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KEYWORD INDEX
Introduction

This Keyword Index is based on the headings in Chapters 1 through 11.
In the preparation of this index, first all significant words in these headings
were extracted and arranged alphabetically. Words closely related such as
‘loads, " '"loading," and "load'" were denoted by the single word 'loading. "
The resultant significant words are presented on this page. Second all
headings with significant words were grouped alphabetically under each
significant word. The following pages present the grouped headings, each
with its number identification, under the respective significant words.
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NOMENCLATURE FOR COLUMN ANALYSLS

NOMEIRCLATUKE FOUR THE ANALYSIS OF BEAMS

NOMENCLATURE USED IN TRANSMISSIUN SHAFTING ANALYSIS
SAMPLE ANALYSIS OF CIRCULAR TRANSMISSION SHAFTING

SAMPLL PROBLEM=-PLATE ANALYSIS

TRANSMISSIUN SHAFTING ANALYSIS

CRIPPLING STRESS UF ANGLE ELEMENTS AND COMPLEX ShAPES
TROPIC

ANISOTROPIC PRELSSURE VESSELS

S

CIRCULAR KInGS AND ARCHES

SAMPLE PRODLEM=-CIRCULAR RINGS AND ARCHES

APPRGXIMATE METHUU FOR BEAMS UNUER COMBINED AXIAL ANL TRANSVERSE LOADS - BEAM COLUMNS
AXIAL COMPKRESS1ON OF CURVED PLATES

AXIAL COMPRESSIGN OF FLAT PLATES

AXIAL LUG UVESIGN FOR PIN FAILURE

AXIAL LUG LESION FOR PIN FAILUKL IN THE BENUING MODE

AXIAL LUG LESIGH FOR PIN FAILURE IN THE SHEARING MOOt

AXTALLY LUAOED LUG DESIGN

BEARING STRENGTH OF AXIALLY LOADED LUGS WITH LESS THAN S PCT £LONGATION
BUCKLING OF STIFFENED FLAT PLATES IN AXIAL COMPRESSION

BUCKLING GF UNSTIFFENED FLAT PLATES IN AXIAL COMPRESSION

BUSHING BEARING STRENGTH UNDER UNIFQRM AX]AL LGAD

BUSHING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFOKM AX1AL LOAD

COMBINED LUG-BUSHING DESIGN STRENGTH UNDER UNIFORM AXIAL LOAD

DISTRIBUTEL AX1AL LOADS

DOUBLE SHEAR JOINT STRENGTH UNDgR UNIFORM AXIAL LOAD

EXACT METHOU FOR BEAMS UNDER COMBINEY AXIAL AND TRANSVERSE LOADS » BEAM COLUMNS
EXAMPLE OF AXIALLY LOADED LUG DESIGN

EXAMPLE OF UNIFOKM AXIALLY LOADED LUG ANALYSIS

INTROUUCTIUN TO BEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS - BEAM COLUMNS
LUG AND BUSMING STRENGTH UNDER UNIFORM AX]AL LOAD

LUG BLARING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOADS

LUG BEARINL STRERGTH UNDER UNIFURM AXIAL LOAD

LUG BUSHING STRENGTH IN AXJALLY LOADED SINGLE SHEAR JOINT wiTH LESS THAN S PCT ELONGATION
LUG DESIGN STRENGTH UNDER UNIFORM AXIAL LOAD

LUG NET-SECTION STRENGTH FOR SINGLE SHEAR JOINTS UNDLR UNIFORM AXIAL LOAD

LUG NET-SECTION STRENGTH UNDER UNIFURM AXIAL LOAD

LUG TANG STRENGTH FOR DOUBLE SHEAR JQINTS UNDER UNIFORM AXIAL LOAD
LUG-BUSHING DESIGN STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
NET-SECTIUN STRENGTH OF AXIALLY LUADED LUGS WITH LESS THAN S PCT ELONGATION
PIN BENDING STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD

PIN BENDING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNJFORM AXIAL LOAD

PIN SHEAR STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD

PIN SHEAR STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
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BAR

BEAM

SAMPLE PRUbLEM-BEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS - BEAM COLUMNS
SINGLE SHEmR JOINT STRENGTH UNDER UNIFORM AXIAL LOAD
STRENGTH OF LUG TANGS IN AXIALLY LOADED LUGS WwlTH LESS THAN S PCT ELONGATION

BAR ANALYSIS

BENDING LUALS ON dARS

COMPRESSIVE LOADING OF BARS

CYCLIC TENSILE LOADING OF BARS

INTROOUCTIUN TO BAR ANALYSIS

LACING BARS IN COLUMNS

NOMERCLATUKE FOR BAR ANALYSIS

SAMPLE PRUBLEM « BAR UNDER CYCLIC TENSILE LOAD
SAMPLE PRUBLEM - gAK UNDER STATIC TENSILE LOAD
STATIC TENSILE LOADING OF BARS

TORSIONAL LOADING OF BaARS

ALLOWABLE STRESSES [N THME UPRIGHTS OF A PARTIAL TENSIUN FIELD BEAM
ANALOGIES FOR BEAMS IN TORSION

APPLICATION OF THg THREE MOMENT EQUATION TQ SOLVING FOR THe REACTIONS ON CONTINUQUS BEAMS
APPROXIMATE METHOD FOR BEAMS UNDER COMBINED AXIAL ANU TRANSVERSE LOADS « BEAM COLUMNS
APPROXIMATE METHOD FOR BEAMS UNDER COMBINED AXIAL ANL THANSVERSE LOADS - BEAM COLUMNS

BEAM-SUPPURTED FLAT PLATES JN BENDING

BEAMS

CIRCULAR BEAMS IN TORSION

COMPUTED STRESSES IN THE UPRIGHTS OF A PARTIAL TENSION F1ELD BEAM

CRIPPLING STRESS OF | BEAMS

DESIGN CRITeRIA FUR THE UPRIGHTS OF A PARTIAL TENSIUN FIELD BgAm

EFFECT OF CUTOUTS ON CLOSED SINGLE CELL BEAMS IN TORSION

EFFECT OF £ND HESTRAINT ON NONCIRCULAR BEAMS IN TORSION

EFFECT OF STIFFENERS ON NONCIRCULAR CLOSED BEAMS [N TORSION

EFFECTIVE AREA OF THE UPRIGHT OF A PARTIAL TENSION FLELD BEAM

ELLIPTICAL GEAMS IN TORSION

ENDS OF PARTIAL TNSION FIELD BEAMS

EXACT METHOD FOR BEAMS UNDER COMBINED AXIAL AND TRANSYERSE LOADS - BgAM COLUMNS
EXACT METRUD FOUR HEAMS UNDER COMBINED AXIAL AND TRANSYERSE LOADS - BEAM COLUMNNS
FLANGES OF PARTIA(L TENSION FIELD BEAMS

FLANGES OF STIFFERED SHEAR RESISTANT BEAMS

INTROVUCTION TO BEAMS IN BENDING

INTROOUCTION TO BEAMS IN TORSION

INTRODUCTIOUN TO &£AMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS = BEAM COLUMNS
INTRODUCTIUN TO BLAMS UNDER COMGINED AXIAL AND TRANSVERSE LOADS - BEAM COLUMNS
INTRODUCTION TO LATERAL INSTABILITY OF DEEP BEAMS IN BENDIANG

INTRQUUCTION TO PARTIAL TENSION FIELD BEAMS IN BENDING

INTRODUCTION TO RgACTION FORCES AND MOMENTS ON BEAMS UNDER TRANSVERSE LOADING
INTRODUCTION TO SHEAR RESISTANT BEAMS [N BENDING

INTRODUCTLION TU SHEAR WEB BEAMS IN BENDING

INTRODUCTION TO THE ANALYSIS OF BEAMS

LATERAL INSTASILITY OF DEEP | BEAMS

LATERAL INSTABILITY OF DEEP RECTANGULAR BEAMS IN BENUDING

MEMBRANE ANALOGY FOR BEAMS IN ELASTIC TORSION

MOMENT OF iNERTIA OF THE UPRIGHTS OF A PARTIAL TENSION FIELD BEAM

MULTICELL CLOSED SEAMS IN TORSION

NOMEHCLATUKE FOR THE ANALYS]S OF BEAMS

NONCIRCULAR BEAMS IN TORSION

NONCIRCULAR BEAMS WITH THIN QPEN SECTIONS IN TORSION

NORCIRCULAK CLOSEUV BEAMS [N TORSION

NONCIRCULAK OPEN dEAMS IN TORSIUN

NONCIRCULAK JPEN dEAMS WITH VARIOUS CROSS SECTIONS IN TORSION

NONUHIFOkm CIRCULAR BEAMS IN TORSION

PARTIAL TENKSION FIELD BEAMS WITH ACCESS HOLES

REACTION FORCES AND MOMENTS ON uEAMS wITH BOTH ENDS FIXED

REACTION FORCES AND MOMENTS ON GEAMS WITH ONE FIXED eND ANU ONE PINNED SUPPORT
REACTION FORCES AND MOMENTS ON CONTINUQUD BEAMS

RECTANGULAK BEAMS [N TORSION

RIVETS AT THE ENOS OF PARTIAL TgNSION FELD BEAMS

RIVETS IN PARTIAL TENSION BEAMS WITH ACCESS HOLES

RIVETS IN PARTIAL TENSION FIELD BEAMS

RIVETS IN SHEAR RgSISTANY BEAMS

SAMPLE PRUBLEM - NONCIRCULAR CLUSED STIFFENED UNJFORM SECTION BEAM IN TORSION
SAMPLE PROSLEM - REACTIONS ON 8pAM wlTH ONE FIXED AND ONE PINNED SUPPORT
SAMPLy PROBLEM - REACTIONS ON CUNTINUOUS HEAMS BY THg THREL MOMENT EQUATION
SAMPLE PRUBLEM-BEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS - BEAM COLUMNS
SAMPLE PROBLEM-CIRCULAR BEAMS IN TORSION

SAMPLE PROBLEM=-MULTICELL CLOSED BgAMS IN TORSION

SAMPLE PROBLLEMNONCIRCULAR BgAMS wWITH THIN OPEN SECTIUNS IN TORSION

SAMPLE PROBLEM-PARTIAL TENSION FlEglD BEAMS

SAMPLE PRObLEM-SIMPLE BEAMS IN ELASTIC BENDING

SAMPLE PROBLEM-SIMPLE BEAMS [N PLASTIC BENDING

SAMPLE PRUBLEM-STIFFENED SHEAR RESISTANT BEAMS

SAND HEAP ANALOGY FOR BEAMS IN PLASTIC TORSION
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SIMPLE BEAMS IN BENDING

SIMPLE BEANS IN ELASTIC BENPING

SIMPLE BEAMS IN PLASTIC BENOING

SINGLE CELL NONCEIRCULAR CLOSED BEAMS IN TORSION

SINGLE CELL NONCIRCULAR CLOSED HEAMS WITH UNIFORM CROSS SECTION IN TORSION
SINGLE CELL NONCIRCULAR TAPERED CLOSED BEAMS IN TORSJON
STIFFENED SHEAR RESISTANT BEAMS [N BENDING
STIFFENER-TU-FLANGE RIVETS IN SMEAR RESISTANT BEAMS
UNIFORM CIKCULAR BEAMS IN TORSION

UNSTIFFENED SHEAR RESISTANT BEAMS IN BENDING
UPRIGHT=TU=FLANGE RIVETS IN A PARTIAL TENSION FIELD BgAM
UPRIGHTS AT THE ENDS OF PARTIAL TENSION FIELD BEAMS
UPRIGHTS OF PART[AL TENSIOR FIELD BEAMS W]TH ACCESS HOLES
WEB=-TO~FLANGE RIVETS IN A PARTIAL TENSION FIELD BEAM
WEB-TO=FLANGE RIVETS IN SHEAR RESISTANT BEAMS
WEB-TO-STIFFENER RIVETS IN -SHEAKR RESISTANT BEAMS
WEB-TO~-UPRIGHT RIVETS IN PARTIAL TENSION FlELD BEAM

WEBS AT
wgBsS OF
weBS OF
wegBS OF
BEARING
BEARING
BEARING
BEARING
BEAKING
BUSHING

EMPIRICAL FUKMULAS FOR ALLOWABLE BEARING LOADS OF A CYLINDER ON A FLAT PLATE

ThE

ENDS OF PARTIAL TENSION TIEgLD BEAMS

PARKTIAL TENSION FIELD BEAMS
PARTIAL TENSION FIELD BEAMS wlTH ACCESS HOLLS
STIFFENED SHEAR RESISTANT BEAMS

STRENGTH UF AXJALLY LOADED LUGS WITH LESS THAN 5 PCT ELONGATION

STRENGTH OF TRANSVERSELY LOADED LUGS WITH LESS THAN S PCT ELONGATION

STRESSES

STRESSES IN RIVETED CONNECTIONS

BEARING STRENGTH UNDER UNJFORM AXIAL LOAD

EMPIRICAL FURMULLA FOR ALLOWABLE BEARING LOAD OF STEEL SPHERES IN CONTACT

EMPIRICAL TREATMENT OF ALLOWABLE BEARING LOADS

INTRQOUCTION TO BEARING STRESSES

LUG BEARING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOADS
LUG BEARING STRENGTH UNDER UNIFORM AXIAL LOAD

NOMENCLATURE FOR BEARING STRESSLS

SAMPLE PROBLEM = JEARING STRESSES IN RIVETED CONNECTIONS

BENDING

AXIAL LUG DESIGN FOR PIN FAILUR: IN THE BENDING MODE
BEAM-SUPPORTED FLAT PLATES IN BeNDING

FAILURE OF CONCENTRICALLY LOADED LONG COLUMNS
FALLURE OF CONCENTRICALLY LOADED SHORT COLUMNS
FAILURE OF ECCENTRICALLY LOADED LONG COLUMNS
FAILURE OF ECCENTRICALLY LOADED SHORT COLUKNS
FAILURE OF SHORT COLUMNS

LUADS ON BARS

OF FLAT PLATES

BENDING
BENDING
BENDING
BENDING
BENO ING
BENDING
BEND ING

TCRIPPUTING STRESS OF PRESSURIZED SIMPLE THIN CYLINCERS IN BENDING

CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN B8ENDING
CRIPPLING STRESS QF UNPRESSURIZED SIMPLE THIN CYLINVERS IN BENDING

INTRIDUCTION
INTRODUCTION
INTRODUCTION
INTRODUCTION
INTRODUCTION

TU BEAMS IN BENDING

TGO LATERAL INSTABILITY OF DEEP BEAMS IN BENDING
TO PARTIAL TENSION FIELD BEAMS IN BENDING

TO SHEAR RESISTANT BEAMS IN BENDING

TO SHEAR WEB BEAMS [N BENDING

LATERAL InSTABILITY OF DEEP RECTANGULAR BEAMS [N BENDING

PIN BENCING STRENGTH FOR DOUBLE SMEAR JOINTS UNDER UNIFORM AXIAL LOAD
PIN BENDING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
SAMPLE PRUBLEM - CONCENTRICALLY LOADED LONG COLUMN IN BENDING

SAMPLE PRLOLEM ~ CRIPPLING INTERACTION OF SIMPLE THIN CYLINDERS IN COMPRESSION AND BENDING

SAMPLE PRUBLEM - ECCENTRICALLY LOADED SHORT COLUMN IN BENDING
SAMPFLE PROBLEM~SIMPLE BEAMS [N E£LASTIC BENDING

SAMPLE PRODLEM=SIMPLE BEAMS [N PLASTIC BENDING

SIMPLE BEAMS IN BENDING

SIMPLE BEAMS IN ELASTIC BENDING

SIMPLE BEAMS IN PLASTIC BENDING

STIFFENED SHEAK RESISTANT BEAMS IN BENDING

URSTIFfE

UNSTIFFENED

BUCKLING
BUCKLING
BUCKLING
BUCKLING
BUCKL ING
BUCKLING
BUCKLING
BUCKL ING
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FLAT PLATES IN BENDING
SHEAR RESISTANT BEAMS IN BENOING

UBLINUE PLATES

SANDW [CH PANELS

STIFFENED FLAT PLATES IN AXIAL COMPRESSION

THIN SIMPLE CYLINDEKS UNDER EXTERNAL PRESSURE

THIN SIMPLE PRESSURE VESSELS UNDER EXTERNAL PRESSURE
THIN SIMPLE SPHERES UNDER EXTERNAL PRESSURE
UNSTIFFENED FLAT PLATES IN AXIAL COMPRESSION

SAKPLE PROBLEM = BUCKLING OF THIN SIMPLE CYLINDERS UNDER EXTERNAL PRESSURE
SHEAR BUCKLING OF FLAT PLATES

BUSHING

BUSHING BEARING STRENGTH UNDER UNIFORM AXIAL LOAD

BUSHING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
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CELL

BUSNING STKENGTH UNDER OBLIQUE LOAD

BUSHING STRENGTH JURDER TRANSVERSE LOAD

LUG AND BUSHING STRENGTH UNDER 0BLIQUE LOAD

LUG "AND BUSHING STRENGTH UNDER TRANSVERSE LOAD

LUG AND BUSHING STRENGTH UNDER UNIFORM AXIAL LOAD

LUG BUSHING STRENGTH IN AXIALLY LOADED SINGLE SHEAR JOINT wiITH LESS THAN S PCT ELONGATION
STRESSES ODUE TU PRESS FIT BUSHINGS

EFFECT OF CUTQUTS ON CLOSED SINGLE CELL BgAMS IN TORSION

SINGLE CELL NONCIRCULAR CLOSED BEAMS IN TORSION

SINGLE CELL NONCIRCULAR CLOSED BEAMS WITH UNIFORM CROSS SECTION IN TORSION
SINGLE CELL NONCIRCULAR TAPERED CLOSED BEAMS [N TORSION

CIRCULAR

CIRCULAR BEAMS IN TOURSION

CIHCULAR MEMBRANES

CIRCULAR RINGS AND ARCHES

OESIGN PROCEDURE FOR CIRCULAR TRANSMISSION SHAFTING
GENgRAL OESIGN EQUATION FOR CIRCULAR TRANSMISSION SHAFTING
LOADIANGS ON CIRCULAR TRANSMISSION SHAFTING

NONUNLFORM CIRCULAR BEAMS IN TOKSION

SAMELE ANALYSIS OF CIRCULAR TRANSMISSION SHAFTING

SAMPLE PRUBLEM - CIKCULAR MEMBRANES

UNJFORM CIRCULAR BEAMS [N TORSION

CLOSED

EFFECT OF CUTOUTS ON CLOSED SINGLE CELL BEAMS IN TORSION

EFFECT OF STIFFENERS ON NONCIRCULAR CLOSED 3£AMS IN TORSION

MULTICELL CLOSED BEAMS IN TORSION

NONCIRCULAR CLOSED BEAMS IN TORSION

SAMPLE PROBLEM = NONCIRCULAR CLUSED STIFFENED UNIFORM SECTION BgAM [N TORSION
SAMPLE PROBLEM-MULTICELL CLOSED BEAMS IN TORSION

SINGLE CeLL NONCIRCULAR CLOSED BEAMS IN TORSION .

SINGLE CeLL NONCIRCULAR CLOSED bBEAMS WITH UNIFORM CRUSS SECTION IN TORSION
SINGLE CELL NONCIRCULAR TAPERED CLOSED BEAMS IN TORSION

COEFFICIENT

COEFFICIENT OF CUNSTRAINT FOR END LOADED COLUMNS

COLUMN

APPROXIMATE METHOU FOR BEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS . BEAM COLUMNS
BENDING FAJLURE OF CONCENTRICALLY LOADED LONG COLUMNS

BENDING FAILURE OF CONCENTRICALLY LOADED SHORT COLUMNS

BENOING FAILURE OF ECCENTRICALLY LOADED LONG COLUMNS

BENDING FAILURE OF ECCENTRICALLY LOADED SHORT COLUMNS

BENDING FAILURE OF SHORT COLUMNS

COEFFICIENT OF CONSTRAINT FOR END LOADED COLUMNS

COLUMN ANALYS]S

COLUMN DATA APPLICABLE TO BOTH LONG AND SHORT COLUMNS

COLUMN DATA APPLICABLE TO.BOTH LONG AND SHORT COLUMNS

COMPLEX COLUMNS

EQUIVALENT ECCENTRICITY FOR [MPLRFECT COLUMNS

EXACT METHOD FOR BEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS -~ BgaM COLUMNS
INTRODUCTION YU BEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS - BEAM COLUMNS
INTRODUCTION TO COLUMN ANALYSIS

INTRODUCTION TO CRIPPLING FAJLURE OF COLUMNS

LACING BARS IN COLUMNS

LATTICED COLUNNS

NOMENCLATURE FOR COLUMN ANALYSIS

PRIMARY FAILURE OF SIMPLE COLUMNS

SAMPLE PROBLEM - COLUMN DATA APPLICABLE TO BOTHK LONG AND SHORYT COLUMNS

SAMPLE PROBLEM - COLUMN DATA APPLICABLE TO BOTH LONG AND SHORT COLUMNS

SAMPLE PRGBLEM - CONCENTRICALLY LOADED LONG COLUMN IN BENDING

SAMPLE PRUBLEM - ECCENTRICALLY LOADED SHORT COLUMN IN BENDING

SAMPLE PRUBLEM « LONG gCCENTRICALLY LOADED COLUMNS AND EWUVIVALENT ECCENTRICITY
SAMPLE PRUBLEM - STEPPED COLUMN

SAMPLE PROBLEM - TORSIONAL FAILURE OF SIMPLE COLUMNS

SAMPLE PROBLEM - USE OF STRAIGHT LINE EQUATION FOR CONCENTRICALLY LOADED SHORY COLUMNS
SAMPLE PROBLEM - USE OF TANGENT MQDULUS EQUATION FUR CONCENTRICALLY LOADED SHORT COLUMNS
SAMPLE PRUBLEM-BEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS - BEAM CQOLUKMNS
SIMPLE COLUMNS

STEPPED AND TAPERED COLUMNS

TORSIONAL FAILURE OF SIMPLE COLUMNS

COMBINED

ANALYSIS OF COMAINEDV STRESSES IN TRANSMISSIUN SHAFTING

APPRUXIMATL METHOU FOR BEAMS UNDER COMBINED AX]IAL ANU TRANSYERSE LOADS - BEAM COLUMNS
COMBIWED LUG-BUSHING DESIGN STRENGTH UNDER UNIFORM AXJAL LOAD

CURVED PLATES UNDER COMBINED LOADINGS

EXACT METHOO FOR BEAMS UNDER COMBINED AXIAL ANDU TRANDVEKSE LOADS - BgaM COLUMNS

FLAT PLATES UNDER COMBINED LOALINGS

INTROOUCTION TO BEAMS UNDER COMOINED AXIAL AND TRANSVERDE LOADS -~ BEAM COLUMNS

PLATES UNDER COMBINED LOADINGS

SAMPLE PRUBLEM-BEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS o HEAM CQOLUMNS
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COMPLEX

COMPLEX CULUMNS
CRIPPLING STRESS UF ANGLE ELEMENTS AND COMPLEX SHAPES
SAMPLE PROBLEM ~ CRIPPLING STRESS OF A COMPLEX SHAPL

CONCENTRICALLY

BENDINHG FALLURE GF CONCENTRICALLY LOADED LONG COLUMANS
BENDING FALLURE OF CONCENTRICALLY LOADED SHORT COLUMNS
SAMPLE PRUGLEM -« CONCENTRICALLY LOADED LONG COLUMN IN BENDING

SAMPLE PROBLEM = USE OF STRAIGHT LINE EQUATION FOR CUNCENTRICALLY LOADED SHORT COLUMNS
SAMPLE PRUBLEM = USE OF TANGENT MODULUS EQUATION FOR CONCENTRICALLY LOADED SHORT COLUMNS

CON1CAL

DISCONTINULITY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS wITH CONICAL HEADS
SAMPLE PROBLEM = DISCONTINUITY STRESSES IN PRESSURE VESSELS WITH CONICAL HEADS

CONNECTIONS

BEARING STRESSES IN RIVETED CONNECTIONS
MULTIPLE SHEAR ANV SINGLE SHEAR CONNECTIONS
SAMPLE PRUBLEM - BEARING STRESSES IN RIVETED CONWECTIUNS

CONSTRALUT

COEFFICIENT OF COWRSTRAINT FOR gnD LUADED COLUMNS

CONTACY

ELASTIC STRESSES ANV DgFORMATION OF VARIOUS SHAPES IN CONTACT

EMPIRICAL FORMULA FOR ALLOWASLE BFARING LOAD OF STEEL SPHERES IN CONTACT

CONTINUOUS

APPLICATION OF THE THREE MOMENT EUUATIOR TO SOLVING FOR THE REACTIONS ON CONTINUQUS BEAMS

REACTION FOKCES AnD MOMENTS ON (ONTINUQUS BEAMS

SAMPLE PROBLEM = REACTIONS ON CONTINUOUS BEAMS BY THE THREL MOMENT EQUATION

CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING
CRIFPLING
CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING

INTERACTION FORMULAS FOR THE CRIPPLING OF PRESSURIZED AND UNPRESSURIZED CYLINDERS

FAILURE OF FLAT STIFFENED PLATES IN COMPRESSION

STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
STRESS
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OF
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OF
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ANGLE ELEMEWTS AND COWPLEX SHAPES

1 BEAMS

QUTSTANDING FLANGES

PRESSURIZED AND UNPRESSURIZED THIN SIMPLE CYLINDERS
PRESSURIZED SIMPLE THIN CYLINDERS IN BENDING
PRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION
PRESSURIZED SIMPLE THIN CYLINDERS [N TGRSION

ROUND TUBES

SIMPLE THIN CYLINDERS IN BENDING

SIMPLE THIN CYLINDERS IN COMPRESS]ON

SIMPLE THIN CYLINDERS IN TORSION

UNPRESSURIZED SIMPLE THIN CYLINDERS IN BENDING
UNPRESSUR]ZED SIMPLE THIN CYLINOERS IN COMPRESSION
UNPRESSURIZZD SIMPLE THIN CYLINVERS IN TORSION

INTRODUCTIUN TO CRIPPLING FALLURE OF COLUNMNS
SAMPLE PRUBLENM

SAMPLE PROBLEM

SAMPLE PROBLEM -

SAMPLE PRUBLEM

CRITERIA
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203

CRIPPLING INTERACTION OF SIMPLE THIN CYLINDERS 1IN COMPRESSION AND BENDING 8, 3 1.5.6.1
CRIPPLING STRESS OF A COMPLEX SHAPE

CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN TORSIOn

CRIPPLING STRESS OF RQUND TUBES

DESIGN CRITERIA FOR THE UPRIGHTS OF A PARTIAL TENSION FIELD BEAM

CRITICAL

CRITICAL EFFECTIVE SLENDERNESS RATIO

CROSS

NONCIRCULAR CUPEN BEAMS WITH YAKIOUS CROSS SECTIONS N TORSION

SINGLE CELL NONCIRCULAR CLOSED 37aMS WITH UNIFORM CROSS SECTION IN TORSION

CURVED

AXIAL COMPRKESSION OF CURVED PLATES
CURVED PLATES UNDER COMBINED LOADINGS
SHEAR LOADING OF CURVED PLATES

CUTOUTS

EFFLCT OF CUTOUTS ON CLOSED SINGLE CELL BEAHS IN TORSION

CYLINDER

BUCKLING OF THIN

CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING
CRIPPLING

STRESS
STRESS
STRESS
STRESS
STRESS
SIRESS
STRESS
STRESS
STRESS

STRESS ¢
DISCONTINULITY STRESSES AT JUNCTION OF THIN CYLINORICAL PRESSURE VESSEL AMD HEAD

SIMPLE CYLINDERS UNDER EXTERNAL PRESSURE

oF
ofF

PRESSURIZED AND UNPRESSURIZED THIN SIMPLE CYLINDERS
PRESSURIZED SIMPLE THIN CYLINDERS IN BENDING
PRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION
PRESSURIZED SIMPLE THIN CYLINDERS IN TORSION
SIMPLE THIN CYLINOERS IN BENUING

SIMPLE THIN CYLINDERS IN COMPRESS|ON

SIMPLE THIN CYLINDERS IN TORSION

UNPRESSURIZED SIMPLE THIN CYLINDERS IN BENDING
UNPRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION
UNPRESSURIZED SIMPLE THIN CYLINOERS IN TORSION

26030245
8e3ele5430201
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2edelalle!

1e5¢24145
15424242

6.6
68,2
87

1e5e24246

8edoledel
§edeleS
8e3eleSe242
Qa3ele5ade2
LT PR ¥%-7% FY4
8e3ele5.2
8e3eleS5.l
8edele5.3
843ale5.241
8e3ebe5e101
8e30le543ed
8e3e0le24202

DISCONTINUITY STRESSES AT THE JUNCTION OF A TRIN CYLINORICAL PRESSURE VESSEL AND ITS HEAD 8edele2.2

DISCONTINUITY STRESSES IN THIN CY_INORICAL PRESSURE VESSELS WITH CONICAL HEADS
DISCONTINUITY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS WITH FLAT KZADS
EMPIRICAL FORMULAS FOR ALLOWABLE BEARING LOADS OF A CYLINDER ON A FLAT PLATE

HEADS OF THIN CYLINOR]ICAL PRESSURE VESSELS

INTERACTION FORMULAS FOR THE CRIPPLIKG OF PRESSUR]ZED AND UNPRESSURIZED CYLINDERS

MEMBRANE STRESSES IN HEADS OF THIN CYLINDRICAL PRESSUKE VESSELS

8edele2.2.6
8e3ede2.243
1leTel
8430102
8e3.105.6
83014241



MEMBRANE STRESSES IN THIN CYLINDERS

SAMPLE PRUBLEM ~ BUCKLING OF THIN SIMPLE CYLINDERS UNDER EXTERNAL PRESSURE

SAMPLE PRGBLEM ~ CRIPPLING INTERACTION OF SIMPLE THIN CYLINDERS IN COMPRESSION AND BENDING
SAMPLE PROBLEM ~ CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN TORSION

SAMPLE PRGBLEM « DISCONTINUITY FORCES IN CYLINDRICAL PRESSURE VESSELS WITH DISHED HEADS
SAMPLE PRUBLEM - ELASTIC STRESS AND UEFORMATION OF CYLINDER ON CyLINDER

SAMPL; PROBLEM < gLASTIC STMESS AND VEFORMATION OF CYLINDER ON CYLINDER

SAMPLE PRUBLEM - MEMBRANE STRESSES IN THIN CYLINDERS AND SPHERES

SAMPLE PROBLEM ~ STIFFENED THIN CYLINDRICAL PRESSURE VESSEL WITH INTERNAL PRESSURE

SAMPLE PROBLEM « THICK CYLINDRICAL PRESSURE VESSEL ’

SAMFLE PROBLEM « THIN CYLINDRICAL PRESSURE VESSELS WITH STRINGERS UNDER INTERNAL PRESSURE
STRESSES IN SIMPLy CYLINDRICAL PRESSURE VESSELS DUE TO SUPPORTS

THICK CYLINORICAL PRESSURE VESSELS

THICK CYLINORICAL PRESSURE YESSELS UNDER EXTERNAL PRESSURE ONLY

THICK CYLINORICAL PRESSURE VESSELS UNDER [NTERNAL PRESSURE ONLY

THIN CYLINURICAL PRESSURE VESSELS WITH RINGS UNDER INTERNAL PRESSURE (STRINGERS OPTIONAL)
THIN CYLINDRICAL PRESSURE VESSELS WITH STRINGERS UNDER INTERNAL PRESSURE

DATA
COLUMN OATA APPLICABLE TO BOTH LONG AND SHORT COLUMNS
SAMPLE PhUbLEM — COLUMN DATA APPLICABLE TO BOTH LONG AND SHORT COLUMNS
DLEP
INTKROOUCT LU TU LATERAL INSTASILITY OF DEeP BEAMS IN BENDING
LATERAL TindTAILITY OF DEEP 1 BEAMS
LATeRAL T6dTABILITY OF DEEP RECTANGULAR BtAMS IN BENDING
DLFLECTIONS
DEFLECTIONS I STATICALLY DETERMINATE TRUSSES
QL FORMAT [ On

ELASTIC STRESSES ANU DeFORMATION OF VARIOUS SHAPES In CONTACT
SAMPLE PRUbLEM ~ ELASTIC STRESS AND UgFORMATION OF CYLINDgk On CYLINDER
QESIGH :
AXIAL LuG wESIGN FOR PIN FAlLURE
AXIAL LUG UESIGN FOR PIN FAILURE IN THE BENUING MOOt
AXIAL LUG vESION FOR PIN FAILURE IN THE SHEARING MGVE
AXIALLY LOAVED LUG DESIGN
COMBIWED LUG-BUSHING DESIGN STRENGTH UNDEK UNIFORM AX1AL LGCAD
"DESIGn CRITERIA FOR THE UPRIGHTS OF A PARTIAI TENSIUN FIELU BgAM
DESIGiH PRCCEDURE FOR CIRCULAR TRANSMISSION SHAFTING
DESIGN STRLSSES AiD LOAD VARIATIONS FOR TRANSMIDSION SHAFTING
EXAMPLE OF AXIALLY LOQACED LYG DESIGN
GENERAL DgSIGN EQUATION FOR CIRCULAR TRANSMISSION SHAFTING
LUG DESIGN STRENGTH UNDER UN[FURM AX1AL LOAD
LUG-BUSHLiG DESIGH STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AKIAL LOAD
DLTERMINATL
APPLICATLION OF THg METHOD OF JUINTS TO STATICALLY DeTERMINATE TRUSSES
APPLICATIUN UF THE METHMOD OF SECTIONS TO STATICALLY DETERMINATE TRUSSES
DEFLECTIUNRS IN STATICALLY DETERMINATE TRUSSES
INTROVUCTIUN TO STATICALLY OETERMINATE TRUSSES
SAMPLE PRUBLEM « STATICALLY DETLRMINATE TRUSSES BY Thy METHOD OF SECTIONS
SAMPLy PRUDLEM=APPLICATION OUF THE METHOD OF JOINTS TOU STATICALLY DETERMINATE TRUSSES
SAMPLE PRUDLEM=DLFLECTIONS IN STATICALLY DETERMINATE TRUSSES
STATICALLY DETEKMINATE TRUSSES
DISCONTINUITY
OISCONTINGETY STRESSES AT JUNCTION UF THIN CYLINDRICAL PRESSURE VESSEL AND HEAD
OISCONTINUITY STRESSES AT THE JUNCTION OF A THIN CYLINORICAL PRESSURE VESSEL AND [TS MEAD
OISCUNTINULTY STRESSES IN THIN CYLINDRJCAL PRESSURE VESSELS WITH CONICAL MEADS
OISCONTINUITY SThgSSES IN THIN CYLINDRICAL PRESSURE VESSELS WITh FLAT HgADS
INTROVUCTIUn TU DISCONTINULITY STRESSES
SAMPLE PhublLen - ISCONTINUITY FORCeS IN CYLINORJCAL PRESSURE VESSELS wWITH DISHEL HEADS
SAMPLE PROBLEM - YIDCONTINUITY STRESSES IN PRESSURE VESSELS wITH CONICAL HEADS
SAMPLE PRUGLEM - JISCONTINUITY STRESSES IN PRESSURE VESSELS wITH FLAT MEADS
DISHED
SAMPLE PRGBLEM = UISCONTINUITY FORCES IN CYLINORICAL PRESSURE VESSELS WITH DISHED MEADS
DISTRIBUTEL
DISTRIBUTeL AXJAL LOUADS
DIiSTRIBUTION
SAMPLE PRULLEN=-SOLUTION OF FRAMLS BY THE METHOD UF MUMENT DISTRIBUTION
R SOLUTION uF FRAMES BY THE METHGU OF MOMENT DISTRIBUTION
DouBLE
DOUBLE SHEAR JOINT STRENGTH UNDER UNIFORM AXIAL LOAV
DQUBLEL SHraR JOINTS UNDER ObLIuwut LOAD
DOVBLE SHLaR JUINTS UNDER TRANSVERSE LOUAVD
LUG TANG STRENGTH FUR DOUBLE SHEAR JOINTS UNDER UNIFUMM AXIAL LUAU
LUG-BUSHING VESIGn STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AX]AL LOAD
PIN BENDING STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
PIN SHEAR STRENGTH FOR OOUBLE SHEAR JOINTS UNDER UNIFURM ARIAL LOAD
ECCENTRICITY
BENUING FAILURE OF ECCENTRICALLY LOADED LONG COLUMNS
BENDING FAILURE OF €CCENTRICALLY LOADED SHORT COLUMNS
EQUIVALENT ECCENTRICITY FOR [MPERFECT COLUMNS
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SAMPLE PKROOLEM = £CCENTRICALLY LOADED SHORT COLUMN IN BENDING
SAMPLE PRUBLEM = LONG ECCENTRICALLY LOADED COLUMNS AND EUUIVALENT ECCENTRICITY
SAMPLE PRUBLEM = LONG ECCENTRICALLY LOADED COLUMNS ARD EQUIVALENT ECCENTRICITY
EFFECT]IVe i
CRITICAL LFFECTIVE SLENDERNESS RATIO
EFFECTIVE wREA OF THE UPRIGHT OF A PARTIAL TENSION FIELD BitAM
ELASTIC
ELASTIiC STRESSES AND OEFORMATION OF VARIOUS SHAPES IN CONTACT
MEMBRANE ARALUGY FOR BEAMS IN ELASTIC TORSION
SAMPLE PHOLLEM « ELASTIC STRESS AND VEFORMATION OF CYLINDER ON CYLINDER
SAMPLE PRUBLEM-SIMPLE BEAKS IN ELASTIC BENDING
SIMPLE BEAMS IN ELASTIC BENDING
ELLIPTICAL
ELLIPTICAL SEAMS LN TORSION
ELONGATIVH
ANALYSIS OF LUGS wITH LESS THAN 5 PCT ELONGATION
BEARING STRENGTH UF AXIALLY LOADED LUGS WITH LESS THAN % PCT ELONGATION
BEAKING STRENGTH OF TRANSVERSELY LOADED LUGS wITH LESS THAN 5 PLT ELONGATION
LUG BUSHItG STRENGTH IN AXIALLY LOADED SINGLE SHEAR VOINT wITH LESS THAN 5 PCT ELONGATION
NET-SECTION STRENGTH OF AXIALLY LUADED LUGS WITH LESS THAN & PCT ELONGATION
STRENGTH UF LUG TANGS IN AXIALLY LOADED LUGS wWITH LESS THAN 5 PCT ELONGATION
EMPIRICAL
EMPIRICAL FUKMULA FUR ALLOWABLE BEAKING LUAD OF STELL SPHEKES Ih CONTACT
EMPIRICAL FURMULAS FOR ALLOWABLE BEARING LOADS OF A CYLINDER ON A FLAT PLATE
EMPIRICAL TREATMENT OF ALLOWAOLc BEARING LOADS
EnD
COEFFICIENT OF CUNSTRAINY FOR gND LOADED COLUMNS
EFFECT OF ciND RESTRAINT ON NONCIRCULAR BEAMS [N TORSION
ENDS OF PAKT1AL TENSION FIELD deAMS
REACTION FURCES AWD MOMENTS ON obAMS wITH BOTH ENDS FLXED
REACTION FORCED AnD MOMENTS ON BEAMS «1TH ONE FIXED eND ANC ONE PINNED SUPPCRY
RIVETS AT THL E£NOS OF PARTIAL TeNSION FIELD BEAMS
UPRIGHTS AT Trt EWDS OF PARTIAL TeNSION FLELD BEAMS
WEBS AT Tre ENUS OF PARTIAL TENSION FIELL BEAMS
EVUATION
APPLICATION OF THE THREE MOMENT EQUATION TO SOLVING FUR THr REACTIONS ON CONTINUGUS BEAMS
GENERAL DESIGN EWUATION FOK CIRCULAR TRANSMISSION SHAFTING
JOHNSUN=EULER EGUATION
REDUCED MOLULUS EWUATION
SAMPL: PRUBLEM -« REACTIONS ON CUNTINUOUS BEAMS BY THp THREE MOMENT EQUATION
SAMPLy PRUBLEM - USE OF STRAIGRT LINE gUUATION FOR CONCENTRICALLY LOADEV SHORT COLUMNS
SAMPLE PROLLEM - USE OF TANGENT MUDULUS EWUATION FUK CONCENTRICALLY LOADED SHORT COLUKNS
STRAIGHT LIngE ECUATION
TANGENT MUDULUS EYUATION
EQUIVALENT
EQUIVALENT BCCENTRICITY FOk [MMPEeKFECT CULUMNS
SAMPLE PRUBLEM =~ LONG ECCENTRICALLY LOADED COLUMNS ANu EQUIVALENT ECCENTRICITY
EXACT
EXACT METHLL FUR DEAMS UNDER CUmMBINEV AXIAL AND TRANSVERSE LOADS - BEAM COLUMNS
EXTERNAL
BUCKLING UF THIN SIMPLE CYLINUEKS UNDER EXTERNAL PRESSURE
BUCKLING UF TriN SIMPLE PRESSURE VESSELS UNDER EXTEMNAL PRLSSURE
BUCKLING GF THIN SIMPLE SPHERES UNDER EXTERNAL PRESSURE
SAMPLE PRUBLEM « OUCKLING OF THIN SIMPLE CYLINDERS UNDEK EXTERNAL PRESSURE
THICK CYLINORICAL PRESSURE VESSELS UNDER EXTERNAL PRESSURE ONLY
FAILURE
AXIAL LUG UESIGN FOR PIN FAILURE
AXIAL LUG DESIGN FOR PIN FAILURE IN TME BENDING MOUE
AXIAL LUG DESIOGN FOK PIN FAJLURE IN THE SHEARING MOLE
BENUING FALLURE OF CONCENTRICALLY LOADED LONG COLUMNS

