius a 1'infini.

Reference

The complete text has been published by ONERA, TP no. 505. (1967).
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computational accuracy. The wake side of the flow field is particularly sensitive to the outflow
boundary condition. Computational accuracy is more critically tested by comparison with experimental
data of the characteristics of the recirculatory wake. The angular location 08 of the separation

point and the length s/d of the recirculatory wake from our calculations did compare favourably with
Taneda's data. (Fig. 354).

Taneda extrapolated the s/d vs. Re curve and inferred the absence of the recirculatory wake at
Re 5 24 . The data of Nisi and Porter showed the first appearance of the recirculatory wake at Re ~ 8
or 9 . Our calculation at Re = 10 indicated a small crescent shaped recirculatory wake one cell
thick. No firm statement could be made in this regard.

Papers Published since September 1967 AGARD Seminar

Rimon, Y. Ph.D. Thesis (Princeton University). Also available as ARL Report No. ARL 69-0063,
Wright Patterson Air Force Base, Dayton, Ohio. (1967).

BRimon, Y. and Cheng, S. I. Numerical solution of a uniform flow over a sphere at intermediate Reynolds
numbers . .
Physics of Fluids, Vol. 12, No. 5, p. 949. (May 1969).

Cheng, S. I. Accuracy of difference formulation of Navier-Stokes equations.
Proceedings of the First International Symposium of High Speed Computing in Fluid Dynamics,
sponsored by IUTAM, 1968. To appear in Physics of Fluids.

Rimon, Y. Numerical solution of the incompressible time-dependent viscous flow past a thin oblate ‘
spheroid. '

Proceedings of the First Internitional Symposium of High Speed Computing in Fluid Dynamics,

sponsored by IUTAM, 1968. To appear in Physics of Fluids.
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5. NUMER ICAL SOLUTION OF TIME-DEPENDENT 1
INCOMPRESSIBLE VISCOUS FLOWS OVER A DISK OR A SFHERE
Y. Rinon® and S. I. Cheng’

Princeton University, Princeton, N.J.

The Navier-Stokes equations for the axi-symmetric flow of an incompressible fluid over a disk or a
sphere were solved by a finite difference method for 10* > Re > 1 . Time-dependent stream function-
vorticity formulation was adopted with a centred difference scheme of second order accuracy both in time
DuFort-Frankel) end in space. - For the disk case, we encountered difficulties in implementing boundary
conditions with the velocity components defined at the mid-points of the mesh cells. For the sphere
case, all dependent variables were defined on mesh points. Linearized stability criteria guided the
selection of an empirical stebility relation beiween time and space increments. This was satisfactory
even when a local, large disturbance was introduced after initial stage of the computation. In the
initial stage, however, time increments much smaller than those suggested by the linearized stability
oriteria must be used to keep the fractional change of the vorticity over a time step small everywhere.
The initial flow field was taken as the inviscid flow as if the body were impulsively started from rest.
At lower Reynolds numbers (Re ¢ 10 for the sphere case) the inviscid solution was totally inadequate,
and the Stokes solution was used instead.

The flow is contained in & pipe moving with the speed of the uniform or the mean flow entering the
pipe. The pipe to obstacle diameter ratio is about eight. No-slip boundary condition was used on the
solid obstacle. The periodic inflow-outflow boundary condition, although convenient, is not desirable
on physical grounds. With a constant uniform inflow, the boundary condition of out-flow becomes a
serious problem. Not only that computational instability could result from apparently reasonable out-
flow conditions but that the structure of the wake flow obtained from stable computations was signifi-
cantly influenced by the different choices of the out-flow boundary conditions. The condition that
the streamlines leaving the downstream boundary are parallel to the axis of symmetry was found satisfac-
tory based on comparison of calculated results with experimental data.