BENDING FAlLURE OF CONCENTRICALLY LOAVED SHORT COLUMNS
BENDING FALLJURE OF ¢CCENTRICALLY LOADED LONG COLUMNS
BENDINWG FAlLURE UF ¢CCENTRICALLY LUAVED SHORT COLUMNS
BENVING FAILJURE OF 3HORT COLUMNS
CRIPPLING FALILURE OF FLAT STIFFENED PLATES IN COMPRESSION
INTRQUUCTIUN TC CRIPPLING FAILURE OF COLUMNS
PRIMARY FAILJRE OF SIMPLE CULUMNS
SAMPLE PRUBLEM - TOMSIONAL FAILURE OF SIMPLE COLUMNS
TORS{UNAL FAILUKL OF SIMPLE COLUMNS
FATIGUE
EXAMPLE FrubLEM OF LUG FATIGUE ANALYSIES
LUG FATIGULE ANALYSLS
FLELD
ALLUWABLE STREDSES IN THE UPRIGHTS OF A PARTIAL TENSIUN FIelD BpAm
COMFUTED STRESSES IN THE UPKIGHTS OF A PAKTIAL TENSIUN FLELD dEAM
DESIGH CRITCRIA FUR THE UPKIGHTS OF A PARTIAr TENSIUN FIELL bgAM
EFFECTIVE AKEA UF THE UPRIGHT OUF A PARTIAL TENSIUN FlelD BeaM
ENDS OF PakTlab TENSION FIglD btAMS
FLANGES OF PARTIAL TENSION FlELL BEAMS
INTROOUCTIOUN TO PARTIAL TENSIUN FIELO BEAMS IN BeNUING
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MOMLT GF INegRTIA OF THE UPRIGHTS OF A PAKTIAL TENSIU Flpll dgAM
PARTIAL TeNSIUN FIgLD BEAMS WITH ACCESS HULES

RIVETS AT THE ENDS OF PARTIAL TeNSION FIELD BEAMS

RIVETS IN PARTIAL TENSION FIELD BEAMS

SAMPLy PRUBLEM=FART]IAL TENSION FIELD BgAMS
UPRIGHT=Tu=FLANGE RIVETS IN A PARTIAL TENSION FIELD EEAM
UPRIGHTS AT THE ENDS OF PARTIAL TENSION FIELD BEAMD
UPRIGHTY UF PABTIAL TENSION FIetD BEAMS WITn ACCESS MULES
WEB-TO=FLANGE KIVETYS IN A PARTIAL TENSION FIELD BEAM
WEB-TU=UFPRIGHT RIVETS 1IN PARTIAL TENSION FIELD BLAM

wWEBS AT Thi ENDS OF PARTIAL TENSIUN FLELU BEAMS

WEBS OF PukT1AL TENSION FIELD 8tAMS

WEBS OF PARTIAL TENSION FLELD BrAMS wlTH ACCESS HOLES

FlY
STRESSES DUE TU RRESS FIT BUSHINGS
F1XED
REACTION FORCES AND MOMENTS ON BEAMS w]TH BOTH ENDS FIXED
REACTION FOUKCES AND MOMENTS ON BEAMS wITH ONE FIXED END ANL ONE PINNED SUPPORT
SAMPLE FRUBLEM -~ REACTIONS ON beAM wlTH ONE FIXED AND ONE FINNED SUPPORT
FLANGES
CRIPPLING STRESS OF OUTSTANDING FLANGES
FLANGES OF PARTIAL TENSION FLELD BEAMS
FLANGES OF STIFFENED SHEAR RESISTANY 8EAMS
FLAT
AXIAL COMPREeSSION OF FLAT PLATES
BEAM-SUPPCKTED FLAT PLATES N BENDING
BENDING OF FLAT PLATES
BUCKLING GF STIFFENED FLAT PLATES IN AXIAL COMPRESSIUN
BUCKLING UF UNSTIFFENED FLAT PLATES IN AXIAL COMPRESSION
CRIPPLING FAILURE OF FLAT STIFFENED PLATES I[N COMPRESSION
OISCONTINULITY STRESSES IN THIN CYLINORICAL PRESSURE VESSELS WITH FLAT HEADS
EMPIRICAL FURMULAS FOR ALLOWAGLe BEAKRING LOADS OF A CYLINDER ON A FLAT PLATE
FLAT PLATES UNCER CUMBINED LOADINGS
SAMPLE PRUBLEM -« DISCONTINVITY STRESSES IN PRESSURE VESSELS WiTh FLAT H:AUS
SHEAR BUCALING OF FLAT PLATES
UNSTIFFENED FLAT PLATES IN BENDING
FORCES
INTRODUCTIUN TU REACTION FORCES AND MOMENTS ON BEAMS UNDER TRANSVERSE LOADING
REACTION FORCES AiD MOMENTS ON BEAMS WITH BOTH ENDS FIXED
REACTION FUKCES AND MOMENTS ON BEAMS WITH ONE FIXED £END ANC ONE PINNED SUPPCRT
REACTION FORCED AnD MOMENTS ON CONTINUOUS BEAMS
SAMPLE PRUBLEM - UISCONTINUITY FORCES IN CYLINDRICAL PRESSUKE VESSELS WITH DISHEU HEADS
FURMULA
EMPIRICAL FURNMULA FUR ALLOWABLE BEAKING LUAD OF STetL SPHERES IN CONTACTY
EMPIRICAL FORMULAS FOR ALLOWABL: BEAKING LOADS OF A CYLINOER ON A FLAT PLATE
FORMULAS FUR SIMP_E FRAMES
INTERACTIGN FORMULAS FOR THE CKIPPLING OF PRESSURIZEV AND UNPRESSURIZED CYLINDERS
FRAMES
FORMULAS Fun SIMP_E FRAMES
FRAMES AND RINGS
INTRODUCTION TO FRAMES AND KINGS
NOMENCLATURE FOR FRAMES AND RINGS
RECTANGULAR FRAMES
SAMPLE PROOLEM=FORMULAS FOR SImMPLE FRAMES
SAMPLE PROBLEM=RECTANGULAR FRAMES
SAMPLE PRUBLEM=SOLUTION OF FRAMcS BY THE METHOD OF MOUMENT LISTRIBUTION
SOLUTION UF FRAMES 8Y THE METAQD OF MOMENT DISTRIBUTION
HEAD
ODISCONTINUITY STHKESSES AT JUNCTION OF THIN CYLINDRICAL PRESSURE VESSEL AND HEAD
DISCONTINLITY STRESSES AT THE JUNCTIUN OF A THIN CYLINDRICAL PRESSURE VESSEL AND ITS MEAD
OISCONTINULITY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS wITH CONICAL HEADS
DISCORTINUITY STRSSES IN THIN CYLINDRICAL PRESSURE VESSELS wlTH FLAT HEADS
HEADS OF ThIN CYLINDRICAL PRESSURE VESSELS
MEMBRANE STHESSES IN HEADS OF Trln CYLINVRICAL PRESSURE VESSELS
SAMPLE PROBLEM - OISCONTINUITY FORCgS IN CYUINDRICAL PRESSURE VESSELS WITH DISHEV HEADS
SAMPLY PRUGBLEM « VISCONTINUITY STRESSES IN PRESSURE VESSELS WITH CONJCAL HEADS
SAMPLL PRUDLEM - UISCONTINUITY STRESSES IN PRESSURE VESSELS WITH FLAT Heals
HEAP
SAND HEAP AWHALOGY FOR BEAMS IN PLASTIC YORSION
HEL ICAL
HEL ICAL SPRINGS
HELICAL SKRINGS UF ROUNY wIRE
HELICAL SPKINGS UF SQUARE wiRE
HOLES
PARTIAL TeNSION FIELD BEAMS Wit ACCESS HOLES
RIVETS IN PARTIAL TENSION BLAMS W]TH ACCESS HOLES
UPRIGHTS UF PARTIAL TENSION FIelD BgAMS WITH ACCESS HOLES
WEBS UF PAKTIAL TeNSION FIELD brAMS wiTH ACCESS HOLES
IMPERFECT

EQUIVALENT ECCENTRICITY FOR [MPLRFECT COLUMNS
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INDETERMINATE
INTROQUUCTIOUN TO STATICALLY INOETERMINATE TRUSSES
SAMPLE PRUBLEM=STATICALLY INDETLRMINATE TRUSSES wlTH A SINGLE REDUNDANCY
STATICALLY INDLTERMINATE TRUSSES
STATICALLY InNDETERMINATE TRUSSES WITH A SINGLE REDUNDANCY
STATICALLY INDETEKMINATE TRUSSES wlTH MULTIPLE REDUNVANCIES
INERTIA
MOMENT OF IReRTIA OF THE UPRIGHTS OF A PARTIAL TENSIUN FIELD BEAM
INSTABILEITY
INTROOUCTIOUN TO LATERAL INSTABILITY OF DEEP BEAMS IN BENDING
LATERAL INSTABILITY OF DEEP I BzAMS
LATERAL INSTABILITY OF DEEP RECTANGULAR BpAMS IN BENCING
INTERACTION
INTERACT Iun FORNULAS FOR THE CRIPPLING OF PRESSURJZEV AND UNPRESSURIZED CYLINDERS
SAMPLE PROLLEM = CRIPPLING INTEwACTION OF SIMPLE THIN CYLINDERS IN COMPRESSION AND BENDING
INTERNAL
SAMPLE PRQULEM - STIFFENED THIN CYLINDRICAL PRESSURE VESSEL WITH INTERNAL PRESSURE
SAMPLE PROBLEM « THIN CYLINDRICAL PRESSURE VESSELS WITH STKINGERS UNDER INTERNAL PRESSURE
THICK CYLINDRICAL PRESSURE VESSELS UNDER INTERNAL PNESSURE ONLY
THIN CYLIWURICAL PRESSURE VESSELS WITH RINGS UNDER INTERNAL PRESSURE (STRINGERS UPTIOMAL}
THIN CYLINURICAL PRESSURE VESSELS WITH STKINGERS UNDER INTERNAL PKESSURE
JOrSON-L UL ER
JOHNSONEULER EUUATION
JOINT
APPLICATIUN OF THy METHOD OF JOINTS TO STATICALLY CUETERMINATE TRUSSES
BUSHING STKENGTH FOR SINGLE SHEAR JOINTS UNUER UNIFOKM AX]AL LOAD
OpUBLE ShEAK JUINT STRENGTH UND R UNIFOKM AXIAL LOAD
DOUBLE SHLAK JOINTS UNDER ObLIGWUE LOAD
DOUBLE SHEAR JOINTS UNDER TRANSVERSE LOAD
LUG BEARING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOADS
LUG BUSHING STRENGTH IN AXIALLY LQAUED SINGLE SHEAR JOINT wlTH LESS THAN 5 PCT gLONGATION
LUG HET=-SECTION STRENGTH FOR SINGLE SHEAR JOINTS UNVER UNIFORM AX]AL LOAD
LUG TANG STRENGTH FOR DOUBLE SHEAR JUINTS UNDER UNIFORM AXIAL LOAD
LUG-BUSHING DeSIGN STRENGTH FUN DOUBLE SHEAR JOINTS UNDER UNIFORM AX[AL LOAD
PIN BENDING STRENGTH FOR DOUBLE SHEAR JOINTS UNDtR UNJFORM AXIAL LOAD
PIN BENDING STHENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXJAL LOAD
PIN SHEAR STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
PIN SHEAK STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
SAMPLE PRCHLEM-APPLICATION OF THE MeTHOD OF JOINTS TG STATICALLY DETERMINATE TRUSSES
SINGLE SHEAR JUINT STRENGTH UNDER UNIFORM AXIAL LOAD
SINGLE SHEAR JOINTS UNDER OBLIWUE LOAD
SINGLE SHEAKR JOINTS UNDER TRANSVEKSE LOAD
SUNCT [ON
OISCONTINUITY STRESSES AT JUNCTION OF THRIN CYLINODRICAL PRESSURE VESSEL ANMD MEAD
DISCONTINULITY STRESSES AT ThE JUNCTION OF A THIN CYLINDRICAL PRESSURE VESSEL AND [TS HEAD
LACING
LACING BARS IN CCLUMNS
LATERAL
INTROVUCTIUN TO LATERAL INSTABILITY OF DEEP HBEAMS IN BENDING
LATERAL INSTABILITY OF DEEP 1 BLAMS
LATERAL INSTABILITY OF DEEP RECTANGULAR BEAMS IN BENVING
LATTICED
LATTICED COLUMNS
LOADING
APPROX IMATE METHOD FOR BEAMS UNDER COMBINED AXIAL ANU TRANSVERSE LOADS - BEAM COLUMNS
AXJALLY LUADED LUG DESIGN
BEARING STRENGTH OF AXIALLY LOAUEL LUGS WITH LESS THAN 5 PCT ELOUNGATION
BEARING STHENGTH OF TRANSVERSELY LOADED LUGS WITH LESS TrAN S PCT ELONGATION
BENDING FALLURE GF CONCENTRICALLY LOADED LONG COLUMNS
BENGING FAILURE OF CONCENTRICALLY LOADED SHORT COLUMNS
BENUING FALLURE OUF ECCENTRICALLY LOADED LONG COLUMNS
BENDING FALILURE OF ECCENTRICALLY LOADED SHORT COLUMNS
BENDING LUADS ON bARS
BUSHING BLAKING STRENGTH UNDER UNIFORM AKIAL LOAU
BUSHING STKENGTH FOR SINGLE SHEAR JOLINTS UNDER UNIFORM AXIAL LUAD
BUSHING STRENGTH UNDER OBLIUGUE LOAD
BUSHING STKENGTR UNDER TRANSVERSE LOAD
COEFFICIENTY OF CUNSTRAINT FOR gND LOADED COLUMNS
COMBINED LUG-BUSHING DESIGN STReNGTH UNDER UNIFORM AXIAL LUAD
COMPRESSIVE LOADING OF BARS
CURVEL PLATES UNDER COMBINED LOADINGS
CYCLIC TEWSILE LUADING OF BARS
DESIGN STKESSES AND LOAD VARIATIONS FOR TRANSMISSION SHAFTING
DISTRIBUTED AX[AL LUADS
DOVBLE SHEAR JOINT STRENGTH UNDER UNIFORM AXIAL LOUAD
DQUBLE SHEAR JOINTS UNDER OBLIWUE LOAD
DOUHLE SHEAR JUINTS UNDER TRANSVERSE LOAD
EMPIRICAL FURMULA FOR ALLOWABLE BEARING LOAD OF STEEL SPHERES IN CONTACT
EMPIRICAL FORMULAS FOR ALLOWASLE BEARING LOADS OF A CYLINDER ON A FLAT PLATE
EMPIRICAL TREATHMENT OF ALLOYABLE BEARING LOADS
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LUNG

Lo

EXACY METHLD FOR oEAMS UNDER COMBINEV AXIAL AND TRANSVERSE LOADS ~ BEAM COLUMNS
EXAMPLE OF AX[ALLY LOADED LUG DeSIGH

EXAMPLE OF UNIFURM AXTALLY LOADED LUG ANALYSIS

FLAT PLATES UNDER COMBINED LOADINGS

INTRODUCTIOl TU uEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS - BEAM COLUMNS
INTROVUCTIUN Tu REACTION FORCES AND MOMENTS ON BEAMS UNDER TRANSVERSE LOADING
LOAD InGS yh CIKCULAR TRANSMISSIUN SHAFTING

LUG AND BLSHING STRENGTH UNDER UBLIWUE LOAD

LUG AD BUSHING STRENGTH UNDER TRANSVERSE LUAD

LUG aHD BUSHING STRENGTH UNDER UNIFORM AX]AL LOAD

LUG ULARING STRpuuTH FOR SINGLE SHEAR JOINTS UNDgk UNIFURM AXIAL LOADS

LUG BEAR G0 STRENGTH UNDER UNIFURM AXIAL LOAD

LUG BUSHIKGL STRENGTH IN AXIALLY LCADED SINGLE SHEAR JOINT wlTH LESS THAN § PCT ELONGATION
LUG DESIGN STRENGTH UNDER UNIFOKRM AXIAL LUADL

LUG NET-SECTION STRENGTH FOR S[nGLE SHEAR JOINTS UNDex UNIFORM AX]AL LOAD

LUG HET=SECTION STRENGTH UNDER UNLIFORM AXIAL LOAD

LUG STRENGTH UNDER OBLIWUE LOAD

LUG STRENGTH UNDER TRANSVERSE LOAL

LUG TANG STKReNGTH FUR DOUBLE SHEAR JOINTS UIDER UNIFCRM AXIAL LOAU

LUG=BUSHING DESIGN STRENGTH FOR DQUBLE SHEAR JOINTS UNDER UNIFORM AXJAL LOAL
NET-SECTION STRENGTH OF AXIALLY LOADED LUGS WITH LESS THAN S PCT CLONGATION
PIN UENDING STRENGTH FOR DOUBLE SHEAR JUINTS UNDER UNIFORM AXIAL LOAD

PIN BENDING STKENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFURM AXIAL LOAD

PIN SHEAR STRENGTH POR DQUBLE SHEAR JOINTS UNDER UNIHORM AxIAL LOAD

PIN SHEAK STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNLFORM AXIAL LOAD

PLATES UNDER COMBINED LOADINGS

SAMPLE PRObLEM -~ BAR UNDER CYCQLIC TERSILE LOAD

SAMPLE PRUBLCM =« dAR UNDER STATIC TENSILE LuAD

SAMPLE PRUBLEM « CONMCENTRICALLY LOADED LONG COLUMN LN BENDING

SAMPLE PRUOLEM =~ ECCENTRICALLY LOADED SHGRT COLUMN IN BENDING

SAMPLE PROULEM - LONG ECCENTRICALLY LOADED COLUMAS AND EQUIVALENT ECCENTRICITY
SAMPLE PRUBLEM - USE OF STRAJOGKT LINE EUUATION FUK COUNCENTRICALLY LOADED SHORT CULUMNS
SAMPLE PRUOLEM = USE OF TANGENT MODULUS EQUATION FOR CONCENTRICALLY LOADED SHORT COLUMNS
SAMPLE PR{DLEM~-BEAMS UNDER COMOINED AXIAL AND TRANSVLKSE LUADS - BEAM COLUMAS
SHEAR LOADING OF CUKRVED PLATES

SINGLE SHEAK JUINT STKENGTH UNDeR UNIFGRM AXIAL LOAV

SINGLE SHEAR JOINTS UNDER OBL IWUE LOAD

SINGLE SHcaAk JOINTS UNDER TRANSVERSE LOAD

STATIC TENSILE LUADING OF BARS

STREAGTH UF LUG TANGS IN AXIALLY LOADED LUGS wITH LESS THAIK S PCT ELONGATION
TORSIUNAL LUADING OF BAKRS

BENDING FALLURE GF CONCENTRICALLY LOADED LONG COLUMNS

BENDING FAlLURE OF ECCENTRICALLY LOADED LONG COLUMNS

COLUMN DATA APPLICABLE TO HOTH LONG AND SHORT COLUMNS

LONG RECTANGULAR MEMBRANES

SAMPLe PROGBLEM « COLUMN DATA APPLICABLE Ty BOTH LONG AND SHORT COLUMNS

SAMPLE PRUBLEM ~ CONCENTRICALLY LUADED LONG ColLubey IN BENDING

SAMPLE PRULLEM -~ LONG gCCENTRICALLY LOADED COLUMNS ANV EQUIVALENT ECCENTRICITY
SAMPLE PRUDLEM - LONG RECTANGULAR MgMBRANES

ANALTSIS UF LUGS WITH LESS THAN 5 PCT ELONGATION

AXLAL LUG LESIGN FOR PIN FAILYRe

AXIAL LUG vESIGn FOR PIN FAILURE [N THE BeNOING MOOE

AXIAL LUG LESIGH FOR PIN FAILURE IN THE SHEARING MO0t

AXTALLY LUADED LUG DESIGH

BEARIAG STRENGTH UF AKIALLY LOADED LUGS W[TH LESS THAN S PLT ELONGATION
BEARING STRENGTH UF TRANSVEKSELY LOADED LUGS wWiTH LESS THAN 5 PCT ELONGATION
COMIINED LUGBUSHING DESIGN STRENGTH UNDER UNIFORM AXJAL LGAD

EXAMPLE OF AXIALLY LOADED LUG DESIGN

EXAMPLE OF UNJFORM AXTALLY LOADD LUG ANALYSIS

EXAMPLE PHUbLEM UF LUG FATIGUE ANALYSIS

INTRIJUCTIUN TU LUG ANALYS]S

LUG ANALYSLS

LUG ANALYSIS NOMENCLATURE

LUG AnD BUSHING STRENGTH UNDER uBL IWUE LOAD

LUG AND BUSHING STRENGTH UNDER TRANSVERSE LOAD

LUG AnD BUSHING STRENGTH UNDER UNIFORM AX[AL LOAD

LUG JEARIAG STRENGTH FOR SINGLE SHEAR JOINTS UNDpR UNIFORM AXIAL (OADS

LUG ScARING STRENGTH UNUER UNIFURM AXJAL LOAD

LUG 3USHING STRLGTH IN AXJALLY LUADED SINGLE SHEAK JOINT wiTK LESS THAN S PCT ELONGATION
LUG DESIGH STRENGTH UNDER UNIFOKM AXIAL LyAv

LUG FATIGUE ANALYSLS

LUG dETaSECTIUN STRENGTH FUR SINGLE SHEAR JOINTS utDEk UNIFORM AXIAL LOAD
LUG NET«SzCTION STRENGTH UNDER UNIFUKM AX]AL LOAL

LUG STRENGTH UNDER OdLIWUE LOAD

LUG STRENGTH UNDER TRANSVERSE LUAD

LUG TANG SIRENGTH FUR DOUBLE SHiAK JOINTS UNDER UNIFOURM AXIAL LOAD
LUG-BUSHIIWGL OtSIGN STRENGTH FOKR DUUBLE SHELAR JUINTS UNDER UNIFORM AXIAL LOAC
NET-SECTIUN STREMGTH OF AXTALLY LUADED LUGS WITH LESS THAN & PCT ELONGATION
STREOTn OF LUG TANGS JN AXIALLY LOADED LUGS wWITH LESS THAN S PCT ELONGATION
STRERGTH (F LUG TANGS IN AXIALLY LOADED LuGS WITH LESS THAN & PCT ELONGATION
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MEMBRANE

MOOE

APPLICABILITY OF THEORETICAL RESULTS FOR SHORT RECTANGULAR REMBRANES
CJRCULAR MeMBRANES

INTRODUCTIUN TO MEMBRANES

LONG RECTANGULAR MEMBRANES

MEMBRANE ANALOGY FOR BEAMS N gLASTIC TORSIUN

MEMBRANE STRESSES IN HEADS OF THIN CYLINVKICAL PRESSURE VESSELS
MEMBRANE STRESSES IN SIMPLE THIN SHELLS Of REVOLUTION

MEMBRANE STRESSES IN THIN CYLINVERS

MEMBRANE STRESSES IN THIN SPHEReS

MEMBRANES

NOMENCLATURe FOR MEMBRANES

RECTANGULAR AEMBRANES

SAMPLE PRUBLEM ~ CIRCULAR MEMOKANES

SAMFLE PROBLEM ~ LONG RECTANGULAR MEMBRANES

SAMPLE PRUOLEM - MEMBRANE STRESSES IN ThIN CYLINUEKS AND SHHERES
SAMPLE PRUBLEM = SHORT RECTANGULAR MEMBRANES

SHOKT RECTANGULAR MEMBRANES

THEORETICAL KESULTS FOR SHOKT ReCTANGULAR MEMBRANES

AXIAL LUG UESIGN FOR PIN FAILURE IN THE BrNUING #M0DE
AXIAL LUG VESIGN FOR PIN FAILUKE IN THE SHEARING HUVE

MLoULUS

REOUCED MLLULUS EWUATION
SAMPLE PKUULLEM - USE OF TANGENT MODULUS EGULATION FOR CONCENTRICALLY LOADED SHOKY CULUMNS
TANGENT MULULJS EUWUATION

MOMENT

APPLICATIUI OF THE THREE MOMENT EGUATION TO SOLVING FOR THE REACTIONS ON CONTINUOUS BEAMS
INTRODUCTIGN TO RpACTION FOKCES AND MOMENTS ON BEAMS UNDER TRANSVERSE LOAVING

MOMEHT OF INERTIA OF THE UPRIGHYS OF A PARTIAL TENSIUN FIELD BEAM

REACTION FUKCES AND MOMENTS ON bBEAMS wITH BOTH ENCS FiXeD

REACTION FUKCES AHD MOMENTS ON LEAMS wWlTH ONE FIXED EnD, ANL ONE PINNED SUPPUKT

REACTION FORCES ARD MOMENTS ON CONTINUQOUD BEAMS

SAMPLr PRUbLEM = KEACTIONS UN CONTINUQUS BEAMS BY THE THREE MOMENT EQUATION

SAMPLE PRUBLEM=SULUTION OF FRAMcS BY THE METHOD OF MUMENT LISTRIBUTION

SOLUTION OF FRAMES BY THE METHOU OF MOMENT OISTRIBUTIUN

MULTICELL

MULTICELL CLJSED 3EAMS IN TORSIUN

MULTIPLE

MULTIPLE SHEAR AND SINGLE SHEAR CONNECTIONS
STATICALLY IHUETERMINATE TRUSSES WITH MULTIPLE REOUNDANCIES

NONCIRCULAR

EFFECT OF gNU RESTRAINT ON NONCIRCULAR gEAMS [N TORSIUN

EFFECT UF STIFFENERS OGN NONCIRCULAR CLOSED BEAMS IN TORS[ON

KONCIKCULAK BEAMS IN TORSION

NONCIRCULAKk dtAmS wlTH THIN OPEn SECTIONS InN TORSION

NONCIRCULAK CLUSED BEAMS IN TORSION

NONCIKRCULAK JPEN BEAMS IN TORSIUN

NONCIRCULAK GPEN BEAMS WITH VAR[QUS CROSS SECTIONS IN TORSIOUN

SAMFLE PRUGLEM = wONCIRCULAR CLUSED STIFFENED UNIFORM SECTION BEAM IN TORSION
SINGLE CELL NONCIRKCULAR CLOSED bEAMS IN TORSION

SINGLE CELL MUNCIKCULAK CLOSED ®EAMS «ITH UNIFORM CKUSS SECTION IN TORSION
SINGLE CELL NUNCIRCULAR TAPERED CLOSED BEAMS 1N TORSIUN

NONUNTFOURM

NONUATFORM CIRCULAR BEAMS IN TOURSION

0BLIQUE

OPEN

BUCKL ING OF UBLIUJE PLATES

BUSHING STRENGTH UNDER 0UBLIQUE LOAD

DOUbit SHEAR JOINTS UNDER ObLIwVE LOAD

LUG AnD BUSHING STRENGTH UNDER (LBLIWJE LOAD
LUG STRENGTH UNDER UBLIGUE LOAD

SINGLE SHEAR JUINTS UNDER GBLIGWUE LGAD

NONCIRCULAR BEAMS WITH THIN OPeN SECTIONS IN TORSIUN

NONCIRCULAK UPEN BEAMS IN TORSIUN

NONCIRCULAK UPEN DEAMS WITH VAKR{CUS CROSS StCTIONS IN TORSION
SARPLE PRUBLEM=IONCIRCULAR BEAMS wlTH THIN OPEN SECTIOUNS IN TORSION

OUTSTAND NG

CRIPPLING SIREDS UF OUTSTANDING FLANGES

PANELS

PIN

BUCKLING Ub SANCwW{CH PANELS

AX1AL LUG LeSIGN FOR PIN FAlLVUKe

AXIAL LUG UESIGN FOR PIN FAILUR. IN TrHg BeNDING OOt

AXIAL LUG LESIGN FOR PIN FAILURe IN THE SHEARING mMODt

PIN BENDING STRENGTH FOR DOUBLE SHEAR JGINTS UNDER UNIFORM AX1AL LOAD
PIN BENDING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
PIN SHEAK STRENGTH FOR DOUBLE SmEAR JOINTS UNDER UNIFURM AXTAL (OAD
PIN SHEAk STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFURM AXIAL LOAD

P INNED

REACTION FURCES AWD MOMENTS ON oEAMS wlTH ONE FIXED END AND ONE PINNED SUPPORY
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SAMFLE PRUBLEM - REACTIONS ON
PLASTIC
SAMFLE PRUOLEM-SIMPLE BEAMS IN PLASTIC BENDING
SANL HEAP ANALUGY FOR BEAMS IN PLASTIC TOKSION
SIMFLY BEAMS IN PLASTIC BENDING
PLATE
ANALYSIS (F FLATES
AXIAL COMPRESSIGN OF CURVED PLATES
AXIAL COMERESSICN OF FLAT PLATES
BEAN-SUPPUKTED FLAT PLATES IN BENCING
BENCING OF FLAT PLATES
BUCKLING GF 0BLIUUE PLATES
BUCKLING UF STIFFENELD FLAT PLATES IN AXIAL COMPRESS{UN
BUCKLING GF UNSTIFFENED FLAT PLATES IN AXJAL COMPRESSION
CRIFPLING FAILURE OF FLAT STIFFENED PLATES IN COMPRESSION
CURVED PLATES UNDER COMBINED LOADINGS -
EMPIRICAL FORMULAS FOR ALLOWABLY BEARING LOADS OF A CYLINDER ON
FLAT PLATES UNDER COMBINED LOADINGS
INTRGLUCTIUN TU ANALYSIS OF PLATES
NOMENCLATURE FUR ANALYSIS OF PLATES
PLATES UNUER COMBINED LOADINGS
SHEAR BUCKLING OF FLAT PLATLS
SHEAR LUOALING OF CUKVED PLATES
UNSTIFFENEL FLAT PLATES IN BENDING

beAM wlTH Oing FIXEU AND ONE FINNED SUPPORTY

A FLAT PLATE

PRESS
STRESSES LUE TU PRESS FIT BUSHINGS
PRESSURE
ANISGTROPIC PRESSURE VESSELS
BUCKLING F THIN SIMPLE CYLINDERS UNDER EXTERNAL PRESSURE
BUCKLING CF THIN SIMPLE PRESSUKe VESSELS UNDER EXTERNAL PRESSURE

BUCKLING UF THIN SIMPLE PRESSUkep VESSELS UNDER EXTERNAL PRESSURE

BUCKLING OF THIN SIMPLE SPHERES UNDER EXTERNAL PRESSURE

DISCONTINUITY STRCSSES AT JUNCTION OF THIN CYLINODRICAL PRESSURE VESSEL AND hMEAD
OISCONTINUITY STRESSES AT THE JUNCTION OF A THIN CYLINDKICAL PRESSURE VESSEL AND ITS MEAD
OISCONTINUITY STRESSES IN ThIN CYLINORICAL PRESSURE VESSELS WITH CONICAL HEADS
DISCONTINULITY STRESSES IN THIN CYLINDR]CAL PRESSURE VESSELS ~ITH FLAT HEADS
HEALS OF ThIN CYLINDRICAL PRESSURE VESSELS

INTRODUCTIUN TO PRESSURE VESSELS

MEMBRANE STRESSES [h HEADS OF Thin CYLINVRICAL PRESSURE VESSELS

NOMENCLATURE FOR PRESSURE VESYdELS

PRESSURE VESSELS

SAMPLE PRUBLEM «~ SUCKLING OF THIN SIMPLE CYLINDERS UNDER EXTERNAL PRESSURE

SAMPLE PRUBLEM = VISCONTINUITY FORCES IN CYLINORICAL PRESSURE VLSSELS WITH CISHEL MEADS
SAMPLE PRCBLEM ~ OISCONTINUITY STRESSES IN PRESSURE VESSELS WITH CONICAL HEADS

SAMPLE PRUBLEM « DISCONTINULTY STRESSES IN PRESSURE VESSELS WITH FLAT HEADS

SAMPLE PRUBLEM « STIFFENED THIN CYLINDRICAL PRESSURE VESSEL WITHM INTERNAL PRESSUKRE

SAMPLE PRCbLEM - STIFFENED THIN CYLINDRICAL PRESSURE VESSEL WITH INTERNAL PRESSURE

SAMPLE PRUBLEM - THICK CYLJINOR]CAL PRESSURE VESSEL

SAMPLE PRUBLEM = THIN CYLINORICAL PRESSURE VESSELS WITH STKINGEKS UNDER INTERNAL PRESSURE
SAMPLE PRGBLEM - [MIN CYLINDRICAL PRESSURE VESSELS WITH STRINGEKS UNDER INTERNAL PRESSURE
SIMPLE THIN PRESSURE VESSELS

STIFFENED THIN PRCSSURE VESSELS
STRESSES 1l SIMPLy CYLINDRICAL PRESSURE VESSELS DUt TU SUPPURTS
THICK CYUINORICAL PRESSURE VESSELS
THICK CYLINURICAL PRESSURE VESSELS UNOER EXTERNAL PHESSURE ONLY
THICK CYLINDRICAL PRESSURE VESStLS UNDER EXTERNAL PRESSURE ONLY
THICK CYLINDRICAL PRESSURE VESSELS UNDER [NTERNAL PRESSURE ONLY
THICK CYLINDRICAL PRESSURE VESSELS UNDER INTERNAL PHESSURE ONLY
THICK PRESSURE VESSELS
THICK SPHEkICAL PRESSURE VESSELS
THIA CYLINCRICAL PRESSUKE VESSELS
THIN CYLINURICAL PRESSURE VESSELS
THIN CYLINUKICAL PRESSURE VESSELS
THIN CYLINLRICAL PRESSURE VESSELS
THIN PRESSURE VESSELS

PRESSURIZEL
CRIPPLING STREDS OF PRESSURIZED AND UNPRESSURIZED THIN SIMPLE CYLINDERS
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS [N BENDING
CRIPPLING STRESS UF PRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION
CRIFPLING STRESS OF PRESSUKIZED SIMPLE THIN CYLINDERS IN TURSION
INTERACTION FURMULAS FOR THE CRIPPLING OF PRESSUR[ZED AND UNPRESSURIZED CYLINDERS
SAMFLE PRUBLEM - CRIPPLING STRESS OF