The disk was one cell thick and four cells diameter located on axial and radial co-ordinate lines
with sharp corners. Around these corner points, different difference treatments led to significantly
different flow fields. Without knowing the analytic nature of the flow singularity or a detailed des-
cription of the flow field from experiments around such sharp corners, we could not make a judicious
choice. It is futile to hope that our approximate treatment of such corner points might localize the
errors to within their immediate vicinity. Under the circumstances, even with many more points
representing the disk surface, the results could at best be of qualitative value. All the contour
plots of streamlines, vorticity lines and streaklines so obtained did look quite reasonable. At higher
Reynolds numbers, {(Re = 300), lines of equal vorticity broke away as closed loops, displaying the
characteristics of the shedding of ring vortices from the rear of the recirculatory wake (Fig. 1). The
Strouhdal number of the shedding is about 1+5, somewhat higher than but of the correct arder of magnitude
as the experimental values. '

With the details of the flow field in the vicinity of the disk possibly in substantial error, the
drag on the disk could not be determined from surface stresses. The momentum balance over a large
closed contour enclosing the disk did yield drag coefficients of reasonable magnitudes, but inevitably
distorted by the approximate boundary conditions on the pipewall and on the downstream outflow boundary.

The calculations for the uniform flow over a sphere was aimed at obtaining quantitative results.
The sphere surface was described by unit radius r =1, or z =0, where z =4¢n r was introduced
in the spherical polar co-ordinate (r,8,4). Equal divisions in the (2,0) plane put many more mesh
points in the physical region near the sphere where large gradients of flow properties were expected.
The fractional variations of the dependent variables over any cell were thus kept reasonably small and
smooth over the entire field. The numerical solution was well behaved to permit the evaluation of the
pressure and the shear stress on the spherical surface for drag determination.

The numerical solution was left free to choose its own large time behaviour within the restriction
of axisymmetry. For all the cases computed, the flow field approached a “steady state™ even for
Re 3 300 when the physical wake was known to be time dependent with “periodic" shedding of asymmetric
horseshoe like vortices. The computation for the case of Re = 10° was thus deliberately continued
long after the "steady state™ was apparently reached. The steady state persisted despite the accumu-
lation of axisymmetric disturbances. It thus appears that the breakdown of the steady sphere wake is
due to asymmetric disturbances.

The computed drag coefficienf CD agree well with the standard drag curve over the entire Reynolds

number range 1 to 10° (Fig. 2). The agreement beyond Re 3 300 is clearly fortuitous. The drag
coefficient, being an integrated property, may not be sensitive to the variations in the detailed
structure of the flow field so that the temporal average of the sphere drag with extensive asymmetric
shedding of vortices remain materially the same as that calculated from an axisymmetric steady configura-
tion. Accordingly, the agreement of the drag coefficient is not likely a meaningful indication of

e e T T T T T T T

This work was supported under contract AF 33617-67-C-1065 U.S.A F.
2‘Present address: Naval Ship Res. and Dev. Center, Washington, D.C.
3 Professor, AMS Department, Princeton University, Princeton, N.J.
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I DIFFERENCE APPROXIMATION SOLUTIONS OF THE ACCELERATION
OF A SPHERE IN 4 VISCOUS FLUID*

Paul Michael
Brookhaven National Laboratory
Upton, New York

Difference approximation techniques have been applied to the time dependent Navier-~Stokes equation
in order to calculate the accelerated motion of a sphere in an incompressible viscous fluid. A distinc-
tive feature of the work reported here is that the velocity of the sphere (or equivalently the velocity of
the fluid past a stationary sphere) and hence the boundary condition is a function of time. Attention
has been focused upon the problem of a body starting from rest being acted upon by a constant external
force (i.e. gravity) and retarded by drag forces. A pair of dimensionless quantities will determine the
motion. One is the ratio of densities of the fluid and the sphere, the other is akin to the Grashoff
number that is used in the description of convective flows. This latter parameter is essentially the

ratio of the accelerating force to the viscous force; in this work it is defined as aorz / v* where

ay is the acceleration that the body would have in the absence of drag forces, r, is the sphere radius,
and v 1is the kinematic viscosity.

The Navier-Stokes equation was written in spherical co-ordinates with the stream function and the
vorticity as dependent variables. Values of the stream function and vorticity were defined on a mesh
that has constant spacing in angle and is graded exponentially with increasing radius. Central differ-
ences were used for the approximation of spatial derivatives; the time derivative was treated by using
an implicit method which 18 equivalent to taking central differences in time. The difference equations
were solved by iteration with the aid of a CDC 6600 digital computer. Drag forces were calculated by
considering the viscous dissipation of energy and the change of the kinetic energy of the disturbed
fluid; this avoids difficulties that occur in the numerical calculation of the pressure.

Calculations have been done for various demsity ratios and Grashoff numbers. Results to be

presented include the resulting Reymolds number as a function of the distance travelled by the sphere,
flow configurations and information pertaining to the formation of the region of separated flow.

° .
Work performed under the auspices of the United States Atomic Energy Commission.
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3. NUMERICAL SOLUTIONS OF THE NAVIER-STOKES EQUATIONS FOR TIME DEPENDENT FLOW
PAST A CIRCULAR CYLINDER

Albin A. Szewczyk, Professor
Heat Transfer and Fluid Mechanics Laboratory
University of Notre Dame
Notre Dane, Indiana

David C. Thoman
Bendix Aerospace Division
South Bend, Indiana

and

John Kopfer, Research Assistant
Heat Transfer and Fluid Mechanics Laboratory
University of Notre Dame
Notre Dame, Indiana

The work describes the numerical integration of the complete Navier-Stokes equations for the time
dependent two-dimensional flow of a viscous incompressible fluid over circular cylinders. Solutions
for the Reynolds number range of 1 to 3 x 0% for the flow over stationary and rotating cylinders will
be presented. In addition, the particular aspects of the study which we feel are of prime importance
and will be discussed are: 1. The wide Reynolds number range covered without calculational instabilities
and 2. The fine boundary layer definitions achieved. :

Recent attempts have been made to extend the explicit finite difference technique to high Reynolds
number flow conditions. These attempts have achieved only limited success. The main limitation has
been the occurrence of numerical instabilities associated with the non-linear terms of the vorticity
transport equation. In addition, the very thin boundary layers which occcur at high Reynolds numbers
require extremely small cells if adequate description of the flow development is to be achieved. This
theoretical work represents a quantitative attempt to generalize the explicit finite difference method
to curved body shapes and extend the method to high Reynolds numbers.

Since cell structure is of prime importance, a systematic variation of cell size in space and with
Reynolds number provide cell patterns consistent with the structure of the solutions sought. 1In the low
Reynolds pumber range, we divide the main flow region into rectangular cells. Boundary cells are formed
of partial rectangular cells. The cell stiructure is so chosen that small cells are used in regions
where high velocity gradients are anticipated and large cells used in regions of small gradients. Thus,
the increments of the independent space variable are at all locations small compared to the local struc-
ture of the expected solutions. An explicit forward difference form was used for the vorticity trans-
port equation. The employment of partisl cells at the obstacle surface in conjunction with variable
grid permits considerations of complex obstacle geometries. For high Reynolds numbers, i.e. thin boundary
layers, we describe a hybrid co-~ordinate system introduced to overcome the shortcomings of the rectangular
mesh approach. In this system cylindrical co-ordinates are used near the cylinder and rectangular co-
ordinates are used in the outer flow region. The two regions are solved similtaneously together with
the interface cells between the two regions. Cells of very small radial extent are used very close to
the body. The cell widths are varied with the particular Reynolds number being investigated.

Detailed descriptions of the boundary layer development as well as wake development were obtained.
Results of the runs are presented in the form of digitally plotted streamlines, streaklines, vorticity
and pressure contours. Pressure distributions on the cylinder surface, stagnation points and separation
points are presented for various Reynolds numbers as well as drag, lift, and Strouhal numbers. These
results ere compared with published experimental and analytical values.