WITH RINGS UNDLR INTERNAL PRESSURE (STRINGERS OPT1ONAL)
WITH RINGS UNDER INTERNAL PRESSURE (STRINGERS OPTIONAL}
WITH STRINGERS UNDER INTERNAL PRESSURE
WITH STRINGERS UNOER INTERNAL PRESSURE

PRESSURIZED SIMPLE TeIN CYLINDERS IN TORS]ON
PRIMARY .
PRIMARY FAILUKE OF SIMPLE CULUMNS
RATIO
CRITICAL tFFECTIVE SLENDERNESS KATIO
REACTION B

APPLICATIUN OF The THREE MOMENT EQUATION TO SOLYING FOR THe REACTIONS ON CONTINUQUS BEAMS
INTRODUCTIUN TO REACTION FORCES AND MOMENTS ON BEAMS UNDER TRANSYERSE LOADING
REACTION FURCES AND MOMENTS ON BEAMS W1TH BOTH ENDS FIXED
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REACTION FURCES AND MOMENTS ON BEAMS WITH ONE FIXED ENO AND ONE PINNED SUPPURY
REACTION FURCED AnD. MOMENTS ON CONTIHUOUS BEAMS
SAMPLE PRULLEM = NEACTIONS ON oitAM wlTH ONE T IXED AND ONE PINNED SUPPORY
SAMFLE PRUBLEA - REACTIONS ON COUNTINUOUS BEAMS BY THE THREE MOMENT EQUATION
RECTANGULAR
APPLICABILITY OF THEORETICAL RESULTS FOR SHORT RECTANGULAR MEMBKANES
LATERAL INSTALLILITY OF DEEP RECTANGULAR BEAMS IN BENUING
LONG RECTANGULAR AEMBRANES
RECTANGULAK BEAHS IN TORSION
RECTARGULAR FRAMLYS
RECTANGUL AR MEMBKANES
SAMPLE PHULLEM « LONG RECTANGULAR MEMBRANES
SAMPLE PRUDLEM = SHORT RECTANGULAR MEMBRANES
SHORT RECTANGULAR MEMBRANES
THECGRETICAL RESULTS FOR SHOKT RECTANGULAR MEMBRANES
REOUCED
REOUCED MULULLUS LWUATION
REDUNDANCY
SAMPLE PRUBLEM-STATICALLY INDETERMINATE TRUSSES wlTH A SINGLE REOUNDANCY
STATICALLY INDETERMINATE TRUSSES wlTH A SINGLE REDUNUANCY
STATICALLY INDETERMINATE TRUSSES witH MULTIPLE REDUNUANCIES
RESISTANT
FLANGES OF STIFFENEV SHEAR RESISTANY WEANMS
INTROOUCTION TC SHEAR RESISTANT BEAMS IN BENDING
RIVETS IN SHEAR KHESISTANT BEAMS
SAMPLE PROBLEM=STIFFENED SHEAR KESISTANT oEAMS
STIFFeNED SHEAK R SISTANT BEAMS [N BENDING
STIFFENER-T10-FLANGE RIVETS IN SHEAR RESISTANT BEAMS
UNSTIFFENEL SHEAR RESISTANT BEAMS IN BENDING
WEB-TO—FLANGE RIVETS IN SHEAR RcSISTANT BpAMS
WEB-TO=STIFFENEK RIVETS IN SHEAR RESISTANT BEAMS
WEBS OF STIFFENLD SHEAR RESISTANT BEAMS

RESTRAINT

EFFECT OF LD RESTRAINT ON NONCIRCULAR BEAMS IN TORSION
REVOLUTION

MEMBRANE STRESSES IN SIMPLE THIN SHELLS OF REVOLUTION
RINGS

CIRCULAR K1INGS ANU ARCHES
FRAMES ANU KINGS
INTRODUCTIUN TO FRAMES AND RINGS
NOMENCLATURE FUR FRAMES AND RINGS
SAMPLE PRULLEM=CIKCULAR RINUS anD ARCHES
THIN CYLIAURICAL PRESSURE VESSELS WITH RINGS UNDER INTERNAL PRESSURE (STRINGERS OPTIONAL}
RIVETS
BEARING STRESSES IN RIVETED CONNECTIONS
RIVETS AT THE ENDS OF PARTIAL T¢NSION FIELD BEAMS
RIVETS IN FARTIAL TENSION BEAMS wWITH ACCESS HOLES
RIVETS IN PARTLAL TENSION FIELL BEAmS
RIVETS IN SREAR RESISTANT BEAMS
SAMPL: PRUBLEM = BEARING STRESSES IN RIVETED CONNECTIONS
STIFFENER-TU=FLANGE RIVETS IN SHEAR RESISTANT BEAMS
UPRIGAT-Tu~FLANGE RIVETS IN A PARTIAL TENSIUN FLELD BEAM
WEB=TU=FLAKGE RIVETS IN A PARTIAL TENSION FIELD BEAM
WEB-TO-FLANGE RIVETS IN SHEAR RcSISTANT BEAMS
WEB-TO=STIFFENER RIVETS IN 3HEAR RES[STANT BEAMS
WEB-TU-UPKIGHT KIVETS IN PARTIAL TENSION FlELD BEAM
ROUND
CRIPPLING STRESS UF ROUND TUBES
HELICKAL SEwINGS OF ROUNY WIRE
SAMPLE PRUDLEM - CRIPPLING STRESS OF ROUND TUBES
SANOWICH
BUCKLING (F SANDwICH PANELS
SECTION
APPLICATIUN OF THE METHOD OF SeCTIONS TO STATICALLY DETERMINATE TRUSSES
NONCIRCULAK BeAMS WITH THIN OPEN SECTIONS IN TORSION
NONCIKCULAK OPEN BEAMS WITH VARIOUS CR0SS SECTIONS IN TORSION
SAMPLE PROBLEM - NONCIRCULAR CLOSED STIFFENED UNIFORM SECTION BeAM IN TORSION
SAMPLE PROBLEM - STATICALLY OETERMINATE TRUSSES BY TnE METHOD OF SECTIONS
SAMPLE PRUBLEM~NONCIRCULAR BEAMS wlTH THIN OPEN SECTIONS IN TORSION
SINGLE CELL NONCIRCULAR CLOSED BEAMS wWlTH UNIFORM CKOSS SECTION IN TORSION
SHAFT
ANALYSIS OF COMBINEV STRESSES In TRANSMISSION SHAFTING
DESIGIH PROCEDURE FOR CIRCULAR TRANSMISSION SHAFTING
OESIGN STRESSES AND LOAD VARJATIONS FOR TRANSMISSION SHAFTING
GENERAL OpSIGN EQUATION FOR CIRCULAR TRANSMISSION SHAFTING
INTRODUCTION TO TRANSMISSION SHAFT ANALYSIS
LOADINGS ON CIKCULAR TRANSMISSIUN SHAFTING
NOMENCLATURE USED IN TRANSMISSIOUN SHAFTING ANALYSES
SAMPLE ANALYSIS OF CIRCULAR TRANSMISSION SHAFTING
TRANSMISSION SHAFTING ANALYY]S

CRIPPLING STRESS UF ANGLE ELEMENTS AND COMPLEX SHAPES
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ELASTIC STKESSES AND DEFORMATION OF VARIOUS SHAPES 1N CONTACT 11.5

SAMPLE PROBLEM = CRIPPLING STRESS OF A COMPLEX SHAPE 2e34245
SHEAR
AXIAL LUG LESIGN FOR PIN FAILURE IN THE SHEARING MODE Felbelel
BUSHING STRENGTH FOR SINGLE SHEAR JUINTS UNDER UNIFORM AXIAL LOAD 9e5¢3
OQUBLE SHEAR JOINT STRENGTH UNDrR UNIFORM AXIAL LOAD 9ol
DOUBLE SHEAR JOINTS UNDER OBLIQUE LOAD 931
DouBLe SHEAK JOINTS UNDER TRANSVERSE LOAD 9.8
FLANGES OF STIFFENED SHEAR RESISTANT BEAMS 1e3a2e4
INTRODUCTION TU SHEAR RESISTANT BEAMS IN BENDING le3e24l
INTROUUCTION TU SHEAR WEB BEAMS IN BENDING le3s2
LUG BLARING STRENGTH FOR SINGLE SHEAR JOINTS UNOER UNIFORM AXIAL LOADS 9541
LUG BUSHING STRENGTH IN AXIALLY LUADED SINGLE SHEAR UOINT wiTH LESS THAN S PCT ELONGATION 9,15,
LUG NET-SECTION STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORN AXIAL LOAD 9¢542
LUG TANG STHNENGTH FUR DOUBLE SHEAR JOINTS UNDER UNIFUKRM AXIAL LGAD Yool
LUG-BUSHING DLSIGH STRENGTH FOR DOVBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAC 9ebel
MULTIFLE SHEAR AND SINGLE SHEAR CONNECTIONS 913
MULTIPLE SHEAR Ahw SINGLE SHEAR CONNECTIONS 9.13
PIN BENDING STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AX]AL LOAD 9eéel
PIN BENDING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 9e5¢5
PIN SHEAR STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AX1AL LOAD 9ebe2
PIN SHEAR STRENGTm FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD Fee2
PIN SHEAR STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD 94544
PIN SHEAR STRENGTR FOR SINGLE SHEAR JOINTS UNDER UNIFGRM AXIAL LOAD 954
RIVETS IN SHEAR RESISTANT BEAMS 1034246
SAMPLE PROLLEM=ST(FFENED SHEAR RESISTANT BEAMS 1634247
SHEAR BUCKLING OF FLAT PLATES 645
SHEAR LOAUING UF CURVED PLATES 6e7
SINGLE SHEAR JGIRT STRENGTH UNDER UNIFORM AXIAL LOAD 95
SINGLE SHEAR JOINTS UNDER OBLIQUE LOAD 9.12
SINGLLE SHELAR JOINTS UNDER TRANSVERSE LOAD 9.9
STIFFENED SHEAR RESISTANT BEAMS IN BENDING le3e243
STIFFENER=-TO-FLANGE RIVETS IN SHEAR RESISTANT BEAMS le3e24643
UNSTIFFENED SHEAR RESISTANT BEAMS IN BENDING 1le3e242
WEB=TO=FLANGE RIVETS IN SMEAR RESISTANT BgAMS le3e2460l
WEB-TO-STIFFENER RIVETS [N SHEAK RESISTANYT GEAMS le3e246e2
WEBS UF STIFFENED SHEAR RESISTANT BEANS 1e3.245
SHELLS
MEMBRANE STRESSES IN SIMPLE THIN SHELLS OF REVOLUTION 8e¢3elel
SHORT
APPLICABILITY OF THEORETICAL RESULTS FOR SHORT RECTANGULAR MEMBKANES TeS5e3e2
BENDING FAILURE OF CONCENTRICALLY LOADED SHORT COLUMNS 2¢3elell
BENDING FAILURE OF ECCENTRICALLY LOADED SHORT COLUMNS 2¢341e11,8
BENDIRG FALLURE OF SHORT COLUMNS 24341010
COLUMN DATA APPLICABLE TO BOTH LONG AND SHORT COLURNS 263elel
SAMPLE PROBLEM - COLUMN DATA APPLICABLE TO BOTH LONG AND SHORT COLUMNS 2e3ele2
SAMPLE PROBLEX - ECCENTRICALLY LOADED SHORT COLUMN IN BENDING 24301e11,9
SAMPLE PRUBLEM = SHORT RECTANGULAR MEMBRANES TeS5e3e3
SAMPLE PRUBLEM = USE OF STRAIGHT LINE EQUATION FOR CONCENTRICALLY LOADED SHORT COLUMNS 2e3elell,®
SAMPLE PROBLEM = USE OF TANGENT MUOULUS EQUATION FOK CONCENTRICALLY LOADED SHORT COLUMNS  2,3.lel1,2
SHORT RECTANGULAR MEMBRANES TeS5e3
THEORETICAL RESULTS FOR SHORT RECTANGULAR MEMBRANES TeSedel
SIMPLE
BUCKLING OF THIN SIMPLE CYLINDERS UNDER EXTERNAL PRESSURE 8e3ele30l
BUCKLING OF THIN SIMPLE PRESSURE VESSELS UNDER EXTERNAL PRESSURE 8e34led
BUCKLING GF THIN SIMPLE SPHERES UNDER EXTERNAL PRESSURE 8e3ele3e2
CRIPPLING STRESS OF PRESSURIZED AND UNPRESSURIZED THIN SIMPLE CYLINDERS 8edeleS
CRIPPLING STRESS UF PRESSURIZED SIMPLE THIN CYLINDEKS IN BENDING 8edeleSelal
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS [N COMPRESSION BeldelaSeled
CRIPPLING STRESS UF PRESSURIZED SIMPLE THIN CYLINDERS IN TORSION B8edoleSedas
CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN BENDING 8e3ole5e2 ~
CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN COMPRESSION 8e3eleSel
CRIPPLING STRESS uF SIMPLE THIN CYLIROERS IN TORSIUN 8e3ele5e3
CRIPPLING STRESS OF UNPRESSURIZED SImMPLE THIN CYLINDERS IN BENDING Be3eleS5el0el
CRIPPLING STRESS OF UNPRESSURIZED SImMPLE THIN CYLINVERS IN COMPRESSION 8e3sleSelel
CRIPPLING STRESS OUF UNPRESSURIZED SIMPLE THIN CYLINDERS IN TORSION 8e3ede5430l
FORHMULAS FUR SIMPLE FRAMES Sel
MEMBRANE STRELSSES IN SIMPLE THIN SHELLS OF REVOLUTION 8e3elal
PRIMARY FALLURE OF SIMPLE COLUMNS 2e301
SAMPLE PRUBLEM « BUCKLING OF THIN SIMPLE CYLINDERS UNUEK EXTERNAL PRESSURE 8e3eledelal
SAMPLE PRUBLEM < CRIPPLING INTERACTION OF SIMPLE THIN CYLINDERS IN COMPRESSION AND BENDING 8.3.le5.%ql
SaMPLE PR(CBLEM ~ CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN TORSION 8e3eleS5e34d0ld
SAMPLE PROBLEM = TORSICNAL FAILLURE OF SIMPLE COLULMNS 26301413
SAMPLE PKCBLEM=FORMULAS FOR S{mPLE FRAMES 5.8
SIMPLE BEAMS IN BENDING 1e3.1
SIMPLE BEAMS IN ELASTIC BENVING l1e3alel
SIMPLE BEAMS [N - PLASTIC BENDING le34l43
SIMPLE COLUMNS 243
SIMPLE THil« PRESSURE VESSELS ) 8e34l
STRESSES IN SIMPLy CYLINDRICAL PRESSURE VESSELS OUE TO SUPFORTS 8e3sleé

TORSJONAL FAILUKE OF SIMPLE COLUMNS 2e63elel2



SLENDERNESS

CRITICAL €FFECTIVE SLENDERNESS RATIO
SPHERES

BUCKLING OF THIN SIMPLE SPHERES UNDER EXTERNAL PRESSURE

EMPIRICAL FORMULA FUR ALLOWABLE BEARING LLOAD OF STEEL SPNERES IN CONTACT

MEMBRANE STRESSES IN THIN SPHERES

SAMPLE PRUBLEM = MEMBRANE STRESSES IN THIN CYLINDERS AND SPHERES

THICK SPHERICAL PRESSURE VESSELS
SPRINGS

HELICAL SPRINGS

HELICAL SPRINGS OF ROUNVY WIRE

HELICAL SPRINGS OF SQUARE wWIRE
SQUARE

HELICAL SPKINGS OF SQUARE WIRE
STATIC

SAMPLE PRUBLEM - gAR UNDER STATIC TENSILE LOAD

STATIC TENSILE LOADING OF BARS
STATICALLY

APPLICATION OF THg METHCO OF JOINYS TU STATICALLY DLTERMINATE TKUSSES

APPLICATION OF TH: METHOD OF SECTIONS TO STATICALLY DETERMINATE TRUSSES

DEFLECTIONS IN STATICALLY DETERMINATE TRUSSES

INTRODUCTIUN TO STATICALLY VETERMINATE TRUSSES

INTRQUUCTION TO STATICALLY INDETEKMINATE TRUSSES

SAMPLE PROBLEM -~ STATICALLY DETeRMINATE TRUSSES BY THE METHOD OF SECTIUNS

SAKPLE PRULLEM~APPLICATION CGF THE METHOD OF JOINTS TU STATICALLY ODETERMINATE TKUSSES

SAMPLYE PROBLEM-DEFLECTIONS 4N STATICALLY UETERMINATE TRUSSES

STATICALLY DETERMINATE TRUSSES

STATICALLY INDETERMINATE TRUSSES

STATICALLY INDETEKMINATE TRUSSES wITH A SINGLE REDUNDANCY

STATICALLY INUETERMINATE TRUSSES WiTH MULTIPLE REDUNUVANCIES

L
EMPIRICAL FORMULA FOR ALLOWABLE BEARING LOAD OF STEEL SPHERES IN CONTACT
STEPPED
SAMPLE PRUBLEM - STEPPED COLUMK
STEPPED ANU TAPERED COLUMNS
STIFFENERS
BUCKLING OF STIFFENED FLAT PLATES IN AXIAL COMPRLSSION
CRIPPLING FAILURE OF FLAT STIFFENED PLATES IN COMPRESSION
EFFECT OF STIFFEMERS ON NONCIRCULAR CLOSEDC BEAMS IN TORSION
FLANGES OF STIFFENEV SHEAR RES{STANT BEAMS
SAMPLE PRUCBLEM « NONCIRCULAR CLUSED STIFFENED UNIFURM SECTION BeAM IN TORSION
SAMPLE PROBLEM ~ STIFFENED THIN CYLINDRICAL PRESSURE VESSEL WITH INTERNAL PRESSURE
STIFFENED SHEAR RESISTANT BEAMS [N BENDING
STIFFENED THIN PRESSURE VESSELS
STIFFENER.TG-FLANGE RIVETS IN SHEAR RESISTANT BEAMS
WEBS UF STIFFENED SHEAR RESISTANT BEAMS
STRAIGHT
SAMPLE PRUDLEM = USt OF STRAJGHT LINE EQUATION FOR CONCENTRICALLY LOADEV SHORT CULUMNS
STRAIGHT LINE EQUATION
STRENGTH
BEARING STReNGTH OF AXTALLY LOALED LUGS WITH LESS THAN S PCT tLONGATION
BEARING STReNGTh UF TRANSVERSELY LOADED LUGS wITH LESS THAN S PCT ELONGATION
BUSHING BrAKING STRENGTH UNDER UNIFORM AX]AL LOAD
BUSHING SIKRENGTH FOR SINGLE SHEAR JOINTS UNDER UNJFOkM AXIAL LOAD
BUSHING STKRENGTH UNDER UBLIUUE LOAD
BUSHING STRENGTrH UNDER TRANSVERSE LOAD
COMBIREL LUG-BUSHING DESIGN STRENGTH UNDER UNIFORM AX[AL LCAD
OOUBLE SHrAR JOINT STRENGTH UNDeR UNIFQRM AXIAL LOAV
LUG AND BULSHING STRENGTH UNUVER UBLIQUE LOAD
LUG AND BUSHING STRENGTH UNDER TRANSVERSE LOAD
LUG AND BUSHING STRENGTH UNUER UNIFORM AX[AL LOAD
LUG BeARING STHRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXJAL LOADS
LUG BEARING STHENGTH UNDER UNIFORM AXIAL LOAD
LUG duSHING STRENGTH IN AXIALLY LOADED SINGLE SHEAR JOINT wlTH LESS THAN 5 FCT ELONGATION
LUG OESIGK STRENGTH UNDER URIFORM AXIAL LUAD
LUG WET-SECTION STRENGTH FOR SINGLE SHEAR JUINTS UNDLR UNIFORM AXIAL LOAD
LUG NET-SECTION STRENGTH UNDER UNIFORM AXIAL LOAD
LUG STRENGTH UNDER OBLIGUE LOAD
LUG STRENGTH UNDER TRANSVERSE LOUAD
LUG TANG STKENGTH FOR DOUBLE SHEAR JUINTS UNDER UNIFURM AX1AL LGAUL
LUG-BUSHINnG DESIGN STRENGTH FOR DQUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAC
NET-SECTIGIK STRENGTH OF AXIALLY LOADED LUGS WITH LSS THAN 5 PCT ELONGATION
PIN BENDING STREnNGTH FOR DOUBLE SHEAR JUINTS UNDER UNIFORM AX]AL LOAD
PIN BENDING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
PIN SHEAR STRENGTH FOR DOUBLE SHMEAR JOINTS UNDER UNIFURM AXIAL LOAD
PIN SHEAR STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AX1AL LOAD
SINGLE SHEAR JOINT STRENGTH UNDER UNIFORM AXIAL LQAUL .
STRENGTH OF LUG TANGS IN AXIALLY LOADED LUGS wiITH LEDS THAN 5 PCT ELONGATION
STRESS
ALLOWABLE STRESSES IN THE UPRIGHTS OF A PARTIAL TENSION FlelD BEAM
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ANALYS]S OF CUMBIREVU STRESSES IN TRANSMISSION SHAFTING

BEARING STRESSES :

BEAR (NG STRESSES IN RIVETEO COMMECTIONS

COMPUTED STKESSES IN THE UPRIGHTS OF A PARTJAL TENSION FIELD HBEAM

CRIPPLING STRESS UF ANGLE ELEMENTS AND COMPLEX SHAPES

CRIPPLING STRESS OF | BEAMS

CRIPPLING STRESS OF OUTSTANDING FLANGES

CRIPPLING STRESS OF PRESSURIZED AND UNPRESSURIZED THIN SIMPLE CYLINDERS

CRIPPLIRG STRESS OF PRESSURIZED SIMPLE THIN CYLINOEKS IN BENDING

CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION

CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN TURSION

CRIPPLING STRESS OF ROUND TUBES .

CRIPPLING STRESS UF SIMPLE THIN CYLINDERS IN BENDING

CRIPPLING STRESS UF SIMPLE THIN CYLINDERS IN COMPREDSSIUN

CRIPPLING STRgSS uF SIMPLE THIN CYLINDERS IN TORSION

CRIPPLING STRESS OF UNPRESSURIZED SIMPLE THIN CYLINDELRS IN BENDING

CRIPPLING STRESS OF UNPRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION

CRIPPLING STREDS OF UNPRESSURIZED SIMPLE THIN CYLINDERS IN TORSION

DESIGH STRESSES AND LOAD VARIATIONS FOR TRANSMIDSION SHAFTING

DISCONTINUITY STRESSES AT JUNCTION OF THIN CYLINORICAL PRESSURE VESSEL AND MHEAD

DISCONTINUITY STRESSES AT THE JUNCTION OF A THIN CYLINDRICAL PRESSURE VESSEL AND (TS HEAD

DISCONTINUITY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS WITH CONICAL HEADS

DISCONTINULITY STRESSES IN THIN CYLINORICAL PRESSURE VeSSELS wITH FLAT HeaDS

ELASTIC STHRESSES AND OgFORMATION OF VARIOUS SHAPES IN CONTACT

INTRODUCTION TU BrARING STRESSES

INTRODUCTION TO DISCONTINUITY STRESSES

MEMBRANE STRESSES IN HEADS OF THIN CYLINVRICAL PRESSURE VESSELS

MEMBRANE STRESSES IN SIMPLE THIN SHELLS OF REVOLUTION

MEMBRANE STKRESSES IN THIN CYLINDERS

MEMBRANE STRESSES IN THIN SPHERES

NOMENCLATURE FOR oEARING STRESSES

SAMPLy PROBLEM « bEARING STRESSES IN RIVETED CONNECTIONS

SAMPLY PRUBLEM - CRIPPLING STRESS OF A COMPLEX SHAPE

SAMPLE PROBLEM = CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN TORSION

SAMPLE PRODLEM =« CRIPPLING STRESS OF ROUND TUBES

SAMPLE PRuolLiem - VISCONTINUITY STHESSES IN PRESSURE VESSELS wITH CONICAL HEADS

SAMPLY PROBLEM - DISCONTINUITY STRESSES IN PRESSURE VESSELS WITH FLAT HEADS

SAMPLE PRUBLEM = ELASTIC STRESS AND VEFGRMATION OF CYLINDER ON CYLINDER

SAMPLE PRUDLEM - MEMBRANE STRESSES IN THIN CYLINDERS AND SPHERES

STRESSES DUE TU PRESS FIT BUSHINGS

STRESSES In SIMPLE CYLINDRICAL PRESSURE VESSELS DUE TO SUPPORTS
STRINGER

THIN CYLINDRICAL PRESSURE VESSELS WITH RINGS UNDER INTERNAL PRESSURE (STRINGERS UPTIONAL)
STRINGERS

SAMPLE PRUBLEM = THIN CYLINOURICAL PRESSURE VESSELS WITH STRINGERS UNDER INTERNAL PRESSURE

THIN CYLINDRICAL PRESSURE VESSELS WITH STRINGERS UNDER INTERNAL PRESSURE
SUPPORT

REACTION FORCES AND MOMENTS ON BEAMS WITH ONE FIXED END ANL ONE PINNED SUPPORT

SAMPLL PRUBLEM « REACTIONS ON BeAM WITH ONE FIXED AND ONE PINNED SUPPORT

STRESSES IN SIMPLE CYLINDRJCAL PRESSURE VESSELS DUE TO SUPPORTS
TANG

LUG TANG STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM ax]AlL LOAD

STRENGTH OF LUG TANGS IN AXIALLY LOADED LUGS WITH LESS THAN § PCT ELONGATION
TANGENT

SAMPLY PRUBLEM = USE UF TANGENT MUDULUS EQUATION FOR CONCENTRICALLY LOAUED SHOKT COLUMNS
TANGENT MODULUS™ EQUATION

TAPERED
SINGLE CELL NONCIRCULAR TAPERED CLOSED BEAMS [N TORSION
STEPPZD ANV TAPERED COLUMNS

TENSILE
CYCLIC TENSILE LOADING OF BARS
SAMPLE PROBLEM - sAR UNDER CYCL{C TENSILE LOAD
SAMPLE PROBLEM « BAR UNDER STATIC TENSILE LOAD
STATIC TENSILE LOADING OF BARS

TENSION .
ALLOWABLE STRESSES IN THE UPRIGHTS OF A PARTIAL TENSION FIELD BeAM
COMPUTED STKRESSES IN THE UPRIGHTS OF A PARTIAL TENSION FIELD BEAM
DESIGH CRITERIA £OR THE UPRIGHTS OF A PARTIAL TENSION FLELD BEAM
EFFECTIVE AREA OF THE UPRIGHT OF A PARTIAL TENSION FlplD BeaAM
ENDS OF PARTIAL TENSION FIELD BeAMS
FLANGES OF PARTIAL TENSION FlELD BEAMS
INTRODUCTION TO PARTIAL TENSION FIELD BEAMS IN BENDING
MOMENT OF IMERTIA OF THE UPRIGHTS OF A PARTIAL TENSIUN FIELD- ycAM
PARTIAL TENSION FIELD BEAMS WITH ACCESS HOLES
RIVETS AT THE ENDOS OF PARTIAL TtNSION FLELD BgamsS
RIVETS IN PARTIAL TENSION BEAMS W]TH ACCESS HOLES
RIVETS IN PARTIAL TENSION FIELD BEAMS
SAMPLE PRCBLEM=PARTIAL TENSION FIELD BEANS
UPRIGHT=T(L=FLANGE RIVETS IN A PARTIAL TENSION FIELD bEAM
UPRIGHTS AT THE ENDS OF PARTIAL TENSION FIELD BEAMS
UPRIGHTS OF PARTIAL TENSION FlelD BEAMS WITH ACCESS HOLES
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THICK

THIN

WEB-TO=FLANGE NIVETS IN A PARTIAL TENSION FIELD BEAM
WEB-TU~UPKIGHT RIVETS IN PARTIAL TENSION FIELD BEAM
WEBS AT ThE ENDS OF PARTIAL TENSION FIELD BEAMS

WEBS OF PAKTIAL TENSION FIELD bcAMS

WEBS OF PAKTIAL TENSION FIELD wEAMS wWITH ACCESS HOLES

SAMPLE PRUBLEM -~ THICK CYLINORICAL PRESSURE VESSEL

THICK CYLINUR]ICAL PRESSURE VESSELS

THICK CYLINURICAL PRESSURE VESSELS UNDER EXTERNAL PRESSURE ONLY
THICK CYLINDRICAL PRESSURE VESSELS UNDER INTERNAL PRESSURE ONLY
THICK PRESSURE VESSELS

THICK SPHEKICAL PRESSURE VESSELS

BUCKLING F THIN SIMPLE CYLINDEKS UNDER EXTERNAL PRESSURE

BUCKLING GF THIN SIMPLE PRESSUR: VESSELS UNDER EXTERNAL PRESSURE

BUCKLING OF THIt SIMPLE SPHERES UNDER EXTERNAL PRESSURE

CRIPPLING S5TRESS OF PRESSURIZED AND UNPRESSURIZEL THIN SIMPLE CYL INDERS

CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDEKS IN BENDING

CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN CUMPRESSION

CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDenS IN TCRSION

CRIFPPLING STRESS OF SIMPLE THIN CYLINDERS IN BENDI!.C

CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN COMPR_SVION

CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN TORSICA

CRIPPLING STRESS (F UNPRESSURIZED SIMPLE THIN CYL[:..crS IN BENDING

CRIPPLING STRESS OF UNPRESSURIZED SIMPLE THIN CYLIN.c®S IN COMPRESSION

CRIPPLING STRESS OF UNPRESSURIZED SIMPLE THIN CYL]:.vexS IN TORSION

DISCONTINULITY STRESSES AT JUNCTION OF THIN CYLINDRiC:iL PRESSURE VESSEL AND HEAL
DISCONTINULITY STRESSES AT THE JUNCTION OF A THIN Cr_iNDRICAL PRESSURE VESSEL AND [TS HEAD
O1SCONTINUITY STRESSES IN THIN CYLINURICAL PRESSUK:. - (SSELS WITH CONICAL HEADS
DISCONTINUITY STRESSES IN THIN CYLINDRICAL PRESSUF. viSSELS WITH FLAT HEADS

HEADS OF THIN CYLINDRICAL PRESSURE VESSELS

MEMBRANE STRESSES IN HEADS OF THIN CYLINDRICAL PR ::u~E VESSELS

MEMBRANE STRESSES IN SIMPLE THIN SHELLS OF REVOLUI...

MEMBRANE STRESSES IN THIN CYLINUERS

MEMBRANE STKESSES IN THIN SPHERLS

NONCIRCUL AR BEAMS w]TH THIN OPEN SECTIONS IN TORSION

SAMPLE PRUBLEM - BUCKLING OF THIN SIMPLE CYLINDERS UNDER EXTERNAL PRESSURE

SAMPLE PROBLEM = CRIPPLING INTERACTION OF SIMPLE THIN CYLINDERS IN COMPRESSION AND BENDING
SAMPLE PROBLEM « CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN TORSION

SAMPLE PROBLEM - MEMBRANE STRESSES [N THIN CYLINDERS AND SPHERES

SAMRLE PRUBLEM = STIFFENED THIN CYLINDRICAL PRESSURE VESSEL WITH INTERNAL PRESSURE
SAMPLE PRQULEM « THIN CYLINDRICAL PRESSURE VYESSELS WITH STRINGERS UNDER INTERNAL PRESSURE
SAMPLE PRCUBLEM=HONCIRCULAR HEAMS wiTH THIN OPEN SECTIONS IN TORSION

SIMPLE THIN PRESSURE VESSELS

STIFFENEV THIN PRESSURE VESSELS

THIN CYLINURICAL PRESSURE VESSEILS WITH RINGS UNDER INTERNAL PRESSURE (STRINGERS OPTIONAL}
THIN CYLINURICAL PRESSURE VESSELS WITH STRINGERS UNDER INTERNAL PRESSURE

THIN PRESSURE VESSELS

TORSION

ANALOGIES FOR BEAMS IN TORSION

CIRCULAR ©EAMS IN TORSION

CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINOERS IN TGRSION
CRIPPLING STRESS OF SIMPLE THIN CYLINDERS [N TORSION

CRIPPLING STRESS OF UNPRESSUREZeD SIMPLE THIN CYLINVUERS IN TORSION
EFFECT OF CUTOUTS On CLOSED SINGLE CELL BEAMS IN TORSION
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INTRODUCTION

This introduction serves a threefold purpose: (1) it summarizes the
eleven chapters making up this manual; (2) it references several publications
which contain related information; and (3) it lists the nomenclature most
commonly used in the chapters.

CHAPTER SUMMARIES

Chapter 1 - Beams

Section 1.3 of this chapter presents the method of analysis for simple,
shear web, and partial-tension-field beams in bending, as well as methods
of determining the reactions on statically indeterminate beams. Section 1.4
treats beam columns, and Section 1.5 covers beams in torsion including
helical springs.

Chapter 2 - Column Analysis

Section 2.2 of this chapter treats primary bending and torsional failure
as well as crippling failure of columns of uniform cross section. Stepped and
tapered columns are treated in Section 2. 3, and the material on beam columns
is in Chapter 1.

Chapter 3 - Bar Analysis

This chapter treats bars in tension with emphasis upon the effect of
stress raisers.

Chapter 4 - Trusses

Section 4.3 of Chapter 4 gives methods of determining the stresses and
deflections of statically determinate trusses, and Section 4.4 treats statically
indeterminate trusses.

Chapter 5 - Frames and Rings

——

This chapter gives a general treatment of frames composed of straight
elements of uniform cross section, in addition to particular solutions for
various simple frames and circular rings under several types of loadings.

Chapter 6 - Plates

Methods for determining the critical buckling stress of both flat and
curved plates with and without stiffeners and having various loadings are
given. Charts and curves covering most common loadings and supports
facilitate analysis. '



Chapter 7 - Membranes TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

Circular, square, and rectangular membranes under uniform pressure

are treated in this chapter.

Chapter 8 - Pressure Vessels

Section 8. 3 treats thin pressure vessels both with and without stiffeners.
Stresses due to supports as well as membrane and discontinuity stresses are
considered for thin pressure vessels without stiffeners. The analysis of thick

pressure vessels is considered in Section 8.4, and glass fiber pressure
vessels are briefly discussed in Section 8. 5.

Chapter 9 - Lug Analysis

This chapter presents methods of analyzing lugs and their pins and
bushings under various loading angles.

Chapter 10 - Shafts

The analysis of power transmission shafting is presented for circular

shafts. Methods for treating discontinuities such as keyways, grooves, holes,

and steps are given. A general design equation is presented to facilitate
analysis.

Chapter 11 - Bearing Stresses

This chapter treats bearing stresses in riveted joints as well as those
between elastic bodies of various shapes. Formulas are also given for the
deformations of elastic bodies in contact.
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NOMENCLATURE

The most commonly used nomenclature is presented here. Complete
lists of nomenclature are available at the beginning of each chapter.

A area

a 1/2 the major diameter of an ellipse

a plate length

a linear dimension as indicated in diagrams
subscript, allowable

subscript, allowable

subscript, axial

ductility factor for lugs with less than 5% elongation
1/2 the minor diameter of an ellipse
plate width

linear dimension as indicated in diagrams
effective bearing width

subscript, bending

subscript, bearing

centroid

coefficient of constraint for columns
numerical constant

torsion - bending coefficient

rivet factor

1/2 the minor diameter of an ellipse
distance from neutral axis to extreme fiber
linear dimension as indicated in diagrams
subscript, compression

subscript, crippling

subscript, critical

diameter

distribution factor

.mean diameter

linear dimension as indicated in diagrams
modulus of elasticity

reduced modulus

secant modulus

tangent modulus

eccentricity

strain

allowable stress

allowable stress for concentrically loaded column
allowable bending stress -

allowable bearing stress

allowable ultimate bearing stress
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“allowable yield bearing stress ‘

F, allowable compressive stress . . .. -
F,. allowable crippling stress

Fooar allowable column stress (upper limit of column stress

for primary failure)

Fop proportional limit in compression
F,, critical stress

F,, compressive yield stress

F, allowable web shear stress

F... crippling stress in shear

F,.. critical buckling stress

F,. allowable ultimate shear stress
F,, yvield stress in shear

F,, yield stress in tension

FEM fixed-end moment

FS factor of safety

f calculated stress

f, calculated bending stress

£, calculated bearing stress

£, calculated compressive stress
£, calculated shear stress

f, calculated tensile stress

G modulus of elasticity in shear
H horizontal reaction

h height

hp horsepower

1 moment of inertia

I polar moment of inertia

. subscript, inside

J torsion constant

J "polar moment of inertia

K a constant, generally empirical
k radius of gyration

k diagonal tension factor

k a constant, generally empirical
L length

L’ effective length

M moment

M empirical constant in straight line column equation
N number of cycles

N empirical constant in straight line column equation
n number of elements

n factor of safety

n empirical constant

o ~subscript, outside

P applied concentrated load

P axial load

P allowable load
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alternating load :
crippling load R e e s g e
critical load

pressure or pressure difference

rivet spacing

subscript, polar

subscript, pressurized

statical moment of a cross section

shear flow

notch sensitivity factor

reaction force

radius or radius of curvature

stress ratio - £/F

radius

cylindrical or polar coordinate

subscript, radial

subscript, ring

subscript, rivet

tension force per inch on the edge of a membrane
distance measured along a curved path
subscript, shear

subscript, skin

subscript, strianger

torque

tensile force

thickness of pressure vessel head
thickness

subscript, tension

subscript, transverse T
subscript, ultimate

subscript, upright

shear force

vertical reaction

velocity

applied concentrated load

total load

potential energy

applied distributed load

width

subscript, web

SR IR

force in redundant member of a truss
rectangular coordinate

rectangular coordinate

deflection

subscript, yield

rectangular coordinate

empirical constant

angle
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empirical constant

angle

increment or difference
deflection

strain

plasticity coefficient
cylindrical coordinate
angle or angular deflection
empirical constant

half wavelength of buckling
Poisson's ratio

torsional spring constant
elastic Poisson's ratio
plastic Poisson's ratio
Poisson's ratio

elastic Poisson's ratio
plastic Poisson's ratio
radius of gyration

density

summation

angle or angular deflection
angular deflection
empirical constant

angular velocity
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1. BEAMS

1.1 Introduction to the Analysis of Beams

Beams under various loadings are considered in this chapter. Section 1.3
treats beams in bending while beams under combined axial and transverse loads
and beams in torsion are treated in Sections 1.4 and 1.5, respectively.