In addition, secondary vortex formations are compared with available flow visualization studies.
Finally, recent data on the length of the stationary vortex pair attached to the downstream portion of
the cylinder will be discussed and compared with the current available literature for various Reynolds
numbers. ' .
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moreover zhfo "_ v* is a power series in Zi, eeesZy s which converges for small values
of ]zl . Introducing this series in (5) one obta:ms a system of transcendental equations for the

determination of 2z .

For the case N = 1 of a single eigenvalue detailed studies of the branching equation have been

made . This case occurs when o is chosen so that Ki has the eigenvalue 7» and all other kernels
K, have eigenvalues A : x> A, (e.g. if o is chosen in the minimum of the neutral eigenvalue
curve in linear 'itab:l_lltv theory). In this case X 15 s power series in & . Moreover, the compon-

ents of v = {un,vn,w } have the form Z:,"F (r; 1] Yy, v=1,2,3, where F is a power series

IZ, l” with coefficients depending on r . The branching equation (5) now wr:.tes:

o=z{$+i‘bw|z|2“r“}- )

v=1

H=0
This equation has, besides z = O, a continuum of solutions, since only z, = l z | is determined by
(6). The general solution is of the form z = z e*® with arbitrary a . But the special dependence

of the components of E on z show that all these solutions of (2) generate solutions of the original
boundary value problem which are transformed into each other by a translation in z-direction. The
branching solution is unique up to translations in z-direction.

It follows from the results of Velte[” that there is a first non-vanishing coefficient bw and

that buo is negative. Therefore, there are no real branching solutions for AN < k -

For special cases (rs =2, ri >> 1) bio has been shown to be negative by numerical calculations
and error analysis. Then, “v“ behaves like V=T/bioAe De€ar Ao,
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"1" P= sgpin,m( “un “ o’ "vn "d"wn"o) + Max(ﬂuo "o ’" vo"o’"Wo "o )i

It can be shown that (1) is an equation in B:
¥ =L\)v + TGy) (2)

L is a linear, completely continuous operator, T a quadratic operator, both acting in B . By
estimates of the Greens functions entering (1), one obtains for any pair v*, v’ e B:

[zGvt) = sx®| < o] + [2)) Jo- |- G)

Therefore, L is the Fréchet-derivative of the operator defined by the right side of (2)

The linearized equation v = L(A)v has a positive eigenvalue 7\0(0‘) , as is known from linear

stability theory (cf. [1]). Let the (geometric) multiplicity be N . Then, there is a biothorgonal
sequence v € B, B, € B* (dual space of B)

5 Uop =1, ey N

with mp’!v]=aup

where v , ® - are eigenelements of L(}»o) and L* ()\o) (adjoint operator) respectively. [w,v] de-
notes the value of the functional w e B* in v & B. '

We introduce the new variables zp: = va,_g] and the linear operators P, L:

N
Pv: = yzv s, VEB
AA ve u LA
—t
v=1

)‘2
L) - - P

o

II:.()»):

E - i(}\o) has a bounded inverse R(Xo) (Lemma of Schmidt [3]), (B = identity). Since R()»o)
Pv = 0, equation (2) can be written in the form:
XQ
v = — Bv e R0 )EO)E0 )y + RO)TRY) @)
A2 o [+] (o}

o

It is easily seen that the following relations hold:

1

=

1<
e

(w, RO Y]

(¥, L)y

n
(o]
-
|<
(]
o2}

Application of ﬂ“ to (4) yields the branching equations:

0 =7\_2 Zp.+ &“,T()\;V)] » H=1, .., N
° (5)
T =A% ad
[o]
The system (4) and (5) is equivalent to (2).