1.2 Nomenclature for the Analysis of Beams

>
It

cross-sectional area

A = area of moment diagram

A = constant of integration

A = width of the larger leg of an angle section

A = cross-sectional area of tension or compression flange
A = cross-sectional area of upright or stiffener

A = effective cross-sectional area of upright or stiffener
a = 1/2 the major diameter of an ellipse

a

a

= linear dimension
ds
T

a = YV Ely hz/4 GJ for an I beam of depth h

EY = distance from the left end of a span to the centroid
of its moment diagram

= width of the smaller leg of an angle section

= constant of integration

1/2 the minor diameter of an ellipse

= width of section

= developed length of thin section

= linear dimension

= subscript, bending

oo o gy
]

ole
"

distance from the right end of a span to the centroid
of its moment diagram

C = centroid of moment diagram
Cl' Cy, C3 = stress concentration factors

C = rivet factor <rivet spacing - rivet diameter)
rivet spacing

c = distance from neutral axis to extreme fiber

linear dimension

= distance from neutral axis of flange to the extreme
fiber of flange

= subscript, critical

= diameter

= inside diameter

outside diameter

= linear dimension

[e]
1"

(1]
" -

paygUUo
]

= stiffener spacing
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M

E = modulus of elasticity

e = distance from centroid of upright to web

o = subscript, effective

F.. = allowable crippling stress of upright

¥ = column yield stress (allowable column stress at
L°/p = 0)

Faot = allowable column stress

Foax = ultimate allowable compressive stress for natural
crippling

F, = ultimate allowable compressive stress for forced
crippling ’

F,’ = reduced ultimate allowable compressive stress for
forced crippling

F, = allowable web shear stress

F,” = reduced allowable web shear stress

Feott = collapsing shear stress for solid unstiffened webs

Foar = critical (or initial) buckling stress

F.. = torsional modulus of rupture

F,. = ultimate stress in pure shear

F,, = vyield stress in pure shear

F,, = ultimate tensile stress

¢ = subscript, flange

£, © = calculated primary bending stress

feent = calculated compressive stress at the centroidal axis
of the upright

f.. = calculated critical compressive stress

fe = calculated stress in flange due to the horizontal component
of diagonal tension in a partial tension field beam

£, = calculated shear stress

£, = secondary bending moment in flange

£, = calculated average compressive stress in upright

fimex = calculated maximum compressive stress in upright

G = modulus of elasticity in shear

h = height or depth - height of shear web beam between
centroids of flanges '

I = moment of inertia

I, = average moment of inertia of beam flanges

I = polar moment of inertia

I, = required moment of inertia of upright or stiffener
about its base

I = moment of inertia of upright or stiffener about its base

' = subscript, inside

J = torsion constant

K = a constant
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M

k = diagonal tension factor

L = length

L’ effective length of beam

M applied bending moment

M, = critical moment

M, = fully plastic bending moment

M,, secondary bending moment in flange

M, bending moment due to transverse loads alone

M, bending moment at the onset of yielding

m = coefficient given by Figure 1-8

n number of active spring coils

n constant given in Section 1.3.1. 6

° = subscript, outside

P = applied.concentrated load

P = axial load

P, = upright end load

P = rivet spacing

P = pressure

Q - statical moment of cross section - IAI ydA

= shear flow

q’ - beam shear at a distance of 2h/3 from the beam end

q, - shear load of web to flange rivets (lb/in.)

q, = tension load on web to upright rivets (1b/in.)

q, - increased tension load on web to upright rivets (Ib/in.

R = reaction

r = radius

. = subscript, rivet

T, = inside radius

T, = outside radius

S - tension force on edge of membrane (I1b/in.)

s = distance measured along curved path

s - distance from centroidal axis to point of application
of 1load

. = srubscript, shear

T = torque

T ex = maximum allowable torque

t = thickness

N = subscript, teasion

t, = effective thickness

t, = flange thickness

t, = skin thickness

t,. = thickness of closed stiffener

t, upright thickness

t, = web thickness

U -

L £ for beam column
\/ EL

1 -3
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M

c
n

developed length of elongated section
= subscript, ultimate

= subscript, upright

= shear force

concentrated transverse load

= distributed transverse load

" = subscript, web

X,¥,2 = rectangular coordinates
deflection of beam due to bending
= subscript, yield

= angle of diagonal tension

€ £<4° ¢
n

-«
T

= coefficient given by Table 1-14

= coefficient given by Table 1-14

= spring deflection

portion of spring deflection due to direct shear
= plasticity coefficient

= radius of gyration

= slope of beam

= summation

Moo 3 oo0o®™A Q<
!

1.3 Introduction to Beams in Bending

For the purposes of discussion, beams in bending are divided here into
simple beams (Section 1. 3.1) and shear web beams (Section 1. 3.2). Shear
web beams are further subdivided into shear resistant beams and partial
tension field beams. If a beam is statically indeterminate, Section 1.3.4
must be consulted in order to determine the reaction forces and moments.
Otherwise, the equations of statics may be used to determine the reactions.

1.3.1 Simple Beams in Bending

Simple beams in elastic and plastic bending are treated in Sections
1.3.1.1 and 1. 3. 1. 3, respectively, while the possibility of lateral instability
of deep beams in bending is treated in Section 1.3.1. 5.

1.3.1.1 Simple Beams in Elastic Bending

This section treats simple beams in bending for which the maximum
stress remains in the elastic range.

The maximum bending stress in such a beam is given by the formula

£, = Mc {1-1)
1
while the shear flow is given by VO
q = —-I—— (1-2)

1 -4
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where Q = IA ydA. The use of these equations is illustrated in Section 1.3.2.2.
1

The vertical and angular displacements of a simple beam in e€lastic
bending are given by Equations (1-3) and (1-4), respectively, where A and B
are constants of integration.

Y=f[_1\_4_dx2+Ax+B (1-3)

i E

e:—-dY:J._h_d.d}C+A (1-4)
dx El

1.3.1.2 Sample Problem - Simple Beams in Elastic Bending

Given: The cantilever beam shown in Figure 1-1.

Y 50 1b.
1 in. square aluminum bar
I=0.0833

'

20

SONNWNNN
|

Figure l1-1. Cantilever Beam in Bending

Find: The maximum bending and shear stresses.

Solution: From the equations of statics, the shear and moment
diagrams in Figure 1-2 may be obtained.

v &
50
V = 50
— X
M
- X
M = 50x - 1000
-1000

Figure 1-2. Shear and Moment Diagrams for the
Beam in Figure 1-1
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Stnce c and I are constant along the beam, the maximum bending

stress occurs at the point of maximum bending moment; and frem
Equation (1-1),

Mc _ -1000(0.5)
I  0.0833

f, = = 6,000 psi
Q may be computed at a distance y; from the neutral axis by
considering the beam cross section shown in Figure 1-3:

1 1 vy
Q=_[ YdA=I y(lydy =5 - ——
A Yl

1

Q is maximum at y| = 0 where Q =1/2. Thus, the maximum
shear flow occurs at the neutral axis and is given by Equation

(1-2) as
_ VQ _ 50(0.5)_ .
q = i = 0.0833_ 300 lb/xn.
The maximum shear stress is thus,
300 1b/in. = 300 1b/in. 2
1l in.
b4
\ Al

neutral axis
Y1 1

1

l

Figure 1-3. Cross Section of Beam

1.3.1.3 Simple Beams in Plastic Bending

In some cases, yielding of a beam in bending is permissible. If
the beam material may be considered to be elastic-perfectly plastic, the
bending moment at failure is given by

M., =k My (1-5)

where Myl is the moment that causes initial yielding of the extreme fibers
and K is the shape factor given in Table 1-1.

1 -6
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Values of the Shape Factor, K

M

| thin

IT ///i + @ Ewallcd ‘ ;"‘Do-\:; || r-j'—rf

! —* |
3_p? 5 sed - aun?

K 1.0s | 1.3 2.0 .70 27 (1 - L) 3200l - D7) | 3u (.'__ = ‘__-)
T In (DY - % 2 \phi.2ogh?

= All mass is assumed to be concentrated at the centroids of the flanges.

1.3.1.4 Sample Problem - Simple Beams in Plastic Bending

Given: The simply supported beam shown in Figure 1-4.

20 ¢J 20

P

%
2
\ dhey
2x1 Cl104% Annealed Steel Bar

F, = 55 000 psi, 1= 0.666 in. 4

Figure 1-4. Simply Supported Beam in Bending

Find: The load, P, that causes fully plastic bending.

Solution: Rearranging Equation (l1-1) and replacing the bending
stress with the yield stress gives

F
M, = a = 55000(0. 666} = 36, 600 in. /1b.

Y c 1.0

Inserting the value of K from Table 1-1 into Equation (1-5) gives
M,=KM =15 (36, 600) = 54, 900 in. /lb.

From statics, the maximum moment on the bar is 10P. Thus,
for fully plastic bending,

P= = 5,490 1b.
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1.3.1.5 Introduction to Lateral Instability of Deep Beams in Bending

Beams in bending under certain conditions of loading and restraint
can fail by lateral buckling in a manner similar to that of columns loaded in
axial compression. However, it is conservative to obtain the buckling load
by considering the compression side of the beam as a column since this
approach neglects the torsional rigidity of the beam.

In general, the critical bending moment for the lateral instability
of the deep beam, such as that shown in Figure 1-5, may be expressed as

KVEI, GJ

M., = (1-6)

where J is the torsion constant of the beam and K is a constant dependent on
the type of loading and end restraint. Thus, the critical compressive stress
is given by
M,.c
oy S —— ‘ (1-7)
I

X
where c is the distance from the centroidal axis to the extreme compression

fibers. If this compressive stress falls in the plastic range, an equivalent
slenderness ratio may be calculated as

(2=) = \JE (1-8)

: gl
\b
'\ h
i
\t
\x
L
b

Figure 1-5. Deep Rectangular Beam
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The actual critical stress may then be tound by entering the column curves

of Chapter 2 at this value of (L. “/p). This value of stress is not the true com-
pressive stress in the beam, but is sufficiently accurate to permit its use as
a design guide.

1.3.1.6 Lateral Instability of Deep Rectangular Beams in Bending

The critical moment for deep rectangular beams loaded in the
elastic range loaded along the centroidal axis is given by

[-24

M,, = 0.0985 K, E (P_iﬁ) (1-9)

where K is presented in Table 1-2, and b, h, and L are as shown in Figure
1-5. The critical stress for such a beam is

o = KE (2) (1-10)
where K_ is presented in Table 1-2.
If the beam is not loaded along the centroidal axis, as shownin

Figure 1-6, a corrected value K,  is used in place of K, in Equation (1-10).
This factor is expressed as

Ke* = Ke ”"‘)('E'\‘ (1-11)

where nis a constant defined below:

(1) For simply supported beams with a concentrated load at mid-
span, n = 2. 84.

(2) For cantilever beams with a concentrated end load, n = 0. 816.
(3) For simply supported beams under a uniform load, n = 2. 52.

(4) For cantilever beams under a uniform load, n = 0.725.

Note: s is negative if )
the point of appli- _.{____:i- ;i?:roxdal
cation of the load s

is below the cen- -
troidal axis.

L

Figure 1-6. Deep Rectangular Beam Loaded at a Point Removed
from the Centroidal Axis

1 -9
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TABLE 1-2

M

Rectangular Beams in Bending

Type of Loading and Constraint

Case Ky Km
Side View Top View
~ = T =
1 {lL - 3| —F=—————-3—|1-86 |3.14
~ e L ”
2 |- . T _ﬁ’ ———% [3.71 |6.28
|
I\ ) .
y —
3 /1 - Y | Ny S 6. 28
Y 17 o ———— —3 3.71 .2
p—L/2—
-.l
4 N Lz
4 t - I 5.45 { 9.22
\ % L—F
R
5 e —F———-———3 | 2.09 | 3.54
1,
IREEREEEREREN Y, ?
6 — taesr el | _ A — o 3.61 6.10
L)
Ill][}i]!l_!lll
71— — 2 = 3 4.87 | 8.24
Y ; 1 ke]
1
8 f 1 }—| =31 2.50 | 4.235
T K
! Z,
9 [ 1 ) - 3.82 | 6.47
11 9 7.
[ 1
10 T L ‘1‘ —3 58 16.57 |11.12
[ 1 ) Z 2
1 T . .
11 ' ] ‘i%‘fﬁ%%‘ 7.74 [13.1
7 + \
12 | — ———— | 3. :
- R 3.13 | 5.29
2 [ N Z 2
13 % 1 + = 3.48 | 5.88
7 R ;
A = L
14 i - = 1 1237 | 4.01
7= L
7 Z L
15 +— - +- - 2.37 | 4.01
7
7
16 __4 B ¢ R e 3.80 6.43
7
7 9
17 ‘}}6iliii‘ﬂ_im_ é — — 3.80 6.43
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TABLE 1-2

Constants for Determining the Lateral Stability of Deep
Rectangular Beams in Bending (concluded)

K0 = Kf/.591
3.0 \
K
f 2.0F €
I L —
1 1 1 1
l'00 .10 .20 .30 .40 50

c/L
1.3.1.7 Lateral Instability of Deep I Beams

Figure 1-7 shows a deep I beam.

7
J

Figure 1-7. Deep I Beam

The critical stress of such a2 beam in the elastic range is given by

£, =KI(£)(%>2 L (1-12)

where K; may be obtained from Table 1-3, and a is given by

2= VEL H2/2GT (1-13)
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where J is the torsion constant of the I beam. This constant may be approxi-
mated by

J=1/3 (2bt,> +ht, ) (1-14)

This method can be applied only if the load is applied at the centroidal axis.

TABLE 1-3

Constants for Determining the Lateral Stability of I-Beams

Type of Loading and Constraint

Case K
Side View Top View

1 / - \ 21
\ / M el

A\
m3
3 i | & ﬁ T3 {E)

3#

V—
| my
4 - &:ﬁ 32 B
| L |

# Use Figure 1-8 to obtain m
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40

30

o P
8 \
6l V1 I\ \ \
(R R BN
L 4 \
a 3 \ \ \\
NN \
\
2 NEEAN \ \\
NJIN .
N \ N
1 0 \ \\
F Y x \ \\ N
-8 AN N ]
b N, \\ \\
\ N | Case 3
.5 N 1
4 A\
Casc 1 \
.3 : T
3 4 56 8 10 20 30 40 506D 80 100
m
Figure 1-8. Values of m for Table 1-3
1.3.2 Introduction to Shear Web Beams in Bending

The most efficient type of beam is one in which the material resist-
ing bending is concentrated as near the extreme fiber as possible and the
material resisting shear is a thin web connecting tension and compression
flanges. The simplifying assumption that all the mass is concentrated at the
centroids of the flanges may be made for such beams, thus reducing the
simple beam formulas to f, = M/A,h for bending and to f, = V/ht for shear.
The flanges resist all bending and the web resists all shear.

These beams are divided into two types, shear resistant and partial
tension field beams. The webs of shear resistant beams resist the shear load

1-13
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without buckling, and the webs of partial tension field beams buckle at less
than the maximum beam load.

If /V/h is less than seven, the use of a partial tension beam is
recommended on the basis of weight economy; and the use of a shear resis-
tant beam is recommended if /V/h is greater than eleven. If 7</V/h < 11,
factors other than weight will determine the type of beam used.

1.3.2.1 Introduction to Shear Resistant Beams in Bending

If the web of a shear resistant beam is sufficiently thin, the sim-
plifying assumnption that all the mass is concentrated at the centroids of the
flanges may be made. This reduces the simple beam formulas to

£ M

(1-15)
for bending, and

- vV _ _ 9 1-16
£, = : ( )

for shear. The flanges resist all of the bending and the webs resist all of
the shear. Unstiffened shear resistant beams are discussed in Section
1.3.2.2 while stiffened shear resistant beams are treated in Section 1.3.2. 3.

1.3.2.2 Unstiffened Shear Resistant Beams in Bending

Both the web and flanges of an unstiffened shear resistant beam
must be checked for failure. The flange is generally considered to have
failed if the bending stress in it exceeds the yield stress of the material,

although bending in the plastic range may be used if some permanent set can
be permitted.

The web must be checked for ultimate load as well as for collapse.
If the web is not subject to collapse, the allowable average stress at ultimate
load, ¥,, will be either 85% of the ultimate strength in shear or 125% of the
yield strength in shear. Figure 1-9 gives the collapsing stress for two alumi-

num alloys. It should be noted that for thinner webs (h/t > 60), initial buck-
ling does not cause collapse.

In conclusion, the required thickness of a thin unstiffened web is

given by
t = hV (I-17
FJ
or
te (1-18)
thcon

whichever is larger.

1 - 14
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Figure 1-9. Collapsing Shear Stress, F for Solid Webs of 24S-T

and 755-T Alclad Sheet

sooll’

1.3.2.3 Stiffened Shear Resistant Beams in Bending

The vertical stiffeners in a shear resistant beam resist no com-
pressive load, as is the case for tension field beams, but only divide the web
into smaller unsupported rectangles, thus increasing the web buckling stress.
The flange web and rivets of such a beam must be analyzed.

1.3.2.4 Flanges of Stiffened Shear Resistant Beams

The flanges of a stiffened shear-resistant beam must be checked
for yielding or ultimate strength by means of Equation (1-15) as in the case of
unstiffened shear resistant beams.

1.3.2.5 Webs of Stiffened Shear Resistant Beams

The web panel of a stiffened shear-resistant beam must be checked
for strength as well as for stability.

The strength of such a web may be checked by Equation (1-16) as
in the case of unstiffened shear resistant beams, and the stability of such a

beam may be checked by Equation (1-19) in conjunction with Figures 1-10
through 1-16.

1 -15
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Figure 1-11.

LS

SAMPLE PROBLEM 1.3.2.7

£
-3— 30z 10
—1— <8
—3- 26
-1~ 24
-1 22
-4 20
-1 18
—1 {6
-4 14
- 12
—— {0
-1-8
——6

KS
t

6.9
081 in.
10 x 106 psi

6 in.

12, 500 psi

Nomograph for Critical Buckling Stress (Equation 1-19)

1 - 17



Critical Buckling Stress - Ksi

scr

IECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

M

90
T T 117 =
' 180 Ksi /
85 H'T‘{ 200 Ksi N\
80 /
75 S H.T. - 150 Ksi
1
1
7 / /
65 / /
60 ////
// v— H.T. - 125 Ksi
> / 7 N—
. / //
/ 7
d
45 / / +— H.T. - 130 Ksi
/ P s v e
40 // R s B -
/ //// -Normalized X4139
o5 [ A A
y 7/
30 AL
4l
| W
29 |
20 40 60 80 100 200 400 60
Fser _ Critical Buckling Stress _ Ksi
n Plasticity Coefficiernt

Figure 1-12. F,.,versus E.¢/n for Allov Steel
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Figure 1-15. F /n for 6061-T6 Sheet and Plate

1-21

169



12
- 10
'
1
(2]
o«
o 8
Jod
»
(=]
£
v,
o 6
=S
m
P
L
-;: 4
&
1
2
2 2
fz¢

TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

M

(Minimum Guaranteed)
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Figure 1-16. F

s0r

versus F_,_/n for 356-T6 Sand Casting

The critical buckling stress of a web panel of height h, width d,

and thickness t, is given by

2

F
ser K E [ \
n - a /

(1-19)

In this equation, K, is a function of d/h and the edge restraint of the web panel.

Figure 1-10 relates K, to d/h and I, /ht3.
be obtained from the nomogram in Fxgure 1-11.
Figures 1-12 through 1-16.

F

scr

Once K, has been found, F,_ _/n may

may then be found from

the stiffener

It should be noted that the moment of inertia of

» I,, for Figure 1-10 should be calculated about the base of the

stiffener (where the stiffener connects to the web).

Also,

the modulus of

elasticity of the web has been assumed to be equal to that of the stiffeners.

1.3.2.6 Rivets in Shear Resistant Beams
Rivets are required to fasten the web to flange in shear resistant
beams. In addition, rivets are used to fasten the web to the stiffener and the

stiffeners to the flange in stiffened shear resistant beams.
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1.3.2.6.1 Web-to-Flange Rivets in Shear Resistant Beams

The spacing and size of web-to-flange rivets should be such that
the rivet allowable (bearing or shear) divided by q x p (the applied web shear
flow times the rivet spacing) gives the proper margin of safety. The rivet
factor, C, (rivet spacing - rivet diameter/rivet spacing), should not be less
than 0.6 for good design and in order to avoid undue stress concentration.

1.3.2.6.2 Web-to-Stiffener Rivets in Shear Resistant Beams

No exact information is available on the strength required of the
attachment of stiffeners to web in shear resistant beams. The data in Table
1-4 is recommended.

TABLE 1-4

Recommended Data for Web-to-Stiffener Rivets
in Shear Resistant Beams

Web Rivet Rivet
Thickness, in. Size Spacing, in.
.025 AD 3 1.00
-032 AD 4 1.25
-040 AD 4 1.10
-051 AD 4 1.00
.064 AD 4 - 90
.072 AD S5 1.10
.081 AD 5 1.00
.091 ADS -90
.102 DD 6 1.10
- 125 DD 6 1.00
. 156 DD 6 -90
.188 DD 8 1.00
1.3.2.6.3 Stiffener-to-Flange Rivets in Shear Resistant Beams -

No information is available on the strength required of the attach-
ment of the stiffeners to flange. It is recommended that one rivet the next size

larger than that used in the attachment of stiffeners to web or two rivets the
same size be used whenever possible.

1.3.2.7 Sample Problem - Stiffened Shear Resistant Beams

Given: The beam shown in Figure 1-17 made of 755-T6 Alclad.

123
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stiftener moment of inertia
about base, I = 0.0175

l— d=6 —
PR REREEY ¢ s BN o D 4
. . . ‘
) ) . V = 8550 Ib.
h=9 . : . E = 10x10psi
.1'1 . -+ - - -] .7 - < - - - .1

LFlange L web thickness, t = 0.081 in.

web-to-flange rivets,
ADS at spacing p = 0.625 in.

Figure 1-17. Stiffened Shear Resistant Beam

Find: The margin of safety of the web and the load on each web
to flange rivet.

Solution: From Equation (1-16) the web shear stress is given by

= 8550 _ 1 720 psi

-V
$ ~ ht 9(0.081)

and

I
Ju 0.0175 = 3. 66
ht3  9(0.081)3

From Figure 1-10, K, =6.9. From Figure 1-11, F,.../n = 12, 500 psi.
From Figure 1-14, F,.,. = 12,500 psi.

Since the critical buckling stress of the web is less than the yield
stress, the most likely type of failure is buckling. Thus, the
margin of safety of the web may be given by

Feer | = 12500

f 11720

M.S. = -1=0.06

1 - 24
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The load per web-to-flange rivet 1s

qxp L%‘ = 85950 (0.625) = 594 1b.

1.3.3 Introduction to Partial Tension Field Beams in Bending

A tension field beam is defined to be one for which the web is in-
capable of supporting any compressive load, and thus buckles upon applica-
tion of any load, and the web of a stiffened shear resistant beam is designed
so that it will not buckle. The web of a partial tension field beam is capable
of resisting compressive loads, but buckles at a load less than the ultimate
beam load. The vertical stiffeners in a partial tension field beam serve to
resist a compressive load and also increase the web buckling stress by
dividing the web into smaller unsupported rectangles.

The curves given for partial tension field beams give reasonable
assurance of conservative strength predictions provided that normal design
practices and proportions are used. The most important points are:

(1) The ratio of the thickness of the uprights to that of the web, tu/t,
should be greater than 0. 6.

(2) The upright spacing, d, should be in the range 0.2 < d/h < 1.0.

(3) The method of analysis presented here is applicable only to
beams with webs in the range 115 < h/t < 1500.

In the following presentation, it is considered sufficiently accurate to take the
distance between flange centroids, h, as the web height and upright length.

The methods of analysis of the web, uprights, flanges, and rivets
of partial tension field beams are given in the following sections. The end
of a partial tension field beamn must be treated differently and is coveredin
Section 1.3.3.9. If a partial tension field beam has access holes, it should
be treated according to Section 1. 3. 3. 14.

1.3.3.1 Webs of Partial Tension Field Beams

The web shear flow and shear stress of a partial tension field beam
are given to a close degree of approximation by Equations (1-20) and (1-21):

q=l}’;_ (1-20)
£, =9 = _% (1-21)
t
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The diagonal tension field factor, k, ot a partial tension field beam specifies
the portion of the total shear that is carried by the diagonal tension action of
the web. This factor can be found from Figure 1-18 as a function of the web
shear stress, f , and the ratios d/t and d/h. This curve is based on the
assumption that the shear panel has simply supported edges. The accuracy,
however, is sufficient for tension field beams whose webs have varying
degrees of edge restraint. It is recommended that the diagonal tension fac-
tor at ultimate load satisfy the following inequality:

K<0.78 - (t - 0.012)}/2 (1-22)

This criterion is presented in tabular form in Table 1-5.

TABLE 1-5

Tabular Presentation of Equation (1-22)

t .0201.025 {.0321.042[.051 |.064 1.072 |.081 {.091(.2021}.i25{.156 |.188 }{.250

W
(v
.
w
w

18-(t-0.012)' 72 | .69 |.67 [.64 [.61 |.33 i 5 sz {.50 |.as l.as |90 |36 |.29

The allowable web shear stress, F‘, can be obtained from Fig-
ure 1-19 for 755-T6 or 245-T4 aluminum sheet. These values are based
on tests of long webs subjected to loads approximating pure shear and con-
tain an allowance for the rivet factor, C,.. The allowance for rivet factor
is included because the ultimate allowable shear stress based on the gross
section is almost constant in the normal range of the rivet factor (C, > 0.6).
The values of F| are given as a function of the stress concentration factor,
C,, which can be found from Figure 1-20 as a function of h/t, d, and I, .
The higher values of Cy are largely theoretical, but a2 few scattered tests
indicate that the values of C; become increasingly conservative in the
higher ranges.

1.3.3.2 Effective Area of the Upright of a Partial Tension Field Beam

The total cross-sectional area of the uprights for double or single
uprights is designated as A,. In order to make the design charts apply to

both single and double uprights, the following effective upright areas, A
are to be used in the analysis.

ue’

For double uprights, symmetrical with respect to the web,

A = A (1-23)

ue u
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For single uprights,

A Ay

= (1-24)
* s (L)

\ P Vi

where p is the radius of gyration of the stiffener and e is the distance from
the centroid of the stiffener to the center of the web. If the upright itself
has a very deep web, A, should be taken to be the sum of the cross-
sectional area of the attached leg and an area 12 t“2 (i. e., the effective
width of the outstanding leg is 12 times t).

The properties of standard extruded angles commonly used as
uprights may be obtained from Table 1-6.

1.3.3.3 Design Criteria for the Uprights of a Partial Tension Field Beam

The uprights or web stiffeners of a partial tension field beam must
have a sufficient moment of inertia to prevent buckling of the web system as a
whole before formation of the tension field, as well as to prevent column
failure under the loads imposed on the upright by the tension field. The up-
right must also be thick enough to prevent forced crippling failure caused by
the waves of the buckled web. This forced crippling failure is almost always
the most critical.

1.3.3.4 Moment of Inertia of the Uprights of a Partial Tension Field Beam

The required moment of inertia of the upright about its base (the
surface attached to the web) is given in Figure 1-21 as a function of ht3 and
d/h. These curves are essentially derived by equating the critical buckling
stress of the sheet between the stiffeners to the general instability stress of
the web as a whole.

1.3.3.5 Computed Stresses in the Uprights of a Partial Tension Field Beam

The lengthwise average stress in the upright at the surface of
attachment to the web, f,, may be obtained from Figure 1-22 as a function
of k, A, /td, and f, as

£ = f,(6,/1,) (1-25)

The upright stress varies from a maximum at the neutral axis of the beam

to a minimum at the ends of the upright. The maximum stress, figax » M2Y
be obtained from Figure 1-22 as a function of k, d/h, and {, as
fuu!x = fu(fuulx‘lfu) (1'26)
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TABLE 1-6

Properties of Standard Extruded Uprights
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1.3.3.6 Allowable Stresses in the Uprights of a Partial Tension Field Beam

The maximum upright stress, f . should be checked against an
allowable forced crippling stress, F, which is obtained from Figure 1-23.
If the upright has legs of unequal thickness, the thickness of the leg attached
to the web should be used to determine the ratio t /t. In the case of double
uprights, f,, should also be checked against the allowable natural crippling
stress of the flange.

The stress, f, should be no greater than the column yield stress,
F,, (the stress at L%/o = 0). The centroidal upright stress, f_ ., = f, A, /A,
should be checked against an allowable column stress, F . F_ and F_, can
be found from the column curves in Chapter 2.

For simplicity, the effective column length of the upright, h”, may
be taken as h, since this effect is rarely critical. However, the following
values of h” may be used if necessary:

h® = h (1-27)

! 2 2d
\/1+k (3’T>

for double uprights, and
h® = — (1-28)
for single uprights.

1.3.3.7 Flanges of Partial Tension Field Beams

The total stress in the flanges of a partial tension field beam is
the result of the superposition of three individual stresses: the primary
beam stress, f,, the compressive stress, f,, caused by the horizontal com-
ponent of the diagonal tension in the web, and the secondary bending stress,
f,,» caused by the distributed vertical component of the diagonal tension.

The primary beam stress is given by

M
f = (1-29)
> Ah

The compressive stresses due to the horizontal component of diagonal tension
is given by

£, = kgh
2A, + 0.5(1-k) th

(1-30)
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where k is the diagonal tension field factor which may be found by referring
to Figure 1-18. The secondary bending moment due to the distributed vertical
component of diagonal tension is given by

2

1
= 1-31
M 5 kf, td” C ( )

(3]

3

where C3 is given in Figure 1-20. M,, is the maximum moment in the flange
and exists in the portion of the flange over the uprights. If C3 and k are near
unity, the secondary bending moment in the flange midway between the up-
rights is half as large as that given and of opposite sign. The secondary
bending stress is then

M,,

UL LI -32
£,y TN (1-32)

\Cf

where (Is/c;) is the section modulus of the flange. The total stress in the
flange is equal to £, + £ + f .

1.3.3.8 Rivets in Partial Tension Field Beams

Three types of rivets must be analyzed in partial tension field
beams. These are web-to-flange rivets, web-to-upright rivets, and upright-
to-flange rivets.

1.3.3.8.1 Web-to-Flange Rivets in a Partial Tension Field Beam

The shear load per inch acting on the web-to-flange rivets
in partial tension field beams is given in Figure 1-24. The rivet factor, C,,
should be greater than 0.6 to justify the allowable web stresses used in
Section 1.3.3.1 and to avoid undue stress concentration.

1.3.3.8.2 Web-to-Upright Rivets in Partial Tension Field Beam

The tensile load per inch acting on the web-to-upright rivets
is givenin Figure 1-25. This tensile load is a result of the prying action of
the buckled web. Although these loads reflect time-tested practice, they
should be considered only tentative because of the limited test data presently
available. The tensile load criterja is believed to insure a satisfactory design
as far as shear strength is concerned.

1.3.3.8.3 Upright-to-Flange Rivets in a Partial Tension Field Beam

The shear load on the upright-to-flange rivets in a partial
tension field beam is given by

P, = A, (1-33)

where f is the average compressive stress in the upright and A, is the
effective area of the upright as given in Section 1. 3.3.2.
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1.3.3.9 Ends of Partial Tension Field Beams

M

The end of a partial tension field beam must be specially handled
since the web is discontinuous at the end and the tension component of web
stress must be transferred to the flanges in the end panel.

The following treatment is based on the assumption that the basic
beam shear, q, is constant over a length 2h/3 from the end of the beam.
When the basic beam shear, q, varies over this length, the terms (q+ 1. 5kq),
(q+ 1.0 kq), and (q kh/4A ) should be replaced by the terms (q + 1.5 kq"),
(q+1.0kq”"), and (q'kh/4A ), respectively, where g is the actual beam shear
at the point being considered, and q” is the beam acting at a distance 2h/3
from the end of the beam.

1.3.3.10 Webs at the Ends of Partial Tension Field Beams

The web in one corner must carry a shear flow of q+1.5 kq. If
reinforcement is necessary, a doubler of the dimensions shown in Figure 1-26
should be added to the web, resulting in a combined shear strength of g+ 1.5 kaq.
This is usually necessary in one corner only. If the applied shear flow is oppo-
site to that shown in Figure 1-26, the doubler should be attached to the lower
corner of the web. The shear flow in the web in the corner not reinforced is
q - 1. 5kq, where q is the shear flow in the web at points removed from the end.

P '
h/2 /I
[ \

Figure 1-26. Doubler at the End of a Partial
Tension Field Beam

1f the shear can act in either direction, double reinforcement may

be necessary. In general, the basic web is capable of carrying about a 60%
reversal of shear without double reinforcement.

1.3.3.11 Uprights at the Ends of Partial Tension Field Beams

The following stresses act simultaneously on the end stiffener of
a partial tension field beam:

1 -39
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1. A compressive stress due to the vertical component of web
diagonal tension. This compressive stress varies from
(fy - f,ac/2) at either end to £, /2 at the midpoint of the
stiffener.

2. A compressive stress due to the variable shear flow along
the end stiffener. The equivalent shear flow distribution
curve is assumed to vary linearly from (q - 1.0 kq) at one
corner to (q + 1.0 kq) at the other corner. This compressive
stress builds up from zero at either end of the stiffener to
kgh/4A, at the midpcint of the stiffener.

Ttus, the maximum compressive stress in the end stiffener (exclusive of
additional external loads acting) is equal to

fu 8% ¥ qkh
2 44,

This stress should be compared with the lower of F_, or F_. for the upright
in computing the margin of safety.

1.3.3.12 Rivets at the Ends of Partial Tension Field Beams

The doubler should be attached to the wet in accordance with Table 1-7.
The diagonal edge of the doubler should be attached with 2 minimum of two
rows of rivets with a2 minimum distance between rows of four rivet diameters.
The strength of this attachment in lb/in. should be equal to the thickness of the
doubler times 30, 0060 psi. '

TABLE 1-7

Doubler-to-Web Rivets

Doubler Cage Rivet Size Rivet Speciug
.020 - .032 AD-4 1.5 in. on centlers
.040 - .051 AD-5 2.0 in. on centers
.064 & greater DD-6 2.5 in. on centers

1 - 40
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The web-to-flange attachment adjaceat to the doubler must be strong
enough to carry a shear flow of (9 + 1.53) (1 + 0.414k) 1b/in. The other flange
attachment must carry a shear flow of q(l + 0.414k) 1b/in.

The attachment of the end stiffener of a partial tension field beam to
the web must be strong enough to carry a shear flow of (q+ 1. 5kq)(1l +0. 414k)
1b/in. ir the region of the doubler and q(l +0.414k) elsewhere.

1.3.3.13 Sample Problem - Partial Tension Field Beams

Given: The partial tension field beam shown in Figure 1-27.

web - 0.051 755-Té6 Alclad

q = 1250 1b. /in.

IR D

TR SRR e SRR SSgues
=2
n
—
o

S P TN Ny

\__ Flanges - 1.25xi.25x0¢C. lss\upright - 0.75“(0‘75’(0‘094

755-T6 angle 755-T6 angle

Figure 1-27. Partial Tension Field Beam with Single Uprights

Find: The margins of safety of web and uprights and the rivet
loads.

Solution: The method of obtaining the desired quantities is
summarized in Table 1-8,
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1. 3. 3. 14 Partial Tension Field Beams with Access Holes

Figure 1-28 shows a partial tension field beam with access holes
of diameter, D. Such a beam may be analyzed in the same manner as one
without access holes except that the substitutions described in Sections
1.3.3.15, 1.3.3.16, and 1.3.3.17 must be made.

I-—-—— d —]
_ .............. __ T'_f‘]r

. - .
. . .
- . .
. . .
. S [ . T T D [ T T T b - ! H

Figure 1-28. Partial Tension Field Beam with Access Holes

1.3.3.15 Webs of Partial Tension Field Beams with Access Holes

The method of analyzing webs, given in Section 1.3.3.1, should
be used for partial tension field beams with access holes except that the
allowable web shear stress, F,, must be replaced by a reduced allowable
web shear stress given by

- F, [td(u D)+A, DCyq (1-35)
g td?
where the design reduction factors, C4 and Cg, are givenin Figure 1-29.
This method gives good correlation with tests if beam parameters are in the
following ranges:
0.020in. < t < 0.132in.
0.640 in. < t, < 0.079 in.
7.4 in. < h < 19.4in.
7.0 in. < d < 18.0 in.
2.375in. < D < 5.875 in.
1.3.3.16 Uprights of Partial Tension Field Beams with Access Holes
The method of analyzing uprights, given in Sections 1.3.3.2
through 1.3.3.6, may be used for partial tension field teams with access
holes except that the forced crippling allowable, F_, should be replaced by
a reduced forced crippling allowable given by
F
F° O . (1-16)
1 + _E_
d
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Figure 1-29,

.2 0.4 0.

0.8 0.10

[o2)

D‘I’J

Design Reduction Factors Due to Access Hole
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1.3.3.17 Rivets in Partial Tension Beams with Access Holes.