4. Numerical Methods and Results

fiquation (4) can be solved iteratively. For swall velues of |z} and {7}, 2= {24 ,..., zN},

the right side of (4) defines by (3) in the sphere S5(Pv;6), a Lipschitz bounded operator with a con-
stant q with q < 1 for sufficiently small zZ , T and 6 + S 1is mapped into itself. By the
contraction mapping principle, (4) has in S a unique solution ¥(r;z) which is the limit of the
sequence:
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2. AN ANALYTIC METHOD FOR THE CALCULATION OF BRANCHING SOLUTIONS
OF HYDRODYNAMIC BOUNDARY VALUE PROBLEMS

Klaus Kirchgllssner

Institut fir Angewandte Mathemetik und
Mechanik der DVL, Freiburg

1. Abstract

It is a well established fact that the Couette flow between rotating cylinders becomes unstable if
the Reynolds number exceeds a certain critical value 7\0 « For A > }‘o a new steady flow pattern
exists. It has been proven by Velte ] and Judovich 2] independently that for A > A
sufficiently close to )‘o , at least one new stationary solution of the corresponding non<linear boundary
The proof in both cases based on topo-

value problem exists which bifurcates from the Couette solution.
logical arguments was not a constructive one. ’

, and A

In this paper the method of Schmidt-Lyapunov (3] is applied to determine the number of branching solu-

tions and to give an iterative procedure for the calculation of these solutions

(ef. [4],

(5]). The

method can be applied to other bifurcation problems in hydrodynamic stability theory ([6],[7]).

2. Basic Equations In Fig. 1 the Taylor model end the cylinder-co-ordinate-system used

are described.

Q| For small values of the Reynolds number

A=

Ra(Rg-R1)04

14

(v = kinematic viscosity), the Couette solution V,P

7] R' L_= {u:v’WZ):

ru conditions: u=0 for r

Figure |

8@ = ) u, (T a(ee)

n= <o

it

o’=27c/L,gﬂ:

u =u ®
-n n

. The basic equations for u,p,
0,v equation in cylinder co-ordinates together with the boundary

=R /(Ba-Ri);
v = 1,2) constitute a non-linear boundary value problem which can
be transformed by means of the formal Fourier-expansions

is unique.

of the Navier-Stokes equations which are

=rsy and r =

§ e

n= = e

v, W]

(conjugate complex of u )
n

ra, (r

Z
s

/ New steady solutions v, g
independent of the angle 6 are written in perturbation form

!(r,z) = !(r) + E(r,z), q(r,z) = P(r) + p(r,z) .

obtained from the Navier-Stokes

elimination of the pressure and use of Green's functions into an infinite system of integré.l equations

(ef. [5]):

u = A2 Ku + an(g)
V)=~ 286 u o+ kgn(g)
W, =2 2inoAH v +2n () ,

K =0. Kn, Gn ’ Hn’ are continuous kernels, fn s &, s hn

3. Function Space and Branching Equation

Let v = {un,v sW ; n=0,1, ...] be a sequence of functions continucus in I:

n’'n
for which

r];—i: a} H“n"o'u vnuo’ﬂwn

whe " ||
re o

n = 0,1, ...

quadratic functionals in u

Mz;x lun(r)l . These sequences form a Banach space with the norm

(1)

fririsr<m},
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u - o, % has asymptotically the direction of the flow at infinity, and that F is asymptotically
independent of the shape or size of I .

Ir u_ is large, smooth solutions continue to exist [Leray 1933], and in three dimensions they
are known to tend continuously to u at infinity [Finn 1959, 1965; Ladyzhenskaia 1961; Fujita 1961].
However, the asymptotic structure of these solutions has not been clarified, and uniquess has not been
established.

6. Stationary Solutions as Limits of Time Dependent Solutions

It is natural to expect that stationary flows past an obstacle can be obtained as limits of time
dependent solutions, obtained by accelerating the obstacle from rest. The problem seems, however, to be
difficult mathematically, owing to changing conditions at infinity. Tentative results have been obtained
by Heywood (dissertation, Stanford University). In the case of motions which yield zero net force on
z (e.g., rotation of a surface of revolution about its axis); Heywood solved the problem completely for
small data.
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1. RECENT RESULTS IN THE MATHEMATICAL THEORY OF , o
THE NAVIER-STOKES EQUAT IONS

Robert Finn
Stanford University

Although the general mathematical theory of these equations is still in a somewhat fragmentary state,
a number of striking and illuminating results is available. I shall describe some of them in this
report.

1. The Initial Value Problem; Bounded Domain

Consider a bounded region P filled with fluid which adheres at the boundary. The fluid is dis-
turbed initially and then left free. If the disturbance is small, a unique smooth solution exists for
all time, and the velocity field tends exponentially in time to zero [Kiselev and Ladyzhenskaia 1957;

Kato and Fujita 1962; G. Prodi 1962; Shinbrot and Kaniel 1966]. For an arbitrary disturbance, it is
known that at least one Msolution®™ u{x,t) exists in a generalized sense for all time [Leray 1934;

E. Hopf 1951, Kato and Fujita 1962; Shinbrot and Kaniel 1966]. Its uniqueness has not been shown;
however, each such u{x,t) is a strict solution for all t except for a small (zero Lebesgue measure)
bounded set. In particular, it is a strict solution for all sufficiently large t . Its kinetic

energy satisfies an inequality K < K e"®t |, where Kb and a are the same for all possible "solutions".
There is speculation that the exceptional set consists of values of t at which energy can concentrate to
produce local flow singularities and possibly bifurcations; precise information on this point is however
not available. : .

For two-dimensional flows, no such exceptional set can occur. The equations admit a unique strict
solution for all time [Ladyzhenskaia 1959; Lions and Prodi 1959].

Detailed studies of regularity properties of solutions can be found in Serrin (1962) and in Kaniel and
Shinbrot (1967).

2. The Interior and Periodic Stationary Problems; Bifurcation

If P is chosen as above, then for an (essentially) arbitrary given distribution of velocities on
its bounding surface I , there corresponds at least one smooth time independent solution [Leray 1933;
Ladyzhenskaia 1959; Fujita 1961]. This is the case even for data which experimentally could lead to
turbulent solutions. Taylor instability provides an example of experimentally observed non-uniqueness of
periodic stationary solutions. Although Taylor showed the appearance of multiplicities in the solutions
of the perturbation equations, the first demonstrations that this occurs for the (non-linear) Navier-3tokes
equations were given (independently) by Velte (1966),and by Iudovitch (1965). Both authors used abstract
methods, based on the notion of topological degree of mappings in function space. Recently Rabinowitz
obtained bifurcative solutions constructively for rectangular Beénard cells (Boussinesq approximation), |
and even showed that in that case new solutions appear in a neighbourhood of every eigen-value of the
linearized equations. The appearance of time dependent bifurcations has not yet been shown, nor has the
stability of the stationary solutions been investigated.

3. Connections with Boundary Layer Theory

Let u(x) be a stationary solution of the Navier-Stokes equations in a two~-dimensional region ad-
jacent to a wall. If u(x) exhibits qualitative characteristics of a boundary layer profile on a suit-
able entrance line, then it will be approximated downstream by the (unique) solution of the Prandtl
equations having the same initial profile [Nickel 1963; Fife 1965]. The proof, although far from
obvious, is in principle remarkably simple, the central tool being the maximum principle for parabolic
" equations. Further, any laminar solution of the Navier-Stokes equations adjacent to a wall will develop
the indicated properties downstream if the pressure gradient is favourable [Fife 1966]. Fife also
showed that a boundary layer cannot be expected to develop under all conditions.

4. Connections with Ideal Flows

Let v(x;t) be a solution of the Euler equations defined in all of two~dimensional space, and let
u(x;t) be the (uniquely determined) solution of the Navier-Stokes equations, such that u(x;0) = v(x;0).
Then tu(x;t) = v(x;t) | » O uniformly in x and in any interval [0,T], T < = , as the Reynolds
number - « [Golovkin 1966; McGrath 1967]. The corresponding situation in three dimensions seems
ambiguous, particularly in view of the uncertainty about uniqueness of u(x;t) .