The method given in Section 1. 3. 3.8 for analyzing rivets may be
used for partial tension field beams with holes except that the tensile load on
the web-to-upright rivets, q,, should be replaced by an increased load given by

q,” = q, (l+ %) (1-37)

1.3. 4 Introduction to Reaction Forces and Moments on Beams Under
Transverse Loading,

Figure 1-30 shows a beam under transverse loading. Two equations
of equilibrium may be applied to find the reaction loads applied to such a beam
by the supports. These consist of 2 summation of forces in the vertical direc-
tion and a summation of moments. If a beam has two reaction loads supplied
by the supports, as in the case of a cantilever beam or a beam simply subp-
ported at two points, the reaction loads may be found by the equilibrium
equations and the beam is statically determinate. However, if a beam has
more than two reaction loads, as in the case of a beam fixed at one end and
either pinned or fixed at the other end, it is statically indeterminate and beam
deflection equations must be applied in addition to the equations of statics to
determine the reaction loads.

s 2 s

Figure 1-30. Beam Under Transverse Loading

Section 1.3.4.1 presents a method for determining reaction loads
on beams fixed at one end and pinned at another point, and Section 1.3.4.3
treats reaction loads for beams fixed at both ends. Beams on three or more
supports are treated in Section 1. 3.4, 5.

1.3.4.1 Reaction Forces and Moments on Beams with One Fixed Ead and
One Pinned Support

Figure 1-31(a) shows a uniform beam with one fixed and one pinned
support. The following procedure may be used to determine the support reac-
tions on such a beam if its stresses are in the elastic range.

1. Split the beam at the pinned support as in Figure 1-31(b) and find
M, from the equations of statics.
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Consider the right section of the beam as a single beam simply
supported at both ends as in Figure 1-31(b). Find the moment
diagram for this beam as in Figure 1-31(c). A is the area of
this moment diagram and C is the centroid of this area.

w\h*T/

(a)

NN

(o)

.

(c)
r‘—fi————e-
()
1 1 y [~ M
fR rRB

A

Figure 1-31. Method of Determining Reaction Forces and Moments
on a Beam Fixed at One End and Pinned at One Point
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3. Find M, by the equation

M, = - {1-38)

The evaluation of the first term of this equation may be facilitated
by the use of Table 1-10.

4. Evaluate R, and R, by applying the equations of statics to
Figure 1-31(d).

Once the support reactions have been determined, the moment and shear
diagrams may be constructed for the beam. If the pinned support is at the
end of the beamn, M, may be set equal to zero.

1.3.4.2 Sample Problem - Reactions on Beam with One Fixed and One
Pinned Support

Given: The beam showa in Figure 1-32.

10 L=20

500 1b. 500 ib.

,7%7 \ 1 in. square aluminum bar
E =

10x107
0.0833

AAANNNNAN

1

Figure 1-32. Beam with One Fixed End and One Pinned Support

Find: The reaction moments and forces on the beam.

Solution: Figure 1-33(a) may be obtained by redrawing the beam
as in Figure 1-31(b). The moment diagram may then be drawn
for the right portion; and A, 3, and M, may be determined as in
Figure 1-33(b).

From Equation (1-38),

- M
M, = 2282 . % -3(250000100) | 5000 | _4 375 in,Ib.

L2 z (20)2 2

1 - 48
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Now that M, is known, R, and R, may be found by applying the
equations of statics to Figure 1-33(c). Doing this gives
R, = 781 1b. and R, = 219.0 1b.

500 1b. 500 1b.

. (a)

M, = 5000 in.lb.
’ I | L S |
A = 2500x%20 _ 5500010 21b.
20
C
® (b)
20 in.
e T=10 —

500 1b. 500 1b.

{c)
Mg
{
Rp

Figure 1-33. Solution for the Reaction Forces and Moments on
the Beam in Figure 1-31

Rp

1.3.4.3 Reaction Forces and Moments on Beams with Both Ends Fixed

Figure 1-34(a) shows a uniform beam with both ends fixed. The
following procedure may he used to determine the support reactions on such
a beam if its stresses are in the elastic range.

1. Coansider the beam to be simply supported as in Figure 1-34(b).
2. Find the moment diagram for this simply supported beam as in

Figure 1-34(c). A is the area of the moment diagram aad C is
the centroid of this area.
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~ |~

z Z

Z Bt

~ Z

Z : Z
! '

M

MA( ! W}MB

Rp

Figure 1-34. Method of Determining Reaction Forces and Moments
on a Beam Fixed at One End and Pinned at One Point

3. Find M, and M, by the equations

M, 2A

= LD (2b - 3)
L2
M, :3:%_ (22 - b)
L

The evaluation of the terms in these equations may be facilitated

by the use of Table 1-10.

Evaluate R, and R, by applying the equations of statics to
Figure 1-34(d).

(a)

(b)

{(c)

(d)

(1-39)

(1-40)

Once the end reactions have been determined, the moment and shear diagrams

may be constructed for the beam.
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' The above procedure may be avoided by using Table 1-9 which gives
equations for the reaction moments for beams fixed at both ends under various
The sign convention for this table are as shown in Figure 1-34(d).

TABLE 1-9

End Moment Reactions for Beamns with Both Ends Fixed
Under Various Loadings

T ) 7 5
/] { / j , r
V2 4 %
A7 - 2: RPN U B
/B-————_LA la l‘ 7 A— 2 -—44_ b /
7 2 ! 2 E 4 ?
¥ : > L > s
PL . _ PL _ Pab _Pa’p
M:»\ = —é— I\«LB = T MA- LZ I\IIB- LZ
3 w lb. /in. , |4 4 w lb. /in. 2
A OOy, | | |, 40T -
91 /;
/ L |/ —— 1,
My e B wL? _ lwi? _ 5wi?
A 12 B* 192 B~ 192
5. p w lb. /in. 5 6. ) WIB./].II.V
/RARRERRLAREREY 2 ¢ 4
AZ B A I ;B
a - B p 7
7 k L. L 7
A L v, : > 1 > —{/
2 2 2
SwL SwL
My = 22 (6L% -8aL +3a’ My = Mp =
AT Tzt ab+3a%) AT Tog B~ g
2
wa
Mp = — (4al - 3a2
B™ et )
7. ﬁx—wlb./in. 8. y w lb. /in.
= - Y
A AT e 2N y A
y 4 - a —~] ?
/ L !/ /‘ L -
| 2
wL? w2 Mg = —— (10L%-10aL+3a)
Ma= % MBT Ty 6oL
Mg = wad (51, -3a)
6012
9 , M in-1b. 10';; M/_L
7 - 2 e T G
A7 (= 2 B | A7 g - r;T
A2 —ora- b Z G L Uy
Mb _ a Ma b wL wL
= em— (R — - =— (3= -1 = = -
MA=7-GL-D.Mp="1"G -1 Mpy=—7 Mp = 53
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TABLE 1-9

End Moment Reactions for Beams with Both Ends Fixed
Under Various Loadings (concluded)

11. 12. P P
P Py L & L 41, b1
ge— 22— = 2 ¢ AT AT ECTE Y
A ¢ B | AZ B
L Y /] 1. 7
Mg = Pa(l-2)  Mp= My Mp = 222F Mp= Mg
7 :
13‘9 / ! go-a W 1b. /in. je-a —-I?
A/ w /B ; ' é
. A -
el ——
Ao L ”
wa w 3
= — - = Mpap = — (L7-2"L+4a ) Mp=M
Mg = ¥ (3L-2a) Mg = M, A= AMp =My
5. = 2 i 16.3-’—-1:——4___ ,
j TVV / ;/rl'r‘}rrﬁﬂ ’\\’ ;
A 7 B A 4 : / B
/‘ L 2 - 1
2 2 2 2
_ wa a a _ wL _ 3wl
Ma =3 (10-157+6.77) Ma =35 MB = 160
M = wa _ -3
B 20 (5 4 L)
17. W elliptic load 18. w= f(x)
v . /
A AT 5 |, A ey
1- L . Jr— X ——— L - X—p
2 > p/ 3 SO -
Ma = wL Mn = w L
AT 13752 B~ 1586 . b
' Ma = =5 I -2t 0ax
O
M _ 1 3‘]’4 2
Mp = '17 J x“(L-x){(x)dx
o]
1.3.4.4

Reaction Forces and Moments on Continuous Beams

A continuous beam is one with three or more supports. Such a

beam is statically indeterminate and deflection equations must be applied to

find the support reactions. The three-moment equation is such an equation.
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1.3.4.5 Application of the Three Moment kquation to Solving for the
Reactions on Continuous Beams

Figure 1-35(a) shows 2 uniform beam that is simply supported at
three colinear points, A, B, and C. In order to obtain the reactions, the
beam is broken into two simply supported sections with no end moments, as
shown in Figure 1-35(b). The moment diagrams are then found for these
sections and the area A and centroid C of these diagrams are found as shown
in Figure 1-35(c). The quantities found may now be substituted into the three-
moment equation:
-6A131 6A2 bZ
ML + 2M; (L + L3) + MLy = - (1-41
L,y Lo

If M, and M, are known, this equation may be solved for the moment at B,
M,. Knowing this moment, the support reactions at A, B, and C may be
found by applying the equations of statics.

The terms to the right of Equation (1-41) may be found for various
simple loadings by use of Table 1-10.

|
L

My @ ) M ()
/ Bn@;ﬁ B

L, *!

T
L

(b}

, A, 5.

®C
Q C

Figure 1-35. Beam Simply Supported at Three Points

{c)
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TADBLE 1=~V

Values of 6A3 and 6Ab
L L
Type of Loading 6AT 6AD
on Span L L
(1) w
f—————— 3
[ Wa ,2_._2 w 2
r \ T (L€ - a“) = (L-a)(2a-a*“)
L
(2)
-.-a‘--‘——b —
2N = - Ma2o 1y + M ev® oL
M
L
3)  w1b/in.
wL3 wL3
4 4
L
(4) w ib/1n.
-o-—a,-+—— b ———d
w w
2 2 _~2y_a2 2_32 A 2 2_2_d222_2
| (T 1 4L[c 2L2 -c2)-a2(2L a)] 4L[b(2L b2)-d?(2L d)]
c d =
L
(s) w 1b/in.
8 3 7 3
i } 60 wL 60 wi
L
(6 w 1b/in.
7 3 8 3
’* o VL 50 V-
L |
e w 1b/in|
5 3 5 3
—32 wl —32 wl

AP

Nl
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If a beam has a number of concentrated loads as shown in Figure
1-36, Equation (1-42) becomes

Pya 2__ 2 _vTPpb 2 .2
MLy +2M, (L) + Lp) + McLp = -) 1L1 (Ly%-22-Y ZLZ (L% -by%) (1-42)
1 2

where P, denotes any one of several concentrated loads which may act on the

left span at a distance a) from support A. Similarly, P, denotes any load in
the right span at a distance from support C.

P
P, Zla—b2

al—-.

NIRRT NIES
70 R B

Figure 1-36. Continuous Beam Under Several Concentrated Loads

If a beam is simply supported at more than three points, the three-
moment equation may be written for each intermediate support. The equations
may then be solved simultaneously to obtain the moments at each support.

This procedure is illustrated by the sample problem in Section 1. 3. 4.6.

1.3.4.6 Sample Problem - Reactions on Continuous Beams by the Three
Moment Equation

Given: The conrtinuous beam shown in Figure 1-37.

po—10 15 - 20

10 L1b. /in.

|
5001b. llOOlb.

[l 0 —
spanfl span#2 span #3 ﬁ\
7 / support #4
support #3

support #2
support #1

Figure 1-37. Continuous Beam on Four Supports
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Find: The support reactions.

Solution: The three-moment equation may be written for spans
1 and 2. Since only concentrated loads are present, the special
case given by Equation (1-42) may be used. Thus,

-Pya) Pyb,

2 2 2 2
ML, +2M, (L) + Ly) + M3L3 = (Ly"-2;7)- (Ly" =bp"%)

1

Inserting nurnerical values gives

- 300(5 2
0(10) + 2M, (10 + 15) + M;(20) = _50;’_0(1) (102 - 5%) -_.Ol_oé_-’(ls?-- 52)

Simplifying gives 5M, + 2Mj = 3875.

The more general form of the three-moment equation given by
Equation (1-41) may now be written for spans 2 and 3 with the
aid of cases one and three of Table 1-10.

3
M, (15) + 2M3(15 + 20) = =200UL0) ;52 , 142y _ 10(20)
¢ 15 4

Simplifying gives 3M, + 14M3 = -15, 000.

The two equations in M, and M3 that were just obtained may be
solved simultaneously to find that M, = -376 and M3 = -990.

The equations of statics may now be applied as illustrated in
Figure 1-38 to find the reaction forces.

1-56



TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

(1) 10
e 5w 10 Ry - 5(500) = -386
LSOOIb Therefore, Rl =211.4 1
4 j)l\riz = -386
Ry span 1
(2)
ra——10 ——ofm—— |5

oo e —————— —]
5 -.1500111 10 l3001

) M3 = -990

|
R]= 211.4! R

25(211.4) -20(500) 4+ 15R2 -5(300)= -990
Therefore, RZ = 348 1b.

(3)

20 -
10 1b. /in.

M3: _990C ' A 1 A
|

20 Rg - 10(200)= -999

Therefore, Rq = 50.5 1lb.

(4) Summing the vertical forces gives

R1+R2+R3+ R4- 500 - 300-200=0
211.4+348+R3+50.5-— 500 -300-200=0
Therefore, Ry = 390.1 1b,

Figure 1-38. Solution for Reaction Forces
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The beam may now be drawn as in Figure 1-39,

‘r‘ 1—?‘:’ - 30:1‘ lOle;)ln 1
N EEERRERE

211 4 348 1390.1 150.5

Figure 1-39. Continuous Beam on Four Supports with Reaction Forces

1.4 Introduction to Beams Under Combined Axial and Transverse Loads -
Beam Columns

A beam under combined axial and transverse loads cannot be analyzed
by simply superposing the effects of the two types of loading. The method of
solution must take into account the simultaneous effect of these loads, and
may thus become quite complex. Axial tension tends to straighten the beam,
thus counteracting the bending moments produced by the transverse load. On
the other hand, since axial compression may greatly increase the bending
moment and the slope and deflection of the beamn, it is the more serious type
of axial load.

Two methods of analysis may be used to determine the total fiber stress
in members under combined axial and transverse loads. The first method,
which is approximate in nature, assumes that the elastic curve of the deflected
member is similar in form to the curve for a like member under the action
of transverse loads alone. The moment due to deflection is estimated on this
assumption and combined with the moment due to transverse loads. This
approximate method is treated in Section 1.4.1. The other method, which is
the exact one, makes use of the differential equation of the elastic curve and
is treated in Section 1.4.2. The criteria for the use of these methods is given
in these sections.

1.4.1 Approximate Method for Beams Under Combined Axial and
Transverse Loads - Beam Columans

For any condition of combined axial and transverse loading, the
maximum stress in the extreme fiber is given by

f =2, M (1-43)

A I/e

where P is the axial load and M is the maximum bending moment due to
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the combined effect of axial and transverse loads. (The plus sign is for
fibers in which the direct stress and the bending stress are in the same
direction, the minus sign for fibers in which they are in opposite directions.)

If 2 column is comparatively stiff so that the bending moment due to the axial
load is negligible, M may be set equal to the maximum moment due to trans-

verse loads M, alone. ’I‘hxs may be done with an error of less than five

percent if P < 0.125 EI/L for cant11ever beams, P < 0.5 EI/L for beams

with pinned ends, or P < ZEI/L for beams with fixed ends.

If 0.125 EI/LZ <P<Q0.8 EI/Lz for cantilever beams and
0.5 EI/L2 <P<3 EI/LZ for beams with fixed ends, the value of M for

Equation (1-43) may be given by ¥

M =

M,

2
(1 f 2L

El

for an error of less than five percent where K is given in Table 1-11 for

various manners of loading and end support.
denominator if P is a tensile load and the minus sign is used if P is 2 com-
pressive load. Equation (1-44) is appropriate only for beams in which the

The plus sign is used in the

(1-44)

maximum bending moment and maximum deflection occur at the same section.

TABLE 1-11

Values of a for Equation (1-44)

Manner of Loading and Support K
Cantilever, end load 1/3
Cantilever, uniform load 1/4
Pinnecd cnds, center load 1/12
Pinned ends, uniform load 5/48
Equal and opposite end couples 1/8
Fixed ends, center load 1/24

Fixed ends, uniform load

1/32 (for end moments)
1/16 (for center moments)

1.4.2 Exact Method for Beams Under Combined Axial and Transverse

Loads - Beam Columns

Table 1-12 gives exact formulas for the bending moment, M,
deflection, y, and end slope, 6, in beams which are subjected to

* Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE 1-12

Formulas for Beams Under Combined Axial and Transverse Loading

Case Formulas

Max M2 -WL tanU/U at xs L

Max y = "‘:T (LtaaU/U « L at x = 0

- (t -cosL/U}

Tcow L7T0 )“xio

2.
[ MA-MJ-—[LH-": UllU#LnuU]uxxL
Y w -
L
[[H]IUIDI}I%" Max y = -—[ (lO-—-Uz-ueU)+LlunU U)]nxxo
e
-
- A 3,.‘!’&[ [ l-eo-L!.']
L.--—.],-----..ﬁ P LecosU Usin2U
3.

MaxMr:'TL llﬁ-—;—'})tlt—;—]_

w
Maxy:-zl—T:‘)' (un—;-u-;—u)u::%!.

-cosd U

a --.._
= W\nxzo

4.
Max M = -Lz {oec ¢ U - H/Uz atx=L/2
Ma s 'LZ sec U1 Uz\ wx=tr
x — LI TR R T —
x LT 2 s z
b — v v =] - ——— 9 = =L -%— A4 .COLU} xz 0
5.
Moment equation: x = Jtox aa
WL iabU . U
T sin o sin -
M e e ¢ M.xMu;sl‘i‘-i("—"‘—(.
sia U 2y 2u
Monment eqution xEa tox= L:
w (Lex)U
T"“T"“—L__' . nL
M = T MaxMuxs(L-w)ll(L-rU—)"
|k’——>nn|d(l_--'L A, Max Misatx:a
kA% W
wr (BT ‘i"% bal y
Dellect : ] S : -
ellection equation: x =0 tox =za: y 3 PU 2ia U _LT
(L-xiL
-nn—nn
Deflection equation: x 22 tox = L: y = -VL’: L . AULL-x} Yy
- PU sia U [
lmﬂ" w lin‘—;i
WD, ceos A Yarx=0 §z ol 3 . Yarxs=L
8= P\L taa U L P L siaU /
[ o ==
o L _ wr? L _x )
Moment equation: x = 0to x= L; M = -?— PRy T .
Max M at x = -:Jé-ar: cos (nnU
Yl W -;— wl
‘mw Deflection equation: R u
. x
=y sia—/— 1
P P o L: Lwxd LU R R R L)
R — T xrorxslix s - F(Rr T e
| SR S | -
Y S p—— 8z - _'p_ (m ? T L)lt x=0

w L L i =
"'?(m‘;;r'T'-)‘“ L
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TABLE 1-12

Formulas for Beams Under Combined Axial and Transverse Loading (continued)

Case Formulae
7
Max M M sccfU at z s 3L
" My My ™
P - scos qU
- ——— p— Ma e -
e~ = re P( cos g U “"1"’
! Lu o
pom—m - mm = § = e 4= o tan y- U atx:
LB My-M;cos U
Momwent equation: xs0toxs L: M = (—z L Vein2Y cos B
sin U ) (% i T
¢ s My-Mjcor U
—_ —_
Max M st x ¢ Lan tan T )
4 e = xU =
p-e Deflection equation: <3 0texas L. ya [M, . 1M3-M, )— “{M2-Mycus U} Y My cos T
Mz « M;  TUMp - My cont)
3= l_r td L. z l' 1 ats =0
P~ L LanU -
. Ml - M, U(Ml- Mleol ul MU
g._r eo-Uo—nnU atx: L
P L LU L
Y. fean with tixed ends uader axial com-
pression and tramsverse center load My o+ My s Sk L2 Sy PET L L \
i W = center load W\ a0
L wi 't Loown ol -
AL x 7 =~ —_— e = e e
: Mo\ T et emsC )
. - .
Lt -cungth® 1
~in U vax oL
13. team with {ixed ends under axial coni-
prevaion and uniform transverse load
L wt? . st .
—_— — |
Axr M T (g -
3 -
wl® PRI —t o deyus ol L & - b
Maxy s - S50 [ \ reer kN casplt ) T Tt lj
11. Beam with one end f1xed, other end Man M o2 M - _W_Lz ;' tanUlsecd U-1"
pinned under axial compression aad 2u + Luanl.L -
transverae center load ' Ao T
. —
[ T
U 1 .. tx
¥ sin . w i ) u Hn =G sin 3=
l W 3 center load Mument equatien - L: v L Mo M'( ey cas L_: )‘ _L',L— ("n.;-u cos T - (-aa U )
r_', x
Deetlen ftemte « ggrate
R
. . n--—-u' wir m—;—U lilu
B T R YN _.5_.-.-_-:"-—\ L-at o -un—Uco--—'l
3 CER S i a7 ST I tn C i
12. Beam with one end ixed, other rad wipe
ported, under axial compression and Max M = M, = \'Lzr tacLtter oU - U Y
aniform transverae load 1 [ S 1an U - ¢ J
R:= L. 2t
yl - L
.o Usx
- sin =
z
Brssarairenvraess Stomens equatsons + 010 x s b M- bty (cot U e L5 - con 88w LT L corcc con 42 L)
< P ——— L T ¢t s U H
e}
Deilectaon ‘quetion. x 2 J 1o x = L
D T Frepmp— | 3 ia s
3 - . sin s . 2 -
y 2 - 45! Mlll-.‘—‘coth'nnu—-co-u' -'-z-_’munna. .o k= -MOI\.'
L . 3 [Ty A L ““wat C Tl 3
1] Samie a» Casc 1 (vanulever with end Max M2 o WL aah /U st xz L
load} except that Py« tension Maxys « X Lol wamnCiatxz o
P 4]
L
A A - -yl - h L) L
i Same 23 Cane O (vantilever with uniform Man M2 - wh[Lanhy u 1 - sech WU 8t -
lead) except that P s teasion . o.wLTL R BT I . T
Max y = FULT (I T u sech U) Litaad LIJ at a3 9
WLt R .
13. Same a¢ Case }{pinned ends, ceater Max Mz e tane U &t x e 3L
load) except that P as tension Maxy : . W0, L u.h_ Wansd o
P A4 T z
2 2
Max M = wL® {1 sech § UN/U
16. Same as Case 4 (pinned ends. uniform 2
load) rxcept that P i Cennion 2N TR T U Sl A [LIET)
M‘xy..P[TL. U3( sec T )]
ME M s ML “":'UU"\. unou.i.i_...!._'.w&.u“ 10)1111%1_
17, Same as Case 9 {fixed ecads, center load) < IU \ mnhy ZU ounb JU coeh g 2 -
aat P -
encept U is tension Maxy s WL ERTIRY —U . {1 -~cosh zU[ ]
2Py 2 sin gU cosh §U
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TABLK 1-12

Formulas for Beams Under Combined Axial and Transverse Loading (concluded)

Case Formulas

wi? (3U - tanh} U . _%u sl
MI'MZ’—U“'( YY) \ MaxoM:—-z-\ ‘mh'u)ux ZL}
18. Same as Case 10 (fixed ends, uniform

lead) except that P s tension 2
} Pt Max y = L we [40]!;:01:;&U) at x = lL
spu? "

2,2.6
19. Beamn with ends «d to rigid supporis EA’K u? = £ ud. 3y R ¢ U aanz Y where k 1
24 4 2 A

s0 horisontal displacemaent ie preveated wzl 8 4 2 2
Uaiform transverse load and unknown
arxial tensioa
This equation is soived {or U, and P determined therefrom
4 .,
L . 68 EIC~- 2
y When C = — is smill {lias than 4}, P = o = {1 - o3
‘ E‘ T6EMD 836 T2 ( za:; )]
P P
— % - When C is large {greater than 15}, p. iELT IC—Z\ ’-2"
&< (greate " 2Ll\e ) J
P = - L------ﬂ

When P has been found by one of the above furmulas, M and y may be found by the formulas of Case 16

20. Cootinuocus bearmn, spans | aad 2 unecqua

-1 M4Ly , Uz cosec Uy - 1
and unequally loaded MLy (Ul""‘ Uy v, Milp U . 2 .
L ng 12 \ U,
1-Uy eot iy Ly . 1-UscotUs 4

1 . =2 1
- Mz[T‘ "'—"Z_Ul ) [TIRY L.zz 13

-
(I e
P \ P, wil;} . angu, -eUy,  walp® , mangU. -3ty

- 2 - (
M) My | Mg M3 h ugd I vt

--Lr.-.-.. ——Lz-- (Theoren of Three Marments: Subscripts with P, L, w, ). and U reler 10 first and second spans. Mz

acts on span |, MZ’ on span 2)

combined axial and transverse loading. Although these formulas should be
used if P > 0.125 EI/L% for cantilever beams, P > 0.5 EI/L? for beams with
pinned ends, or P> 2 EI/L2 for beams with fixed ends, they may be used for
beams with smaller axial loads. In these formulas, U = LL/P/EI. The quan-
tity U may be found rapidly through the use of the nomogram in Figure 1-40.
The formulas for beams under 2 compressive axial load may be modified to
hold for a tensile axial load by making the following substitutions: -P for P;

U/ -1 for U; /-1 sinh U for sin U; and cosh U for cos U. This has been done

for some of the more common loadings and the resulting formulas given in
cases 13 to 18 of Table 1-12.

-
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Figure 1-40. Nomogram for Determining U *

* Griffel, William, Handbook of Formulas for Stress and Strain

1 -63



1.

4.3

TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

Sample Problem - Beams Under Combined Axial and Transverse
Loads - Beam Columns

Given: The beam column shown in Figure 1-41.

30

20 ib. /in.

2500 1b. 14{‘* '4* !

TUNNNANY

2 in. square aluminum bar
E = 1C)x106 psi
1 =1.33in.4

Figure 1-41. Cantilever Beam Under Combined Axial and
Transverse Loads

Find: The maximum bending moment, M, vertical deflection,
y, and angular deflection, 9, of the bar.

Solution:

6
0. 125-@2— - 0.125110x107)(1.33) _ ) g501b,

L (30)2

According to Section 1. 4.2, the exact method must be used
for cantilever beams if P < 0. 125 EI/I_‘2 as is true in this
case. From Figure 1-40,

U = L\/—E =30 |/ 2200 = 0.41
El (10x 10°)(1.33)

From Table 1-12, Case 2,

Max M

il

WL [L(l-sec U)+ LtanU]
(8} U

-20(30.0)[30.0 (l-sec 0-41)
0.41 0.41

+ 30 tan o.41]= 8200 in. lb.

1 -64



TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

Max y = &E_L_‘__ (1 +a-.'!'.- UZ - sec U) + L. (tan U-U)]

pu L U 2
2
_ =20(30.0) [[ 30 [y, 0.41% _ 0.41)]
2500(0.40) ‘L0.41 2

+ [30 (tan0.41 -.0.41)}} = 2.92 in.

5§ = M T L _L 7/ 1-cos?2U )‘1
TP L cosU U'K sin 2U J
20 30 30 7 1-cos0.82 J
= - ] = 0.0095 rad
2500 L .915 0.41\ sin0.82 )
= 0.55°

1.5 Introduction to Beams in Torsion

For purposes of discussion, beams in torsion are broken into two
categories: circular beams, which are treated in Section 1. 5.1, and non-
circular beams, which are treated in Section 1.5.2. Circular beams are
further divided into those with uniform cross sections (Section 1.5.1.1)
and those with nonuniform cross sections (Section 1. 5.1.2). Noncircular
beams are divided into open noncircular beams (Section 1.5.2.1) and closed
or hollow ones (Section 1.5.2.2), and the effect of end restraint on non-
circular beams is treated in Section 1.5.2. 3.

Section 1.5. 3 treats the membrane and sandheap analogies for beams
in torsion. Since the loading of the wires of helical springs is primarily
torsional, they are listed under beams 1in torsion and treated in Section 1.5.4.

1.5.1 Circular Beams in Torsion

This section considers the torsion of solid or concentrically hollow
circular beams.

1.5.1.1 Uniform Circular Beams in Torsion

Figure 1-42 shows a uniform circular beam in pure torsion. If
the stresses in such a beam are in the elastic range, the stress distribution
at a cross section is as shown in Figure 1-43.
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T

[ 5.\
R )
[ 1

re L

Figure 1-42. Uniform Circular Beam in Torsion

\ Iro f

LAY

Figure 1-43. Stress Distribution of Circular Beam in Torsion

The shear stress at a distance r from the center is given by

£ = Tr
IP
The angle of twist of the beam is
TL
8 =
Gl

Inserting the value of I, for a circular cross section into Equations (1-45)
and (1-46) gives

2
£ = " 'I‘r4
m(r,”~ -1, )
and
2 TL
g =
1 (ro4 - r,4)G

(1-45)

(1-46)

(1-47)

(1-48)
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In order to treat solid circular shafts, r, may be set equal to zero in
Equations (1-47) and (1-48).

It should be noted that Equations (1-47) and (1-48) apply only to
beams with circular cross sections.

The maximum shear stress occurs at the outside surfaces of
the beam and may be computed by setting T equal to r_ in Equation (1-47).
The maximum tensile and compressive stresses also occur at the outside
surface and both are equal in magnitude to the maximum shear stress.

If a circular beam is twisted beyond the yield point until the
outer portions are at the ultimate torsional stress, a stress distribution
such as that shown in Figure 1-44 is obtained. The maximum torque that
such a2 beam may sustain in static loading is given by

T = (1-49)

where F,, 15 designated as the torsional modulus of rupture. This torsional
modulus of rupture is shown graphically for steel beams in Figure 1-45.

| ‘
Fsa

|

Figure 1-44. Plastic Stress Distribution of Circular Beam in Torsion
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0.60[

_ {100, 000
Ftu = {125, 000

150,000 —=——-—

\\
~

Torsional Modulus of Rupture
Ultimate Tensile Stress
T
)!’
[ ad
1]

Fey = 180,000 —- ————-= 4

40 llllllllllllllLlll]lLJl

Fat
o

ro/t

Figure 1-45. Torsional Modulus of Rupture for Steel Beams

In many cases, the torsional modulus of rupture of a materiai may
not be available. These may be treated by assuming the uniform shear stress
distribution shown in Figure 1-46.

4

Figure 1-46. Assumed Plastic Stress Distribution
of Circular Beam in Torsion

The magnitude of the uniform shear stress may be assumed to be
equal to the yield shear stress (F,,) for conservative results or the ultimate
shear stress (F,,) for nonconservative results. In the first case, the maxi-
mum torque in the beam may be expressed as
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T-. = .4_ F" I’
X 3 r
°

and in the second case, the maximum torque in the beam may be expressed
as

4 Flu I
Tax =37 —3
-]

It should be noted that the possibility of crippling in thin-walled
tubes was not considered in the previous discussion. Crippling of circular
tubes is treated in Chapter 8. This tubes should be checked for crippling.

1.5.1.2 Nonuniform Circular Beams in Torsion

When a circular beam of nonuniform cross section is twisted, the

radii of a cross section become curved. Since the radii of 2 cross section

were assumed to remain straight in the derivation of the equations for stress
in uniform circular beams, these equations no longer hold if a beam is non-~
uniform. However, the stress at any section of a nonuniform circular beam

is given with sufficient accuracy by the formulas for uniform bars if the
diameter changes gradually. If the change in section is abrupt, as at a
shoulder with a small fillet, a stress concentration must be applied as ex-
plained in Chapter 10.

Figure 1-47 shows a nonuniform circular beam in torsion.

L

Figure 1-47. Nonuniform Circular Beam in Torsion

If its diameter changes gradually, its angle of twist is

dx
I

b4

==
G

0%

This equation is used to obtain the formulas for § for various beams of uni-
form taper that are shown in Table 1-13.
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TABLE 1-13

M

Formulas for the Angle of Twist of Nonuniform Circular Beams in Torsion*

Type of Beam Angle of Twist
, D, -
, BEE 8TL 3 1‘\2arctan (-Di)
\ nG(D» - D;)D 3
i——@. ————————— ™ | e
Dy 1@ ' 273
L A— 1

D, +D \ ‘D2 -D
- 2 arctan \——) + Loge{'\ 3 2y 21 )
L - D3 - Dy \D3 +Dj

inside taper,
outside uniform

5 = ._32TL P S I
3rG DD, \DIZ D\D, ~ p,2)
L
solid neam,
outside taper
D
g = 8TL X fZarctan{——?;-
- L
4 N i1 7G(D, - D;)D3 3

o
(VY]

o
~

-
]

+D3+Dyy\ /D3 -Dy o
\D3 DZ}\D3+DI /JI

,'Dl
- 2 arctan \B_;) + Loge[_

inside uniform,
outside taper

2TL(D, +D,)

thin tapered tube with
uniform wall thickness

= Griffel, William, Handbook of Formulas for Stress and Strain
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me

Sample Problem - Circular Beams in Torsion

.3.1.3
Given: The circular beam shown in Figure 1-48.
Aluminum - G = 4x10" psi
$10000 in. 1b. 10000 in. 1b. 1
D] =2.5 = - - — Dy=3
§
{
20 -

Figure 1-48. Tapered Circular Solid Beam in Torsion

Find: The angle of twist and maximum stress in the beam.

Solution: Trom Table 1-13.

L = __l%ll:_ -,. l - l + _1__ \
7 3®GDD; \p,? D,D, p,2 /
32(100900)(20) o1, 1 1 - )
= i - + — )= 0.0091 rad.
3.-,(4xlo%)(2.5)(3) \2.52 2.5(3) 32 )

= 0.52°

Applving Equation {1-17) to the outside of the thin end of the beam

. 2 T 2:10¢ bel, 23
fyaan =T LI 9004 = 3,260 psi
—ir, -rt'*\ =¢1.237 20"
1.5.2 Noncircular Beams in Torsion

In the derivation of formulas for circular beams in torsion, it was

assumed that plane sections remain plane and radii remain straight in the

deformed configuration. Since these assumptions no longer hold for non-
circular sections, the equations for circular sections do not hold. The

warping of plane sections of a square bar under torsion is illustrated in
Figure 1-49.

@E‘.‘:‘bf T 2
Lot
T __.4_%1

B e
PR NSO g

Figure 1-49. Warping of the Sections of a Square Bar in Torsion
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me

Sample Problem - Circular Beams in Torsion

3.1.3
Given: The circular beam shown in Figure 1-48.
Aluminum - G = 4x10% psi
410000 in. Ib. 10000 m.ib.f
: !
20
Figure 1-48. Tapered Circular Solid Beam in Torsion
Find: The angle of twist and maximum stress in the beam.
Solution: From Table 1-13.
. 32TL A | R 1 . 1 \
7 3mGDD; \p,2 DD, p,2 /
- 32(10020)(20) ,\ 1 s+ l- + _1_2_ ‘ - 0.0091 rad.
3n(4x10°)(2.5)(3) \2.5 2.5(3) 3¢ ;
= 0.52°
Applving Equation (1-47) to the outside of the thin end of the beam
. 2 T 2:19¢ 1l 23
:nlz = 4 - . = ‘ 000(‘;‘ 3 = 3,260 pSl
=ir, -r._*) —11.237 -0
I.5.2 Noncircular Beams in Tcrsion

In the derivation of formulas for circular beams in torsion, it was

assumed that plane sections remain plane and radii remain straight in the

deformed configuration. Since these assumptions nc longer hold for non-

circular sections, the equations for circular sections do not hold. The
warping of plane sections of 2 square bar under torsion is illustrated in

Figure 1-49.

Figure 1-49. Warping of the Sections of a Square Bar in Torsion
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The angle of twist of an elliptical beam of length, L, is

_T@Ei+bA) L

8 (1-56)
nadbd G
1.5.2.1.2 Rectangular Beams in Torsion
Figure 1-51 shows a rectangular beam in torsion. The maxi-
mum stress in such a beam occurs at the center of the long side and is
given by
£ R (1-57)
saax ab t2
where a is a constant given in Table 1-14. The angle of twist of a rectangu-
lar beam in tension is
TL
9= (1-58)
B bt G
where 8 is given in Table 1-14.
T
;?
L
T
b
Figure 1-51. Rectangular Beam in Torsion
TABLE 1-14
Constants for Equations {1-57) and (1-58)
b/t| 1.00 1.50 1.75 2.00 2.50 { 3.00 4 6 8 10 ®
a (0.208 |0.231 {0.239)10.246 |0.25810.267 {0.282{0.299[0.307{0.313}90.333
B {0.141 10.196 10.2146G.229(0.24910.263|0.281{0.29910.30710.313]0.333
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M

The maximum stress and angle ot twist of a rectangular beam
in torsion may also be computed with satisfactory accuracy (error less than 4%)
from the following equations:

-_T L
foe =01 (3+1.84) (1-59)

4
3[ _0.63t [y _ __t ]
ol S S S PR )

1.5.2.1.3 Noncircular Beams with Thin Open Sections in Torsion

If 2 rectangular beam is very thin relative to its length (b>>t)
Equations (1-59) and (1-60) become

3T
f’llx = th_ (1-61)
and
bt”’ G

From Table 1-14, it can be seen that these expressions are correct within
10 percent if b/t = 8.

Although Equations (1-61) and (1-62) have been developed for
rectangular beams, they can be applied to the approximate analysis of shapes
made up of thin rectangular members such as those in Figure 1-52. If sharp
corners exist, however, large stress concentrations may result so that
Equation (1-61) is not valid. The effect of sharp corners is explained by the
membrane analogy in Section 1.5.3.1. Equations (1-61) and (1-62) may be
applied directly to sections such as those at the top of Figure 1-52 if b is
taken to be the developed length of the cross section as shown.

If a thin section is composed of a number of thin rectangular
sections as are those at the bottom of Figure 1-52, the following equations
may be applied:

G bt®  Glbyt)3 +byty” +...)
3"];‘t1 3Tt1
f = = (1-64)
smex | £ b 3 £.3 +b.t 3
t bt 22"+ -
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f _ 3T, _ 3Tt
S pax
2 53 b1t13+b2t23+...
3Tt, 3T ¢,
f = =
Snex th3 b1t13+b2t23+...

In the above equations, f = is the maximum stress in the ath rectangular
portion of the section, L is the’beam length, and T is the applied torque.

If a section is composed of thick rectangular sections, the
equations in Section 1.5.2.1.5 should be used. The advantage of the equa-
tions in this section is that they may be applied to specific shapes for which
a more exact formula may not be available.

I N /\
: — —

i -—-tl "-—bl ——'ll [l

Figure 1-52. Beams Composed of Thin Rectangular Members

1.5.2.1. 4 Sample Problem - Noncircular Beams with Thin Open Sections

in Torsion

Given: A 50-in. -long beam with a cross section such as that
shown in Figure 1-53 under a torsional load of 500 in.lb.

1 -75
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——

—t = 0.125 G=4x10-% psi

Figure 1-53, Thin Open Section

Find: The maximum shear stress and the angle of twist of the

beam.

Solution: The developed length of the section is

b=3+3+2+mw=11.141in.

Equations (1-61) and (1-62) may now be applied to obtain

£, =—t = 3(500) = 8,610 psi
2 2
bt (11.14)(0.125)
and
3 0)(50
9 = 3;TL = (50 )( 3) 5. 2086 rad. =49°
bt G 11.14(0.125)"(4x10"7)

Noncircular Open Beams with Various Cross Sections in Torsion

Table 1-15 gives formulas for the deformation and stress of open

noncircular beams with various cross sections in torsion. The formulas for
Case 1 are based on rigorous mathematical analysis, and the remaining for-
mulas are obtained either by approximate mathematical analysis or the mem-
brane analogy and are normally accurate within 10 percent.
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TABLE 1-15

Formulas for Deformation and Stress of Various Open Section in Torsion

Form of
Cross Section

Angle of Twist

Magnitude and Loczation of
Maximum Shear S-.ress

(1)

/\

a
( 4 = 80TL - 207 z: the mid-
4 smax 3
_ 3Ga a
Equflateral point of each side
Triangle
(2)
a
,( 5 - 3.31 TL ( _ 18.05T
Gat smax 2t
Right
Isosceles
Triangle
3
{ )y 161 For cases (3} to (9) inclusive, fsmax
TL 1+ X ) octurs at or very near one of the
\ AUz points where the larges¢ inscribed
o - - [ x - 4 1.G circle touches the buundary, unless
U x there is a sharp reeutrant angle at

1-77

some other point on the Loundary
causing high local striess. Of the
points where the largest inscribed
circle touches the bourcary, f nay
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TABLE 1-15

Formulas for Deformation and Stress of
Various Open Sections in Torsion {continued)

Form of . Magnitude and Location of
. Angle of Twist .
Cross Section Maximum Shear Stress
4) t

Any elongated section
or thin tube.

dU = elementary length
along median line

t = thickness normal to
median line

A = area of section

4F
3(l+ i TL
6 - ( 3au?/

oF

where

(5)

Any solid, fairly com-
pact section without
reentrant angles.

Ip = polar moment of
inertia about cen-
troidal axis

A = area of the section

40 TLI

ca?

1 - 78

occurs at the one where the boundary
curvature is algebraically least. (Con-
vexity represents positive, concavity
negative, curvature of the boundary.
At a point where the curvature is posi-
tive {boundary of section straight or
convex) the maximum stress is given
approximately by

£ _ GE=tc
smax = L
where
D -
= 1
c 2 pd L1
1+ 3
16 A
2 4
0.15 ( D _ 2 )]
16 AZ 2r
where
D = diameter of largest inscribed
circle
r = radius of curvature of boundary
at the point (positive for this
case)

A = area of the section
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TABLE 1-15

Formulas for Deformation and Stress of
Various Open Sections in Torsion (continued)

Form of
Cross Section

Angle of Twist

Magnitude and Location of
Maximum Shear Stress

ik +
<
T

I section, flange thick-
ness.

r = fillet radius

D= diameter of largest
inscribed circle

t=bifb<d, t=4dif

d <b, t; = bif b>gqg,

=difd>b

s L
33 3
G(2K| +Kp - 2aD

where

K, =.b3[% .o.u- n -—)]

1 3
K, = ;:d

and . .
e 3 -‘-—l—(0~l5°°‘| ;)

e —

‘-D*l

-

ft—— ) ] O p—

ek

T section, flange thick-
ness uniform: r, D, t
and t; as for Case (6)

TL
G(K, ~K20¢D‘

where
1 1 v N
Saeidfl.o.21 8 - .1
Ky =ae?[ 5 G YO))
3 __i:_\]
K, = cd [—-o |0> 192<%/

t T
= 2= qo. «0.10 &
a 0 {(0.15 +0 b)
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At points where the boundary of a
section is concave or re-entrant,
the maximum stress is given
approximately by

f _ Gé6ec
smax =~ |,
where
c - _"'".-?TET [1 - 10118 Loge {1 %)

1 -
16 A%

. 023800 Q]
2r i -

where D, A and r have the same mean-
ing as before and § = angle through
which a tangent to the boundary rotates
in turning or traveling around the re-
entrant portion, measured in radians.
(Here r is negative.)
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TABLE 1-15

1

I

Formulas for Deformation and Stress of
Various Open Sections in Torsion (concluded)

Form of

Angie of Twist Magnitude and Location of
Cross Section

Maximum Shear Stress

GIK, -Kp-a D’

l

. Ll
"

L section

r and D as for Cases (6)
and (7)

and

L]
o &m.'n.'x.nn-'ﬁ)
;)

- PUME & CE—
| SE— CEK) -Ka -nDY

I

where the summation is
for the constituent L sec-
tions computed as for
case (8)

1.5.2.2 Noncircular Closed Beams in Torsion

Closed beams have one or a number of hollow portions in their

cross section. This type of beam is much more efficient in torsion than
open beams.

Section

1. treats single cell closed or box beams in tor-
sion, and Section 1.

5.2.2.1
5.2.2.7 treats multicell closed beams in torsion.

1.5.2.2.1 Single Cell Noncircular Closed Beams in Torsion

This section treats box beams with a single hollow portion in
their cross section. Section 1.5.2.2.2 treats such beams having uniform
Cross section, and Section 1.5.2.2.3 treats tapered box beams. The effect
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of stiffeners and cutouts in box beams are treated in Sections 1.5.2.2.4 and
1.5.2.2.6, respectively.

1.5.2.2.2 Single Cell Noncircular Closed Beamns with Uniform Cross
Section in Torsion

Figure 1-54 shows a cross section of a thin box beam. The
angle of twist of such a beam of length, L, due to an applied torque, T, is
given by

g = 1L dg (1-67)

anl g ¢t

In this equation, A is the area enclosed by the median line, t is the thickness
at any point, and U is the length along the median line. The shear flow in
such a tube is uniform at all points and is given by

T
- -68
q= —2 (1 )

If the shear stress is assumed to be uniform across any thickness, itis
given by

T
f:ﬂ—:

s Tt 2At (1-69)

From this expression, it can be seen that the maximum shear stress occurs
where the thickness is minimum.

Figure 1-54. Cross Section of a Single Cell Closed Beam
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If the thickness of the tube is uniform, Equation (1-67) becomes

g = LU (1-70)

aa? Gt
and Equations (1-68) and (1-69) remain the same.

1.5.2.2.3 Single Cell Noncircular Tapered Closed Beams in Torsion

Figure 1-55 shows a tapered box beam under a torsional load, T.
Since all four sides are tapered in such a way that the corners of the box would
intersect if extended, the equations in Section 1.5.2.2.2 may be applied to
this beam if A is taken to be the area at the cross section in question.

Figure 1-55, Tapered Box Beam in Torsion

However, these equations no longer apply for box beams for
which the taper ratio of the horizontal webs is not the same as that of the
vertical webs since the shear flows will not have the same distribution for all
webs. Such a beam is shown in Figure 1-56. Although the equations in
Section 1.5.2.2.2 are not valid for a box beam such as that shown in Figure
1-56, they are quite accurate for the common airplane wing structure with
closely spaced ribs. The ribs divide the web into several smaller webs and
serve to distribute shear flows so that they are approximately equal in the
horizontal and vertical webs.

—
——

— -_-‘—.-—‘L
e S —— ——— NI Ve A —y—‘-’———‘—————.—
—

\z_/__.i _

Figure 1-56. Box Beam with Nonuniform Taper
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1.5.2.2. 4 Effect of Stiffeners on Noncircular Closed Beams in Torsion

Thin-walled airplane structures usually contain longitudinal
stiffeners spaced around the outer walls as shown in Figure 1-57. 1If the
open-type stiffener, as shown to the left in Figure 1-57, is used, the tor-
sional rigidity of the individual stiffeners is so small compared to the tor-
sional rigidity of the thin-walled cell that it is negligible. However, a
closed-type stiffener is essentially a small tube and its stiffness is thus
much greater than that of an open section of the same size. Thus, a cell
with closed-type stiffeners attached to its outer walls could be treated as a
multicell closed beam with each stiffener forming an additional cell. Since
the analysis of a beamn with a large number of cells is difficult and, in gen-
eral, the torsional stiffness provided by the stiffeners is small compared to
that of the overall cell, an approximate simplified procedure may be used
with sufficient accuracy.

1 I N S J L T T
Open-Type Stiffener Closed-Type Stiffencr

Figure 1-57. Types of Stiffeners

In the approximate method, the thin-walled tube and closed
stiffeners are converted into an equivalent single thin-walled tube by modi-
fying the closed stiffeners by one of two procedures. This equivalent tube
is then analyzed according to the material in Section 1.5.2.2. 2. The two
procedures for modifying the closed stiffeners are:

1. Replace each closed stiffener by a doubler plate having an
effective thickness given by

t. =t., s/d (1-71)

This procedure and the necessary nomenclature are illustrated
in Figure 1-58.

2. Replace the skin over each stiffener by a "liner' having a thick-
ness given by

t, =t, d/s (1-72)
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This method and the necessary nomenclature are illustrated
in Figure 1-59. The first of these procedures slightly over-
estimates the stiffness effect of the stiffeners, whereas the
second procedure slightly underestimates this effect.

fastener centerline
F/— d ] r ts ts

te = tgts/d
(4 1 ¢ J rx’
P ~\ r T * r 7 ’ L4
™ !
tst——
— d o
\S J
— s
Figure 1-58. First Method of Transforming Closed Stiffeners
fastener centerline
F/_ d -] ‘_ts et————— ]
< { ¢ —
= —— 1 7 M) ——
I l
tsd
tsy — et sty ¢ —
& /) o J

Original Stiffener Transformed Stiffener

Figure 1-59. Second Method of Transforming Closed Stiffeners

Since the corner members of a stiffened cell are usually open

or solid sections such as those shown in Figure 1-57, their torsional re-

sistance can be simply added to the torsional stiff ness of the thin-walled
overall cell.

1

.5.2.2.5

Sample Problem - Noncircular Closed Stiffened Uniform
Section Beam in Torsion

Given: A 120-in.-long beam under an applied torque of

10,000 in. lb. with a cross section as shown in Figure 1-60.

Find: The angle of twist and maximum shear stress in the
beam.
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l—

i

rts=1/16

A

Stiffener Detail

1x1x 1/8 angles at corners

h d G = 4x106

t——— 24 .
Figure 1-60. Cross Section of Stiffened Single Cell Open Beam

L

Figure 1-61. Doubler Equivalent to Beam Stiffeners

Solution: From Section 1.5.2.2.4, a doubler plate equivalent
to a stiffener may be drawn a2s shown in Figure 1-61. The
area enclosed by the median line of the transformed section

is thus
te
2

A= (24%x16) -8 ( ) (d) -4 (_%_) (2)

where the last term takes into account the effect of the corner
angles. Thus,

A= (24x16) -8 (0'233 ) (1.5) -4 (Le_)(z) = 381.5
4 1 /

Applying Equation (1-67) to the equivalent bearn gives
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8 =

TL f du _ 10%(120) { 8d
4G b 438L.5%)4ax100) “t, +t,

42) 2(24+16)-[8d+4(2)]j

) 1
e . 1 L
t g 16

where the terms in the parenthesis represent integration over
the doubler, angles and skin, respectively. Thus

104120 8(1. 5) . 4(2)

8 =
408152H4x106) (0.33+0.0625) (0.0625+0.125)

¢ 2(24+16)-[81.5)+42)] } = 5. 35x107* rad = 0.0306°
0.0625 -

From Equation (1-69)

¢ T . 104 13.1

2At 2(381.5)t t

Thus, the maximum shear stress occurs at the point of mini-
mum thickness and

13.1
= e————— = 210 psi
' 0.0625 P
1.5.2.2.6 Effect of Cutouts on Closed Single Cell Beams in Torsion

Typical aircraft structures consist of closed boxes with longi-
tudinal stiffeners and transverse bulkheads. It is necessary to provide many.
openings in the ideal continuous structure for wheel wells, armament instal-
lations, doors, windows, etc. These cutouts are undesirable from a struc-
tural standpoint but are always necessary. A closed torque box is necessary
for most of the span of an airplane wing but may be omitted for a short length
such as the length of 2 wheel well opening. When a portion of the skin is
omitted for such a region, the torsion is resisted by differential bending of
the spars, as indicated in Figure 1-62, since the open section has low tor-
sional rigidity. If the torsionis to be assumed to be resisted by the two side
webs acting independently as cantilever beams, as shown in Figure 1-62(b),
one end must be built in as shown in Figure 1-62(a).
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P= —
bh

Note: Bottom Skin
Removed (2) (b}

Figure 1-62. Illustration of the Effect of a Cutout

The existence of a cutout and the resultant axial loads in the
flanges also increase the shear flow in closed portions of the box adjacent
to the cutouts.

1.3.2.2.7 Multicell Closed Beams in Torsion

Figure 1-63 shows the internal shear flow pattern on 2 multicell
tube consisting of n cells under a pure torsional load, T. The torque applied
<o this tube is given by

= +- s ... +2q.A {1-73
T quAl ZqZAZ q. A,

where A) through A, are the areas enclosed by the medium lines of cells 1
through n. The line integral, ds/t, where s is the length of the median of
a wall and t is the wall thickness, may be represented by a. Then 2. is
the value of this integral along the wall between cells K and L, where the
area outside the tube is designated as cell (0). Using this notation, the fol-
lowing equations may be written for cells (1) through {(n):

cell(l\j::——[qlawt—(ql —qz)a12]=ZG% (1L-74i
1
cell (2) —"-—-[(q2 - qp) 212 +qpazg * (q, - q3) 323] = 2G= (1-75)
)
cell (3) ——l———' [q3 - qz) 3.23 + q3a.30 + (q3 - q4) 334] = 2G= (1-—1‘;.)
A
3

1 - 87



IECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

M

cell (n-1) [(Qa_1 - dn_2) 2a-2,2-1*%9u-12,-1,0

Al

+(q,,_1-q,,)a,,_1,n}=zse (1-77)
cell (n) [(q, - Q -1)2, 1,8 - q,2,9) = 2Ge (1-78)

The shear flows, q) through q ., may be found by solving Equations (1-73)
through (1-78) simultaneously. From these shear flows, the shear stress
distribution may be found since f, = q/t.

CELL (D)

|

Ay A,
.__,ell(l) CeLI(Z)

Cell (n)

AN

Figure 1-63. Multicell Tube in Torsion

1.5.2.2.8 Sample Problem - Multicell Clcsed Beams in Torsion
Given: A multicell beam with the cross section shown in
Figure 1-64 under a torsional load of 5, 00Q in.1b.
Cell (0) / wall (1) /—wail {1, 2)
-
[ ]
t, = 0.1875 Cell (2) 6 .
G=4x10 psi
t2=0.125 ~o=fprm— .
Cell (1) 2.3
—-tl' 2 = 0.250 J
A e b,
6.5 4 — X—wa.ll. {3)

Figure 1-64. Two Cell Closed Beams

Find: The shear stress in each of the walls.

Solution: Assuming the cell corners to square gives

Ay = (2.5)(6.5) = 16.25in. °

Ay = (2.5)(4) = 10 in. 2
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ajq = [2(6.5) + 2. 5]/0.1875 = 77.3
a;p =2.5/0.250 = 10
azg = [2(4) +2.5)/0.125 = 84

Applying Equations (1-73), (1-74), and (1-75) to the given
beam gives

1

A la)219 + () - 92) 212 = 2G9,

and

1
—_— [(q - ql) a + qza.z ] = 2G9
A, 2 12 0

Inserting numerical values into these equations gives
5000 = 2q1(16.25) + 2q2(10),

1

2 [,(77.3) + (q) - qp)(10)] = 2(4x10%)9,

and
. - 6
o [(q2 - 9;)(10) + q;(84)] = 2(4x 10”)s.

Solving these equations simultaneously gives

q, = 78 1b/in., q, = 123 1b/in. and

6 = 1.345x10"% rad = 0.0077°
The shear stress in wall (1) is
q 78
£ = = = 415 i
* "% 0.1875 pet
The shear stress in wall (2) is
q
£, = 2 _ 123 = 984 psi
ts 0.125
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The shear stress in wall (1.2) 1s

f = -9 _ 123-78 _ o0 o
' £ 0.250 P

1.5.2.3 Effect of End Restraint on Noncircular Beams in Torsion

The equations for noncircular beams in torsion in previous sec-
tions assumed that cross sections throughout the length of torsion members
were free to warp out of their plane and thus there could be no stresses
normal to the cross sections. In actual structures, restraint against the
free warping of sections is often present at the point of attachment of a2 beam.
For example, the airplane wing cantilevers from its attachment to a rather
rigid fuselage structure and is restrained against warping at its point of
attachment. The effect of end restraint is greater at points close to the
restraint than those further removed. Sections such as I-beams are more
effected by end restraint than compact sections such as circles and squares.

Figure 1-65 shows an I-beam with one end restrained under a
torsional load, T. The maximum flange bending moment is

T i -
Msax = T a tanh -—a-— (1—79)

a=L 2 Iy EB (1-80)
2\ TL

and § is the angle of twist of an I-beam with unrestrained ends given in
Table 1-15. The angle of twist of such an I-beam with restrained ends is

where

. a L
5. =8 (1 - 2 tann _E__\ (1-81)

/

From this equation, it can be seen that the end restraint has a stiffening
effect on the beam. |

1.5.3 Analogies for Beams in Torsion

Two analogies for beams in torsion are useful both for visualiza-
tion of stress distributions and magnitudes and for experimental work. The
membrane analogy, which is described in Section 1.5.3.1, is valid for open
beams for which the shear stress is in the elastic range. The sand heap
analogy (Section 1.5.3.2) may be used to treat open beams under torsional

loads for which the plastic shear stress is the same at all points on the
cross section.
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1.5.3.1

Figure 1-65. l-.Beam Restrained at One End

Membrane Analogy for Beams in Elastic Torsion

The equation for the torsion of a beamn in the elastic range is

analogous to that for small deflections of 2 membrance under uniform pres-
sure. Figure 1-66 shows such a membrane. The pressure on the membrane

js designated as p. and S is the uniform tension per unit at its boundary. The
membrane znalogy gives the foilowing relationships between the deflected
membrune and a beam of the same CTOSS section in torsion:

(n

(2}

&)

{4)

Lines of equal deflection on the membrane {contour lines) corre-
spond to shearing stress lines of the twisted bar.

The tangent to a contour line at any point oo the membrane surface
gives the direction of the resuitart shear stress at the corre-
sponding point on the cross section of the bar being twisted.

The maximum slope of the deflected membrane at any point with
respect to the edge support plane is proportional to the shear
stress at the corresponding potnt on the cross saction of the
twisted bar. Thus, the shear stress is greatest where the con-
tour lines are closest.

The applied torsion on the twisted bar is proportional to twice
the volume jncluded between the deflected membrane and a plane
through the supporting edges. If p/S = 2Gs, this torque is equal
to twice the volume.
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lJ l‘
ST =

s

Figure 1-66. Membrane Under Pressure

The membrane analogy may be used to experimentally measure
guantities for beams in torsion. However, possibly the main advantage of
the membrane theory is that it provides a method of visualizing to a con-
siderable degree of accuracy how stress conditions vary over a complicated
cross section of a bar in torsion. For example, consider the bar with rec-
tangular cross secticn shown in Figure 1-67(a). A membrane may be
stretchec over an opening of the same shape and deflected by a uniform
pressure. Equal deflection lines for the deflected membrane will take the
shape as shown in Figure 1-67(k). These contour lines tend to take the
shape of the bar boundary as it is approached as does the direction of shear-
ing stress. The shear stress is maximum where the contour lines are closest
(center of long side). Since the applied torsion is proportional to the mem-
brane volume, the more elongated of two rectangular bars of equal area has
the smaller torsional rigidity. Also, it is obvious that bending a long thin
rectangular section will not appreciably change the membrane volume and,
thus, the tcrsional rigidity of a bar of this shape.

| N

T/

(2} (b)

Figure 1-67. Rectangular Bar in Torsion
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The membrane analogy also makes it apparent that stresses are
very low at the ends of outstanding flanges or protruding corners and very
high where the boundary is sharply concave. For example, Table 1-16
gives the stress concentration factor for the concave side of the shape in
Figure 1-68. Multiplying the maximum stress obtained from the formula
for thin rectangular sections in torsion by this factor gives the maximum
stress on the concave side of a thin bent section.

TABLE 1-16

Stress Concentration Factor for Thin
Sections in Torsion

]t 1/8 174 } 12 ‘ !
Factor 2-172 ‘ 2-1/4 I 2 l 1-3/4
s/
r
t | \
\

\\

Figure 1-68. Thin Curved Section

1.5.3.2 Sand Heap Analogy for Beams in Plastic Torsion

The maximum ultimate torque that an open beam may withstand
in torsion is given by

T=2V F,:
where V is the volume of a sand heap with a maximum slope of unity, piled
on a plate having the same shape as the beam cross section. Table 1-17

gives the volume of sand heaps with various bases of various shapes.

1.5.4 Helical Springs

The primary stresses in the wire of a helical spring are due to
torsion. Section 1.5.4.1 treats helical springs composed of round wire,
and those composed of square wire are treated in Section 1. 5.4.2.
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TABLE 1-17

Sand Heap Volumes for Equation (1-82)

Type Section Sand Heap Volume
Rectangle
3(
t V = v 3b-t) b2t
12

Circle

/1N
\ 24

Triangle

N

A = arca of triangle

r = radius of inscribed circle
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1.5.4.1 Helical Springs of Round Wire

Figure 1-69 shows a helical spring made of round wire under an
axial load, P. 1If the spring radius (r)is much greater than the wire diam-
eter (D), the wire may be treated as a straight round beam under a tor-
sional load, Pr, as indicated in Figure 1-69. Superposing the stress due
to torsion of the wire on the uniform shear stress due to direct shear
(4P/.‘?DZ), the following equation for the maximum shear stress in the spring
may be obtained:

16 Pr D \

n D3 4r

In the cases of heavy coil springs composed of wire with a relatively large
diameter, D, in comparison to r, the initial curvature of the spring must
be accounted for. This is done in the following equation:

[, - 16 Pr ¢ 4m-1_ 0.615\
- D3 - 4m-4 m
where
m = 2L {1-85)
D
This equation reduces to Equation (1-83) as r/D becomes large.
The total deflection (§) of a round spring of n free coils is given by
s = 64 Prn
GD*
This equation neglects the deflection due to direct shear which is given by
5, = SERn (1-87)
Gd?

This portion of the deformation, however, is generally negligible compared
to the value of § given by Equation (1-86) and is thus generally ignored.

All o1 tne equations in this section apply to both compression and
tension springs, and in both cases the maximum shear stress occurs at the
inside of the wire.
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Figure 1-69. Helical Spring of Round Wire

1.5.4.2 Helical Springs of Square Wire

Figure 1-70 shows a helical spring made of square wire under an
axial load, P. The maximum shear stress in the square wire is given by

¢ _4.80Pr (4m-1 _ 0.615 \ (1-88)
s 3ax b3 “4m-4 m ‘
where
_ 2r \
m = = (1-89;

The total deflection of such a spring is given by

44.5 Pr3h
Gb4

where n is the number of active or free coils in the spring. This equation
neglects the deflection due to direct shear as did Equation (1-86). However,
the deflection due to direct shear is normally negligible compared to that
given by Equation (1-90).

6 = (1-90)

P
tﬂ—

43

1

2

A
ir

W

{izgizg

o

Figure 1-70. Helical Spring of Square Wire
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2. COLUMN ANALYSIS

2.1 Introduction to Column Analysis

The stresses that a structural element can sustain in compression are
functions of several parameters. These parameters are:

(1) the length of the element along its loading axis,

(2) the moment of inertia of the element normal to its loading axis,
(3) the cross-sectional variation of the element with length,

(4) the eccentricity of the applied load,

(5) the continuity of the integral parts of the element,

(6) the cross-sectional characteristics of the element,

(7) the homogeneity of the element material,

(8) the straightness of the element, and

(9) the end fixity of the element.

The effects of these parameters can be categorized by first establishing
certain necessary assumptions. For the following analysis, it is assumed
that the material is homogeneous and isotropic. It is further assumed that
the element is initially straight and, if it is composed of several attachedparts,
that the parts act as integral components of the total structural configuration.

The remainder of the previously mentioned parameters dictate more
general classifications of compression elements. If a compression elementis
of uniform cross section and satisfies the previously mentioned assumptions,
it is referred to as a simple column and is treated in the first part of this
chapter. On the other hand, compression members having variable cross-
sectional properties are called complex columns and are covered in the latter

part of this chapter. Stepped and latticed columns are included in the treat-
ment of complex columns.

The possible basic types of failure defined for columns are primary and
secondary failure. Primary failure occurs when a column fails as a whole
and may be defined by the fact that cross sections of the element retain their
original shape although they may be translated and/or rotated with respect to
their original position. If cross sections are translated but not rotated, the
primary failure is of the bending type. Failures for which cross sections of

a column are either rotated or rotated and translated are treated in the sec-
tion on torsional instability.

1f a column experiences a failure due to lateral bending at a stress level
below the elastic limit of the material, it is defined to be a long column while

failures at a maximum stress greater than the elastic limit are characteristic
of short columas.

Secondary failures occur when buckling or crippling occur in sections
of a column before it is loaded enough to produce a primary failure.
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A column failure of a selected element is influenced by the eccentricity
of the applied load and by the end fixity of the elemeat. Both of these dictate
boundary conditions that modify the solutions to the differential equations
governing column response.

In general, a column must be designed to prevent both the bending and
torsional types of Primary failure as well as crippling. Crippling is likely
to occur in columns having thin portions in their cross sections. The tor-
sional type of Primary failure is likely to occur at a lower load than the bend-
ing type in columns having cross sections of relatively low torsional stiffness.
Closed sections have enough torsional stiffness to insure that any primary

failure will be of the bending type so théy must only be designed against this
and crippling.

2.2 Nomenclature for Column Analysis

area

= linear dimension as indicated in diagrams
= subscript, allowable

b >
n

linear dimension as indicated in diagrams

= b+h/2 in Section 2.3.2.4 >

coefficient of constant = (L/L”)

torsion - bending constant

= distance from neutral axis to the concave side of
loaded column

= subscript, critical

= diameter

= modulus of elasticity

reduced modulus of elasticity

= secant modulus of elasticity

tangent modulus of elasticity

eccentricity of loading

= strain

subscript, for Euler's equation

eccentric ratio

>

cqoaocor
bt
o

M os
!

. n
|

o0 mMHM
"o

o°
0
\
AN
1]

F o1 = working concentrically loaded column stress

F, = working bending stress

F, = allowable compressive stress

Fa, = working compressive stress in bending

F_. = allowable crippling stress

F,, = empirical constant in Johnson parabolic equation
(column yield stress)

F.a = maximum fiber stress for primary failure of a
column

F, = proportional limit in compression

F, = compressive yield stress

FS = factor of safety

)
l

= calculated stress
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i

= calculated compressive stress
stress at which the secant modulus of elasticity
is equal to 0.7

= modulus of elasticity in shear
height

moment of inertia

polar moment of inertia
torsion constant

= spring constaant

= empirical constant

= empirical constant

= length

= effective length = L//C
slenderness ratio

[N
[~
n 1]

non

.

rt—.rrw;ﬁ?ﬁ‘*d""‘:"o
°
1)

<
)
!

= effective slenderness ratio
(L°7p),, = critical effective slenderness ratie

g

= empirical constant in straight line column equation
= empirical constant in straight line column equaticn
= empirical constant in Ramberg-Osgood equation

= axial load

= allowable load

= crippling load

= critical load

= Euler critical load

= radius

torque

thickness

Y. 2 = rectangular coordinates

li)e/f1 where e is strain

Poisson's ratio

torsional spring constant

radius of gyration = /I/A

= summation

£/£,

angular deflection

= angular deflection

[1] o »
4 0

wonon 1]

oA MODFEEo XTI gggdye 2
m

2.3 Simple Columas

A simple column acts as a single unit and has a uniform crss: - -ction
along its length. Such columns are treated in the following materi...

2.3.1 Primary Failure of Simple Columas

A simple column has a primary failure when its cross sections are
translated and/or rotated while retaining their original shape, that "=, when
the column fails as a whole without local instability. If the column cr.ss
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sections are translated but not rotated as shown to the left of Figure 2-1, it
is said to fail by bending while pure rotation or a combination of rotation and
translation are characteristic of torsional failures.

Vo
———- N
A /7 7/
L) j / P4
i —-- s <
1 l /, ') \\
| \,, \\ \\ 'h‘\
1 N ~ 7 v
1 ~N Y
1 . Vg
- ] L-...' P2 7
] 7’ v
' 2 < e
\V

Figure 2-1. Modes of Primary Failure

2.3.1.1 Column Data Applicable to Both Long and Short Columns

A stable section (not subject to crippling) testing for various lengths
will generate data of the form shown in Figure 2-2. The stress F_ is the
stress at failure, and L /pis the ratio of the effective column length to the
radius of gyration of the section. This L“/p ratio is called the effective
slende-=_ss ratio of the column.

Euler Column Curve
col

i L'/p
(=)
o /

cr

Figure 2-2. Typical Column Failure Curve

From the figure, it is apparent that the Euler column curve is quite
accurate beyond a critical L " /p which defines the separation between long and
short columns. A great amount of test data, collected for particular materials,
is available and eliminates the need to determine whether a long or a short
column curve is applicable. A summary of column allowable curves that are
applicable to both long and short columns is outlined and presented on the fol-
lowing pages. These curves are based upon the tangent modulus equation which
is discussed in Section 2.3.1.11.1. The column allowables are based on mini-
mum guaranteed properties, Basis A, or probability properties, Basis B, if
the latter are available. The pertinent basis is indicated in the figures.

2 -4
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INDEX OF COLUMN ALLOWABLE CURVES

Aluminum Alloys

2014
2024

7075

7178
356

Magnesium

AZ63A-T6 Casting
ZK60A-Ts Extrusion
AZ31B-H24 Sheet
HMZ21A-T8 Sheet
HM3IA-F  Extrusion, Area< 1.0 jn
HM31A-F Extrusion, Area-: 1-3.99 in2

Steel Alloys

Heat-treated Fe, = 180-260 Ksi
Heat-treated Fra

Extrusion ... .. ... .
Bare Sheet and Plate
Bare Plate
Extrusion .. ... _ . . .. ..
Clad Sheet and Plate . . .. .. .. ... . ... ...
Clad Sheet. . . .. . ..
Bare Sheet and Plate. . .. .. ... .. ... ... ..
Extrusions. . . . .. . . .
Die Forging
Clad Sheet. .. ... . Il llIT
Bare Sheet and Plate, Clad Sheet and Plate, and

Extrasions . ... .. 00 U0 T T
Casting

.................
......................
............................

................

.................

............................

......................

...............................

Alloys

.........................
........................
...........................
...........................

.............

............

...................

90-150 Ksi

...................

Stainless Steel

18-8

Cold rolled - with grain. . . ... ...

Cold rolled - cross grawm. . ... ... ...
AM 350 Sheet ... ... LT
PH 13-8 Mo Plate and Bar

PH 14-8 Mo Saeet
PH 15-7 Mo Sheet and Plate

17-7 PH Sheet and Plate
17-4 PH Bar

.....................
...........................
.....................

....................

............................
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INDEX OF COLUMN ALLOWABLE CURVES (Cont'd.)

Figure
Titanium Alloys
Commercially Pure Sheet . . . . .. ..o 2-25
8 Mn Annealed Sheet . . . . . - - - c ot v ot ot ittt 2_25
4 Al-3Mo-1V Solution Treated and Aged Sheet and
Plate. . . - - < -t v e oo it it 2-26
5A1-2.58n Annealed Sheet, Plate, Bar and Forging. 2-27
6 AlL-4V Annealed Extrusion. « « « « « ¢ ¢« « o o . .. 2-28
Annealed Sheet. . . . . . .. ...l 2-29
Solution Treated and Aged Sheet . . . . . . 2-30
Solution Treated and Aged Extrusion . . . 2-31
8 Al-1Mo-1V Single Annealed Sheet and Plate . . .. .. 2-32
13V-11Cr-3Al Solution Treated and Aged Sheet and
Plate. . - v v v v i o e e e e e e e e 2-33
Annealed Sheet and Plate. . . . . . . .. .. 2-34

2 -6
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L'/p

Figure 2-3. Column Allowable Curves
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2014 AND 7075 EXTRUSIONS
1 i | 1 1
Thickness
G) Curve Designation and Area Basis
2 1 2014-T6 .125-.499 B
2 2014-T6 -500-.749 B
NN 3 2014-T6 > .750, AS25 B
\ 4 2014-T62 2 .125, A=32 A
\ 5 <.250, .750-1.499 B
N\ 8 \ 6 7075-T6510 .250-.499 B
h 7 and -T6511 .500-.749 B
3 8 1.500-2.999 B
NDS
1) N N
TN
4 \
P
1, 2, 3, & 4
\\

0 29 40 60 80 100 120
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Figure 2-4. Column Allowable Curves
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| N N N
2024 BARE SHEET AND PLATE
\ 6_\) Material
'\\ V Curve Designation Thickness Basis
\ 1 2024-T42 <. 250 A
\ > 2024-T4 501-2.00 B
2024-T3 <.250 B
\ 3 2024-T36 <.500 B
4 2024-T6 <2.00 A
)
3) 5 2024-T86 <.063 A
\ \< 6 2024-T86  >.063,<.5 A
NN \
x 1)
O NN
D\‘:\\‘ \
gl) \\\
w
\\
\\
\\\
'\
'\
0 20 40 60 80 100 120
L'/p




Fcol - Column Stress - Ksi
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1

I

T T L] T L |
2024 BARE PLATE
90 7075 BARE SHEET AND PLATE
Material —
Curve Designation Thickness Basis
i 2024-T42 .250-3.00 A
2 2024-T4 .250-.500 B
3 7075-Té6 .016-.039 B __
4 7075-Té6 .040-.249 B
5 7075-T6 .501-1.00 B
7075 -T6 [~ 250-.500 B =
6 >-1 1.001-2.00 B
NN
20
10
0
0 20 40 60 80 100 120

L'/p

Figure 2-5. Column Allowable Curves
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L'/p
Figure 2-6. Column Allowable Curves
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2024 EXTRUSION
Material Thickness —
Curve Designation and Area Basis

1 2024-T4 <.250 B -

2 2024-T4 .250-.749 B

3 2024-T4 .750-1.499 B

2024-T4 21.50, A<25 B

@ 4 2024-T42 =2.250, AS32 A
5 2024-T62 All A —

6 2024-T81 <.750 A

6
\ N \\
\ 2)|
\ 1
4 N
).
\\\
\\
\
20 40 60 80 100 120
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1

I

- 8 g v v L4

2024 CLAD SHEET AND PLATE

L'/p

Figure 2-7. Column Allowable Curves
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Material
Curve Designation Thickness Basis
1 2024-T42 .500-3.00 A
\ . 2024-T42 .063-.249 B
\ 2024-T42  .250-.499 A
\ > 3 2024-T3 .063-.249 B
— 2024-T4 .250-2.00 B —
‘\4 4 2024-T36 .063-.500 B
\ 5 2024-T6 .063-.249 A
\ 6 2024-T81 .063-.249 A —
@ \ 7 2024-T86  .063-.249 B
\
4
N NG \
\ N S \
\ \ fk
Qéj
t\ @ \\
N \\
\\
P\\ x
\
\\\
\\-
0 20 40 60 80 100 120
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2024 CLAD SHEET

7075 CLAD SHEET
Material

Curve Designation Thickness Basis
1 2024-T42 <.063 B
2 2024-T3 <. 063 B
3) 3 2024-T36 <.063 B
4 2024-T6 <.063 A
9 5 2024-T81 <.063 A
— 6 2024-T86 <. 063 B
\ 7 7075-Té .016-.039% B
gl 10 8 7075-T6 .040-.062 B
9 7075-Té6 .063-.187 B
6 10 7075-T6 .188-.249 B

\\@ \
\ W%
-} N
N ‘\
@\\\\\\
N
.\.§\~
0 20 40 60 80 100 120
L'/p
Figure 2-8. Column Allowable Curves
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L § L R § ]
7075-T6 DIE FORGINGS
\\ ’ Basis - A
\ \< Curve Thickness
a 1 <2.000
2 2.001-3.000
CZJ \
N
\\
\\.
0 20 40 60 80 100 -120
L'/p
Figure 2-9. Column Allowable Curves
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L)  §
7178-T6
8 Basis - B
4 [
Curve Type Thickness
1 Clad Sheet .016 - .044
2 Clad Sheet & Plate .045 - 1.000
3 Bare Sheet .016 - .044
| 4 Bare Sheet & Plate .045 - 1.000
S Extrusion .750 - 2.999
3 6 Extrusion <.250

i Extrusion .500 - .749
8 Extrusion .250 -  .499

"]

N\

/

\
20 40 60 80 100 120
L'/p
Figure 2-10. Column Allowable Curves
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Fco1 = Column Stress ~ Ksi
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I

1 i | L L
CASTING - ALUM. ALLOY

Basis - A

Curve Material Designation

356-Té6 Sand Casting

N e

356-T6 Permanent — ——
Mold Casting

//
[/
/

/A
4

20 40 60 80 100 120
L'/p
Figure 2-11. Column Allowable Curves
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4 L]

MAGNESIUM

\ |

AZ63A-T6 Casting
ZK60A-T5 Extrusion

2
\ Basis - A
Curve
1
2

L'/p

Figure 2-12. Column Allowable Curves
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1 I 1 i 1
AZ31B-H24 MAGNESIUM

SHEET

O

Basis - A
Curve Temperature
1 Room
2 200°F
3 300°F
N 4 400°F
5 500°F

<

\

7
va

/

\

N\

NN\
AN
TN

\\
AN \\
5
- \‘ \\%\\\
\‘\ \>§E |
\\ '\\\'\
‘\_\:
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Figure 2-13. Column Allowable Curves
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Iz
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I T 1 |
HM21A-T8 MAGNESIUM

SHEET

NNES e
A\

//
4
VAW N

N 3)

Basis - A

Temperature

Room
200°F
300°F
400°F
500°F
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\\\

20 40 60 80
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100

Figure 2-14. Column Allowable Curves
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| ] | | | | 4 §
16 HM31A-F MAGNESIUM EXTRUSION
AREA <1 000 in.z
32
Basis - A
28
Curve Temgerature

1 Room

2 200°F

3 300°F¢
24 4 400°F

S S00°F
Alal |

\/
\ '\
'\b\\ 3
- \ \\
12 ; ®/
SN \
@/\
8 \ —
4 o ——
0
0 20 40 60 80 100 120
L'/e

Figure 2-15.