5. Stationary Flows Past an Obstacle

If, for given obstacle I and given fluid, the vector u is sufficiently small, there is a time-

independent solution u(x) of the Navier-Stokes equations defined in the exterior 01 of I , vanishing
on its surface, and tending to u at infinity [Finn 1965; Finn and Smith 1967]. The solution

exhibits the physically expected wake region behind the obstacle, and is asymptotic at infinity to a

particular solution of Oseen's equations. In three dimensions, it is unique among all solutions satis—

fying a qualitative estimate at infinity. In two dimensions, uniqueness has been proved only among !

small solutions. In both cases, there holds & *u = [(def u)?dx, where %¥ is the force exerted on |
. ©q 5 .

L in the flow. Thus, the (drag) force in the direction u cannot vanish. In two dimensions,
1 u . .
there holds in addition lim ——— log — = 4= -2 . One concludes in particular that as
ju | »okiul [N el
o0
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Comments on Part IL of the Teddington Seminar (September 20th mnd 21st, 1967)

SOLUTIONS OF HIGHER-ORDER BOUNDARY LAYER PROBLEMS
M. R, Legendre, France

The two last days of the Seminar were mainly devoted to the discussion of the first and
higher-order boundary layer approximations.

In this more classical field, there is less influence of the new methods for ™numerical experiment"
although the progress of high speed digital computers is important for an improvement of accuracy and
gives the possibility to take into account the intricate phenomena which appear at hypersonic speeds.

When there is no risk of separation, it is quite clear that it is possible now to obtain good
first-order approximations and to improve them methodicelly. Of the challenging problem of separation,
which was dealt with already during my AGARD meetings, it must be said that it remains beyond the scope
of computational techniques, although interesting approaches are already made.

The Seminar in Teddington was very useful in giving an account of the state-of-the-art and giving
a starting point for reflexions on what remains to be done.
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Comments on Part I of the Teddington Seminar (September 18th and 19th, 1967)
SOLUTIONS QF THE NAVIER-STOKES EQUATIONS

Prof. W. R. Sears, U.S.A.

In my opinion the first two days of the Seminar at Teddington achieved their objectives admirably
and have been of great value. These were the days deovted to discussions of numerical solutions of
the full equations of fluid flow, the Navier-Stokes equations.

This is a subject of tremendous importance to fluid-mechanicists today. It is clear to any
alert observer that the subject of fluid mechanics, including aerodynamics, is being profoundly
changed by the advent of high-speed digital computers, Flow-field calculations that were previously
outside the scope of any reasonable undertaking are, or soon may be, reduced to routine practice in
engineering design. As a result, ingenious techniques of approximation, developed over the decades,
such as the inviscid fluid, boundary layers, strip theories, etc., may have much less significance as
design tools in the future, even though their conceptual importance is not diminished. One imagines
that the aerodynamicist of the future, faced with problems of flow around wings and bodies and through
ducts and jets, as always, may have at his disposal a whole new realm of information as important to
him as experimentation; namely, the ™numerical experiment®.

Nevertheless, as one who has attempted to organize meetings to permit fluid mechanicists to discuss
these matters, the writer has sometimes encountered some frustrating attitudes, Even overlooking the
few traditionalists who refuse to admit that computing machines exist, it has been difficult to get
fluid mechanicists to discuss numerical computation rather than fluid mechanics. The idea that the
computing machine is, in effect, something more than a faster desk-calculator has sometimes been
difficult to.put across.

The sessions of September 18th and 19th in Teddington were therefore surprising and very gratifying.
The participants were nearly all specialists in this new, difficult, and rapidly developing art: the
numerical modelling of fluid flow fields. The subject discussed and debated was, almost exclusively,
numerical analysis. The context was, to be sure, fluid mechanics, but the points argued were matters
like truncation errors, techniques of difference approximations to differential equations, error accumu-
lation, and computational stability. There were also papers relating ta the pure-mathematical basis
of this subject (although, as usual, the practitioners of the art appear to have run far ahead of the
rigorous proofs that would guarantee their work). A most intriguing feature of the meeting, and one
that may be a forecast of many more debates in the future, was discussion of the questions:
Is computational instability ever related to fluid-mechanical instability? What is the significance of
computations carried out at Reynolds numbers above the value for stable laminar flow? What are the
conputational evidences of turbulence?