Column Allowable Curves
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| 1 Pl i i I
HM31A-F MAGNESIUM EXTRUSION

AREA: 1.000 - 3.999 in. 2

Basis - A

L'/p
Figure 2-16. Column Allowable Curves
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Fcol - Column Stress - Ksi
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HEAT-TREATED ALLOY STEEL
360
320
Basis - A
Curve Fty (ksi)
280 1 260
2 200
3 190
4 180
240 \<
200 \;: \
g \.

160 @ é) \

i20
\

80
\\
40
\\
\\
0
0 20 40 60 80 100 120

L'/p
Figure 2-17. Column Allowable Curves
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v v g v

HEAT-TREATED ALLOY STEEL

Basis - A

\ /KD Curve Ftu (ksi)

\
1 150
\\ 2 125
3 95 (t<.188)
K }A 90 (t >.188)
95 (¢t <. 188)
\ @ 3-0 90 (t >.188)
= O\ ~As received (Cond. N)
\P\ (O-Normalized by User
Q\~</
\
‘4 '\\-\
L <] fs\ T ———
\- [~ —
@/ ﬂt\
\\
\
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Figure 2-18. Column Allowable Curves
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STAINLESS STE'EL (15-8) )
180 COLD ROLLED - WITH GRAIN
5
\\ Basis - A
140
\ Curve Temper
1 Annealed
—'\ \ \ 2 1/4 Hard
3 1/2 Hard
120 4 3/4 Hard
S Full Hard
100 \ §V
80 \
O\ NN
N
VAR
60 \\\\\
\{) \ N
40 N \\\\\\
-\_\
\
20 :Q
— o~
S
0
0 20 40 60 80 100 129
L'/p

Figure 2-19. Column Allowable Curves

2 -23




Fcol -« Column Stress - Ksi

|

M

CHNICAL LIBRARY

ABBOTTAEROSPACE.COM

180

L |

1 1 1

STAINLESS STEEL (18-8)
COLD ROLLED - CROSS GRAIN

160

140

120

100

80

S
©

Basis - A

Curve Temper

o W N -

Annealed
1/4 Hard
1/2 Hard
3/4 Hard
Full Hard

T
1=

60 J \
N LD Q
40 ‘\ \
~—]
\
\
\
“\§
0
0 20 40 60 80 100 120
L'/p
Figure 2-20. Column Allowable Curves
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|1

STAINLESS STEEL
SHEET AND BAR

220
200
Basis - A ]
180 \ Curve Alloy Condition Thickness _|
\ féb_ 1 AM-350 (sheet) SCT <.1870 |
\ \ )‘ 2 17-4PH (bar) H-900 <8.00
160 N
X
140 1 \\\
120 \
100 \\
y \
60 \
\
40 \\
20
]
'\\-
0
20 40 60 80 100 120 140 160

1L'/p
Figure 2-21. Column Allowable Curves
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PH13-8Mo, H 1000 STAINLESS STEEL PLATE AND BAR

PH14-8Mo, SRH 1050 STAINLESS STEEL SHEET

\
\\
NANE
\\\ \ % : Curve Temperature
\ \\\ ,Q _l-— Room
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Figure 2-22. Column Allowable Curves
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Figure 2-23. Column Allowable Curves
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1 1 1 { ] 1 {
PHIS-TMo STAINLESS STEEL
SHEET AND PLATE
\\
\\ Basis - A
r\ Curve Condition Thickness
N, \ 1 TH-1050 <.500
\\ 2 RH-950 <.125
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17-7PH STAINLESS STEEL

SHEET AND PLATE

Basis - A

Curve Condition Thickness

4o
4

1 TH-1050 <.500
2 RH-950 <.1874
3 RH-950 .1875-.500
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Figure 2-24. Column Allowable Curves
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TITANIUM SHEET

Basis - A

Curve Alloy
1 Commercially Pure
2 Commercially Pure
3 8Mn Annealed
4 8Mn Annealed
5 8Mn Anneaied
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Figure 2-25. Columa Allowable Curves
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4Al-3Mo-1V TITANIUM ALLOY
SOLUTION TREATED AND AGED SHEET AND PLATE —

\
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\\‘ \ Basis - B ]
WY [
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TN FE -
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Figure 2-26 Column Allowable Curves
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i 1 1 1 L] | | T T
S5A1-2.55n TITIANIUM ALLOY
ANNEALED SHEET, PLATE, BAR AND FORGING
Basis - B
Curve Temperature
1 Room
2 300°F
3 400°F
4 500°F
S 600°F
\ 6 700°F
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Figure 2-27. Column Allowable Curves
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Fcol - Column Stress - Ksi
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180 6Al-4V TITANIUM ALLOY
ANNEALED EXTRUSION
160
140 Basis - B
\ Curve Temperature
\ 1 Room
120 S @ 2 300°F
4 3 400°F
@ 4 500°F
5 600°F
_\ \ \>< @ 6 700°F
\
\V\ \\\ \
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80 NN \
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Figure 2-28. Column Allowable Curves
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Figure 2-29. Column Allowable Curves
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Feol - Column Stress - Ksi
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Curve Temperature
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Figure 2-30. Column Allowable Curves




Fcol = Column Stress - Ksi

IECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

M

1 ¥ 1 1 1 1 ] 1
6A1-4V TITANIUM ALLOY
180 SOLUTION TREATED AND AGED EXTRUSION -
t <.500
160
N
\ Basis - B
140 basis - ©
\ @)\
—\ @ Ccurve Temperature
/
__\ \ 1 Room
\ N\ 2 300°F
120 \ 3 400°F
\ 4 500°F
5 600°F
S)Q 6 700°F
N N
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Figure 2-31. Column Allowable Curves
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BAl-1Mo-1V TITANIUM ALLOY
SINGLE.ANNEALED SHEET AND PLATE
t<.500
T
\ (1
L
2 Y Basis - B
asls -
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\4’ \ Curve Temperature
\ L
\ = 1 Room
\ 2 300°F
3 400°F
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Figure 2-32. Column Allowable Curves
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13V-11Cr-3A1 TITANIUM ALLOY
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Fcol - Column Stress - Ksi
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Figure 2-34. Column Allowable Curves

2 -38




IECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

M

2.3.1.2 Sample Problem - Colurmnn Data Applicable to Both Long and
Short Columas

Given: The 0.6 in. square concentrically loaded column
shown in Figure 2-35.

1 .

P e——— ~— P

4 Lo

2014-T6 aluminum alloy extrusion

Figure 2-35. Pinned End Column in Axial Load

Find: The critical load, P,,, by using column curves appli-
cable to both long and short columns.

Solution: Since the column is pinned at both ends, L= L = 6 in.
For a square, I = b4/12 and A = b%. Thus,

B I b2 /(.6)2 ‘
p= /L1 . b = L9 . 5.173 in.
A 12 12 '
L :
= = _bin. . o34
p 0.173 in.

From Figure 2-3, curve 2, find F_, = 56,200 psi. Thus,
P, = F.,A = 56,200 (.6)% = 20,200 1b.

2.3.1.3 Bending Failure of Concentrically Loaded Long Columns

In the process of describing column behavior in this chapter, the
simplest cases are covered first and then various complications are covered.
Historically, the first type of column to be successfully studied was the long
conceatrically loaded one for which Euler developed an equation giving the
buckling load in terms of column parameters. This is also the simplest case.

The Euler formula, which is perhaps the most familiar of all col-
umn formulas, is derived with the assumptions that loads are applied con-
centrically and that stress is proportional to strain. Thus, itis valid for
concentrically loaded columns that have stable {not subject to crippling) cross
sections and fail at a maximum stress less than the proportional limit, that
is, concentrically loaded long columns. The form of the Euler formula is
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or _ CTTZE or Per - TTZE (2-1)

A (L)Z A (L_')Z
P

Here, P/A is the ratio of the axially applied load at failure to the cross-
sectional area of the column. E is the modulus of elasticity of the column
and L/o is the ratio of the columa length to the least radius of gyration of
its section. The radius of gyration is defined to be equal tovI/A, wherel
is the moment of inertia of the section. The constant, C, which is cailed
the coefficient of constraint, is dependent upon end restraints and is dis-
cussed in Section 2.3.1.4 . In the second form of Equation (2-1), L~ is
an effective length which takes into account end restraint conditions.

2.3.1.4 Coefficient of Constraint for End Loaded Columns

In the discussion of columns, the coefficient of constraint C often
occurs. As was mentioned before, this coefficient depends upon the mannet
in which the ends of a column are restrained, which, in turn, determines

the boundary conditions that must be satisfied by the equations describing
the column.

Sometimes, the use of a coefficient is avoided by using an effec-
tive length L’ instead of the actual length L in formulas derived for a
column with both ends pinned of length L. The term L~ is then the distance
between points of inflection of the loaded column curve. For example, the

effective length of a column of length L that is rigidly supported at both ends
is LL/2 as can be seen in Figure 2-36.

L'=1L

}

Figure 2-36. Example of Effective Length

The relationship between L” and L, and C is

2
L) - (2-2)
( L') c
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By assuming various combinations of idealized end restraints, a
table of theoretical end constraint factors may be constructed. This is
shown in Table 2-1.

TABLE 2-1
Coefficients of Constraint for Idealized End Conditions
Type of Fixity C Type of Fixity C
.25 2.05
1.09 4.00

The end restraints of an actual column are never exactly equivalent
to pinned or fixed ends, but lie somewhere between the two extremes. This
discrepancy is due to the fact that a pinned joint is never entirely frictionless
and a member to which a column is fixed is never perfectly rigid.

Cases for which one or both of the eads of a column are fixed to
nonrigid members may be treated by considering these ends to be restrained
by a torsional spring of spring constantu. The constant il is defined to be
dT/d8 where T is a torque applied to the support at the point where the col-
umn is attached and 8 is the angle of twist at this point. Given this definition,
4 may be calculated by applying formulas from strength of materials to the
member to which the column is attached before attachment. For example,
consider the column shown in Figure 2-37. The torsional spring constant for
the end is found by considering the beam supporting the column and calculating
dT/d® where T and § are as shown in the middle diagram. dT/d9 is a constant
for small deflections so T/9 may be found from beam formulas. The column

is then redrawn with the attached beam replaced by an equivalent torsional
spring.

e
y 7 sosL
/ ds
S/ 4 T 7

[

N N

Figure 2-.37. Example of Equivalent Torsional Spring
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Equations have been developed that give the end fixity coefficient, C,
as a function ofu, L, E, and I for columns equally elastically restrained at
both ends and for those pinned at one end. These equations are given and
plotted in Figure 2.38. From these plots, it can be seen that C approaches
the value corresponding to a fixed end rather than an elastically restrained
end as y increases. Likewise, C approaches the value corresponding to a
pinned end as the spring constant approaches zero.

4.0 [ 1 1 ]
Foru=%=, C=4.0
3.8
A
3.6 g —Both Ends Equally Restrained
9 /
3.2 / w
L
3.0 / " "
. / /e
. 2.8 uL . /T cot I£LE
e El 2
:_C, 2.6 L 1 1
= / C = fixity coefficient
3 2.4 E = modulus of elasticity
- I = moment of inertia
S L = length of column
> 22 ' u = beading restraint coefficient -
L:f. spring constant (in-ib/rad)
20 /L‘" ] ] l
A One End Restrained
1.8 V4 :, f' 4
Y 1 W2 9 ES .
L ~.-I
1.4 —~
1.2 ul _ (")ZC -
El n/C Cotn/T -1
1.0 For W= e, C = 2.05
L1 | I O I O
0 10 20 30 40 50 60 70 80 90 100 110
UL
El

Figure 2-38. Fixity Coefficient for a Column with End Supports Having
a Known Bending Restraint
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At times, a column may be supported along its lehgth as well as at
the ends. For example, the column shown in Figure 2-39 is supported at its
midsection by another member.

pvoal

ANNNN

Ay

Figure 2-39. Simply Supported Column with Intermediate Support

In order to treat such a case, namely that ilicstrated in Figure
2-39, we may consider the member supporting the coiumin at its midsection
to be a spring of spring constant K lbs/in. which may e Iound by applying
strength of materials to the support. Charts that give the coefficients of
restraint of a pinned column with a single lateral support along its mid-
section or two lateral supports symmetrically placed :::: its midsection are
available. Figure 2-40 shows a simply supported column with one lateral
restraint and gives the coefficient of constant of such a column as a function
of column parameters. Figure 2-41 shows a simply supported column with
two symmetrically placed lateral restraints and gives the coefficient of con-
straint as a function of column parameters.

The previous discussion of coefficients of constraint was-limited
to relatively simple cases. At times, however, a column may be attached
to members for which an equivalent torsional spring constant is not easily
found or it may be attached in more complicated ways than those previously
discussed. In such cases, certain general rules may be applied.

In normal practice, the coefficient of constraint is less than two
and the effect of end fixity is smaller for short columns than for long ones.
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Note:

A center support behaves
- rigidly if g2 16

4.9 ]

3.8 | E = Modulus of
Elasticity

140

iy |

120

100 1

80 |

60

Fixity Coefficient, C

40

20

Figure 2-40. Fixity Coefficient for a Column with Simply Supported Ends

and an Intermediate Support of Spring Constant, K
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Figure 2-41. Fixity of a Column with Two Elastic, Symmetrically
Placed Supports Having Spring Constants, K

The ends of a compression member in a welded truss of steel tubes,
like those that are often used in aircraft structures, cannot rotate without
bending all of the other members at the end joints. Such a truss is shown
in Figure 2-42. It is difficult to obtain the true end fixity of a compressive
member in such a truss since the member may buckle either horizontally or
vertically and is restrained by the torsional and bending rigidity of many
other members. It is usually conservative to assume C = 2.0 for all mem-
bers. A smaller coefficient of constraint might be used for a heavy com-
pressive member restrained by comparatively light members. Likewise, a
larger coefficient of constraint may hold for a light compressive member
restrained by heavier members. A coefficient of constraint of one should be
used if all of the members at a joint are in compression. Steel tube engine
mouats are usually designed with the conservative assumption of a coefficient
of constraint of unity.
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l —— S Sy 5

— e —

Figure 2-42. Welded Truss

Stringers which act as co.npression members in semimonocoque
wing or fuselage structure, such as that shown in Figure 2-43, are usually
~ supported by comparatively flexible ribs or bulkheads. The ribs or bulk-

heads are usually free to twist as shown so that their restraining effect may
be neglected and the value of C is taken to be unity, where L is the length
between bulkheads. If the bulkheads are rigid enough to provide restraint
and clips are provided to attach the stringers to the bulkheads, a value of 1.5
is sometimes used for C.
. * s L 1

P e— e e — — )] —— P

{
/
{

i

Figure 2-43. Semimonocoque Structure

\
\
\
i

2.3.1.5 Distributed Axial lLoads

Columns subjected to distributed axial loads may be treated by
formulas developed for end lcaded columns if a coefficient of constraint is
used that takes into account both the load condition and end fixities. Fig-
ure 2-44 shows columna uander a uniformly distributed axial load of P/L
lbs/in. with various end restraints and their corresponding coefficients of
constraint. The values P, L, and C are used in the formulas for end loaded
columns,

P P P P
YIVIVY 4 !// Z /‘// L
1 ¥ 1 7
1 L 1 4 1
1 1 L 1 L 4 L
1 1 1 1 4 I
. 1 1]
P VL
C=3.55 C=17.5 C=1.87 C=.794
P/L 1b/in P/L 1b/in P/L tb/in P/L b/in

Figure 2-44. Coefficients of Constraint for Columns Under a Uniformly
Distributed Axial L.oad
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3.1.6 Sample Problem - Concentrically Loaded Long Columans
in Bending

Given: The conceatrically loaded rectangular bar shown in
Figure 2-45 is fixed at one end and attached to a round bar
at the other end. Both bars are made of steel for which
E=30x10°psi and G = 11. 5 x 10 ps;.

7.25

1 in. diameter
round bar

2x1/2- in. bar

|

P
Figure 2-45. Example of Constrained Column

Find: P,

Solution: From elementary strength of materials, § = TL/IPG for
a torsion bar. [n effect, there are two 7. 25-in. -long bars

attached to the end of the column so that the equivalent tor-
sional spring constant is

2JG
L

us=2 T =
8
Substituting the appropriate values into the expression for y gives

4
(2)% (11.5x 106
g o= 3 =t = 3.12 x 10° in. -1b/rad
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The column may now be redrawn as Figure 2-46.

«G—— .

Figure 2-46. Free Body Diagram of Constrained Column

ul  _ (3.12 x 105) (40)

> 20
(3o:<106)[ éiﬁgL_]

1

From Figure 2-38, we find that C = 1.88. Solving Equation
(2-2) for L’ gives

L 40

vC 1.88

L' =

= 29.2 in.

The radius of gyration of the bar is

3
VI/A = M/Z('S) = 0. 144 in.

12
The slenderness ratio

L°  30.5

= =212
p 0. 144

From Section 2.3.1.11. 7, it is found that a steel column for
which L/p is greater than 120 is a long columa. Thus, the
Euler formula, Equation (2-2), becomes

P _ A‘!TZE

cr - D —r-a
(&)
p
Substituting the values for the given column into this equation
gives

2 6
P (5x2m~(30x10") = 13,100 lb.

° 150%
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In general, 2 column such as this must also be checked for
buckling in the plane through the bar and the column. In this
case, however, the column will not fail by this mode.

2.3.1.7 Bending Failure of Eccentrically Loaded Long Columas

A theoretically correct formula that holds for eccentrically loaded
columns is the secant formula:

Fco!
1+ =< secr._l.:‘_. /—E—]
Y- L 20 AE

In this formula, P, A, o, L, C, and E are defined as before, and e is the
eccentricity of the load. The distance between the central axis and the con-
cave side of the loaded column is designated as ¢C. In the case of 2 long eccen-
trically loaded column, F,,, may be taken to be the value of P /A found from
the Euler formula in Section 2.3.1.3. Ifa factor of safety, FS, is applied,

the corresponding formula for allowable load, P,, becomes

P

(FS)P, F

_ col (2-4)
A 1 + ec sec‘: L J (FS)P, ]
02 29 AE

The secant formula may also be used for short columns by finding F.a dif-
ferently as will be shown in the material on short columns.

All physical columns have some accidental initial curvature due to
imperfections and some eccentricity of loading. In these cases, an equivalent
eccentricity may be used to approximate the effects of the imperfections. Data
may also be found for the equivalent eccentric ratio which is the ec/:;2 term in
the secant formula. Values for these may be found in Section 2.3. 1. 8.

The secant formula applies when the eccentricity is in the plane of
the bending.

Unfortunately, the secant formula is difficult to solve and must be
solved by either trial and errorxr Or charts.

2.3.1.8 Equivalent Eccentricity for Imperfect Columns

As was menutioned previously, no column is perfect'ly straight and
concentrically loaded. In order to allow for these initial imperfections in a
column whose loads are concentrically applied, an equivalent eccentricity of
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loading may be asssumed. The column may then be treated by methods used
for an eccentrically loaded column.

Opinion is divided as to whether the equivalent eccentricity assumed
for imperfections is dependent upon or independent of the length of a column.
If we assurme that it is independent of column length, an equivalent eccentric
ratio ec/p2 ranging from 0.1 to 0.25 may be used. The mean value of such
an eccentric ratio is approximately equal to 0.2. We may also assume that
the equivalent eccentricity, e, is proportional to the effective length of the
column. If this procedure is used, e may be taken to be equal to KL where K
is a constant. Values of K ranging from 0.001 to 0.0025 may be used with the
latter yielding conservative results.

2.3.1.9 Sample Problem - Long Ecceatrically Loaded Columns and
Equivalent Eccentricity

Given: The rouad column shown in Figure 2-47 with nominally
concentric loading.

[—— 50

*
5000f ——> A -— S5000#
z L, i

Steel - E = 30 x 10° psi

Figure 2-47. Column Loading for Study of Eccentricity

Find: The column diameter, D, for a factor of safety of 1.5, con-
sidering the initial imperfections of the column.

Solution: For a round section, I = nmD%/64 and A = nD2/4. Thus,
o =/I/A = D/4. Since the column is pin ended, L = L = 50 in.
Try D=1.215.

L° _ 50

o  1.215

= 164.5

(3]

»

According to Section 2.3.1.11.7, steel columas for which L /o
is greater than 120 may be treated as long columns. Thus F_,
in the secant formula may be found by the Euler formula:

Fo- ME__ mf@oxiody oo

col ' 2 2 ’ p
(_L_ (164.5)

o]
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The secant formula, Equation (2-4), may now be written as

(FS)P, _ F.
A - [FSP
1+ -2< secf L ! (FS) P, -l
02 v2p V¥V AE 4
- 10,950

. FS) P
1 + S sec| L ,/ (FS) ']
02 20 AE

According to Section 2.3. 1.8, equivalent eccentric ratio due to
initial imperfections is between 0.1 and 0.25. To be on the con-
servative side, use an equivalent eccentric ratio of 0.25. Sub-
stituting this and column parameters into the secant formula, the
expression below is obtained.

(1.5)(5000) _ 10,950
m(l.215)2 T 50 (1. 5) (5000)
4 2(1.215) w(l.215)2

1 +.25 sec (30x 108)

4 4
or 6450 = 6450

Thus, the original guess of D = 1.215 was correct. If this were
not true, different values of D would have to be chosen until one
was found that would make both sides of the secant formula equal.

2.3.1.10 Bending Failure of Short Columns

In the previous discussion of long columns, it was assumed that the
column material was in the elastic range at the time of buckling. This assump-
tion, however, is not true for columns having an effective slenderness ratio
of less than a certain critical value for a given material. This value of the
critical effective slenderness ratio, L. /o, is discussed in Section 2.3.1.11.7.
Since the Euler formula no longer applies for short columns, one of the for-
mulas used to fit short column data must be used to treat them.

2.3.1.11 Bending Failure of Concentrically LLoaded Short Columas

Several formulas are available to treat short columns. These have
o theoretical justification as did the Euler formula, but fit column data to a
degree of accuracy depending upon the material and column parameters. The
equations most commonly used for short columns are the tangent modulus,
Johnson Parabolic, and straight-line equations.
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2.3.1.11.1 Tangent Modulus Equation

If the slenderness ratio of a column is low enough that some of
its fibers are no longer in the elastic range at the time of failure, the Euler
formula no longer holds. However, this case may be treated by defining a
tangent modulus of elasticity, E,, to be the slope of the stress-strain curve
at a given point. This tangent modulus of elasticity may then be substituted for
the modulus of elasticity in the Euler equation to obtain the tangent modulus
equation {modified Euler equation).

2
w2 E.)
P . ’2 (2-5)
p y

Since E; is equal to E in the elastic range, the tangent modulus equation reduces

to the Euler equation for long columns and is thus valid for both long and short
columns.

The value of stress at which E; is found is the maximum stress
in the column. In the case of a concentrically loaded column, this is equal
to P/A. Since E; is a function of loading, the tangent modulus equation must
be solved by trial and error if E, is found from stress-strain diagrams or tables.

The tangent modulus equation has been solved for a2 number of
different materials and these solutions are shownin Section 2.3.1. 1.

The main disadvantage of the previously described procedure
for solving the tangent modulus equation is the trial and error method required.
This disadvantage may be eliminated if an equation for the stress-strain curve
is available. Such an equation is the Ramberg-Osgood equation,

- 3 4n
€E=-0 + 7— g
Here, € = Ee/f| and o = f /f, where e is the strain, f, is the compressive stress,
and f) is the stress at which the slope of a line from the origin to a point on the
stress-strain curve is 0.7. E and n are constants determined experimentally
for a given material. The Ramberg-Osgood equation may be used to obtain the
following expression for the tangent modulus of elasticity.

E, - E (2-6)

1 +3/7 o1

This expression may in turn be substituted into the tangent modulus equation
with f  equal to F_, to obtain
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2
F,, = —E 1 ) (2-7)
cot ~
(L‘ )2 1+3/7 no™ !
p

In the case of a column under concentric loading, F_,, is equal to P/A. A
nondimensional plot of this cquation is shown in Figure 2-48. Values of n,

f;, and F that are nceded for the Ramberg-Osgood equation are shown in
Table 2-2.

N

N

1.0 -~
n o
50
0.8 - 20

# N
; \
0.6 }—— 2

e’
7

0.2 %\
e
0
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6
L'/p
n E/

Figure 2-48. Nondimecnsional Plot of Tangent Modulus Equation with
E, ObLtaincd from the Ramberg-Osgood Equation
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TABLE 2.2

1

I

Properties of Various Materials for Ramberg-Osgood Equation

Material E. Ksi n l;, Ksi

Aluminem Alloys

24 S-T Sheet 10, 700 10 41
24 S-T Extrusion 10, 700 10 37
755-T Extrusion 10, 300 20 71

{ Clad 2024-T3 Longitudinal 10, 00O 10 38.1
Clad 2924-T4 Lungitudinral 10. 000 13 36.5

Steel

Normalized 29, 000 20 75
Fy, = 100, 090 29,000 25 80
Flu = 125, 200 29, 000 35 100
F, = 150, 000 29, 000 40 | 135
Fiy = 180, 000 29, 090 50 165

Titanium 6A1-4V Bur Stock,
Longitudinal F,,, = 145 Ksi
at room temp., 1/2 hr.
cxposure ¢ tecmiperature

at room temperature 17,5900 10 164
at 500°F 16, 000 17 108
at T00°F 15, 000 10 93.3
at 900°F 13,800 9 85.7

One great advantage of using the Ramberg-Osgood relation

is that the necessary constants may be obtained for new materials without
extensive testing.

In general, the tangent modulus theory will yield conservative
results. However, this theory yields values for the critical load that are too
high for very short columnas for which E, may be less than 0.2 at failure.

2.3.1.11.2 Sample Problem - Use of Tangent Modulus Fquation for
Councentrically Lo>ded Short Columns

Given: The l-in. square concentrically loaded column
shown in Figure 2-49.

Find: The maximum valuc of P by using the tangent modulus
equation, with E, obtained from the Ramberg-Osgood reclation.
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” 24 S-T Extrusion

ol

'
N
AR\

Figure 2-49. Column Loading Used for Illustration of Tangent-
Modulus Equation

Solution: Ultimately, Equation (2-7) must be solved. This
equation is shown graphically in Figure 2-48. From Table 2-2,
find E=10.7x 10 psi, n =10, and f; = 37,000 psi for the
given material. Consulting Section 2.3.1.4, find that C = 2.05
for the given end constraints. Solving Equation (2-2), find that
L* = LMC. Iathis case,

L’ =—212 - 10.55in,

v/ 2.05

For a square, I = b4/12 and A = bz.

Y /b"'
A 12

¢c =
In this case,
1
= [—— = .28
P= 13 K
Thus,
L/o _ 10. 55/0.289

"WEf,  w/10.7x108/3. 7x 10%

From Figure 2-48,

F
ol - .88
£
Thus,
PC!‘
F

= 0.88 £,

ool

P, =0.88A f; = 0.88(1) (37,000)

P,, = 32,600 Ib.
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2.3.1.11.3 Reduced Modulus Equation

An equation that is theoretically more correct than the tangent
modulus equation is the reduced modulus equation. In this case, a reduced
modulus of elasticity, E_, is used to replace E in the Euler equation. This
reduced modulus is a value between E and E,, one suggested value being

E -_4EE

- 5 (2-8)
E +/E,)

It can be seen from this equation that E, approaches E as E, approaches E
so that the reduced modulus equation reduces to the Euler equation for long
columns as does the tangent modulus eqguation.

The reduced modulus equation is accurate for specimens in
which extreme care in manufacturing and testing is used but yields high values
of critical load for other columns. The more conservative tangent modulus

equation is preferred to the reduced modulus equation for this reason as well
as for its greater simplicity.

2.3.1.11.4 Johnson-Euler Equation

For many materials a parabola may be used to fit column test
data in the short column range. The equation of such a parabola may be

written as
2 \2
=) (2-9)
o]

where F,, and K are constants chosen to fit the parabola to test data for a
particular material. The Johnson-Euler column curve consists of the Euler
curve for high L"/o ratios combined with a parabola that is tangent to this
curve and covers short column ranges. If Equation (2-9) is adjusted so that
it is tangent to the Euler curve, we obtain the Johnson equation

- \2
Fo ()
_ Y

4 an

Fcol=Fco'K(

F

col = co 1

(2-10)

Here, F_,, is the maximum column stress which is given as P/A for concen-
trically loaded long columns and by more complicated formulas for eccen-
trically loaded columns. The single experimentally determined constant, F_..,
is called the column yield stress but has little physical significance for col-
umns with stable cross sections since very short columns for which L /p is
less than approximately 12 fail by block compression. In cases where local
crippling and primary bending failure interact, F_, may be taken to be equal
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to the section crippling allowable. This case will be discussed more ex-
tensively in Section 2. 3.2. A typical Johnson-Euler curve is shown in Fig=-

ure 2-50. The coordinates that are marked show the point of tangency between
the Johnson parabola and the Euler curve. Thus, the critical effective slender-
ness ratio separating long columns from short columns isV2n \fE—/I:?“ for the

Johnson-Euler curve.

Feol Johnson Parabola
Feco
Feo L _ Euler Curve
i |
%
1 R
p

S [ E
FCO

Figure 2-50. Typical Johanson-Euler Curve

The main advantages of the Johnson-Euler curve are its
ability to fit data when there is an interaction between crippling and primary
bending failure and simplicity of computation. For columns having stable
cross sections, one of the other short column curves is normally perferred.

2.3.1.11.5 Straight Line Equation

Short column curves for most aluminum alloys and several
other materials are best represented by straight lines. A typical straight
line is shown in Figure 2-51.

Feol

Euler Curve

Figure 2-51. Typical Straight Line for Short Columns
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As can be seen from Figure 2-51, the straight line is not necessarily tan-
gent to the Euler curve as is the case for the Johnson parabola but this is
often the case. The straight line shown may be given by the equation

Fo=N- M(-‘I)"—,) (2-11)

where N and M are constants chosen to best fit column data for a given mate-
rial. As in the case of the Johnson parabola, this straight line does not
always hold for very short columns that fail by block compression so it is
cut off at F,, as shown in the figure.

The critical effective slenderness ratio may be found by
equating F_ , as found by the Euler formula to that value as found by Equa-
tion (2-11). This procedure involves solving a cubic equation and will not
be presented here since values of the critical slenderness ratio are tabulated
in Table 2-3.

Values of the constants N, M and the corresponding critical

slenderness ratio (L'/p)cr are available for a large number of aluminum
alloys and manufacturing processes. These values are shown in Table 2-3.
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TABLE 2-3

Extruded Rod, Bar and Shapes

Alloy and Temper Thickness, In. N(ksi} M(ksi) (.L‘;l
cr

2014-O Alt 9.9 0.037 160
2014-T4 All 35.2 0.251 89
2014-Té Up thru 0.499 61.4 0.410 S0
2014-T6 0.500-0.749 67.3 0. 471 48
2014-Té 0.750 and over

Area 25 sq in. max. 69.7 0.496 47

Area 25 to 32 eq in. 67 0.471 48
2024-0 All 9.9 0.037 160
2024-T4 Up thru 0.249 43.6 0.300 6sS
2024-T4 0.250-0.749 44.8 0.313 64
2024-T4 0.750-1.499 50.9 0.379 60
2024-T4 1.500-2.999 |

Area 25 sq in. max. S8.4 0.466 56
2024-T4 3.000 and over

Area 25 sq in. max. 58.4 0. 466 $é
2024-T4 1.500 and over

Area 25 thru 32 gq in. 53.4 0.407 59
3003-0 All S.4 0.015 222
3003-H112 All 5.4 0.015 222
5454-0 Up to 5.000 13.3 0.058 142
S454-H112 Up to 5.000 13.3 0.058 142
5454-H311 Up to 5.000 20.4 0.111 121
5456 -0 Up to 5.000D 21.6 0.120 I8
S456-H1i12 Up to 5.000® 21.6 0.120 111
5456-H311 Up to 5-000® 25.3 0.153 105
6061-0 All 5.4 0.015 222
6061-T4 All 15.7 0.074 128
6061-Té All 38.3 0.202 63
6061-T62 All 28.1 0.127 74
6062-0 All 5.4 0.015 222
6062-T4 Al 15.7 0.074 128
6062-T6 All 38.3 0.202 63
6062-T62 All 28.1 0.127 14
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Extruded Rod,

Bar and Shapes (Cont*d.)

Alloy and Temper Thickness In. Ntksi) Miksi) (.;.)
<
6063-T42 Up thru 0.500 11.0 0.043 149
6063-TS Up thru 0.500 17.5 0.076 103
6063-T6 Up thra 0.124 28.0 0.155 81
6063-T6 0.125-0.500 28.0 0.155 81
7075-0 All 13.3 0.058 142
1075-Té Up thru 0.249 79.3 0.602 44
7075-T6 0.250-0.499 87.8 0.859 46
7075-T6 0.500-1.499 87.8 0.859 46
7075-T6 1.500-2. 999 81.7 0.629 43
7075-T6 3.000-4.499 85.2 0.821 47
7075-T6 3.000-4.499 79.3 0.602 44
7C75-Té6 4.500-5.000 76.9 0.575 45
7178-Té6 Up thru 0.249 86.5 0.686 42
7178-Té6 0.250-2.99 88.9 0.714 42

Rolled and Cold-Finisued Rod and Bar

Diameter X ,
Alloy and Temper or N(ksi) Miksi) L_)

Thickness, In. p Ter
EC-0O Atl 3.2 0.006 241
EC-H12 Up to 1} in. 8.7 0.030 165
EC-H13 Up to ] in. 13.3 0.058 142
EC-H17 Upto 1/2 in. 16.8 0.082 124
1100-O All 4.3 0.010 221
1100-F 0.375 and over 7.6 0.025% 186
2011-T3 0.125-1.500 45.4 0.368 79
2011-T3 1.501-2.000 40.3 0.308 85
2011-T3 2.001-3.000 35.2 0.251 89
2011-T8 0.125-3.250 48.0 0.400 77
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Rolled and Cold-Finished Rod and Bar (Cont'd.)

Diametcr L'
Alloy and Temper or Niksi) M(ksi) (?)cr
Thickness, In.
2014-0 Up thru §.000 9.9 0.037 160
2014-T4 Up thru 6.750 37.1 0.278 86
2014-T6 Up thru 6.750 64.7 0.543 54
2017-0 Up thru 8.000 9.9 0.037 160
2017-T4 Up thru 8.000 37.7 0.278 86
2024-0 Up thru B.000 9.9 0.037 160
2024-T4 Up thru 6.50C 48.0 0.400 7
3003-0 All 5.4 0.015s 222
3003-Hl12 Up thru 0.374 12.2 0.051 148
3003-Hl14 Up thru 0.313 16.8 0.082 124
3003-H16 Up thru 0.250 22.8 0.131 112
3003-H1i8 Up thru 0.204 26.5 2. 164 103
5052-0 All 11.0 0.043 149
5052-F 0.375 and over 12.2 0.051 148
6061-0 Up thru 8.000 5. 0.015 222
6061-T4 Up thru 8.000 18.0 0.092 128
6061-T6 Up thru 8.000 38 0.202 63
7075-0O Up thru 8.000 12.2 0.051 148
7075-Té Up thru 4.000 8.7 0.729 49
Standard Structural Shapes (Rolled or Extruded)
. L'
Alloy and Temper Thickness, In. N(ksi}) M(ksi) (p—)
cr
2014-0 All 9.9 0.037 160
2014-T4 All 35.2 0.251 89
2014-Té All 64.7 0.543 54
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Standard Structural Shapes (Rolled or Extruded)

Alloy and Temper Thickness, In. N(ksi) M(ksid (%l
r
5456-0 All 21.6 0.120 i1l
5456-H112 All 21.6 0.120 111
5456-H311 All 25.3 0.153 106
6061-0 All 5.4 0.015 222
6061-T4 All 15.7 0.074 128
6061-T6 All 38.3 0.202 63
6061-T62 All 28.1 0.127 T4
6062-0 All 5.4 0.015 222
6062-T4 All 15.7 0.074 128
6062-T6 All 38.3 0.202 63
Die Forgings
. Ll
Alloy and Temper Thickness, In. Niksi) M(ksi) (—)
P &r
1100-F Up to 4 in. 4.3 0.010 221
2014-T4 Up to 4 in. 35.2 0.251 89
2014-Té6 Up to 4 in. 61.4 0.410 50
2018-T61 Up to 4 in. 48.0 0.400 17
2218-T61 Up to 4 in. 48.0 0.400 17
2218-T72 Up to 4 in. 33.9 0.237 91
3003-0O All S5-4 0.015 222
3003-F All 5.4 0.015 222
4032-T6 Up to 4 in. 50.6 0.433 15
6061-T6 Up to 4 in. 38.3 0.202 63
6151-T6 Up to 4 in. 40.6 0.220 61
7075-Té6 Up to 3 in. 73.3 0.535 46
7079-T6 Up to 6 in. 72.1 0.522 46
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Drawn Tube

wall : L'
All d T Niksi}) i =

oy and Temper Thickness, In. M(ksi) .
2024-0 Al 8.7 0.030 165
2024-T3 0.018-0.500 50.6 0.433 75
3003-0 All S. 4 0.015 222
3003-H12 All 12.2 0.051 148
3003-HIi4 All 16.8 0.082 124
3003-H16 All 22.8 0.131 112
3003-H18 All 26.5 0.164 103
Alclad 3003-0 0.014-0.500 5.4 0.015 222
Alclad 3003-H12 0.014-0.500 12.2 0.051 148
Alclad 3003-H14 0.014-0.500 16.8 0.082 124
Alclad 3003-Hl16 0.014-0.500 22.8 0.131 112
Alctad 3003-H18 0.014-0.500 26.5 0.164 103
5050-0 Al 6.5 0.019 185
5050-H34 All 20.4 0.111 121
5050-H38 All 25.3 0.153 106
5052-0 All 11.0 0.043 149
5052-H34 All 26.5 0.164 103
5052-H38 All 33.9 0.237 91
6061-0 All 5.4 0.015 222
6061-T4 0.025-0.500 18.0 0.092 128
6061-T6 0.025-0.500 38.3 0.202 63
6062-0 All 5.4 0.015 222
6062-T4 0.025-0.500 18.0 0.092 128
6062-T6 0.025-0.500 38.3 0.202 63
6063-T83 Al 32.6 0.159 69
6063-T831 All 27.0 0.120 75
6063-T832 All 38.3 0.202 63
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Extruded Tube

wail

Alloy and Temper H i L
Y P Thickness, In. N(ksi) Mksi) 4] )cr
2014-O All 9.9 0.037 160
2014-T4 0.125-0.499 30.2 0.200 100
2014-T4 0.500 and over 35.2 0.251 89
2014-T6 0.125-0.499 61.4 0.410 50
2014-T6 0.500-0.749 617.3 0.471 48
2014-T6 0.750 and over —
Area 25 sq in. max. 69. 0.496 47
Area 25 to 32 sq in. 67.3 0.471 48
2024-0 All 9.9 0.037 160
2024-T4 0.499 and less 41.1 0.275 67
2024-T4 0.500-1.499 50.9 0.379 60
2024-T4 1.500 and over —
Area 25 sq in. max. 53.4 0.407 59
Areca 25 to 32 sq in. 50.9 0.379 60
3003-0O All 5.4 0.015 222
3003-F All 5.4 0.015 222
5154-0 All 12.2 0.051 148
6061 -0 All 5.4 0.015 222
6061-T4 All 15.7 0.074 128
6061-T6 All 38.3 0.202 63
6062-0 All 5. 0.015 222
6062-T4 All i5.7 0.074 128
6062-1T6 All 38.3 0.202 63
6063-T4q2 Up to 0.500 11.0 0.043 149
6063.T5 Up to 0.500 17.5 0.076 103
6063-T6 Up to 0.500 28.0 0.155 81
7075-0 Al 13.3 0.058 142
7075-T6 Up to 0.249 79.3 0.602 44
7075-T6 0.250-2.999 81.7 0.629 43
7178-Té Up to 0.249 86.5 0.686 42
n78-T6 0.250-2.999 88.9 0.714 42
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Pipe
Alloy and Temper Size or N(ksi) M(ksit (.'i)
Thickncess, In. 51 0 e
3003-0O All 5.4 0.018 222
3003-HH1t12 1 in. and over 6.5 0.0t9 i8S
3003-1H18 Under | in. size 26.58 0. 164 103
3003-F 1l in. and over S.4 0.015 222
6051-T6 Under 1 in. size 33.3 0.202 63
6361 -Th 1 in. and over 18.3 0.202 63
6063-T5 Al 17.5 0.076 103
6063-T6 All 28.0 0,155 81
6063 -T8I2 All 18.3 0.202 63
Sand Castings
All i ; L
oy and Temper Thickness, In. N(ksi) Miksi) (';")
or
43-F 7.6 0.025 186
122-T61 35.2 0.251 89
142-T21 15.7 0.074 128
142-T571 35.2 0.251 89
142-T77 18.0 0.092 128
s e right
195-T4 The values to the rip 15.7 0.074 124
- are based on tests of -
195-T6H . R 24.0 0.i41 107
standard specimens in-
195-T62 dividually cast 33-9 0.237 o1
193-T7 y east- 19.2 0.101 120
did-F 11.0 0.043 149
n2i4-F 12.2 0.0%51 148
F2i14-F 11.9 0.043 149
220-T4 15.9 0.076 131
319-F 11.5 0.047 163
319-T6 14.4 0.065 134
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Sand Castings (Cont'd.)

Alloy and Temper Thickness, In. N(ksi) M(ksi) (E
P lr
355-T51 12.2 0.051 148
355-T6 14.4 0.065 134
355-T61 23.4 0.136 109
355-T7 24.2 0.143 107
355-T11 15.9 0.076 131
The values to the right
356-T51 are based on tests of 11.5 0.047 163
356-Té6 standard specimens in- 13.7 0.061 144
356-T7 dividually cast. 18.8 0.098 123
356-T171 13.0 0.056 143
Ab612-F 14.4 0.065 134
Permanent Mold Castings
Alloy and Temper Thickness, In. N(ksi) Miksi) (ﬁ-)
P er
43-F 7.6 0.025 186
Cli3-F 24.0 0. 141 107
122-T551 37.7 0.278 86
122-T65 35.2 0.251 89
F132-T5 - ——— .-
The values to the right
142-TS71 are based on tests of 33.9 0.237 91
142-T61 standard specimens in- 44'1 0'352 80
dividually cast. : ’
B195-T4 16.8 0.082 124
B195-T6 25.3 0.153 106
B195-T7 18.0 6.092 128
A214-F 14.5 0.066 135
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Permanent Mold Castings (Cont'd.)

Alloy and Temper

Thickness, In.

- v | ()

Niksi} Miksi) 0 -
333-F 18.0 0.092 128
333-TS 25.3 0.153 106
333-Té 29.0 0.188 100
333-17 26.5 0.164 103
355-T5S1 The values to the right 25.3 0.153 106
355-Té6 are based on tests of 26.5 0.164 103
355-Té62 standard specimens in- 44.1 0.352 80
355-T7 dividually cast. 31.4 0.212 98
355-T71 31.4 0.212 98
C355-Té61 35.2 0.251 89
356-Té6 25.3 0.153 106
356-717 24.0 0.141 oz
A3S6-T6l@ 31.4 0.212 98
C612-F 15.7 0.074 128
750-TS 8.7 0.030 165
B750-T5

®Area up thru 20 sq in.

@

Area 20 thru 32 sqin.

®Area up thru 30 sq in.

@The values shown for this alloy are valid for
any location in the casting.
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Sample Problem - Use of Straight Line Equation for
Concentrically L.oaded Short Columns

Given: The concentrically loaded rectangular bar shown
in Figure 2-52.

I 12
Y
Los

6061-T4 Aluminum Alloy Extruded
Bar, Width = 1.0 in.

AN \\l

P—-—.-4
7

Figure 2.52. Concentrically Loaded Short Column

Find: The critical load, P,

Solution: Since the column is made of aluminum alloy, a
straight-line equation should be accurate if the column is
short. From Section 2.3.1.4, C = 4 for columns having
both ends fixed. Since C = (L/L’)[, L°=L/2. The radius

of gyration,
3
AN
A 12

2 / 2
h~ (-5)
0 = = -
{ 12 12 0.144.

L. _6 _41.6
) - 144

"

Lo

Thus,

From Table 2-3, we find that (L'/p)cr = 128 for this material.
Since L"/p is less than this critical value, a straight line
equation may be applied. Substituting the values of N and M,
given for 6061-T4 extruded bars in Table 2-3, into Equation
(2-11), we obtain

Foot [ 15.7 - .074 (DL )]Ksi
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Thus,

P
=% = Feqp = [15.7 - . 074(41.6)] Ksi

or
P_. = 12.55A = 12.55(. 5) = 6.27 kip

P, = 6,270 lb.

2.3.1.11.7 Critical Effective Slenderness Ratio

So far, long columns and concentrically loaded short columns
have been discussed. It has been mentioned that a long column is one for
which the Euler equation holds in the concentrically loaded case. This equa-
tion holds for columns having an effective slenderness ratio greater than a
value called the critical effective slenderness ratio of the column. In some
cases, this critical effective slenderness ratio need not be determined. For
example, the tangent modulus equation, reduced modulus equation, or plotted
data may be applied to either long or short columns. In other cases, this
ratio must be known in order to decide which of two equations is to be applied
to a column. A critical effective slenderness ratio must be found if the
Johnson-Euler or a straight iine equation is to be used.

The critical effective slenderness ratio is, in general, a func-
tion of the column material. If the Johnson-Euler formula is to be used, we
obtain

@, [E

co

as our critical effective slenderness ratio. If a straight line formula is to
be used, the critical slenderness ratio is the slenderness ratio for which
the Euler curve and the straight line either intersect or are tangent. A gen-
eral formula is not given here since the critical effective slenderness ratio

for each straight-line equation whose parameters are given in Table 2-3 is
also given there.

In general, a steel column having a critical effective slender-
ness ratio of greater than 120 or an aluminum column having one of greater
than 220 may be immediately treated as a long column. Columns having
lower effective slenderness ratios must be checked by Equation {2-12) or
Table 2-3 or treated by a method applicable to both long and short columns.
If Equation {2-12) is used, F_, may be assumed to be approximately equal
to F, for a rough estimate of L'/P.
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2.3.1.11.8 Bending Failure of Eccentrically Loaded Short Columns

The column formulas in the previous section do not apply if
a column is eccentrically loaded or if initial imperfections are large enough

to have the effect of an appreciable initial eccentricity. In-such cases, either
another formula must be used or adjustments must be made to existing equations.

The secant formula that was given in Section 2.3.1.7 may also
be applied to short columns if its parameters are chosen correctly. This
equation is given again below for convenient reference.

(FS)P, Feor
= (2-13)
A 1 + E€ sec L~ / (FS)P‘ ]
pZ 20 AE

F o1 is the maximum fiber stress at failure as before.
suggest various ways of choosing F_,;, Reasonable results may be obtained
for very short columns if F_,, is assumed to be equal to the compressive yield
point for steel or the compressive yield stress for light alloys. In the case of
intermediate length columns, F_,; should be taken to be the stress obtained
from one of the formulas for a concentrically loaded short column. If the for-
mula used for this purpose is the tangent modulus equation, E should be re-
placed by E in the secant equation. The secant equation must either be

solved by trial and error or through use of a chart such as that shown in
Figure 2-33.

Different references

Unfortunately, the secant formula is inconvenient for computa-
tion. A simpler approach may be used if the column deflection is small com-
pared to the eccentricity of loading. This assumption is true for very short
columns and to a lesser extent for intermediate length columns.

Using the previously mentioned assumption, the basic design
equation for an eccentrically loaded short column becomes

F

col
—_—

FS

P

ec

1 (2-14)

:..I.D_.-i-
A

Here F_ , is the maximum column stress as computed from one of the equa-
tions for a short concentrically loaded column.

A more refined design equation based on the assumption of a

small column deflection relative to the eccentricity of loading is

- + (2-15)
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me

here F__ , is the working concentrically loaded column stress and F is the
orking compressive stress in bending.

In conclusion, the secant formula is theoretica.lly more correct
and yields better results for eccentrically loaded short columns.
due to the difficulty of applying this formula, Equation (2-14) or (2
times be applied, especially for shorter columns.

However,
-15) may at

1SS - 9.
s =°

.80 [ o

L10—=0.4 -

nl “l ”

(FS) P,
Feool A
If'“’". ’
Y .o.ouo 'o nc
= 0o~ o
// /
7

-60

14

0

Y .50

-40

IIIII' ”']”r! n’

N"‘"’" o
007 'A/N

' &/

-30

l"‘cczl A
(FS)P,4

-20

-10

L /(FS)P&
b AE

Figure 2_53, Graphical Presentation of the Secant Column Formula
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Sample Problem - Ecceatrically L.oaded Short Column
in Bending

Given: The eccentrically loaded round column shown in
Figure 2-54.

| - 12 pag |

P, - oY i J.'E —~—p,

a T F

1 in. diameter
6061-T4 Aluminum Alloy Extrusion
Eccentricity of Luading , ¢ =0.1in.
Figure 2-54. Column Loading Used for Illustration of Secant-
Modulus Equations

Find: The allowable load, P,. if a factor of safety of 1.3

is used. Use (a) the secant modulus equation, and (b)
Equation (2-14).

Solution: (a} The secant modulus equation may be written as

(FS) P, F
A

col

'l+.e_.c.sec[‘L’ ‘/(FS)P'j
02 LZp AE J

Since the column is made of alumiaum alloy, the straight-line
column Equation (2-11) may be used to find F,, if it is short.
From Table 2-3, find that B, D, and (L "/o),, for this material
are 15,700 1b, 151b, and 128 respectively. Thus,

F

oy = 15,700 - 15 (&)

o
Since the column is pin ended, L" = L = 12 in. For a circular
section, 2 = D/4 = 0.25. Inserting these values into the above
equation gives F_,; = 14,980 psi. Since L “/o is equal to 48
and (L”/o0),, is equal to 128, the assumption of a short column
is valid. All of the parameters for the secant formula are now
known except P,. Inserting these values in the secant modulus
equation gives

1.3 P, 14, 980
“_“_’2__ |y 2105 12 1.3 P,
4 + — 3 sec | ———
(.25) 2(.25) w(1)? 6 '
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Simplifying this gives

9, €90

P =
1+ .8 sec[0.00975/P ]

Try P, = 5,000 lb. Substituting this value, we find that it
solves this equation. Thus, P, = 5,000. If our original guess

was incorrect, other values of P, would have to be tried until
a value was found that solved the equation.

(b) Inserting the equation for F, , from part (a) into
‘Equation (2-14) gives

P

éec

I

15,700 - 15 (L /p)
FS

:—P_..-i-
A

or

15,700 - 15 (12/0.25) P . P(0.1)(0.53)

1.3 n/4 /64

Solving this for P gives P__ = 6,540 lb. Notice that
although this procedure eliminates the trial and error
methods used with the secant equation, it yields less con-
servative results.

2.3.1.12 Torsional Failure of Simple Columns

The previous sections discussed the failure of long and short col-
umns by bending. It was assumed throughout this treatment that the sections
of the column are transiated but not rotated as it fails. However, primary
failure may occur at loads lower than those predicted in the section on bend-
ing failure if the sections should rotate as well as translate as shown in Fig-

ure 2-55.

(\
\\\ -
\\\\ /,’,)
\ 77

A

Figure 2-55. Section Subject to Translation and Rotation
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In general, columns whose cross sections have a low torsional
rigidity, GJ, must be examined for torsional instability. Columns having
closed sections or solid ones, such as round or square sections, have such
a high torsional rigidity that there is little possibility of them failing by tor-
sional instability. However, torsional instability must be considered in the
case of columns composed of thin sections. Failure by twisting is unlikely
for flanged columns whose cross sections are symmetrical about a point such
as I, H, and Z sections. Twisting-type failures are most apt to occur in the
case of torsionally weak sections that are unsymmetrical or have only one
axis symmetry such as angles, tees, and thin-walled channels.

The basic equation for a column that fails by a combination of bend-
ing and twisting gives the critical stress as

2
C,, n“E
Fea = 28 + ——— (2-16)
L L(L")

In this case, C,, is a sectional property defined below and the parameters
are defined as usual.

The torsion bending constant is dependent upon the axis of rotation
and defined as

Cor = § wlaa-L (] w dal? (2-17)
A A A
where
u
w=[ r, dq (2-18)
[o]

The parameters used above are shown on an arbitrary cross sec-
tion in Figure 2-56. Values of the torsional bending constant are given in
graphical form for various cross sections in Figures 2-57 through 2-60.
The torsion constant, J, may be obtained in Figures 2-61 for bulb angles or
from the following equation for formed sections:

J = st3/3 (2-19)

Here, s is the developed length of the median line.
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Figure 2-56. Parameters Used to Define the Torsion Bending Constant

If a column is not attached to a sheet, the twisting failure is by
rotation of sections about shear center of cross section. In this case, I;
and Cg, are taken about this shear center. If the column is attached to a
sheet, sections may be assumed to rotate about a point in the plane of the
sheet. This procedure gives rough results but unfortunately little specific
information is available on this subject. In general, columns are stronger
when they are used as stiffeners than when they stand free. However, 2

column having an unsymmetrical cross section may be weaker when it is
attached to a sheet.
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2.3.1.13 Sample Problem - Torsional Failure of Simple Columns

Given: A column with €ross section and material pProperties
as shown in Figure 2-62.

y

M G=3.85x 10
E= 10 x 106 psi
L'= 100

| -

1.5 -1

Figure 2-62. Cross Section of Column Used for Illustration of
Torsional Failure

Find: F_,, for failure by a combination of bending and
twisting.

Solution: Sincet is small, the shear center may be assumed
to be at the corner of the angle.

The polar moment of inertia about the shear center is given by

L=L +1,

or

{[1 5(.1)3 ] [Mﬁ . (0 ,)(3)(1_5)2]}:

From Equation (2-19)

3 . 3
Te e = 2200 Ly gy 003
From Figure 2-57,
3,3 3 3 }
Cu=t (h” + b2) - 10.1)7(27 + 3. 48) =8.46x10'4

36 36
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Inserting these values into Equation (2-106) gives

-3 -
- - (3.85x10%0.5x107%)  (8.46x10"*2 (10x109)
col
0.9 (0.9)(10%)
Thus, F_,, = 6,419 psi.
2.3.2 Introduction to Crippling Failure of Columns

In the previous sections, the primary failure of simple columns
was considered. However, if a2 column has thin sections, it may fail at a
load well below the critical load predicted for primary failure. Thus, a
column must, in general, be checked for both primary failure and crippling.
Primary failure may be assumed to be independent of crippling effects, in
which case, a failure curve such as that shown in Figure 2-63 may be used.
The right-hand portion of the curve describes the stress required for primary
failure of the column at various effective slenderness ratios. This curve is
cut off at the crippling stress level by the flat portion to the left.

L'/>

Figure 2-63. Failure Curve Based on the Assumption of No

Interaction Between Primary Failure and Crippling

If the interaction between crippling and primary failure is to be

taken into account, the constant F_, in the Johnson-Euler equation may be set

equal to the crippling stress F_ . Although this procedure is more correct,

it also introduces added complications, and only works for columns having a
crippling stress less than the primary failure stress as L /p approaches zero.
Figures 2-64 and 2-65 show sets of Johnson-Euler curves for various materials

The curve used in a given case is the one that intercepts the ordinate at the
value of F__ for that column.
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ALUMINUM ALLOYS

Johnson-Euler Formulas
For Aluminum Columnus

S

\ Johnson Formula
2 (LY
F
E - F cc \Wp/C
col ™ *cc ~ 2
4n FE

Where:

restraint coefficient
= 10.3 x 10° psi

N\

—
MO
won

Euler Formula

N
~

1))

2
F .= ul (EJEL)
col ™ L > i

R\
\
\
T

20 40

o

o 80 100

L'/o = L/p/C

Figure 2-64a. Johnson-Euler Column Curve
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MAGNESIUM ALLOYS

60

50

_ (Fec)? L \¢
Fea = 1:.o::(: - 2 (
AnTE p/C
Where:

coefficient of restraint
modulus of elasticity =
6.5 x 106

|
40 {
\ T .
| — Feol = .__L_—Z—
J (a./_c_)
30 \\
20 — \
\'\
10
\
0 b—
) 20 40 60 80 100 120
L'/p = L/Ip/T
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\ \ Johnson Formula
180 N , ( L )2
F
Feot ® Fee - << Zp/_c_
41 E
160 \ Where C = restraint coefficient
\ E = 29, 000, 000
’\\ Euler Formula
140 S, \
\ \ "2 E
Feol ™ =73
L
120
\ \ Applies to Corrosion
—\ and Non-Corrosion
\ \ Resisting Steels
\\
. \ '\
\ %
60 —\E\\k
) \
20 40 60 80 100
L'/e = Li/p/C

Figure 2-65a. Johnson-Euler Column Curve
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| i > L {
2
70 Feor= Fee - Feg) ( - )
— e e N/ ]
Where:
60 \ \ C = restraint coefficient ]

E E = modulus of elasticity =
) 15.5 x 10
\ | | |
o 50 t t
@ T 2
- F = n_E_
£ col ( L )2
3 . \ p/C
= I N
ﬁ \
3
E \
1 30 1 e
3 .\.
Lx‘ .\

Commercially Pure Titanium \
§ \

0 20 40 60 80 100 120
L'/p = L/pJ/C

Figure 2-65b. Johnson-Euler Column Curve

2.3.2.1 Crippling Stress of Round Tubes

Steel tubes for which the diameter-to-wall thickness ratio is less
than 50 need not be checked for crippling. This gives .us some general idea
of the thinness required if a tube is to fail by crippling rather than by prims

instability. A theoretically correct formula for the crippling stress of a
tube is

1 Et
F = —~r
ce 2-20)
30 -u?) ’ (

where r is the mean radius and = Poisson's ratio. Ifu is taken to be 0.3,
is the case for steel and aluminum alloys, we obtain
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Et
F, = .605 — (2-21)

This equation, however, is extremely unconservative for small values of
t/r and should only be used for approximations in the early stages of design.

More conservative and accurate empirical methods are available
for the treatment of tubular columns. If L/r is less than 0. 75, use the
equation

P 2
2= F,, = .ZK_';_E_ (2-22)
Lt

where the critical stress coefficient, K, is given in Figure 2-66,

lO4 r/t e
Recom-~
ded
50 men
y 0 for

p 1000

A%g%} design

3
10 7
Theoretical /
| I / A

10

10 7
72 ~ = — —«Simply Supported Edges
Z. Clamped Edges
1 jor®
1 10 10° 10° 104 10°
2
L 2
Z = = -

rt 1-u

Figure 2-66, Critical Stress Coefficients for Thin-Walled Short Circular
Cylinders Subjected to Axial Compression

If L/r is greater than 0. 75, uce the equation

P
A‘;' = F, =CE ir- (2-23)

where C is given in Figure 2-67.
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.24

.20

.16

.08 . |
hﬁ-——

.04

C 400 800 1200 1600 2000 2400 2800 3200

r/t

Figure 2-67. Coefficient for Computing Critical Axial Compressive
Stresses of Indeterminate Length and Long Cylinders

2.3.2.2 Sample Problem - Crippling Stress of Round Tubes-

Given: The tubular aluminum column shown in Figure 2-68.. )

E= 10 x 108 pai

Figure 2-68. Cross Section of Column Used for Illustration of
Crippling Failure of Round Tube

Find: The crippling stress if

{(a) L = 5 in.
{b) LL = 60 in.
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Solution: (a) In this case, L/r < 0.75 so we may use Equation (2-22)

2 2
s = _lr;t_ iopz = 8 /1 (32 = 119.5

10(.02)

From Figure 2-66, K = 11. Substituting this value into Equation
(2-22), we find that

2 2(11)yme (10
Fcc = .Z__KZ_"_L = ( 2) ( ) = 4, 350 psi
L%t (5)°(.02)

(b) If L = 60 in., L/r > 0.75 so that Equation (2-23) may
be used

I =500
t

From Figure 2-67, C = 0.22. Substituting this value into
Equation (2-23), we obtain

6
_0.22 (lO;cOIO 10:02) _ 4 400 psi

Et
F.. = 0.22 =

If the theoretically correct formula, Equation (2-20), is used for
either of these two columns,

F.=0.605—=-— = 12,100 psi

This value may be seen to be much greater than those obtained
frecm the more accurate empirical formulas.

2.3.2.3 Crippling Stress of Qutstanding Flanges

Two idealized cases of edge restraint of long flanges are shown
in Figure 2-69. In case (a), the flange is fixed along its edge and the equa-
tion for its crippling stress is

2
_ 1.09E (t
F.. = 2-24
- ) (2-24)

es
l-u,z
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The flange shown in (b) is hinged along its edge and the equation for its crip-
pling stress is

L416E ¢ \2
F = —— —_— (2-25)
°¢ l-uz < b )

A column flange is neither rigidly fixed nor hinged along its edge so its crip-
pling stress lies between those given by Equations (2-24) and (2-25), the latter
giving more conservative results.

!
||

(a) (b)

Edge

Figure 2-69. Idealized Edge Constraints of Long Flanges

2.3.2.4 Crippling Stress of Angle Elements and Complex Shapes

The basic design equations for the crippling stress and load of the
angle section shown in Figure 2-70 are

Fee _ C, (2-26)
./F”E ( b')0.75
t

and

ce ~ . A (2-27)

-\0. 75
)"

Here b “is equal to (h+b)/2 as seen in Figure 2-69 and C, is a constant dependent
upon the fixity of the edges, as shown to the right of Figure 2-70.
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b '
r = 3t b! = h-b
2
NS — - - . Ce = -316 (two cdges free)
Ce.= .342 (one cdge free)
foat— h C. = .366 (no edge free)

=—l

Figure 2-70. Angle Section

The area of this angle is given by

A= [(B)-o021e (Z)] 2 (2-28)

Nondimensional plots of Equations (2-26) and {2-27) are shown in Figures
2-71 and 2-72, respectively. These plots may be used to facilitate the
solution of angle problems. It must be noted that Equations (2-26) and
(2-27) have no significance when F,, is greater than F__. These cutoffs
are shown for two alloys in the following figures.
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P
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0
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Figure 2-71.

Dimensionless Crippling Stress of Angles vs. b’/t
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/ /
/ / 4 Edges Free
1.6 / > {——=One Edge Free 160
/ / —— No Edge Free
1.4 // 140
l /
1.2 $ 120
Pec /
t> JF_ E I/
cy~ . 'l/
1.0 ;( ” 100
,r—-Fcc = Fey (245-T3) Y'\\
,1.__-.Fcc = FCY (755-T6)
0.8 80
0.6 60
0.4 40
0.2 20
0
0 10 20 30 40 S0 60 70 890
b . btk
! 21

Figure 2-72.

Dimensionless Crippling Load of Angle vs. b‘/t

Many complex sections, such as those shown in Figure 2-73, may

be treated by considering them to be composed of a number of angles.

The

crippling stress of these sections may be found by the following procedure:

First, break the section up into a number of angles.
crippling load and area of each of the angles.

section from the following equation:

2 - 93

Secondly, find the
Finally, find F_, for the entire
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L Crippli
F,, = rippling Load of Angles (2-29)

L Area of Angles

_J

p—

Figure 2-73. Examples of Complex Sections

This procedure is illustrated in the following example.

2.3.2.5 Sample Problem - Crippling Stress of a Complex Shape

Given: Column with the cross sectional shape shown in Figure
2-74. It is composed of an aluminum alloy for which E = 107 psi
and F_, = 50 kips.

. B63—wd

.43 ] je—o

.425 OI1@ T

I 1.228

—ttl—— 0255

(O

— 936.]

Figure 2-74. Cross Section of Column Used for Illustration of
Crippling Failure of Complex Shape
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Find: The crippling stress F..

Sclution: This section may be broken into three angle sections
as shown by the broken lines above. The calculation of the
crippling load and area of each angle section is summarized
in the table below:

Edge b-h Pec

Section b h Condition 2t ?‘/—FTE— Pee % A
1 0.425|0.431 | Onc Edge Free{16.8 133 [ 1338 VFE [32.5 | 32,502
2 [0.431]1.228 | No Edge Free |32.6 112 f 172 FUEf 640 | 64008
3 |0.936|1.228 | One Edge Free]42.5 172 | 172 JFLE | 83.9 | 83947

The values of b and h in this table are as shown in Figure 2-70.
The values of P,, and A may either be found from Equations
(2-27) and (2-28) or from Figure 2-72 which shows these equa-
tions in graphical form. The crippling stress may now be found
from Equation (2-29) to be

(1.33+ 1.72 + 1. 72)t* /F_ E
F,, = —— = 0.0264/F,_ E
(32.5 + 64.0 + 83.9)t

Substituting the material properties into the above equation gives

F,, = 0.0265/(5x10%)(30x 10%) = 32, 400 psi

2.3.2.6 Crippling Stress of I Beams

Figure 2-75 shows an I section.

Ly

Figure 2-75. I Section
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The crippling stress of a column of this shape is given by

kvrrZE t,,z
F,, = (2-30)
12(1-u)h?
where k, is given in Figure 2-76.
7+ Web Buckles First

L

= /\
6 L / Flange Buckles First

e
E
b
b
=
-

0 palessd I ] 1 | ] I 1 I
0 .2 .4 .6 .8 1.0 1.2
2
n

Figure 2-76. k_ for Equation (2-30)

2 - 96



TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

M

2.4 Complex Columns

The material in previous sections treated columns that have uniform
cross sections and may be considered to be one piece. This section treats
of stepped and tapered columns whose cross section varies as well as of
latticed columns whose action varies from that of one-piece columns.

2.4.1 Stepped and Tapered Columns

Columns of variable cross section can be solved by numerical pro-
cedures. However, charts are available that vastly simplify the solution of
stepped and tapered columns.

These charts are shown in Figures 2-78 through 2-81. The use of
these charts in finding a critical load is self-explanatory except for the fact
that the tangent modulus of elasticity, E., must be used in place of E if the
section is stressed beyond the proportional limit. Also, the coefficients of
constraint that were discussed in Section 2.3.1.4 no longer hold for stepped
or tapered columns. The columns shown in the charts have pinned ends.

2.4.2 Sample Problem - Stepped Column

Given: The concentrically loaded pin ended, stepped column
shown in Figure 2-77.

40 !
8 —e—t 24 ——1
p = = } e > un
Al = .4 AZ: .5
I, = .25 I = .5

Figure 2-77. Column Loading Used for Illustration of Effect of
Stepped Columns

Find: The critical load P,..

Solution: Assume P._=11, 600 1b. Thus, F and F are

coll coly

equal to 11, 600/0. 4 psi and 11, 600/0. 5 psi, respectively.
Equation (2-6) gives E, as

E, = E

1 + 3/7 ndn-l

2 _ a2
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Since 0 = f‘:/f1 where f is the compressive stress which, in this

case, 1S Feol’

E = E

n-1
1 +3/7 :{&L)
£)

Inserting values of fl and n from Figure 2-46 into this equation
gives

6
E, = 10.7x 10
F 9
1+ 42. JL_)
9 (37000
Inserting the values of Fcoll and Fcolz into this equation gives
E, = 1.86 x 10° psi
e = L X psi
and
E.. = 6.55x 10° psi
v = 6 psi
Thus
E I

1l 1.86x10%0.25) |, 4,

E,Ip 6,55 x 10°(0. 50)

From Figure 2-78, P_ /P, = 0. 57 where

2
v E,. I
t2

P, = — 22
L2

Thus,

p -p =0-5772 (6.55%10%) (0. 5)
er 8
(40)2

or P__ = 11,600 psi. The original guess is thus correct. If it
were not, other values would have to be tried until the correct
value was found.
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Figure 2-79. Critical Loads for Unsymmetrical Stepped Columns
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2.4.3 Latticed Columns

Although it is customary to assume that a latticed column acts as
a single unit and develops the full strength of the section, a column is actually
less stiff if the buckling occurs in a plane normal to that of the lacing. This
fact is unimportant if a column is designed so that buckling occurs in a plane
normal to that of the lacing, but it must be taken into account for columns
that are laced on all sides.

In order to take the effect of lacing into account, a reduced modulus
of elasticity, KE, may be used in place of E in the equations for simple columns
Equations giving K as a function of column parameters are given in Figure 2-82
for various lattice configurations.

In designing latticed columns, care must also be taken to insure
that buckling of the individual members does not occur between points of attach-
ment. In general, the slenderness ratio of a longitudinal member between
points of attachment should be less than 40 or two-thirds of the slenderness
ratio of the column as a whole, whichever is lower.
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Column Conliguration K
A
K = 1
2 1|+ Z-4. 9321
AL cos 8sinB
Al\ /-AZ
| K = 1
\Al \ Al l ! 4.93 1 4.931
| A ‘ A1L2c05295in6 AZLZtanB
4

0

2l
241

1
2
;*E__‘I‘_. (_&..,

)

1

016

of bending

l...
n

length of entire column

moment of inertia of entire column with respect to axis

moment of inertia of a channel section about a central axis
parallel to the y axis

moment of inertia of a vertical batten plate section about a

central axis parallel to the x axis

Figure 2-82.

Values of K for Various Lattice Configurations
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3. BAR ANALYSIS

3.1 Introduction to Bar Analysis

Bars are thin structural members. This chapter gives procedures for
determining the resistance to yielding of bars under static loads as well as
their resistance to fatigue failure under varying loads. Tensile loading of
bars is considered in detail, and information applicable to the compressive,
bending, and torsional loading of bars appearing in other chapters is ref-
erenced in this chapter.

3.2 Nomenclature for Bar Analysis

A = cross-sectional area, in.

£, = tensile stress, psi

fsa = alternating stress, psi

fia = mean stress, psi

Fiy = vyield stress in tension, psi

f,s» = endurance limit in torsion

K = stress concentration factor

K, = effective stress concentration factor
K. = theoretical stress concentration factor
n = factor of safety

P = load, lbs

P, = alternating load, lbs

Pe mean load, lbs

q = notch sensitivity factor

3.3 Static Tensile Loading of Bars

The basic formula for stress in a member of cross-sectional area A
under a static tensile locad P is

=_P (3-1}

This equation, however, is somewhat limited. In order for it to be valid,
the member must be centrally loaded, the section at which 0 occurs must
be well removed from the point of application of the load, and no stress
ralsers may be present near the section where 0 occurs.

Bars are normally designed so that tensile loads are applied cen-
trally. If this is not the case, they may be considered to be beams under
combined tensile and bending loads and treated with the material in
Chapter 1. Although the end portions of a bar are as critical as the cen-
tral ones, they are not considered here since information about them more
properly belongs in a treatment of connections, for example, the chapter on
lug analysis in this work. According to St. Venant's principle, stress
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patterns become regular at a distance from the point of application of a load.
In this case, the stresses become uniform at a distance from the point of
application of an axially applied tensile load. Stress raisers will be con-
sidered here and when they are present, Equation (3-1) no longer applies.

If a stress raiser is present in a bar loaded in tension,

£ =K (—i— ) (3-2)

where K is a stress concentration factor. Egquation (3-2) indicates that the
stress at the discontinuity is K times the stress that would occur if no stress
raiser were present. The stress concentration factor may be determined
theoretically by the theory of elasticity, the photoelasticity method, etc.,
where it is designated as K,. These values are not normally accurate, how-
ever, and are not in general used directly as will be discussed later. The
following figures give values of the theoretical stress concentration factor
for various cross-section and discontinuity shapes.

The theoretical stress concentration factor may be quite high as can
be seen in the following pages; however, this value is usually in agreement
with experiment. To account for this discrepancy, an effective stress con-
centration factor K, is defined to be the one that holds in the actual situa-
tion encountered. The notch sensitivity factor, q, is used to relate the two
and is defined by Equation (3-3):

K, -1

q = ——— (3-3)
K, -1

The value of the notch sensitivity factor is a function of the material and the
size and shape of the discontinuity.

For ductile materials that are statically loaded to near their limit, the
yielding in the vicinity of the discontinuity may nearly eliminate stress con-
centration there, so that K, is approximately equal to one and q is quite low.

Brittle homogeneous materials are not as capable of localized yielding,
so that K, is approximately equal to K, and consequently q is approximately
equal to one according to Equation (3-3). Cast iron of less than 45, with its
flakes of graphite, however, is effectively saturated with stress raisers, so
that the addition of another discontinuity seems to have little effect on its
fatigue strength. Thus q is approximately equal to zero for cast iron.

The design equation for a bar under a static tensile load P that is not
to be subjected to large-scale yielding is thus

Fey = K, ("i— ) (3-4)
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For a ductile or cast iron bar, K, may be assumed to be equal to unity and
A is the reduced area at the section where the discontinuity occurs. For a
bar of brittle homogeneous material, K, may be assumed to be equal to K,
and A is either the cross-sectional area of the bar without the discontinuity
or the reduced area at the cross section where the discontinuity occurs.

Which of these areas is to be used is shown in a formula under each chart
of K, in Figures 3-1 through 3-12.
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Figure 3-1. Stepped Round Bar with Radial Fillet
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Note: The values of K, may be used as a close approximation for any
type of V notch with a small fillet or radius r at the root of the notch

Figure 3-3. Round Bar with Hyperbolic Notch
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Note: The values of K, may be used as a close approximation for any
type of V notch with a small fillet or radius r at the root of the notch.

Figure 3-9. Rectangular Bar with Hyperbolic Notch (One Side)
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