The progress achieved in the subject in the last several years is most impressive. Just a few
years ago it could be said that no Navier-Stokes flow field had ever been calculated for flow past a
smooth obstacle; the phenomena of boundary layer, separation, and wakes had never been "discovered"
by a Navier-Stokes calculation. At this Seminar it became clear that this is no longer true. To be
sure, most of the cases worked out to date are those for which the answers are already kmown: they
have been test cases for the techniques. It seems certain that the next step will be to calculate
cases for which the answers are not known - there are many of these in practical aerqdynamics, where
knowledge beyond the scope of boundary-layer theory is desired and is not available.

In summary, the first half of the Seminar seems to have attained its goals. The right people
were there, debate was lively, and the right subjects were discussed.
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Introduction

In 1967 the Fluid Dynamics Panel of AGARD decided to hold, in addition to the formal Specialists'
Meetings for the year, a special Seminar on 'Numerical Methods for Viscous Flows'. This took place at
the National Physical Laboratory, Teddington, from September 18th to 21st, 1967, and was attended by
about 100 delegates from most of the member countries of NATO.

Thirty three lectures were given, together with informal discussions and a final session in which
nunerical results for some examples in hypersonic boundary layer theory, set in advance, were obtained
by various methods and the results compared. The speakers were not required to write formal papers, only
extended abstracts to be issued in advance, and it was not originally intended to publish any form of
proceedings. However, the success of the Seminar and the wide interest it aroused has led to a large
number of requests for information about it, and so the Panel has now decided to publish a volume con-
taining the authors' abstracts for their papers. The opportunity has been taken of asking the authors
to revise their contributions, thus allowing them to update the material and references; though of course
this volume does not necessarily present a really up-to-date picture of the 'state of the art'.

The Seminar was divided into two principal parts, dealing respectively with methods for the full
Navier-Stokes equations and with methods involving the approximations of boundary layer theory, either in
its first or higher orders. It was also felt that the theory of turbulent boundary layers, involving
as it does the solution of partial differential equations for the turbulence and boundary layer develop-
ment, had reached a state when numerical methods of solution could usefully be discussed, and accordingly
two additional papers (16 and 17) were included on this topic. After the meeting two members of the
Programme Committee, Prof. W. Sears and M. R. Legendre, were asked to review the principal technical
contributions; and their reviews follow this Introduction.

Members of the Programme Committee were:

Dr. R. Sedney, U.S.A. (Chairman)
M. F. Carriére, France

Dr. J. Lukasiewicz, U.S.A.

Dr. R. C. Pankhurst, U.K.

Prof. J. A. Steketee, Netherlands
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SUMMARY
M

4

4

‘ Thieﬁpip'rﬂggntains a collection of extended abstracts of papers presented at the Seminar

on Numerical Methods for Viscous Flows, organised by the Fluid Dynamics Panel of AGARD at
the National Physical Laboratory, Teddington, UK in September 1967. The contents are
divided into three sections, dealing respectively with

Solutions of the Navier-Stokes equations

Numerical methods for turbulent boundary layers

Solutions of the higher order boundary layer problem.

i Contributions were received from five NATO countries.

(oY

RESUME

Le présent ouvrage constitue un recueil de sommaires étendus des exposés présentés au
National Physical Laboratory, Teddington, UK en septembre 1967 dans le cadre du programme
de conférences sur “Les Méthodes Numériques pour les Ecoulements Visqueux” organisé par
la Commission de la Dynamique des Fluides de 1’ AGARD.

Les matiéres traitées se divisent en trois parties, couvrant respectivement les sujets
suivants:

- Solutions des équations Navier-Stokes
— Méthodes numériques pour couches limites turbulentes

- Solutions du probléme de la couche limite d’ ordre supérieur.

Des contributions ont €t€ regues de cing pays membres de 1’ OTAN.

518.12:532.516
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Springfield
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ESRO/ELDO Space

Documentation Service
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